Docket 50-155

Report

Derivation of Floor Responses Reactor Building

Report

Derivation of Floor Responses Reactor Building

Big Rock Point Nuclear Power Plant Charlevoix, Michigan

Report

Derivation of Floor Responses Reactor Building

CERTIFICATE OF COMPLIANCE REPORT
 DERIVATION OF FLOOR RESPONSES
 REACTOR BUILDING
 BIG ROCK POINT NUCLEAR POWER PLAN:
 CHARLEVOIX, MICHIGAN

I have reviewed the subject report, dated June 1978, presenting the derivation of floor responses for the Reactor Building at the 31 g Rock Point Nuclear Power Plant. The analysis has been performed consistent with the criteria and design bases established by the owner and the methods used in the analysis are in compliance with United States Nuclear Regulatory Commission regulations and good engineering practice.

Richard D. Ellison Registered ?rofessional Engineer State of Michigan
Certificate No. 18089
June 22, 1978

TABLE OF CONTENTS

Page
LIST OF TABLES 1
LIST OF FIGURES 1
1.0 INTRODUCTION 1-1
2.0 ANALYTICAL METHODOLOGY 2-1
2.1 BACXGROLND INFORMATION 2-1
2.2 SITE CONDITIONS 2-1
2.3 STRUCTURAL ARRANGEMENT 2-2
2.4 ANALYSIS PROCEDURE 2-2
3.0 DEVELOPMENT OF MATHEMATICAL MODEL 3-1
3.1 SUPERSTRUCTURE MODEL 3-1
3.1.1 Idealization of Reactor Internals 3-1
3.1.1.1 Stick Properties 3-1
3.1.1.2 Mass Properties 3-3
3.1.2 Containment Shell 3-4
3.1.3 Structural Damping 3-5
3.2 FOUNDATION YODEI 3-6
3.2.1 Evaluation of Elastic Properties of Subsurface Layers 3-6
3.2.2 Soil-Structure Interaction Parameters 3-8
3.2.2.1 Frequency and Embedment Correc- tions of Soil Springs 3-11
3.2.2.2 Corrections to Joil Damping 3-12
4.0 INPUT SEISMLC MOTION 4-1
4.1 DEVELOPMENT OF ARTIFICTAL EARTHQUAKE TIME HISTORY 4-1
4.2 DAMPING VALUES FOR WHICH RESPONSE SPECTRA WERE MATCHED 4-3
5.0 DYNAMIC ANALYSIS 5-1
5.1 MODE-TREQUENCY ANALYS:S 5-1
5.2 TRANSIENT DYNAMIC ANAL.'SIS 5-2
5.2.1 Evaluation of F1 ior Response 5-3
5.2.2 Effects of Parareter Vartation on Structural Response 5-3
6.0 RESULTS OF ANALZSES 6-1
7.0 SUMMARY 524 27319
LIST OF REFERENCES
FIGURES

LIST OF TABLES

IABLE NO.	TITLE
1	Internal Str cture Member Properties
2	Internal Structure Lumped Masses
3	Spring Constants for Rigid Circular Footing Resting on Elattic Half-Space
4	Damping Ratios for Rigid Circular Footing Resting on Elastic Half-Space
5	Fraquency and Embedment Corrected Soll Structure Interaction Parameters
6	Natural Frequencies of Reactor Bui'ding, Big Rock Point Nuclear ?ower Plan.

1

2
3

4

5

6

Natural Frequencies of Reactor Bui'ding, Big Rock Point Nuclear Power Plan.

LIST OF FIGURES

FIGURE NO.	DRAWING NO.	TITHE
1	78-161-A2	Site Plan and Boring Locations
2	78-161-34	Subsurface Profile, Secti a 1-1
3	78-161-32	Structural Arrangement, Reactor Building Structures and Equipment, Key Plan and ection A-A
4	78-161-33	Structural Arrangement, Reactor Building, Structures and Equipment, Sections B-B añd $C-C$
5	78-161-A.3	Mathematical Model
6	78-161-35	Disposition of Equipment and Water Masses
7	78-161-31	Foundation Cross-Section
8	78-161-A1	Analytical Subsurface ?rofile
9	78-161-37	```Input Hr:izontal and Vertical Accel- eration Time-Histories and Response Spectra Matching 5% Damping```
10	78-161-A4	Dynamic Dtrees of Freedom
11	78-161-38	Floor Pespons s at Spent Fuel Pool Location - Nod, 11
12	78-161-36	Floor Accelerat ion Z.s. ronses at Elevation 657.5 ct. (Node 11) and Elevation 630.r ft. (Node 3)

LIST OF FIGURES

(Continued)

$524 \quad 241$

DERIVATION OF FLOOR RESPONSES REACTOR BUILDING BIG ROCX POINT NUCLEAR POWER PLANT CHARLEVOIX, MICAIGAN

1.0 INTRODUCTION

D'Appolonia Consulting Engineers, Inc. (D'Appolonia) is pleased to sub\#it this report to NUS Corporation (NUS) as documentation of the derivation of floor responses at various locations in the Big Rock Point Nuclear Power Plant Reactor Bui-ding due to seismic motions at the base. It is our taderstandiag that the floor time histories derived at the spent fuel pool location will be used by NUS in the analysis of the new high density fuel racks that will be added to the spent fuel pool.

In order to develop an accurate representation of the floor time histories of motions of the structure, a mathematical model of the reactor building as described in Section 3.0 was developed. All salient characteristics of the structure including soil-structure interaction effects were represented in this model.

As discussed in this report considerable engineering fudgement was raq'ured to estimate the properties of the subsurface soils and rock which wer: used to derive the soil-structure interaction parameters for the model. The floor responses were finally developed by performing a linear transient dynamic analysis of the system with three simultaneous thogonal earthquake excitations of the structure at its foundation level. The floor response spectra at the specified locations were then derived from the floor time histories obtained at their respective locations. Because of the uncertainties in the subsurface material properties, recommendations on the effects of variations in the soil compliance funcrions used in the model have been provided.
$524 \quad 242$

The results of the analyses are presented in this report with appropriate graphs and are discussed in Section 6.0.

