INTERIM REPORT

Accession No. \qquad
Contract Program or Project Title: \qquad
Contractor's Report Ho.
\qquad
River White Perch

Subject of this Document: Quarterly Progress Report

Type of Document: \qquad Interim Contractor Report

Author(s): W. Van Winkle, L. W. Barnthouse
Date of Document: January 1 through March 31, 1979
Responsible NRC Individual and NRC Office or Division: Phillip R. Reed, Environmental Effects Research Branch, Division of Safeguards, Fuel Cycle

```
and Environmental Research, RES
```

This document was prepared primarily for preliminary or intemal use. It has not received full review and approval. Since there may be substantive changes, this document should not be considered final.

NRC Research and Technical Assistance Report

Prepared for
U.S. Nuclear Regulatory Commission Washington, D.C. 20555

NRC FIN No. BO 423

QUARTERLY PROGRESS REPORT FOR PERIOD

January 1 through March 3?, 1979

ENVIRONMENTAL SCIENCES DIVISION OAK RIDGE NATIONAL LABORATORY

PROJECT (189 No.): B0423--Methods to Assess Impacts on Hudson River White Perch

PERSON IN CHARGE: Webster Van Winkle
PRINCIPAL SCIENTIST: Lawr ance W. Barnthouse
TECHNICAL OBJECTIVES: To complete the topical report on estimating and evaluating collection rates and conditional mortality rates due to impingement of white perch at the Indian Point Nuclear Station and the other power plants on the Hudson River. To coliect, compile, and analyze data on white perch entrainment losses and densitydependent growth. To review data and information on white perch from other water bodies. To document in a second topical report the results of the new analyses and to make a determination whether the combined entrainment and impingement losses may have an adverse impact on the Hudson River white perch population.

STATUS OF SUBTASKS: Work on all subtasks directly related to the preparation of testimony for EPA is proceeding on schedule. Completion of subtasks A.1, A.2, and D has been deferred until after the testimony for EPA is submitted (May 14, 1979). We still expect to complete work on all subtasks on schedule.

MAJOR ACCOMPLISHMENTS:
A. Impingement

1. Evaluate collection rate as an index of population abungance. Work continued at a reduced rate on this subtask, due to the higher priority of preparing testimony for EPA.
2. Estimate the decrease in collection rate required to detect a statistically significant reduction.
Work continued at a reduced rate on this subtask, due to the higher priority of preparing testimony for EPA.
3. Evaluate survival of impinged white perch oased on existing data.

Results of impingement survival studies conducted at Bowline, Roseton and Danskarmer (through May, 1977) were compiled and evaluated. Our evaluation has been incurporated in testimony prepared for EPA.

NRC Research and Technical Assistance Report
4. Complete the topical report entitled "Evaluation of impingement losses of white perch at the Indian Point Nuclear Station and other Hudson River power plants."
An essentially final version of this report has been completed and will be submitted as testimony for EPA. (a copy of this testimony is enclosed)
B. Entrainment

1. Estimate the probability of entrainment mortality (f ${ }_{\mathrm{C}}$).

Estimates of f for white perch eggs, larvae, and juveniles entrained at Bowline, Lovett, Indian Point, Roseton, and Danskarmer were developed and incorporated in testimony prepared for EPA.
2. Estimate the intake f-factor (f_{i}).

Estimates of f, for white perch eggs, larvae, and juveniles entrained at Bowline, Lovett, Indian Point, Roseton, and Danskarmer were developed and incorporated in testimory prepared for EPA.
3. Estimate the temporal and spatial distribution of entrainable life stages.
Estimates of the temporal and spatial distribution of entrainable life-stages were developed for the 1974 and 1975 white perch year classes. These estimates were incorporated in testimony prepared for EPA.
4. Estimate the conditional rate of entrainment mortality. Estimates of conditional entrainment mortality rates for white perch were computed using results obtained from subtasks 8.1 through 8.3, above. These estimates were ncorporated in testimony prepared for EPA.
C. Density-dependent Growth

Results reported by Texas Instruments and by Lawler, Matusky, and Skelly Engineers were evaluated. Our evaluation has been incorporated in testimony prepared for EPA.
D. Data and Information from Other water Bodies
work continued at a reduced rate on this subtask, due to the higher priority of preparing testimony for EPA.

PUBLICATIONS, PRESENTATIONS, AND MEETINGS:
None.

EVALUATION OF IMPINGEMENT LOSSES OF WHITE PERCH AT HUDSON RIVER POWER PLANTS

TESTIMONY OF

W. VAN WINKLE, PhD.
HEAD, AQUATIC ECOLOGY SECTION

and
L. W. BARNTHOUSE, Ph.D.

ENVIRONMENTAL SCIENCES DIVISION
OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

NRC Research and Technical Assistance Report

```
PREPARED FOF THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
    REGION II
```

 APRIL, 1979
 This testimony presents two independent lines of evidence evaluating impingement losses of white perch at the power plants on the Hudson River. The first line of evidence involves analyzing the variation in collection rate among years over the period 1972-1977. The second line of evidence involves estimating the conditional mortality rate (or equivalently, the percent reduction in year-class strength in the absence of compensation) due to impingement for the 1974 and 1975 year classes.

The collection rates provide estimates of year-class strength on a relative scale. As such, they reflect the effect of entrainment and impingement losses during the preceding months, as well as the effect of any compensatory mechanisms which might alter survival during the preceding months. Regression analyses on collection rates of impinged young-of-the-year white perch among years suggest that there has been no systematic change in the size of the white perch population during the period 1972-1977. In particular, there is little evidence of a statistically significant downward trend. However, given the large variability in collection rates used in these regressions, the time series are relatively short (i.e., 5 to 6 years), and thus, the statistical power of the test for a trend is not high. In addition, because of the age of sexual maturity for females and the multiple age-class composition of the spawning population of females, and because impingement mortality increased appreciably starting in 1973 and 1974, a systemat ic decrease in year-class strength due to impingement mortality would only start to manifest itself with the 1977 (or 1978) and subsequent year classes.

Our estimates of percent reduction in year-class strength due to impingement indicate that the level of impingement impact was probably greater than 20% for the 1974 year class and was probably greater than 15% for the 1975 year class. These estimates do not include consideration of entrainment, so that the total power plant conditional mortality rate is obviously greater than the values presented in this testimony for impingement only. Given the information presently available, it is our judgment that this level of impingement impact is not acceptable from the point of view of the white perch population.

In terms of the comparability of assumptions and values for input parameters used in the utilities' methodology and in ORNL's methodology, the utilities' estimate of percent reduction due to impingement for the 1974 year class of 11.3% is best compared to ORNL's estimate of 25.5%. Five reasons for this more than factor-of-two difference are discussed. The utilities' choice at every one of these five "decision points" affects the results in the same direction, namely, to lower the estimate of percent reduction. ORNL.'s choice at each of these five decision points is scientifically more sound and defensible.

POOR ORIGiNAL

CONTENTS

Page
SUMMARY AND CONCLUSIONS 114
l. Introductic. 1
II. White Perch Impingement Data 3
A. Description of data base 3
B. Variation in collection rate among years 3
C. Variation in collection rate among months 6
D. Variation in collection rate among power pl int 6
III. White Perch Abundance and Mortality 11
A. Abundance 11
B. Mortality 14
IV. Estimation of Conditional Mortality Rate a Exploitation Rate Due to Impingement 17
V. Discussion 23
A. Comparison with utilities' results 23
B. Is there a problem? 25
VI. References 27
Appendix. Impingement Data Base 29
Table Page
1 Surmary of results from regression analyses to examine thetime series of collection rates for trends in the HudsonRiver young-of-the-year white perch population5
Variation in mean collection rate of young-of-the-yearwhite perch among months and among power plants7
Variation in mean collection rate of yearling and olderwhite perch among months and among power plants8
Estimates of wite perch juvenile abundance in theHudson River12
Catch-curve estimates of white perch mortality basel on bottom traw 1 data from the Bowline Point vicinity, 1971-1976 15
6
Initial population sizes and mortality estimates used in the eimpirical model of impingement impact to estimate the conditional mortality rate and exploitation rate due to impingement for the Hudson River white perch population 18
Monthly estimates of the number of white perch impingedat all the Hudson River power plants combined for the1974 and 1975 year classes19
Estimates of conditional nortality rate and exploitation rate (in parentheses) due to impingement for the 1974 and 1975 year classes of the Hudson River white perch popu- lation for combinations of estimates and assumptions involving initial population size, nacural mortality, and number of years of vuinerability 21
9
Relevant parts of Table 2-VII-1 in McFadden and Lawler(1977)24
A-1 Ahite perch impingement data for the Albany Steam Electric Generating Station 31
A-2 White perch impingement data for the Astoria Gerierating Station (Ref. 1) 35
A-3 White perch impingement data for the Bowline Point Generating Station 39
Table Page
A-4 White perch impingement data for the Danskarmer Point Generating Station 43
A-5, White perch impingement data for Indian Point Units 1, $6 \& 72$, and 3 47
A-8 White perch impingement data for the Lovett Generating Station 55
A-9 White perch impingement data for the Roseton Generating Station 59
A-10 "DIVISION" criteria specified by Texas Instruments as the cut-off length between young-of-the-year and yearlingwhite perch63