This report describes the uewails of this study in the following order:

- Section 2.0 - Analytical Methodology
- Section 3.0 - Development of Mathematical Model
- Section 4.0 - Input Seismic Morion
- Section 5.0 - Dynamic Analysis
- Section 6.0 - Results of Analyses
- Section 7.0 - Summary

2．0 ANALYTICAL METHODOLOGY

2.1 BACXCROUND INFORMATION

The Big Rock Point Nuclear Power plant is located about four gilles to the northeast of Charlevoix，Michigan near the shore of Lake Michigan． The plant was put into commission in the early 1960 ＇s and is owned and operated by Consumers Power Company，Jackson，Michigan．The proposed addition of high density fuel racks in the spent fuel pool of the Rei－ tor Building requires development of fivor time histories and their respective response spectra ai this Location．At the time of original design，the seismic design basis was a zero period ground acceleration equal to 0.05 g ．However，a horizontal zero period design ground accel－ eration of 0.12 g has been specified by the Owner（Notes，March 9， 1978. zeeting at Consumers Power Company offices）for the analysis of fuel racks at this plant．

Because NUS is performing a time－history analysis of the fuel racks， both the floor time histories and the floor response spectra are being submitted to NUS at the spent fuel pool location．In addition，as per the request of NUS，floor response spectra at two additional locations in the structure are being submitted for any future equipment analysis．

2.2 SITE CONDITIONS

The representativa site subsurface profile was determined from the rec－ ords of borings performed by Raymond Concrete Pile Company（Consumers ？ower Company，1978a）．In general，the site subsurface profile may be described as couposed of approximately ten feet of sand，gravel and limestone fragments at the surface underlain by about 40 feet of medium dense to very dense glacial deposits termed＂hardpan．＂The standard penetzation resistance in this glacial till deposit varies from a mini－ sum of about 19 blows／ft to a maximum of over 100 blows／ft．Underlying the till is a gray to black fossiliferous limestone with thin shale partings to a depth of at least several huidred feet．Based on an
examination of the core recovery percentage, approximately the upper 15 feet of the limestone is relatively highly weathered. The groundwater table is very close to the ground surface.

Figure 1 shows the site plan and the locations of the Boring Nos. 3 through 9 drilled by Raymond (Boring Nos. 1 and 2 were drilled more than 1,500 feet off to the gerthwest). A schematic representation of the subsurface profile along an east-west section (Section 1-1, Figure 1) through the Reactor Building foundation is shown in Figure 2.

2.3 STRUCTURAL ARRANGEMENT

The Reactor Building consists of a 3/4-inch thick steel containment sphere approximately 129 feet in diameter which encloses the reactor vessel and core, the new and spent fuel storage areas, the steam genaerating system and auxiliary equipment. The reinforced concrete fourdation is in the shat of an inverted spherical dome approximately seven feet thick. Within the containment sphere, the major equipment and structural arrangement are as shown in Figures 3 and 4. The Reactor Building is classified as a Category I structure.

Structures adjacent to the Reactor Building, as shown in Figure 1 , include the Turbine Building and the office building, while the screen well and pumphouse are some distance removed. Because these structures are separated and independent from the Reactor Building, no interaction between these structures and the Reactor Building was considered in the analysis.

2.4 ANALYSIS PROCEDURE

The primary purpose of this analysis is to derive the floor time histories of motion in the three component directions at the spent fuel pool floor of the 31 g Rock Point Plant. The development of the structural model of the Reactor Building is presented in detail in Section 3.0. To accurately determine the required floor time histories, a threedimensional shear beam model of the reinforced concrete Reactor Building internal structure was developed from the structural drawings of the plant.

To preserve the effects of interaction between the steel shell and the enclosed structure, an equivalent singlemass stick model having the frequency properties it the spherical shell was developed and attached at the base of the structure. Because the structure is located on gilacal till deposits underlain by 11 mestone bedrock, a representation of the soil-structure interaction between the foundation and the soil was provided through lumped springs and dampers. The structural. salol so developed is shown in Figure 5.

A mode-frequency analysis of this model was first pe: formed so obtain its frequencies and mode shapes as a check for consistency ta the modelling. The structure was then excited at the base by an artificial earthquake time history input acting simultaneously along three normal directions. The artificial earthquake records used in the analysis were generated as part of this study and satisfy the general requirements of the United States Nuclear Regulatory Commission (USNRC) Regulatory Guide 1.60 (1973) and USNRC Standard Review Plan 3.7.1 (1975). The development of these records is described i- etail in Section 4.0. The details of the dynamic analysis are presented in Section 5.0.

To conservatively account for the possible variation of the subsurface material properties, the mode-frequency analysis was repeated by using a lower bound and upper bound estimate of the soil compliance functions used in the anal, sis. For lower bound analysis, the soil spring stiffnesses were reduced by 50 percent, while for the upper bound analysis, the stiffnesses were increased by a factor of 1.5. The detailed recommendations for incorporation of this variation in soil-structure interaction parameters for floor equipment analyses are discussed in SecLion 5.2.2.

The ANSYS Computer Code (DeSalvo and Swanson, 1375) was used for all dynamic analyses in this study. The program is based on the finite element technique. The artificial time histories and the floor response spectra were generated by using computer programs developed by D'Appolonin.

3.0 DEVELOPMENT OF MATHEMATICAL MODEL

3.1 SUPRRSTRUCTURE MODEL

The Reactor Building is a spherical steel containment structure enclosing a very rigid concrete internal structure which performs all structural support functions related to the normal operation of the Reactor. The spherical steel containment provides two functions: it is an enclosure against the effects of the weather and it prevents radioactive contamination of the atmosphare in the event of an accident. Only those salient features of the containment shell which affect the response of the interaal structure have been modeled.

3.1.1 Idealization of Reactor Internals

The internal structure rises from a base elevation of 573 feet and is composed of the sceam drum enclosure, the reactor enclosure and the spent fuel pool. This congregation of structures is modeled as a single stick with centroid locations dictated by the centroids of the major horizoatal sections through tha structure. The masses of all floors, walls, equipment and water are lumped at the appropriate nodal locations. This mathematical idealization of the Reactor Building (Fisures 3 and 4) is diagramed in Figure 5.

3.1.1.1 Stick Properties

Horizontal sections were cut through the structure at mid-point elevations becween all lumped nasses shown in Figure 5. Axial bending, shear and torsional properties about the section centroid were calculated for each section based on the size and genmetric arrangement of walls at the cut sections. The centroidal location of the structure above the $630-$ foot elevation was located to be offset by 22.7 feet in the $X-d i$, action and 6.4 feet in the Y -direction with respect to the centroidal location of the structure below the 630 -foot elevation. This shift in the centroidal location was modeled by extending a rigid link menber from Node 4 to Node 3 (Figure 5). The rigid link member was assigned axial bending and torsional properties sufficiently high to guarantee its behavior as a rigid link. Furthermore, rigid links were also used between Node 7
and Node 11, Nodes 15 and 13 and Nodes 14 and 13 (Figure 5). Node 11 represents the location of the new high density fuel racks in the spent fuel pool area where floor time histories and the floor response spectra were generated. Node 13 represents the base of the containment shell, whereas Nodes 14 and 15 are translational and torsional coupling nodes for Nodes 8 and 9, respectively, having the same respective coordinate specifications. As explained in Section 3.1.2, the rigid link connections between Nodes 15 and 13 and Nodes 14 and 13 represent the translational interaction between the shell and the internal structure.