I. INTRODUCTION

Oak Ridge National Laboratory (ORNL) performed a prelimiary evaluation of impingement losses of white perch at the Indian Point Nuclear Station and other Hudson River power plants in preparing the Final Environmental Statement for Indian Point 3 (USNRC 1975). In that evaluation we stated

A 1973 field-tagging study by a consultant for the applicant indicates that the September-October population estimates to be used for planning purposes should be 23 million white perch for the entire Hudson River. This population estimate includes all age groups and not just young-of-the-year, but the young-of-theyear account for the majority of the white perch impinged. This population estimate is tentative, it may vary by an order of magnitude from year to year, and it is based on 1973 data (whereas the impingement estimates are based on 1971-1972 data); neverthe less, the staff feels that impingement may have a significant impact on the white perch population. For example, the projected total impingement loss at all plants with once-through cooling at the three Indian Point Units is 4.1 million white perch per year. If the assumptions are made that these are all young-of-the-year and that 80% of the total white perch population of 23 million are young-of-the-year, then 20% to 25\% of these young-of-the-year white perch will be impinged. (p. $V-61$)

In response to the above concern, the Office of Nus lear Regulatory Research, U. S. Nuclear Regulatory Commission, funded research at ORNL starting in May 1978 with the following objectives: To determine the significance of impingement losses on the white perch population at the Indian Point Nuclear Station (all units). To collect, compile, and analyze data and information on white perch impi: cement losses in the Hudson River. To estimate the impingement exploitatic to vo power stations and the conditional rate of mortality due to imp. . or the Hudson River in h its perch population. To document in a final $\in p$, the results of the analysis and to make a determination whether the impingement losses are having a potentially adverse impact on populations of white perch in the Hudson River.

This report is organized as follows: Section II deals with the white perch impingement data per se, including a description of the data base and the analyses of variations in the collection rates among years, months, and power plants. Section III deals with white perch population data, including estimates of population sic and monthly natural mortality rates. Section iV integrates the results from Sections II and III to estimate the con!itional mortality rate and exploitation rate due to impingement, using the ORNL empirical ament model. Section V is a discussion of our results in light of ties' results and concludes with consideration of whether impingement , wite perch at Hudson River power plants is a problem.

II. WHITE PERCH IMPINGEMENT DATA

In this section, we first present a brief description of the data base on number of white perch impinged (collected) and on the collection rates at each power plant. Then, we present the results of our analyses of these collection rates, focusing on the pattern of variation among years, months, and power plants. Our analysis of the variation in collection rate of young-of-the-year white perch among years adoresses the cuestion of whether there has been a statistically significant and systematic trend in the size of year classes during the period 1972-1977. Our analysis of the variation in collection rate among months focuses on how these variations depend on location of the power plant and age of the white perch. Finally, our analysis of the variation in collection rate among power plants focuses on identifying which power plant; have the highest and lowest collection rates and how the rankings of power plants depend on the age of the white perch impinger.

A. Description of the Data Base

Data on number collected and collection rate have been compiled for white perch by month for all years for which data were obtainable for each of the following power plants (moving downriver): Albany, Danskammer, Roseton, Indian Point Units 1, 2, and 3, Lovett, Bowline, and Astoria. These data are presented in the Appendix, Tables A-1 through A-9. Collection rate is defined as the number of impinged white perch counted (Indian Point) or estimated (all other power plants) to be impinged at the intake per unit intake flow. Except for Indian Point, where collection rates were adjusted upward to correct for less than 100% collection efficiency, collection rate is assumed to be approximately equivalent to impingement rate, which is defined as the number of white perch killed at the intake per unit intake flow. A detailed analysis of factors that influence impingement estimates at Hudson River power plants is given in Barnthouse (1979), including adjustment factors. We designated May 31 June 1 (a one-day interval) as the dividing line between 12 -month old young-of-the-year and 13 -month old year lings.

3. Variation in Collection Rate Among Years

Collection-rate data are available on a monthly basis for a period of 4-6 years for Bowline, Lovett, Indian Point 2, Roseton, and Danskarmer. Ne have treated collection rate, which is equivalent to a catch per unit effort (CPUE), as an approximate index of population size. In order for a CPUE index to serve as an accurate index of population size, there must be some assurance that actual variations in effort are measured. We believe that data on power plant intake flow ($=$ effort) satisfies this condition, since the uncertainty associated with estimates of intake flow is relatively small. Given this assumption, we have examined the time series of collection rates over years for trends in population size. The regression
model used was $Y=a+b x$, where Y is the collection rate for young-of-theyear (you) white perch (RATEO in Appendix), X is year, a is the Y-axis intercept, and \underline{b} is the slope. A slope (b) significant Ty greater than 0.0 ($P \leq 0.10$) suggests an increasing trend over years in population size, while a sTope significantly less than 0.0 suggests a decreasing trend in population size. A slope not significantly different from 0.0 indicates that, although year-class strength may have "aried, there was no systematic trend in year-class strength 0 the period 1972 (or 1973) - 1977. The regression analysis was performed for each of the above five power plants and for all five power plants comb: ad for each month separately. The reason for performing individual regressions for zach power plant and month was to examine the possibility than, there might be consistent patterns of variation at a power plant for cot ain months which were masked by averaging over power plants or over incntris The rojtession analysis was a' ${ }^{1 /}$ performed using the mean annual collection mas mas calculated as the average of the twelve monthly col'xction it? for each year. in all, 78 regressions re performed. Because olive monthly collection rates are used to calcula the mean annual coli. 6 in rato for each year, however, this set of regressions carnot: be treat ho rigorously as a set of 78 statistically independent r g jres

The results $c^{*} t$ ace regression analyses are presented in Table 1. Of the 78 regressions, the slope (b) differs significantly ($P<0.10$) from 0.0 in only 8 cases. Of these 8 cases, the slope is significantly greater than 0.0 seven times and less than 0.0 only once (Lovett, in March). In our judgment the mean annual collection rates for each of the five power plants and for all five plants combined are likely to be more reliable indices of population size than the monthly collection rates, which are more subject to variation from year to year due to temperature or salinity differences, and consequently, to differences in the spatial distribution of you white perch in the Hudson River, rather than due to real differences in year-class strength. None of the slopes for the six "annual" regressions differs significantly from zero. Thus, the collection rate data from these five power plants suggest that there has been no systematic change in the size of the white perch population during the period 1973-1977 (1972-1977 for Dansk amer).

Because of the age of sexual maturity for females and the multiple age-class composition of the spawning population of females, and because impingement mortality increased appreciably starting in 1973 and 1974, a systematic decrease in year -class strength due to impingement mortality Fou ld only start to manifest itself with the 1977 (or 1978) and subsequent year classes. Female white perch collected in the Indian Point region in May 1973 indicated 24\% sexual maturity at age 2, 96% at age $3,92 \%$ at age 4 , and 100% at age 5 and older (Texas Instruments, 1975a, p. VII-22). The large increases in power plant intake flow occurred during 1973-1975 (Christensen et al. 1976, Fig. 6). Thus, the year classes spawned during these years were spawned by year classes that were not themselves subjected to the increased levels of impingement mortality. Assuming a median age of reproduction of 4 years, only starting in 1977 or 1973 would the compounding

Table 1. Summary of results from regression analyses to examine the time series of collection races for trends in the Hudson River young-of-the-year white perch population ${ }^{\text {a }}$

[^0]effect of entrainment and impingement mortality have an opportunity to manifest itself in reducing year-class strength.

The variability in the collection rate data already available can be used as a guideline to estimate how much of a rejuction in population size (and for how many years) would be required in order to detect it statistically (i.e., statistical power of the test). However, assuming that a statistically significant decrease did occur, independent evidence indicating the same result would be required to demonstrate conclusively that such a decrease was related to "overfishing" by the power plants (Christensen et al. 1976).

C. Variation in Collection Rate Among Months

Variations in mean collection rate among months are highlighted in Table 2 for young-of-the-year white perch and in Table 3 for yearling and older white perch. The pattern among months depends quite noticeability on iocation. In particular, at the downriver plants (Astoria, Bowline, Lovett, and Indian Point), collection rates of white perch of all ages are highest during the months of December, January, and February, with the months of November, March, and April also being quite high an occasion. In contrast, at the upriver plants (Roseton, Danskammer, and Albany) collection rates of white perch of all ages indicate two peaks, one in April and May and a second in September, October, and November. Collection rates of yearling and older white perch also tend to be relatively high at a number of the power plants in June (Table 3), which in part is an artifact due to designating May 31 - June 1 (a one-day interval) as the dividing line between 12 -month old young-of-the-year and 13 -month old yearlings.

D. Variation in Collection Rate Among Power Plants

Variation among power plants in the mean annual collection rate is surprisingly great (Tables 2 and 3 , last column). Although data are available for only one year at Astoria, and there is no way to estimate from the data reported the collection rates for yoy and older white perch separately, it is evident that relatively few white perch are impinged at Astoria. At the other geographical extreme, it is evident that impingement of yoy white perch is relatively low at Albany compared to the other plants (Table 2), but Albany ranks third out of eight power plants with respect to the impingement of yearling and older white perch (Table 3). In fact, at Albany the impingement of yearling and older white perch is appreciabiy higher in absolute numbers than for yoy white perch.

For Bowline, Lovett, Indian Point, Roseton, and Danskarmer, impingement of yoy white perch is higher in absolute numbers than impingement of oider white perch. The values for Indian Point Unit 2 are appreciably higher than thuse for any other plant (see Table 2). Although the values for Indian Point Unit I are also high, impingement of fish at Unit 1 is not presently

Table 2. Variation in mean collection rate of young-of-the-year white perch anong months and anong power plants ${ }^{4}$

Plant	tocation ${ }^{\text {b }}$	Number of years of data	June	July	August	Septentier	October	Noventer	December	Jenuary	February	March	April	May	Annual
Astorta ${ }^{\text {c }}$	East River	1							(i)		$\begin{aligned} & 4.6 \\ & (2) \end{aligned}$		$\begin{aligned} & 3.1 \\ & (3) \end{aligned}$		$\begin{aligned} & 1.8 \\ & (9) \end{aligned}$
Bowline	31.5	5							767.1 (1)	553.6 (3)		332.9 (4)	577.9 (2)		248.0 (4)
Levett	42	5						394.8 (2)	273.9 (4)	558.0 (1)			315.7 (3)		171.2
Indian Point Unit 1	43	2-4							$\begin{gathered} 3415.3 \\ (2) \end{gathered}$	$\begin{gathered} 2542.9 \\ (4) \end{gathered}$	4196.6 (1)		3219.2 (3)		1563.7 (2)
Indian Point Sinit 2	43	4-6							7942.4 (3)	12610.4 (2)	18101.3 (1)		5822.8 (4)		4565.6 (1)
Indian Point thait 3	43	1-3						1286.7 (3)	646.0 (4)	1836.2 (2)	2973.2 (1)				666.5 (3)
Roseton	65.4	4-5					246.8 (2)	286.5 (1)					149.6 (4)	$\begin{gathered} 233.5 \\ (3) \end{gathered}$	97.5 (7)
Danskamber	66	6					413.0 (2)	482.9 (1)					304.0 (4)	$\begin{gathered} 305.9 \\ (3) \end{gathered}$	153.2 (6)
Albany ${ }^{\text {d }}$	140	2				$\begin{array}{r} 20.8 \\ (2) \end{array}$	7.7 (3)						7.7 (4)	$\begin{aligned} & 26.3 \\ & (1)^{2} \end{aligned}$	6.24 (8)

CBased on analysis of Rafte values in Tables A-1 through A-9 in Appendix A. The top number of each pair of numbers in the tabte is the mean collection rate (number of fish collected ver million cubic meters). The bottom number of each pair (in parentheses) is the ranking for that meaf collection rate, with one (i) denoting the highest rate. The mean monthiy collection rates are averages over all years for which estimates for that month were avallable; these mean monthly rates were ranked from 1 to 12 for each power plant, but only entries for the
N. four highest munths are given in this table. The mean annual collection rate for each power plant is the average of the 12 mean monthly
[$)$,
DRiver mile (KM) on the Hudson River, with RM 0 at the Battery.
${ }^{\text {}}$ All ages comblred at Astorla
${ }^{4}$ Based on RAIE0 values in Table A-I in the Appendix only for the period April 1974 - March 1976.

Table 3. Variation in mean collection rate of yearling and older white perch among months and among power plants ${ }^{\text {a }}$

Plant	Locacion ${ }^{\text {b }}$	Number of years of data	June	Juiy	August	September	October	November	December	January	February	March	April	May	Annual
Bow: ine	37.5	5								$\begin{array}{r} 175.3 \\ \text { (i) } \end{array}$	$\begin{array}{r} 87.9 \\ (3) \end{array}$	$\begin{array}{r} 61.0 \\ (4) \end{array}$	123.1		46.1 (6)
tovett	42	5	70.6 (1)					$\begin{gathered} 14.3 \\ \text { (3) } \end{gathered}$		$\begin{array}{r} 35.6 \\ (2) \end{array}$		13.2			15.2 (8)
Indian Point Unit I	43	2-4	117.9 (4)						127.5 (3)	162.3 (2)		184.2 (1)			$\begin{gathered} 84.6 \\ (4) \end{gathered}$
Indian Point Unit 2	43	4-6							$\begin{array}{r} 420.0 \\ (3) \end{array}$	804.9 (I)	$\begin{gathered} 515.3 \\ (2) \end{gathered}$	413.6 (4)			$\begin{array}{r} 231.9 \\ \text { (1) } \end{array}$
Indian Point Unit 3	43	1-3	63.4 (3)						45.3 (4)	117.2 (I)	$\begin{gathered} 78.6 \\ \text { (?) } \end{gathered}$				$\begin{array}{r} 34.4 \\ (7) \end{array}$
Roseton	65.4	4-5	55.7 (3)					50.5 (4)					164.5 (1)	$\begin{array}{r} 155.4 \\ \text { (2) } \end{array}$	$\begin{gathered} 48.0 \\ (5) \end{gathered}$
Danskansiar	66	6	312.9 (i)	164.9 (4)									$\begin{array}{r} 273.4 \\ (2) \end{array}$	208.7 (3)	$\begin{array}{r} 101.4 \\ (2) \end{array}$
Albany ${ }^{\text {c }}$	140	2	164.1 (4)	$\begin{array}{r} 212.0 \\ (2) \end{array}$		218.2 (I)	$\begin{array}{r} 211.6 \\ (3) \end{array}$								$\begin{gathered} 90.9 \\ (3) \end{gathered}$

[^1]of major concern, since the un it is not presently generating electricity. The circulating pumps are generally only operated for experimental purposes (e.g., testing of fine-mesh screens). Impingement of you white perch is higher at Bowline and Lovett than at Roseton and Danskarmer (Table 2), but the rankings are reversed for impingement of yearling and older white perch (Table 3).