The member properties were faput to the computer code ANSYS using the STIF4 three-dimensional beam element. The properties input are prosente in Table 1.

TABLE 1
INTERNAL STRUCTURE MEMBER PROPERTIES

Where, $I_{x}=$ bending moment of inertia about X-axis
$I_{y}=$ bending moment of inertia about Y-axis
$J=$ torsional moment of inertia about Z-axis
$a_{x}=$ shape factor in X-direction
$a_{y}=$ shape factor in Y-direction

NOTE: See Figure 5 for definition of pemioers and coordinate axes.

3.1.1.2 Mass ?roperties

All masses of the structure were modeled as lumped masses located at their nearest nodal locations as shown in Figure 5. The structural mass included the floors at the elevations of the nodes and the walls having a height incorporating half the distance to the floor level above and below. The mass moments of inertia for bending and torsion of the walls and floors about the centro dial axes were also lumped at the nodal locations.

The equipment masses and mass inertias (Consumers Power Company, 1978b; NUS Corporation, 1978) were distributed at nod ss as shown in Figure 6. The equipment masses were positioned at the nodes nearest to their actual locations with the reactor vessel and crane masses split between two nodes. Table 2 shows the total lumped masses and mass inertias distributed at Nodes 1 through 9.

TABLE 2
INTERNAL STRUCTURE LUMP FD MASSES

NODE	MASS $\left(1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{ft}\right.$ $\left.\mathrm{x} 10^{4}\right)$	I_{xxx} $\left(1 \mathrm{~b}-\mathrm{sec}^{2}-\mathrm{ft}\right.$ $\left.\times 10^{2}\right)$	$I_{y y}$ $\left(1 \mathrm{~b}-\mathrm{sec}^{2}-\mathrm{ft}\right.$ $\left.\times 10^{2}\right)$	$I_{z z}$ $\left(1 \mathrm{~b}-\mathrm{sec}^{2}-\mathrm{ft}\right.$ $\left.\mathrm{x} 10^{7}\right)$
1	3.62	1.06	0.22	1.26
2	4.12	1.40	0.37	1.69
3	2.22	0.85	0.26	1.03
4	5.05	1.45	1.17	2.62
5	6.46	4.20	2.50	7.11
6	11.80	6.34	6.06	13.1
7	21.8	17.7	12.9	26.7
8	18.0	36.4	35.8	72.1
9	23.2	8.3	8.1	16.3

Where, $I_{x x}=$ mass moment of inertia about X-axis
$I_{y y}=$ mass moment of inertia about Y-axis
524249
$I_{z z}=$ mass moment of inertia about Z-axis
NOTE: See Figure 5 for definition of nodes and coordinate axes.

The sloshing forces generated by the water in the spent fuel pool were calculated using the method outlined by Epstein (1976). The stiffness values of the spring-mass systems representing sloshing were compared to the stiffness of the members to which they were attached and the comparison indicated that the sloshing springs were several orders of magnitide softer than their structural counterparts as indicated by the mass and frequency ratios between the spring-mass system and the structural members. The sloshing springs were, therefore, removed from the model (USNRC Standard Review Plan 3.7.2 [1975]) and the horizortal mass of the water in the spent fuel pool was divided between Nodes 5 , 6 and 7. The total vertical mass of the water in the spent fuel pool was placed on Node 7 at the elevation of the pool floor (see Figure 6).

3.1.2 Concairment Shel1

The three-quarter-inch thick steel containment shell is attached to the massive concrete iaternal structure. Because the mass of the containment shell : i only four percent of the mass of the inter.al structure, a modal analysis of the shell was performed using axisymmetric elements with non-axisymetric loading capabilities to ascertain if any shell modal frequencies fell near dominant modal frequencies of the internal structure. Using guidelines for seismic coupling set out in the RDT Standard (1974), comparisons of the natural frequency ratios between the containment shell and internal structure were made for all modes. The frequency ratios in the horizontal and vertical directions were within the range requiring seismic coupling of the two structures. The ratio of mass between the two structures, though small, was not sufficient to warrant decoupling by RDT standards.

The shell was modeled as a three-dinensional beam element, STIF4, with a lumped mass at the vertical centroid iocation of the shell. The bending and axial properties of this three-dimensional beam were adfusted to provide the same single degree of freedom frequency characteristics of the shell in its first three modes of displacements in the X, Y and Z directions. The transient analysis results obtained for the shell, therefore, are not meant to reflect the actual response of the shell but properly incorporate the effect of the mass of the shell on the response of the internal structure.

The base of the containment shell at Elevation 584.5 feet is supported by the common foundation of the shell and internal structure. This foundation has already been accounted for in the properties of the aember connecting Node 8 to Node 9 of the internal structure. For this reason, the shell base was connected to Node 8; further, due to the fact that the shell interacts with the soil springs and dampers, it was also attached to Node 9. Both connections were made using rigid links with coupling in torsional and three translational directions at Nodes 8 and 9 . Coincident Nodes 8 and 13 and Nodes 9 and 15 were used to specify the required dicectional couplings between the shell and the internal structure. This insured that only the ho:izontal and vertical frequency effects of the shell would be felt by the internal structure.

3.1.3 Structural Damping

The structural damping for both steel and concrete were chosen based on USNRC Regulatory Guide 1.61 (1973) for a Safe Shutdown Earthquake (SSE) event. The regulatory guide specifies four percent damping for welded steel structures and seven percent damping for reinforced concrete. These damping ratios were used to calculate the Rayleigh damping factor, 3, for Input to the ANSYS computer code (DeSalvo and Swanson, 1975).

The 3 factor provides a linear damping as follows:

$$
\begin{equation*}
D=\frac{3 \omega}{2} \tag{3.1.1}
\end{equation*}
$$

where:
$D=$ damping ratio,
$\omega=$ predominant circular frequency of the structure, rad/sec.

The damping natrix [D] was then computed by the ANSYS code from the element stiffness matrix [K] as:

$$
\begin{equation*}
[\mathrm{D}]=3[\mathrm{~K}] \tag{3.1.2}
\end{equation*}
$$

The frequency at which damping would match the regulatory guide values was chosen based on the dominant response frequencies of the internal and shell structures. These frequencies we.e determined for the internal structure
and the steel containment through examination of relative ratios of mode coefficients for different modes of vibration of the whole structure; the mode coefficients, calculated as the product of modal participation factors and spectral displacement, represent the relative displacement potential of che structure in their respective modes.

3.2 FOUNDATION MODEL

The foundation of the 31 g Rock Point Reactor Building is an inverted spherical concrete dome approximately seven feet thick embedded in the soil. Because of the existence of sand drains around the base of the containment shell and construction joints in the outer fourdation block, as shown in Figure 7, the ground surface for embedment purposes was chosen at Elevation 584.5 feet. The foundation has an average diameter of 92.0 feet at this elevation which is actually eight feet below plant grade.