III. WHITE PERCH ABUNDANCE AND MORTALITY

A. Abundance

No estimates have been made of the absolute abundance of yearling and older white perch in the Hudson, and none of the existing data are adequate for this purpose. However, two independent estimates of the abundance of white perch juveniles are available. The first, or combined gear estimate, is derived from a combination of data from the Texas Instruments (TI) longitudinal ichthyoplankton survey, fall shoals survey, and riverwide beach seine survey. Descriptions of these surveys can be found in the Multiplant Report (TI 1975b) and the Final Research Report (FRR) [McFadden 1977 (Exhibit UT-4) and revisions and errata]. A detailed description of the method used to calculate abundances from these data was provided through a response dated February 27, 1978 to an EPA information request dated December 27, 1977. According to that response, Texas Instruments has calculated on a weekly basis the combined gear population estimates for the months of July through December 1974 and on a biweekly basis the estimates for the months of July through December 1975 . These data also were provided in the response dated February 27, 1978 to the information request of December 27, 1977.

The second estimate is derived from a mark/recapture program conducted by Texas Instruments. Descriptions of the methods used in data collection and analysis can be found in the Milt olant Report and the FRR. Mark/recapture estimates of white per juvenile abundance in Oc cover 1974 and in October 1975 are presented in a supplement to the FRR [McFadden and Lawler 1977 (Exhibit UT-3) and revisions and errata]. A comparison of the two sets of estimates reveals substantial discrepancies for both years (Table 4). The mark/recapture estimates are far larger than the corresponding combined gear estimates, 14 times as high in 1974 and 6 times as high in 1975. We believe that the mark/recapture estimates are the more reliable of the two sets for reasons discussed below.

The combined gear estimates undoubtedly underestimate the true abundance of white perch, since $T I$ made no corrections for gear efficiency (FRR, Sections 7.9.1.2, 7.9.1.3, and 7.9.1.4). In effect, they assumed that all of the gears (beach seine, episenthic sled, and Tucker trawl) catch 100% of the fish in their path. In reality, no gear captures 100% of the organisms in its path. Even the smallest larval fishes possess a limited ability to evade capture. Recent tests conducted by Texas Instruments (1978) indicate that the efficiency of the 100 -foot beach seine at catching juvenile nite perch probably ranges between 7 and 25%. The epibenthic sled and Tucker trawl were designed primarily as ichthyoplankton gear. Since the majority of juvenile wite perch are well in excess of 50 m in length by early August, the efficiency of these gears during the period of interest here (August-December) is probably very low. Although no attempts have been inade to quantify the efficiency of the epibenthic sled and Tucker trawl, Kjelson and Johnson (1978) have recently reported that the $6.1-\pi$ otter trawl, which, because of its larger size, is probably more efficient than

Table 4. Estimates of white perch juvenile abundance in the Hudson River ${ }^{\text {a }}$

either of the above gears at catching juvenile fish, is only about 30-50\% efficient.

An additional source of error in the combined gear estimates for white perch is the design of the sampling program itself. As described in the Multiplant Report (Section III), the longitudinal river survey, fall shoals survey, and the riverwide beach seine survey are all designed for optimal sampling of striped bass. A conmon result of this design has been the collection of large numbers of samples in regions that contain low densities of white perch, and the collection few samples in regions containing high densities of white perch. For example, during the period August 19-22, 1974, 34 epibenthic sled tows were conducted in the Tappan Zee region. No white perch were caught. Virtually all of the white perch collected during this period (58 out of 64) came from five tows collected from the shoal stratum of the Cornwall region.

By comparison, the mark/recapture estimates seem to be more free of major biases. Population estimates calculated from mark/recaoture data are subject to severa sorts of biases (Ricker 1975). Three that seem potentially important in this appifcation, although probably only as minor biases, are: differential mortality of marked and unmarked fis. nonhomogeneous distribution of marked and unmarked fish, and the atural occurrence of "marked" f'sh.

If marked fish suffer more mortality than unmarket fish, either from the stress imposed by handling and marking or because marked fish are more vulnerable to predators or disease than are unmarked fish, then an overestimate of the true population size can result. TI addressed this problem with experiments conducted in 1973 (described in the Multiplant Report) and derived correction factors to account for short-term (14 days) handling mortality of marked white perch. The possibility that long-term survival of marked white perch under natural conditions may be lower than that of inmarked fish has not been evaluated by TI.

The Peterson method of estimating population size from mark/recapture data, the method chosen by TI, requires that marked fish mix completely with the unmarked population prior to recapture. If this mixing does not occur, a bias can be introduced into the results. In particular, if sampling during the recapture period is concentrated in regions where marked fish are relatively abundant in comparison to their true proportion in the population, then the true population size will be underestimated. In the Multiplant Report, TI cited insufficient mixing as a reason for discarding estimates of the number of juvenile white perch in the Hudson in the fall of 1973. In this case fish were both marked and recaptured in the fall. Insufficient mixing is pi sbably not a problem with the fall 1974 and 1975 ostimates, because fist were released in the fall and recaptured during whe following spring. From the distributional data presented in the FRR (Section 6.1) and from the seasonal patterns of impingement discussed in Section II of this report, it is evident that white perch juveniles migrate downstream to Haverstraw Bay and the Tappan Zee in the late fall and overwinter there
before returning upstream in the spring. These migrations would appear to provide ample opportunity for mixing.

TI uses finclips to mark juvenile white perch and strifed bass. Natural loss of fins is not uncommon, and the mistaking of fish that rive lost fins for marked fish can cause underestimates of population sizo . . has discovered several such "fin anomalies." According to the plant Report, in 1974 it was discovered that about 0.3\% of unmarked juvenile, white perch were missing one or both pelvic fins. This finding necessitated the recalculation (by excluding fish marked with sinyle or double pelvic finclips) of mark/recapture estimates for the 1973 year-class. Mark/recapture estimates of the August-September, 1975 abundance of white perch juveniles (presented in the FRR, Exhibit UT-4) were discarded (McFadden and Lawler 1977, Exhibit UT-3) after it was discovered that a mark type (anal finclip) used in the August-September, 1975 release also occurs among unmarked fish. To this date no fin anomalies have been noted that involve any of the finclip tjeses (six marks were used; five of these were double finclips) used in the October-November, 1974 and Cctobe , 1975 releases. We presently believe that the Peterson mark/recapture estimates of white perch juvenile abundance in October of 1974 and $0-5$ are the best available estimates of the abundance of the 1974 and $1975 ; \operatorname{ar}-c l a s s e s$. It is these estimates that are used in the direct impact eesessment contained in Section IV.

B. Mortality

Dew (1978) has used the catch-curve method to calculate an average annual mortality rate for age zero and older white perch (Table 5). His results are derived from bottom trawl data collected in th : vicinity of th:t Bowl ine Point Generating Station between 1971 and 1976. he believe, however, that age zero fish should not have been used in this analysis, since their mortality is probably higher than that of yearling and older fish. We aiso believe that Dew's method of analysis was not the most appropriate application of the catch-curve methodology. Dew estimated the annual fractional mortality separately for each age-class, grouping together all fish of age 5 and older. He then averaged the individual estimates (value for A of 0.53 in Table 5). Robson and Chapman (1961) have described an entirely different method of calculating average annual morcality when all fish older than a certain age are grouped together. As Robson and Chapman's method has been proven to be unbiased (whereas Dew's method has not) under the assumptions of the catch-curve method, and since its statistical properties are known (which is not the case with Dew's method), we believe that it is superior to Dew's method. Therefore, ve have redone Dew's analysis, excluding the age zero fish and using the method of Robson and Chapinan (1961), to calculate an annual mortality rate for yearling and older white perch of approximately 50% (value for A of 0.49 in Table 5). This value is undoubtedly in error to some extent, since the catch-curve method is sensitive to flurtuations in year-class strength (Robson and Chapman, 1961). However, it is in good agreement with values obtained by

Table 5. Catch-curve estimates of white perch mortality based on bottom trawl data from the Bowline Point vicinity, 1971-1976

	Annual fractional mortality (A)	Annual instantaneous mortality rate (Z)
Original values (ages 0 through 5		
Recalculated values (ages 1 through 5	0.5349	0.7655

${ }^{\text {a Calculated by Dew, }} 1978$.
brecalculated by excluding age 0 fish and using the method of Robson and Chapman, 1961.

Wallace (1971) for age I-IV white perch in the Delaware River: 54\% for males and 58\% for females. We believe at this time that 50% is a reasonable estimate, and this is the value used in our direct impact assessment.

None of the avail , le data appears adequate for deriving reliable estimates of total mortality in impingeable young-of-the year white perch. Using the method employed by TI to estimate mortality in juvenile striped bass, we attempted to calculate a mortality rate using TI's weekly combined gear estimates of white perch abundance. The method involves regressing the natural logarithm of the population estimate against time (in days) from the end of luly to mid-December. The slope of the regression line is an estimate of the daily instantaneous mortality rate. Using this method we obtained no useful results, decause there was no discernible de:line in the combined gear estimates between early August and mid-December. We performed a similar analysis using data from only a single gear, the epibenthic sled, and a single sampling program, the fall shoals survey, in the hope of eliminating variation due to pooling different gears and different sampling programs. Although the epibenthic sled samples during the fall shoals survey seemed like the best single source of data from which to ineive, estimates of total mortality, this analysis was even less successful: jopulation estimates based on epibenthic sled data alone increased between August and December, both in 1974 and in 1975.

We have, therefore, used a range of values for young-of-the-year mortality in our direct impact assessment. As a high estimate we have used the value of 80% assuned by McFadden and Lawler (1977, Exhibit UT-3). Given the absence of a seasonal decline in the combined gear and epibenthic sled abundance estimates, th is value may be too high. Alternatively, we have assumed that the mortality among impingeable young-of-the-year is identical to that among yearling and older fish, i.e., that the annual fractional mortality of young-of-the-year wite perch is about 50\%. Since, because of their smaller size, young-of-the-year should be more vulnerable to predators than are older white perch, this value may be too low.

IV. ESTIMATION OF CONDITIONAL MORTALITY RATE AND EXPLOITATION RATE DUE TO IMPINGEMENT

The empirical model of impingement impact used to estimate the conditional mortality rate and exploitation rate due to impingement for the Hudson River white perch population is described in Barnthouse et al. (1979). The model requires: (1) estimates of the initial number of young-of-the-year in the Hudson River white perch population at the time they first become vulnerable to impingement, (2) estimates of the rate of either total or natural mortality during the period of vulnerability 'o impingement, and (3) monthly estimates of the niuber of white perch iminged by year class.

For the purpose of comparing alternative assumptions about the age f impinged fish, it is desirable to formulate the model in terms of natura rather than total mortality, even though in practice only total mortality can be directly estimated from field data. This is not a major problem, however, since it is possible to calculate the conditional natural mortality rate, given the total mortality rate and the impingement exploitation rate (Barnthouse et al. 1979). In addition, when natural mortality is high relative to impingement mortality, total mortality and natural mortality are nearly numerically identical. For example, the natural conditional mortality rate calculated by Barnthouse et al. (1979) for impingeable young-of-the-year striped bass was 0.79 , only slightly smaller than the total mortality rate of 0.8 . Similarly, we believe that it is rasonable to use the same value (0.5) as an approximation of both the natural conditional mortality rate and total mortality rate in yearling and older white perch.

The estimates of initial population size and natural mortality rates are given in Table 6, and the bases for these estimates are discussed in the preceding section of this report (Section III). Monthly estimates of the number of white perch impinged by year class are given in Table 7. These estimates include white perch impinged at all tie power plants discussed in Section II and in the Appendix, except Astoria. Although impingement data are not available for the Albany power plant except for the period April 1974 - March 1976, Albany was operating continuously during the period June 1974 through December 1977, which is the period considered in this report in estimating conditional mortality rates and exploitation rates due to impingement for the 1974 and 1975 year classes. Consequently, the number of young-of-the-year and older white perch collected at Albany was approximated for each month from April 1976 - December 1977, as described in Table A-1 of the Appendix.

The value of a sexually immature fish to a population increases with its age, because its probability of surviving to sexual maturity increases. For this reason the impact to the population of killing a sexually immature fish increases with its age. If, as the utilities assume, the total mortality of juvenile white perch between July of year 0 and July of year 1 is 80%, then a single yearling impinged in July is worth five juveniles

Table 6. Initial population sizes and mortality estimates used in the empirical model of impingement impact to estimate the conditional mortality rate and exploitation rate due to impingement for the Hudson River white perch population

abE denotes the best es :imate of initial population size. $L B$ and UB denote the lower and upper bounds, respectively, of the 95% con idence interval about the best estimate.
bLow natural mortality: $r_{n}=0.001899$ per day for the entire period of vulnerability to impingement. Th is instantaneous natural mortality rate corresponds to an annual (i.e., 365 days) conditionai mortality rate due to a"1 causes of mortality other than impingement of 0.5 .

High natural mortality: $\quad r_{n}=0.004409$ per day from July 16 as young-of-the-year to May 31 of the following year just as they become yearlings. This instantaneous natural mortality rate corresponds to an annual (i.e., 365 days) conditional mortality rate due to all causes other than impingement of $0.8 . \quad r_{n}=0.001399$ per day from June 1 as yearlings until the end of the perfod of vulnerability.
${ }^{\text {EPoctober }:}$ d denotes the size of the Hudson River young-of-the-year white perch population on October 1, as estimated oy Texas Instruments using mark-recapture techniques (McFadden and Lawler, 1977, o. 2-VII-2, as modified by errata).
dp july 16 denotes the size of the Hudson River young-of-the-year in ite perch population on July 16 . It is calculated using the equation

$$
P_{\text {July }} 16=P_{\text {October }} 1 / \exp \left(-76 r_{n}\right) \text {, }
$$

where values for Poctober 1 and r_{n} are given elsewhere in th is table and 76 is the number of days between July 16 and October 1.

Table 7. Mo.thly estimates of the number of white gerch impinged at all the Hudson River power plants combined for the 1974 and 1975 year classes ${ }^{\text {d }}$

$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	Month	Year class			
		1974		1975	
		Nunter of years - vulnerability		Number of years of vulnerability	
		2	3	2	3
0	6	3,48514,37726,239112,957245,492607,434415,724270,751139,751609,09091,910		08,39897,91083,98093,388239,150348,596589,206182,391130,261111,32040,161	
	7				
	8				
	9				
	10				
	11				
	12				
	*				
	2				
	3				
	4				
	5				
1	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	37,242	18,62111,063	27,014	$\begin{array}{r} 13,507 \\ 6,918 \end{array}$
		22,126		13,935	
	7 8	14,122	7,061	6,770 3,385	
	9	19,924	9,962	$13,791 \quad 6,396$	
	10	19,534	9,767	25,676	12,838
	11	28,005	14,002	12,552	6,276
	12	7,303	3,902	48,102 24, 251	
	1	38,078	19,039	143,010 71,505	
	2	9,293	4,646	43,558 21,779	
	3	2, 444	6. 222	49,579 24,790	
	4	-4,103	7,052	38,692	$\begin{aligned} & 19,346 \\ & 28,182 \end{aligned}$
	-	7,612	3,306	56,365	
2	6	13,507			$\begin{array}{r} 35,710 \\ 3,305 \\ 12,662 \\ 8,736 \\ 17,362 \\ 19,145 \\ 10,890 \end{array}$
	7		6,918		
	3		3,385		
	9		6,396		
	10		12. 838		
	11		+ 276		
	12		24,051		
	1		71,505		
	2		21,779		
	3		24,790		
	4		19,346		
	5		28,132		

AMonthly values for number of yoy wite perch imoinged sere calculated by summing the NIMBERO values, Tables $A-1$, and $A-3$ through $A-7$ in Appendix A over zower plants for the appropriate month and year.

Monthly zalues for number of yearling white jerch impinged were calculated efther by summing the vimacRl values over power plants for the appropriate month and year (2 yeaz of vuinerability, corresponding to the assumption that 100% of the yarling and alder white perch imoinged were year lings) or by summing tha NOMBER1 values over power plants and dividing by 2 (3 years of vuine ability, corresponding to the assumption that 50 s of the yearling and older mite perch impinged are year lings).