To determine the soil-structure interaction parameters, the inverted dome foundation was treated as an equivalent circular disk foundation The disk was given i radius that provided the same surface area in contact with the soil as the dome foundation and was embedded to a depth equal to the centroid elevation of the inverted dome (Elevation 573 feet). The equivalent disk foundation was then placed on an idealized soil profile to evaluate the soil compliance functions which represent the interaction between the foundation and the subsurface.

3.2.1 Evaluation of Elastic Properties of Subsurface Layers

The subsurface profile was developed from boring logs provided by Consumers Power Company (1978a). The borings were supervised by Raymond Concrete P11e Company in 1959 as part of the original foundation design of the plant. Each boring log contains a general description of the sampled and cored materials at different depths and includes information on soil penetration resistance in blows per foot for glacial till and percentage of core recovery for the limestone bedrock. A general profile under the Reactor Building, as shown in Figure 8, was developed from these boring logs (also
refer to Figure 2). As shown in Figure 8, the equivalent foundation disk was modeled as being supported directly on a layer of glacial till of thickness 28 feet which is underlain by a 15 -foot layer of weathered limestone followed by a layer of competent limestone considered to be bedrock.

The basis for subdividing the limestone into two layers was percent core recovery shown on the boring logs; weathered rock has core raconaery <50 percent. Because the available subsurface data did not contain any direct data on the elastic properties of the limestone rock, an average elastic modulus of a very competent limestone was fist astimated to be equal to 8×10^{6} psi for data based on tests. on a large number of limestone rock samples (Deere, et al., 196,). This value of elastic modulus was then reduced by about 50 /ercent for the comptent 1 limestone and by about 85 percent for the weathered 1 limestone by assuming that the core recovery percentage is a direct function of Geomechanics classification rating and then using Kulhawy's (1978) relationship between strength reduction in rock versus the Geomechanics rating. These reductions account for both quality and mass effects in the rock present at the site, whereby rock quality was related to the
sovery percentage. The elastic properties obtained in this manner chereby assigned to the weathered rock an elastic modulus approximately one-third the value of the elastic modulus of the more competent rock underlying it.

The elastic properties of the glacial till have a much more predominant effect on the soll-gtructure interaction parameters. Due to a lack of sufficient appropriate data on the elastic properties of the glacial till, best estimate elastic properties were used in the computation of the soil-structure interaction parameters; lower and upper bound values for the interaction parameters were also determined.

Using soil data on grain-size distribution and effective stress parameters provided by Consumers Power Company (1978c), empirical relations developed by Hardin (1973) for gravelly soils, and D'Appolonia's previous experience with glacial tills, a best estimate shear wave
velocity of 1,700 feet per second was postulated. The corresponding shear modulus, computed by using the relationship

$$
\begin{equation*}
G=\rho v_{s}^{2} \tag{3.2.1}
\end{equation*}
$$

where,
G - shear modulus,
ρ - mass density, and
$\nabla_{s}=$ shear wave velocity,
was fecund to be approximately one-fifth of the shear modulus of the underlying weathered rock.

3.2.2 So11-Structure Interaction Parameters

Using the shear moduli obtained above and the total mass moments of inertia of the reactor building, the equivalent spring constant and damping for each response node (degree of freedom) of the forndation were calculated for the layered system. The static spring constants for a rigid circular footing resting on an equivalent elastic halfspace may be calculated using the formulae given in Table 3 , and damping values using the formulae given in Table 4. The technique developed by Christiano, et al. (1974) was used to reduce the layered medfum to an equivalent elastic half-space for each mode. This technique is based on the assumption that within each layer of a multilayered system, the strain energy is equal to that contained between the same elevations in a homogeneous medium having the same elastic modulus as the layer. For each static displacement mode, the strain energy in the layered medium is estimated by assuming a stress distribution equal to that incurred in a homogeneous elastic half-space. By equating the strain energy to external work, a single elastic spring for each mode, equivalent to the multiple spring system representing the various layers, may be obtained.

TABLE 3
SPRING CONSTANTS FOR RIGID CIRCULAR FOOTING RESTING ON ELASTIC HALF-SPACE (1)

TABLE 4
DAMPING RATIOS FOR RIGID CIRCITAAR FOOTING RESTING ON ELASTIC HALF-SPACE

3.2.2.1 Frequency and Embedment Corrections of Soil Springs

The lumped spring constants calculated above were corrected for frequency and embedment effects. The frequency corrections account for the dynamic stiffness relationships for a soil-foundation system while the embedment corrections represent the stiffening effects of the soil due to confinement of the foundation.

Frequency Corrections - Neglecting the small coupling between the hortzontal and rocking motions, the relationship ben en the force amplitudes and displacement ampiltudes for a massless disk supported on a homogeneours elastic half-space may be defined as (Veletsos and Verbic, 1973 and Verbic and Veletsos, 1972):

$$
\begin{equation*}
P_{f}=Q_{f} u_{f} \tag{3.2.2}
\end{equation*}
$$

where:
P_{f} represents the generalized force amplitudes,
u_{f} represents the generalises displacement amplitudes, and
Q_{f} is a complex-valued stiffness or impedance function of the form

$$
\begin{equation*}
Q_{j}=k_{j}\left[k_{j}\left(a_{0}, v\right)+1 a_{0} c_{j}\left(a_{0}, v\right)\right] \tag{3.2.3}
\end{equation*}
$$

Th. sy -bol k_{f} represents the static stiffness of the disk in j-direction and k_{j} and c_{j} are dimensionless functions of Poisson's ratio of the soil, v, and the dimensionless frequency parameter

$$
\begin{equation*}
a_{0}=\omega r_{0} i_{s} \tag{3.2.4}
\end{equation*}
$$

where:
$\nu=$ angular frequency,
$\Sigma_{0}=$ radius of the disk, and
$\nabla_{s}=$ the shear wave vel/jeity.

In the equivalent spring-dashpot system representation of the supporting medium, k_{f} and c_{f} may be thought of as the dynamic "ariation of the stiffness and damping parameters, respectively, of the medium. Then the values of $\mathrm{K}_{\mathrm{f}} \mathrm{k}_{\mathrm{f}}$ represent the frequency-corrected values of spring constants and $\mathbb{K}_{j} a_{0} c_{j}$ represent the frequency-related values of damping.

The values of functions k_{f} and c_{f} under dynamic loading conditions have been estimated by Verbic and Veletsos (1972) for all translational and rocking modes and by Veletsos and Nair (1973) for the translational mode. Curves of k_{j} and c_{j} as functions of a_{o} as g given in the above -efarences were used to compute these values. Because the damping coefficient has the most influence near resonance, the average of the k_{j} a lues calculated over the estimated building frequency range was used in the final computation of the frequency correction factors for the soil 3 brings.