Monthly values for number of 2 -year--1d white gerch impinged wers calculated by summing the vLMBER1 values 'er power plants, dividing by 2 , and tabulating the result for the given onth, but one year later (3 -years of vulnerability oniy, corresponifing to the assumption that 50% of the yearling and older wite jerch mpinged are 2 -year olds).
impinged 12 months earlier. If mortality between year 1 and year 2 is 50%, then each 2-year-old white perch is worth two yearlings or ten young-of-theyear. Even though the number of yearling and older white perch impinged each year constitutes only about 10% of the total white perch impingement, the impact of killing these fisn is quite substantial.

As indicated in Table 7, two alternative assumptions were made concerning the age of impinged yearling and older white perch. For one case, it was assumed that all white perch impinged that are jearlings and older are yearlings, resulting in two years of vulnerability to impingement. For the other case, it was assumed that if the yearling and older white perch impinged, 50% were yearlings and 50% ere 2 -year olds, resulting in three years of vulnerability to impingement. It is our judgment, based on lengthfrequency data of impinged white perct at Bowline, Indian Point, and Roseton (see Appendix, Tables $A-3, A-5,6 \& 7$, and $A-9$), that the true age composition of yearling and older wh te perch impinged (which includes some white perch older than 2 years), results in an effective split between yearlings and 2 -year olds that is retween the two assumptions just given, that is, between 100\% yearlings - 0\% 2-year 01ds and 50\% yearlings - 50% 2 -year olds. Because of the lack of 1978 impingement data for January May, no model estimates of impingement impact assuming three years of vulnerability are given for the 1975 . "ir class.

With this exception, estimates of conditional mortality rate and exploitation rate due to impingement are given in Table 8 for the 1974 and 1975 year classes for combinations of estimates and assumptions involving initial population size (low, best estimate, and high), natural mortality (low and high), and number of years of vulnerability (2 and 3 years).

Estimates of the conditional mortality rate due to impingement are especially relevant in assessing the effects of power plant impingement, since they are equivalent to estimates of the fractional (or percent) reduction in the size of a year class due to impingement, assuming no compensation (see Barnthouse et al. 1979). As indicated by the values in Table 8, percent reduction values (obtained by muitiplying by 100) are greater (1) the smaller the initial population size, (2) with high natural mor.ality rates as opposed to low, and (3) assuming three years of vulnerability instead of two. Furthernore, assuming approximately comparable degrees of uncertainty in the choices of low and high estimates of initial population size, natural mortality, and number of years of vulnerability, it appears that the estimates of percent reduction are most sensitive to (i.e., vary most widely depending on) estimates of initial population size, least sensitive to the number of years of vuinerability assumed, and intermediately sensitive to estimates of natural mortality.

The percent reduction va les range from 9.5 - 45\% for the 1974 year class and from 7.7-24\% for the 1275 year class, assuming only two years of vulnerability. Assuming three years of vulnerability, the percent reduction values range from 12-59\% for the 1974 year class. For the 1975 year class, percent reduction values cannot be calculated because 1978 impingement data are not presently avaliable.

Table 8. Estimates of conc tional mortality rate and exoloitation rate (in parentheses) due to impingement for the 1974 and 1975 year classes of the Hudson I iver white perch population for coabinations of estimates and assumpt ion. involving initial poe, ation size, natural mortality, and number of years of vulneradilitya

Number of years of vulnerability ${ }^{b}$	$\begin{aligned} & \text { Year } \\ & \text { class } \end{aligned}$	Initial Population Size ${ }^{\text {C }}$					
		Low		Best estimate		High	
		Natural mortality rated		Natural mortality rate ${ }^{\text {d }}$		Natural mortality rate ${ }^{\text {d }}$	
		Low	High	Low	High	Low	High
2	1974	0.309	0.446	0.177	0.255	0.095	0.137
		(0.163)	(0.200)	(0.054)	(0.114)	(0.051)	(0.061)
	1975	0.166	0.245	0.116	0.172	0.077	0.115
		(0.082)	(0.099)	(0.057)	(0.069)	(0.038)	(0.046)
3	1974	0.387	0.588	0.221	0.336	0.119	0.181
		(0.172)	(0.209)	(0.099)	(0.119)	(0.053)	(0.064)
	1975	-	--	--	--	--	*-

alotal conditional impingement mortality rate calculated using Eg. (11) in Barnthouse et al. (1979), i.e. . $\mathrm{IH}_{\mathrm{T}}=1-\prod_{j=1}^{\pi}\left(1-\mathrm{m}_{\mathrm{i}}\right)$, except with the index a running from 1 to 24 (2 years of vulnerability) or 1 to 36 3 years of then Eq. (ityinerdi. Ify). The individual monthly m_{i} values were calculated in sequence using Eq. (2) and then Eq. (10) in Barnthouse et al. (1979). Total conditional impingement mortality rates are equal to fractional (or percen. I reductions in year-class strength due to impingement, assuming no compensation.

Exploitation rate calculated by dividing the total number of white perch impinged in a year class during the entire period of vislnerability by the size of the yoy populaifion at the start of the period of vulnerability.
bsee Table 7.
CSee Table 6.
Usee footnote b to Table 6.

Exploitation rates show the same pattern of variation as the conditional mortality rates with respect to values used for initial population size, natural mortality, and number of years of vulnerability (Table 8). The exploitation rates range from 5.1 - 20.0\% for the 1974 year class and from 3.8-9.9\% for the 1975 year class, assuming only two years of vulnerability. Assuming three years of vulnerability, the exploitation rates range from 5.3-20.9\% for the 1974 year class, and, although they cannot be calculated oi this time, they would be expected to be lower for the 1975 year class. As discussed in Barnthouse et al. (1979), because there are competing sources of mortality and each an organ ism can die only once, an exploitation rate is always lower than the corresponding conditional mortality rate. However, as stated above, it is the conditional mortality rate due to impingement that is equivalent to percent reduction in the size of the year class. Because of this equivalence, the conditional mortality rate is a more meaningful measure of impact than is the exploitation rate.

v. DISCUSSION

A. Comparison With Utilities' Results

The utilities have estimated the conditional mortality rate and exploitation rate due to impingement of white perch for the 1974 year class (Table 9).

Impingement impact for the 1974 year class was estimated assuming that 90\% of the July 1974-June 1975 impingement consisted of the 1974 year class. Exploitation of this year class was calculated to be 4.4\% at Indian Point Unit 2 and 5.9% for the multiplant case (Table 2-VII-1). These exploitation rates are equivalent to conditional mortality rates of 8.5% for Indian Point ar 11.2% for multiplant with an assumed total mortality rate of 80%. (McFadden and Lawler 1977, p. 2-VII-3)

In terms of the comparability of assumptions and input values used in the utilities' methodology and our methodology, the utilities' conditional mortality rate of 11.3% and exploitation rate of 5.9% in Table 9 for the multiplant case can be compared with our estimates in Table 8 (two years of vulnerability, best estimate of initial population size, and high natural mortality) of a conditional mortality rate of 25.5% and an exploitation rate of 11.4%. The two sets of estimates differ by approximately a factor of 2 for several reasons (we have not attempted to estimate how much of the two-fold difference is due to each of the following reasons):
(1) We included the Albany, Danskammer, and Lovett Steam Electric Generating Stations, while they did not. These three plants were operating during the years 1974-1977 and were impinging white perch. Thus, they should be included in any evaluation of the impact of impingement on the Hudson River white perch population.
(2) We included Indian Point Unit 1, which operated continuously (at least the circulating water pumps) from June 1974 through August 1975, while they did not. Since this unit was operating during part of the period of interest and was impinging white perch, it also should be included in any evaluation of the impact of impingement on the Hudson River white perch population.
(3) Our values reflect two years of vulnerability to impingement, while their values reflect only one year of vulnerability (i.e., they ignored impingement of yearling and older white perch from the 1974 year class past June 1975). Since yearling and older white perch, in fact, are impinged in appreciable numbers, they must be considered as such in any credible evaluation of the impact of impingement on the Hudson River white perch population. There is no icientifically, justifiable methoriological reason or biological reason for not including these yearling and older white perch in such an evaluation.