Embedment Corrections - The embedmer: correction factors in each displacement mode were obtained by considering the depth of embedment of the foundation models. The influence of embedment on the stiffness parameters for all modes of vibration has been evaluated using finite element techniques by Johnson, et al., 1974. The additional stiffening effects obtained from these embedment factors were reduced by a factor of two for conservatism (to account for excavation and any backfill effects).

3.2.2.2 Corrections to Soil Damping

The damping ratios calculated based on the equations of Table 2 reprosent radiation damping. Radiation damptay ts controlled by the geometry of the elastic half-space. For shallow soil layers overlying a stiff material, a portion of the radiation damping is lost by reflection of the radiating wave from the stiff layer. The amount of wave energy reflected is a function of the impedance, ∂V_{3}, of each layer and is given by the following relation (Furrer, et al., 1973):

$$
\begin{equation*}
\text { Z.R. }=\left[\frac{1-\frac{\partial_{1} \nabla_{1}}{\rho_{2} \nabla_{2}}}{1+\frac{\partial_{1} \nabla_{1}}{\partial_{2} V_{2}}}\right] \times 100 \tag{3.2.5}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \text { R.R. }=\text { percent of energy reflected } \\
& \rho_{1} \text { - mass density of the glacial till } \\
& \rho_{2} \text { = mass density of the weathered rock } \\
& \nabla_{1} \text { = shear wave velocity in the glacial till } \\
& \nabla_{2} \text { = shear wave velocity in the weathered rock }
\end{aligned}
$$

The radiation damping for each response mode was reduced by a factor equivalent to the reflected wave energy ratio. The radiation damping was than further reduced by a factor of one-half for conservatism.

The actual damping ratio is composed of radiation and material damping. The material damping is the result of internal friction losses within the soil structure. A value of five percent was assumed for all materal damping and was added to the radiation damping in all modes.

The damping ratios were converted to damping constants for input to a damping matrix in the transient analysis. Frequency corrections for the lumped springs were quite small and, because the radiation damping component had already been conservatively reduced by one-hale, such corrections were neglected for the damping. Furthermore, embedment corrections for the damping were conservatively not considered.

The final lumped spring and damping parameters used in the best estmate analyses are presented in Table 5.

TABLE 5
FREQUENCY AND EMBEDMENT CORRECTED SOIL STRUCTURE INTERACTION PARAMETERS

MODE	LUMPED SPRING	LUMPED DAMPING
Vertical	$2.27 \times 10^{10} \mathrm{lb} / \mathrm{ft}$	$1.07 \times 10^{8} \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$
Horizontal	$6.22 \times 10^{9} \mathrm{lb} / \mathrm{ft}$	$3.54 \times 10^{7} \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$
Rocking	$2.33 \times 10^{13} \mathrm{lb-ft} / \mathrm{rad}$	$6.03 \times 10^{10} \mathrm{lb-sec}-\mathrm{ft} / \mathrm{rad}$
Torsion	$2.08 \times 10^{13} \mathrm{lb-ft} / \mathrm{rad}$	$3.92 \times 10^{10} \mathrm{lb}-\mathrm{sec}-\mathrm{ft} / \mathrm{rad}$

$$
524 \quad 260
$$

4.0 INPUT SZISMIC MOTION

Artificial earchquake time histories (ATH's) were developed to simulate ground motions to which the structure is subjected diring an earthquake. A time history is a series record of ground accelerations representing + seismi: event. They were used in the analysis of the Reactor Building to induce base displacements for the model analysis.

Three ATH's were developed to represent ground motions in two normal horizontal directions and the vertical direction and having response spectra satisfying the general requirements of UNSRC Standard Review Plav. Section 3.7.1. The peak zero period hc. -zontal and vertical acceierations for these time histories were specified by Consumers Power Company to equal 0.12 g and 0.08 g , respectively (Notes, March 9 1978 meeting at Consurers Power Company offices).

The time histories vere derived to zatch smooth ground design response spectra (SGDRS) for horizontal and vertical earthquake motions. These ground response spectra are shown in Figure 9 for five percent critical dampiag. The horizontal SGDRS conirtm with the USNRC Regulatory Guide 1.60 (1973) recommendations. the vertical SGDRS follow the guidelines recommended by Newnark, et al. (1973) which were the basis for the USNRC Regulatory Guide 1.60 . The duration of ground motion was deternined to be equal to 12 seconds which adequately satisfies the cotal duration value determined using 3olt's (197) procedure recommended by Standard Reviaw Plan Section 2.5.2 (1975). D'Appolonia feels that the SGDRS selected for the horizontal and vert:cal directions provide the necessary conservatism for evaluating the effects of a posculated seismic event on the reactor internals at the 31 g Rock Point Nuclear Power Plant.

4.1 DEVELOPMENT OF ARTIFICIAL EARTHQUAKE TIME HISTORY

An existing dit digitized at 0.01 second was revised by selective scaling to form one component of the horizontal earthquake record called the

North－South component record．The source time history as used to anally－ tically excite single degree of freedom oscillators having natural fre－ quenches ranging from 0.2 Hz to 49 Hz at five percent of critical damp－ ing．A record of peak response of each oscillator forms the response spectrum of the source time history．

The time history response spectrum was compared to the horizontal design response spectrum for five percent damping recommended by the USNRC in Regulatory Guide 1.60 （1973）．Selected frequency components of the Fast Fourier Transform of the ATH were scaled to cause the time history re－ sponge spectrum to approximate the design response spectrum．By an itera－ five procedure of scaling and matching，the ort，thal time history was altered so that its response spectrum matched the NRC spectrum to guide－ lines presented in USNRC Standard Review Plan 3．7．2（1975）．Baseline corrections were applied to the record in each iteration．Plots of the north－south horizontal acceleration time history and its associated response spectrum are plotted in Figure 9.

The vertical ATH was de－sAved in the manner described above．Peak ver－ tical acceleration wa scaled to 0.08 g or two－chirds peak horizontal acceleration．The vertical response spectrum was matched to the ver－ tical design response spectrum recommended by Newark，et al．（1973） as discussed earlier．The vertical acceleration time history and re－ sponse spectrum are plotted in Figure 9.

The east－west component of the horizontal earthquake time history was derived directly from the north－south time history by putting a 0.16 － second period of zero accelerations in front of the record and removing the same period of accelerations from the end．In this manner，statis－ tical independence of the two horizontal components of excitation was achieved．The response spectra obtained matched the USNRC Regulatory Guide 1.60 （1973）design spectrum without further alteration．

To satisfy the requirements of the USNRC Standard Review ？lan that all three earthquake components be Lated，the statistical independence
of each of these three records with respect to the other two was calculated. The highest correlation coefficient between any two records was 0.070 , which is below the maximum value of 0.16 recommended by Chen (197\%).

4.2 DAMPING VALUES FOR WHICZ RESPONSE SPECTRA WERE MATCAED

The recommended damping constants to be used for various components and materials when analyzing structural response are given by USNRC Regulatory Guide 1.61 (1973). Applicable values for this analysis are four percent for steel piping and equipment, and seven percent for reinforced concrete for the Safe Shutdown Earthquake. The time histories generated to match response spectra curves at five percent damping were used to compute oscillator response at four percent and seven percent damping. These response curves were compared to design response curves for four percent and seven percent damping. The time history acceleratons were then scaled so that the response at four percent and seven percent damping enveloped the design response curves according to USNRC Standard Review Plan 3.7 .1 (1975). The respective scale factors used for the north-south, east-west and vertical components so obtained were $1.03,1.06$ and 1.03 .

5.0 DYNAMIC ANALYSIS

Two types of dynamic analysis were performed on the Reactor Building model: mode-frequency analysis and transient reduced linear analysis. Mode-frequency analysis was performed to obtain a stability check on the model and to examine the modal displacement characteristics of the structure at its natural frequencies of vibration. As explained previously in Section 3.1 .3 , such an analysis also provided the basis of computing the Rayleigh datiping factor, 3 . Linear transient analysis was performed to obtain the floor time histories of motions at different locations of the structure from which the respective floor response spectra at the specified locations were obtained.

5.1 MODE-FREQUENCY ANALYSIS

The fixed base location of the structure was defined at Node 10 of the model (Figure 6) for the mode-frequency analysis of the structure. Node 10 was considered fixed against all translations and rotations. The natural frequencies of the gtructure obtained from this mode-frequency analysis are shown in Table 6 . As may b. seen in Table 6, the first frequency of the structure is approximately 4.1 Hertz. However, this frequency is a corsional frequency of the structure above Node 7 , with all nodes below Node 7 remaining practically fixed. The next two frequencies of the structure, which occur at approximately 6.8 and 6.9 Hertz, are primarily due to the vibration of the reprasentation of the steel containment shell in the X and Y directions, respectively. The first general frequencies of the internal structure in the X and Y directions occur at approximately 9.3 and 9.5 Hertz, respectively, corresponding to the fourth and fifth natural frequencies of the combined structure. The sixth and all higher nodes of the structure comprise combined participation by the shell and the internals.

The reaults of the mode-frequency analysis indicate an active localized torsionsl mode occurring at a relatively low frequency level. Thus, in the reduced linear transient analysis, in addition to translational degrees of freedow, specification of torsional degrees of
freedom at Nodes 4 through 9 were fudged to be necessary. Furthermore, two additional mode-frequency analyses were performed using the upper and lower bound estimates on soil spring constants as explained in Sectron 5.2.2.

5.2 TRANSTFMT DWAMIC aNALYSIS

The reducer linear transient dynamic analysis feature of the ANSYS compurer code was used to derive the floor time histories of motion at diffferment elevations of the structure. In this procedure, by using the matrix condensation technique, the stiffness, mass and damping matrices of the structure are reduced by specifying active dynamic degrees of freedom at the various nodes of the structure. The dynamic degrees of freedom as used in the analysis are shown in Figure 10 ; all translational degrees of freedom at each node were specified to be active along with torsional degrees of freedom at Nodes 4 through 9 to account for the relatively low-frequency localized torsional mode of the structure as explained in Section 5.1.

A11 rotational motions at fixed base Node 10 were considered to be fixed and the displacement time-histories of the design earthquakes ware specified at this node. The displacement time histories of motron of the three components of the earthquake were obtained by twice numerically integrating the acceleration time histories developed as per the procedure described in Section 4.0.

The transient dynamic solution was "dined by numerically integrating the equations of motion. The ANSY , omputer code uses the Houbolt umerical scheme in the transient dynamic analysis in which the displacewent is a cubic function and the acceleration is a linear function across the time interval of integration. The initial velocity in the analysis was assumed to be equal to zero. This integration procedure is unconditionally stable for all time steps. However, to minimize the numerical damping which is inherent in this type of integration procedure for large time steps of integration, a time interval of 0.005 second was used in this analysis.

DP:LPPOLDNI.

As discussed above, the records of time histories were evaluated at 0.01 second. intervals. Since the time interval of integration used in all time history analyses were 0.005 second, the acceleration records were interpolated using the Fast Fourier Transform (FFT) routine (Rabiner, et al., 1972). The 0.01 second records were first transformed into the frequency domain. The frequency domain record, cen'ered at zero frequency thus obtained, was symmetrically expanded to twice its original size by adding zeros to each end of the frequency domain. The new record was transformed back into the time domain using the FFT routine and a representation of the time histories at 0.005 second was L.Ms obtained automatically.

5.2.1 Evaluation of Floor Respoase

The floor displacement time histories werd obtained directly from the results of transient dynamic analysis. The floor acceleration time histories were obtained by taice differentiating the floor displacement time histories. Plots of these time histories are described in saction 6.0.

The floor response spectra rere obtained by using a D'Appolonia in-house progran for which the floor time histories of notion along any particular direction generated by the ANSYS routine are input. The program develops the floor acceleration time histories from this input and then computes and plots the floor spectra. All floor responses were calculated separately for the three orthogonal directions X, Y and Z, respectively, at three damping values (2,4 and 7 percent of the critical). The ninimum and maxinum frequencies considered in the computation were 0.2 Hertz and 50 Hertz. The frequency points chosen for computation of all spectra were sufficient in accordance with the criteria recommended in Table 1 of USNRC Regulatory Guide 1.122 (1976).

5.2.2 Effects of Parameter Vartation on Structural Response

 USNRC Scandard Review Plan Section 3.7 .2 (1975) requires that in the analysis of sub-systems of a structure consideration should be given to expected variations in structural properties, dampings, soil properties and soil-structure 1: . s?ction parameters. Detailed data and specifications for structurd: rroperties and dampings are available for this structure, 6The variation from the specified values of these two parameters may thus be considered to be negligible. However, the elastic properties of the subsurface materials ged in the derivation of the soil springs were not based on direct field investigation results. Therefore, a parametric study on the effects of variation in the soil compliance functions was considered necessary and was carried out by assuming an upper bound and a lower bound estimate on the soil spring constants.

In this procedure, it was assumed that the derived soil spring constants may vary ± 50 percent with respect to the best estimate values under the actual field conditions. Therefore, two additional mode-frequency anallyseas were performed by multiplying the best estimate sill spring constants by 0.5 and 1.5 for lower bound and upper bound analyses, respectively. The structural frequencies obtained in these two analyses are shown in Table 6 along with the frequencies obtained from the analysis using the best estimate soil springs.