Table 9. Relevant parts of Table 2-VII-1 in McFadden and Lawler (1977)

Power plant	Number impinged	Exploitation rate (u)	Conditional mortality (m)
Bowline	473,043	0.0137	0.0273
Roseton	52,025	0.0015	0.0030
Indian roint Unit ?	$1,520,317 \mathrm{~b}$	0.0441	0.0849
Multiplant	$2,045,385$	0.0594	0.1126

a Total impingement, of which 90% are assumed to be 1974 year
class.
Includes 948 impinged at Indian Point Unit 3.
(4) We used available data to estimate on a monthly and plant-specific basis the percent of white perch impinged from June 1974 - June 1975 that were from the 1974 year class, whereas they assumed 90%. As the PERCENTO values in Tables A-1, and A-3 through A-9 indicate, their assumption of 90% young-of-the-year may be justified for Lovett, and for the three Indian Point units. However, the utilities' assumption of 90% young-of-the-year is clearly too high for Alhany, Bowline, Danskamer, and Roseton.
(5) We used the methodology presented in Barnthouse et al. (1979), which permitted us to take into account monthly variations in collection rates, whereas the utilities' methodology implicitly assumes a constant vulnerability. In reality, as discussed in Section II, the collection rate fluctuates appreciably on a monthly basis, with rates being substantially higher from December - May than from June - November (Tables 2 and 3). (Also see Table 3 and associated text in Barnthouse et . (1979) for a comparison .-ing constant versus variable collection rates to estimate the conditional mortality rate due .o impingement.)

The utilities' choices at every one of the above five "decision points" affect the results in the same direction, namely, to lower the estimates of impingement impact. Yet, given that the purpose of the utilities' analysis and of our own analysis ought to be to realistically and objectively estimate the percent reduction in the strength of the 1974 year class of white perch in the Hudson River due to impingement at power plants, our choices at each of the five decision points is scientifically more sound and defensible for the reasons we have given.

B. Is there a problem?

This testimony presents two independent lines of evidence evaluating the impingement losses of white perch at the power plants on the Hudson River. The first line of evidence, the analysis of the variation in collection rate among years (Section II.3), suggests that there is not yet an obvious problem, but that it is too soon to be sure. The second 1 ine of evidence, the estimates of conditional mortality rate due to impingement (Section IV), suggests that the level of impingement impact cannot be assessed as acceptable from the point of view of the white perch population. These two lines of evidence are briefly elaborated on in the following two paragraphs.

The collection rates provide astimates of year-class strength on a relative scale. As such, they reflect the effect of entrainment and impingement losses during the preceding months, as uell as the effect of any compensatory mechanisms which might alter survival during the preceding months. Regression analyses on collection rates of impinged young-of-theyear white perch suggest that there has been no systematic change in the size of the white perch population during the period 1972-1977 (Section 11.3). In particular, there is little evidence of a statistically
significant downward trend. However, given che large variability in collection rates used in these regressions, the time series are relatively short (i.e., 5-6 years), and thus, the statistical power of the test for a trend is not high. In addition, because of the age of sexual maturity for females and the multiple age-class composition of the spawning population of females, and because impingement mortality increased appreciably starting in 1973 and 1974, a systematic decrease in year-class strength due to impingement mortality would only start to manifest itself with the 1977 (or 1978) and subsequent year classps.

The estimates of percent reduction in year-class strength due to impingement that are presented in Table 8 cover a broad range, as discussed in Section IK. Our analysis shows that the level of impingement impac: was probably greater than 20% for the 1974 year class and was probably greater than 15\% for the 1975 year class. These estimates do not include consideration of entrainment, so that the total power plant conditional mortality rate is obviously greater than the values given here for impingement only. Given the information presently available, it is our judgment that this level of impingement impact is not acceptable from the point of view of the white perch population.

VI. REFERENCES

Barnthouse, .. W. 1979. An analysis of factors that influence impingement estimates at Hudson River power plants. Testimony prepared for the U.S. Environmental Protection Agency, Region II.

Barnthouse, L. W., D. L. DeAngelis, and S. W. Christensen. 1979. An empirical model of impingement impact. ORNL/NLREG/TM-290. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Christensen, S. W., W. Van Winkle, and J. S. Mattice. 1976. Defining and determining the significance of impacts: concepts and methods. pp. 191-219. IN R. K. Sharma, J. D. Buffington, and J. T. Mcf adden (eds.), Proceedings of the workshop on the biological significance of environmental impacts. NR-CONF-002.

Dew, C. B. 1978. Age, growth, and mortality of Hudson River white perch perch (Morone americana) and the use of these parameters in evaluating the exploitation rate represented by impingement at power plant intakes. Paper presented at the Northeast Fish and Wiidlife Conference, Greenbriar, West Virginia. February 28, 1978.

Kjelson, M. A., and G. N. Johnscn. 1978. Catch efficiencies of a 6.1-meter cttor trawl for estuarine fish populations. Trans. Am. Fish. Soc. 107:246-254.

MCFadden, J. T. (ed.). 1977. Influence of Indian Point Unit 2 and other other steam electric generating olants on the Hudson River estuary, with emphasis on striped bass and other fish populations. Consolidated Edison Company of New York, Inc. (Exhibit UT-4 and revisions).

McFadden, J. T., and J. P. Lawler (eds.). 1977. Supplement I to Inf Tuence of Indian Point Unit 2 and other steam electric generating plants on the Hudson River estuary, with emphasis on striped bass and other fish poulations. Consolidated Edison Company of New York, Inc. (Exhibit UT-3). Errata correcting the estimates of the size of the Hudson River young-of-the-year white perch population on October 1, originally given on p. 2-VII-2 of this reference, are contained in Utilities' Exhibits UT-3E-2 and UT-3E-5 which were submitted in December 1977 during the EPA, Region II, adjudicatory hearing in the matter of National Pollutant Discharge Elimination System Permits for Bowline, Indian Point, and Roseton Generating Stations.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fish. Res. Board. Can., Bull. 191. 382 p.

Robson, D. S., and D. G. Chapman. 1951. Catch curves and mortality rates. Trans. Am. Fish. Soc. 90:181-189.

Texas Instruments, Inc. 1975a. Hudson River ecological study in the area of Indian Point. 15/4 Annual Report. Prepared for Consolidated Edison Company of New York, Inc.

Texas Instruments, Inc. 1975b. First annual report for the multiplant impact study of the Hudson River, Vol. I, July, 1975. Prepared for Consolidated Edison Company of New York, Inc.
. 1978. Catch efficiency of $100-\mathrm{ft}(30-\mathrm{m})$ beach seines for estimating density of young-of-the-year striped bass and white perch in the shore zone of the Hudson River estuary. Prepared for Consolidated Edison Company of New York, Inc.

USNRC (U. S. Nuclear Regulatory Commission). 1975. Final environmental statement related to operation of. Indian Point Nuclear Generating Plant Unit No. 3, Consolidated Edison Company of New York, Inc. NUREG-75/002.

Wallace, D. C. 1971. Age, growth, year class strength, and survival rates of the white perch, Morone americana (Gmelin) in the Delaware River in the vicinity of Artificial Island. Chesapeake Science 12:205-218.

APPENDIX
IMPINGEMENT DATA BASE

The data base is presented by power plant, arranged in alphabetical order

WHITE PERCH IMPINGEMENT DATA FOR THE
al bany steam electric generating station

April 1974 - March 1975: Ref. (1)
RATE (collection rate): 1 calculated from monthly data on average observed number of fish of all species collected per million gallons of intake flow at all units (from Table 3, Column B, Plant Av.), and monthly data on percentage composition by species of the fish collected (from Table 4).

NUMBER (number collected): calculated from monthly data on estimated number of fish of all species collected at all units (from Table 2, Column D, Total) and monthly data on percentage composition by species of the fish collected (from Table 4).

PERCENTO (percent of the white perch collected that were young-of-the-year): calculated with the aid of graph paper and a dissecting microscope from the monthly plots in Fig. 10 of frequency versus length intervals of white perch collected at the Albany Steam Electric Generating Station for each month April through Novemtar 1974. The "OIVISION" criteria specified by Texas Instruments were used as the cut-off length between young-of-the-year and yearling white percn (see Table A-10 in this appendix).