The total frequency variation, $\pm \mathbb{f}_{f}$, in any mode j is then calculated using the relationship (USNRC Regulatory Guide 1.122 (1976]):

$$
\Delta f_{f}=\left[\left(0.05 f_{j}\right)^{2}+\left(\Delta f_{f}^{3}\right)^{2}\right]^{1 / 2}
$$

where,

$$
\begin{aligned}
f_{f}= & \text { structural frequency in mode } f \text { using best estimate } \\
& \text { soil spring constants } \\
\Delta f_{j}^{s}= & \text { frequency variation in mode } f \text { due to variation } \\
& \text { in soil spring constants }
\end{aligned}
$$

Based on an inspection of the floor response spectra, the predominant frequencies of the structure were observed to occur approximately below 18 Hertz. Thus, Δf_{f} in Equation (5.2.1) was calculated for all modes below 18 Hertz for both upper and lower bound frequencies. The maxigum value of the ($\Delta f_{f} / f_{f}$) ratio was found to be equal to 0.195 . Therefore, it is recommended that a value of $\pm 0.195 f_{j}$ be used by NuS for peak broadening in all floor response spectra obtained from this analysis.

For timehistory analyses of equipment at the spent fuel pool location, it is recommended that upper and lower bound analyses be performed using time intervals given by (Tai [1974]):

$$
\begin{equation*}
\Delta t^{\prime}=\left[1 \pm \frac{\Delta f_{f}}{f_{j}}\right] \Delta t=k(\Delta t) \tag{5.2.2}
\end{equation*}
$$

where,

$$
\begin{aligned}
\Delta t^{\prime} & =\text { the modified time interval, } \\
\Delta t & =\text { the time interval used in best estimate analyses = } \\
& 0.005 \text { second, and } \\
\mathrm{x}= & {\left[1 \pm \frac{\Delta f_{i}}{f_{i}}\right] }
\end{aligned}
$$

Following this procedure, the modified time intervals for upper and lower bound analyses are obtained as 4.025×10^{-3} and $5.975 \times 10^{-3} \mathrm{sec}$ onds, respectively. Furthermore, it is to be noted that if floor displacement time-histories of motion are used by NUS in the analysis of he high density fuel racks, the diaplacement ordinates of floor motion should be multiplied by a factor K^{2}, that 1 s , by 0.648 and 1.428 for upper and lower bound analyses, respectively.

The effects of such variation in time interval on the response spectra are shown as examples for Node 11 (spent fuel pool location) in Figures 13 through 15 , for two percent damping, along X, Y and Z axes, respectively. As per request by NUS (telecon record of May 26, 1978), no peak broadening of the floor response spectra was performed by D'Appolonia.

TABLE 6
NATURAL FREQUENCIES OF REACTOR BUILDING BIG ROCK POINT NUCLEAR POWER PLANT

6．0 RESULTS OF ANALYSES

Results of analyses are presented in the form of plots of time－histories and $f l$ loor response spectra．As per request of NUS，such results are presented for Node 1 （ $Z 1.657 .5$ feet），Node 3 （ $Z 1.630$ feer）and for Node 11 （spent fuel pool location）．Soth accelerazion and displace－ ment time－histories of floor motion along X, Y and Z directions at Node 11 are shown in Figure 11．Only acceleration time－histories of the ocher two nodes，Node 1．and Node 3，are shown in Figure 12.

The maximum accelarations at the spent fuel pool location（Node 11） along X, Y and Z directions are approximately 8,7 and $4 \mathrm{ft} / \mathrm{sec}^{2}$ ，re－ spectively，（Figure 11）which correspond to $0.25 \mathrm{~g}, 0.22 \mathrm{~g}$ and 0.12 g ac－ celeration，respectively．Therefore，the amplification of zero peifod Eloor accelerations over the zero period input accelerations of 0.12 g horizoncal and 0.08 g vercical are then given by $2.08,1.83$ and 1.5 along X, Y and Z directions，respectively，at Node 11 ．

The levels of accelerations obtained for Node 3 （E1． 630 feet）are given by（Figure 12） $8.5,9.5$ and $5 \mathrm{ft} / \mathrm{sec}^{2}$ or $0.26 \mathrm{~g}, 0.30 \mathrm{~g}$ and 0.16 g ，respec－ tively for X, Y and Z itrections，respectively．The corresponding am－ plification factors with respect to zero period input accelerations are then $2.2,2.5$ and 2.0 ，respectively．

Finally，the levels of accelerations along X, Y and Z directions obtained at the topmost Node 1 （Z1． 657.5 feet）are shown to be（Figure 12） 11.5 ， 11.5 and $5 \mathrm{ft} / \mathrm{sec}^{2}$ or $0.36 \mathrm{~g}, 0.35$ and 0.16 g respectively．The corres－ ponding amplification factors with respect to zero period input accel－ eration are $3.0,3.0$ and 2.0 ，respectively．

Floor response spectra for Node 11 alcng X, Y and Z directions are shown respectively in Figures 13 through 15，for Node 3 in Figures 16 through 18 and for Node 1 in Figures 19 through 21 ．In each of these figures， the response spectra are shown for three dampings－2， 5 and 7 percent

524270
of the critical. In addition, Figures 13 through 15 depict the effects of soil spring parameter variation as discussed in Section 5.2.2. The effects of such variation have been shown as examples for Node 11 along the X, Y and Z axes only fur two percent of the critical damping.

7.0 SUMMARY

An analytic model was prepared for the Reactor Building of the 31 g Rock Point Nuclear Power Plant. The dynamic response of the model has been determined for base excitations resulting from tate earthquake artificial time histories of motion in three orthogonal directions. The Floor time histories of motion at three nodes of the model, including that representing the spent fuel pool location, have been computed from this analysis and the associated floor response spectra have been derived. The effects on the mode-frequency response of varying the soil spring constants have been computed, and recommendations are presented for proper consideration of these effects on the equipment analyses to be performed by NUS.

Respectfully submitted,

Sortuan anta Clalsabant.
S. Chakrabart1

A. D. Husak

SC:ADR: 380
Project No. 78-161
June, 1978

LIST OF REFERENCES

$524 \quad 273$

D:LPPOLDNL

LiST OF REFERENCES

Bolt, B. A., 1973, "Duration of Strong Ground Motion," Proceedings of the Fifth World Conference on Earthquake Engineering.

Chen, C. 1975, "Definition of Statistically Independent Time Histories," Technical Note, Journal of the Structural Division, American Society of Civil Engineers, February.

Christiano, ?. P., ?. C. R1zzo and S. J. Jarecki, 1974, "Jvmpliances of Layered Elastic Systems," Proceedings of the Institution of Civil Engineers, London, December.

Consumers Power Company, 1978a, Test Boring Report, Raymond Concrete Pile Company, Big Rock Point Site, February 1960.

Consumers Power Company, 1978 b , " 31 g Rock Point Spent Fuel Racks - Components Weights," Internal Correspondence BRG18-78, Consumers Power Company Letter of Transmittal No. 5803-037, May 18.

Consumers Power Company, 1978 c , Soil Report, 31 g Rock Point Plant, Charlevoix, Michigan, Soil Testing Services, Inc., March 1960.

Deere D. and R. Miller, 1966, "Engineering Classification and Index Properties for Intact Rock," Technical Report No. AFWL-TR-65-116, Air Force Weapons Lab., Kirkland Air: Force Base, New Mexico.

TeSalvo, G. J. and J. A. Swanson, 1975, ANSYS - Engineering Analysis User's Manual, Swanson Analysis Systems, Elizabeth, Pennsylvania.

Epstein, Z. I., 1976, "Seismic Design of Liquid Storage Tanks," Journal of the Structural Division, American Society of Civil Engineers, September.

Furrer, H., K. Gaehler, J. Jemielewski and J. R. Hall, Jr., 1973, "Soil Amplification and So11-Structure Interaction Study for a Nuclear Power Plant in Switzerland," Structural Mechanics in Reactor Technology, ind International Conference, Vol. 63, September.

Hardin, 3., 1973, "Shear Modulus of Gravels," Soil Mechanics Series No. 16, University of Kentucky, Kentucky.

Johnson, G. R., P. ?. Christiano and H. I. Epstein, 1976, "Stiffness Coefficients for Embedded Foundations," Proceedings of the ASCE Power Division Specialty Conference, Bow' ${ }^{*}$ ar, Colorado, August.

Kulhawy, F. A., 1978, "Geomechanical Model for Rock Foundation Settle gent," Joumal of Geotechnical Engineering Division, American Society of Civil Eng nears, February.

LIST OF REFERENCES (Continued)

Newmark, N. M., J. A. Blum and K. K. Kapur, 1973, "Seismic Design Specfra for Nuclear Power Plants," Journal of the Power Division, American Sociaty of Civil Engizeers, November.

NUS Corporation, 1978, "Letter of Transizttal, Estimated Weights of Fuel Storage Rocks," May 26, 1978.

Notes on March 9, 1978, Meeting at Consumers Power Company with NUS, Consumers Power and D'Appolonis.

Rabiner, R. L., B. Gold and C. A. McGonegal, 1972, "An Approach to the Approximation Problem for Nonrecursive Digital Filters," Digital Siganal Processing, R. L. Rabiner and C. M. Rader, eds., IEEE ?ress. New York.

Richart, F. E., Jr., J. R. Hall, Jr., and R. D. Woods, 1970, Vibration of Sol -nd Foundations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

RDT Standard, 1974, "Seismic Requirements for Design of Nuclear Power Plants and Test Facilities," Division of Reactor Research and Developgent, U. S. Atonic Energy Commission, January.

Telecon Record of May 26, 1978 between D'Appoionia and NUS.
Tai, N. C., 1969, "Transformation of Time Axes of Accelerograms," Journail of Engineering Mechanics Division, American Society of Civil Engineers, Jube.

USNRC Regulatory Guide 1.60, 1973, "Design Response Spectra for Seismic Design of Nuclear Power Plants," Directorate of Regulatory Stand.-1s, Rev. 1.

USNRC Regulatory Guide 1.61, 1973, "Damping Values for Seismic Design of Nuclear Power Plants," Directorate of Regulatory Standards, U. S. Atomic Energy Commission, October.

USNRC Regulatory Guide 1.122, 1976, "Development of Floor Design Response Spectra for Seismic Design of Floor Supported Equipment in Components," office of Standards Development, U. S. Nuclear Regulatory Commission, September.

USNRC Standard Review Plan 2.5.2, 1975, "Vibratory Ground Motion," Office of Nuclear Reactor Regulation, U. S. Nuclear Regulatory Commission.

USNRC Standard Review Plan 3.7.1, 1975, "Seismic Input," office of Nuclear Reactor Regulation, U. S. Nuclear Regulatory Commission.

LIST OF REFERENCES (Continued)

USNRC Standard Review Plan 3.7.2, 1975, "Seismic System Analysis," office of Nuclear Reactor Regulation, U. S. Nuclear Regulatory Commission, June.

Teletsos, A. S. and V. V. D. Nair, 1972, Torsional Vibration of Foundions, Structural Research at Rice, Report No. 19, Rice University, Houston, June.

Verbic, B. and A. S. Veletsos, 1972, Impulse Response Functions of Elastic: "oundation, Structural Research at Rice, Report No. 15, Rice University, winston.

Veletsos, A. S. and 3. Verbic, 1973, "Vibration of Viscoelastic Foundtions," "arshquake Engineering and Structural Dynamics, Vol. 2.

FIGURES

ORAWN	ACS	CHECKED BY	SC	HUN:27: 20	DRAWING $78-161-A 3$
BY	$5-22^{2-78}$	$A P P R O V E D$	BY	ADH	$\frac{6}{6 / 27 / T}$

POOR CRIIINAL

NOTE: NORMAL WATER TABLE ELEVATION 580 FT.

REFERENCES:

(1) CONSUMERS POWER MOMPANY, (1978 व).
(2) CONSUMERS POWER COMPANY, (1978 c).

$$
\begin{aligned}
& 524 \quad 284 \\
& \text { FIGuRE 8 }
\end{aligned}
$$

BIG ROCK POINT NUCLEAR POWER PLANT ANALYTICAL SUB-SURFACE PROFILE
PREPARED FOR
NUS CORPORATION
ROCKVILLE, MARYLAND

D:APPDLAONI.

HIG ROCK POINT NUCI EAR POWER IL ANI FI OOR HESPONSES AT SPENT FUEN DOOL
location mode il

FIGURE 13

$$
\begin{gathered}
\text { FLOOR RESPONSE SPECTRA } \\
\text { NODE II-X DIRECTION } \\
\text { 2, 4, ANO } 7 \text { PERCENT OAMPING } \\
\text { PREPARED FOR } \\
\text { NUS CORPORATION } \\
\text { ROCKVILLE, MARYLAND } \\
\text { DOUTPTDITD }
\end{gathered}
$$

| DRAWN | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BY | FFW | CHECKED BY | SC | SUW:27:72 DRAWING |

$524 \quad 294$
FIGURE IB

FLOOR RESPONSE SPECTRA

 NODE $3-2$ DIRECTION2, 4, AND 7 PERCENT DAMPING PREPARED FOR
N'IS CORPORATION ROCKV",LE, MARYLAND
DOAPPDI』DNLI

$524 \quad 296$
FIGURE 20

```
                                    FLCOR RESPJNSE SPECTRA
```

 NODE I - Y DIRECTION
 2, 4, AND $\%$ PERCENT DAMPING
PREPAREO FOR
NUS CORPORATION
ROCKVILLE, MARYLAND