April 1975 - March 1970: Ref. (2)
RATE (collection rate):1 calculated from monthly data on average erved number of fish of all species collected per million go uns of intake flow at all units (from Table IVC-16) and monthly data on percentage composition by species of the fish collected (from Table IVC-14).

NUMBER (number collected): calculated from the monthly collection rates (RATE) described immediately above and monthly values of average daily plant flow for all units in millions of gallons per day times the number of days in the particular month.

TABLE A-1 (continued)
PERCENTO (percent of the white perch collected that were young-of-the-year): calculated with the aid of graph paper and a dissecting microscope from the plots in Fig. IVC-6 of relative frequency versus length intervals of white perch collected at the Albany Steam Electric Generating Station for each month May through November 1975. The "DIVISION" criteria specified by Texas Instruments were used as the cut-oti point between young-of-the-year and yearling white perch (see Table A-10 in this appendix).

RATE, NLMBER, and PERCENTO values were approximated as follows for each month during 1974 through 1977 for which estimates were not directly available from Refs. (1) and (2). These approximations were necessary in order to have a complete data set with which to estimate exploitation rates and the conditional rates of mortality due to impingement (see Section IV).

RATE and NUMBER: approximations for each month were calculated as the average of the two monthly estimates available from the period April 1974 through March 1976. These approximations were used for January-March 1974 and April 1976 - December 1977.

PERCENTO: for May through November approximations were calculated as just described for RATE and NUMBER. The approximation for November was also used for the months of December and January of all years. The April 1974 value (no estimate for April 1975 was available) was used as the approximation for April 1975, 1976, and 1977 and for the months of February and March of all years.

RATEO $=$ PERCENTO \cdot RATE $/ 100$ and RATE1 $=$ RATE - RATEO.
NLMBERO $=$ PERCENTO \cdot NUMBER $/ 100$ and NLMBER1 $=$ NUMBER - N:MBERO.

RATE, NUMBER, and PERCENTO are defined abov:. RATEO and RATE1 are the collection rates for young-of-the-year and for yearling and older white perch, respectively. NUMEERD and NUMBER1 are number collected for young-of-the-year and for yearling and older white perch, respectively.

[^2]TABLE A－1（continued）

fras	＊0ッ\％	9ATz	909388	P89こきッフ0	3 x T20	BAPE1	30 ABER	s048Es 1
1978	1	0.900	3.5	10.70	0.0000	0.230	0.37	3.1
1974	2	0． 528	15.5	19.50	0． 1036	0.425	3.04	12.3
1979	3	6． 868	260.5	19.60	1．3362	3.322	51.25	209.4
197＊	4	77． 138	3723.5	19.60	\％5． 1190	52.019	768．91	3154.1
1978	5	95． 101	5518.0	35.50	33.7509	51．393	1958．37	3559.1
1974	6	133．334	1717．3	0.30	0.0000	133.938	0.00	7717.0
1974	7	211.092	12518.0	0.60	0.3000	211.172	3.35	12519．0
1974	8	105.932	\＄235． 3	5.38	6． 2288	99.703	370.09	5923.9
1978	3	178．051	－ 9868.0	2． 410	a． 3141	173．706	240.73	9627.2
1974	10	305.331	17325.2	1．79	S． 3663	299.914	310.12	17014.3
1978	11	61.223	3516.0	9.43	5.7595	55.259	331.56	318s．6
1974	12	0.254	21.3	19.70	0.7283	0.236	2.25	18.3
1975	1	0.000	7.0	10.70	0.0000	0.130	0． 75	6．3
＋975	2	0.793	31.3	19.60	0． 5553	0.637	5.08	24.3
1975	3	0.264	10.0	19.60	0.0318	2.212	1.96	8.0
1975	5	1.057	45.3	19．63	0.2071	0.350	3.32	36.2
1975	5	285． 568	11717.0	5.58	18.7909	255.177	170．79	10946．0
1975	5	118.039	5593．3	0.30	0.0000	119.084	0.00	5583.0
1975	？	212．921	8336.0	－． 30	0.0200	212． 321	0.35	9336．0
1975	9	29.351	1357.0	6． 12	1.8269	28.024	39.78	1377.2
1975	9	299833	14714．0	12.40	37.1793	252.554	1825．53	12889.5
1975	10	133．405	5936.9	7.52	10.0321	123．374	453.91	5582．1
1975	11	69．243	2906．0	11.90	8． 2363	50.376	345.91	2560.2
1975	1.	0.254	15．3	10.70	0.0283	0.236	1.71	14.3
1976	1	0.000	0.0	10.70	0． 0000	0.370	0.35	0.0
1976	2	0.350	9：3	19.60	0.0090	0.000	0.00	0.5
1975	3	13.208	511.0	19.50	2.5989	10.320	100.15	190.3
1975	9	39.097	1794.5	19.50	7.6630	31.434	388.36	1595.1
1975	5	190.202	8617.5	21.00	39.9325	130.259	1909.53	5807．8
1975	6	126.009	$3) 25.5$	0.30	0.0000	126.009	0.00	3026.5
1975	9	211．869	10827.0	0.00	0.3000	211.354	3.30	10427.3
1976	8	67.392	3339.5	6.10	4． 2735	53.818	232.33	3647.7
1975	9	238． 810	12291.0	7.12	17.7197	221.375	911.37	17379.3
1976	10	219.261	11533.5	4.66	10.2175	209.344	544：31	11136.2
1975	11	64．986	3211.0	10.73	6.9535	33．）32	383.58	2857.8
1976	12	0.254	18.5	10.70	0.0283	0.236	＋．98	16.5
1977	1	0.000	3.5	10.70	0.2000	0.329	3.37	3.9
1977	2	0． 528	15.5	19.60	0.1036	0.425	3.04	12．5
1977	3	6． 368	260．5	19.60	1．3262	5．322	51.35	209．${ }^{\text {a }}$
1977	5	19．097	1374.3	19.60	7.6630	31．439	398.36	1595．1
1977	5	190． 202	3617.5	21.00	39． 3125	130.253	1309．53	6307．9
1977	5	126.309	3）25．5	0.30	0.3000	126.009	0.20	3025.5
1977	7	211.364 67.392	10427.0 3993.5	0.00 6.30	9.3000 4.3735	211.364 53.818	232．30	10427.3 3647.7
－977	9	238． 310	12291.0	7.42	＋17．7197	221．390	232．37	3647.9 11399.8
1977	10	219.251	11532.5	4.66	10.2176	209.344	544.31	11136.2
1977	11	6a． 986	3211.0	10.70	6.9535	33．232	3a3． 58	2967．3
1977	12	0.254	19：5	10.70	0.0283	0.236	1.98	16.3

REFERENCES FOR TABLE A-1

1. Lawler, Matusky \& Skelly Engineers. Albany Steam Electric Generating Station Impingement Survey (April 1974 - March 1975). LMS Project No. 191-027, prepared for Niagara Mohawk Power Corporation, June 1975.
2. Lawler, Matusky \& Skelly Engineers. Albany Steam Electric Generating Station, 316 (a) Demonstration Submission, NPDES Permit NY 0005959. Prepared for Niagara Mohawk Power Corporation, 1976.

TABLE A-2
WHITE PERCH IMPINGEMENT DATA
FOR THE ASTORIA GENERATING STATION (Ref. 1)

RATE \quad (collection rate): 1 calculated from monthly data on	
	observed number of fish and crustaceans of all species
collected per million gallons of intake flow at Units $1-5$	
	(from Table 12) and monthly data on the percent of the total
number of fish and crustaceans collected that were white	
perch (calculated from data in Table 4).	

Data with which to calculate RATE and NUMBER values were available only for the period January 1972 - December 1972. No data were available from which to estimate PERCENTO, the percent of the white perch collected at Astoria that were young-of-the-year. The white perch impingement data for Astoria have been used only in Section II. 3 on seasonal variations in collection rates among the different power plants.

[^3]TABLE A- 'continued)

REFERENCE FOR TABLE A-2

1. Quirk, Lawler and Matusky Engineers. A Study of Impinged Organisms at the Astoria Generating Station. QL\&M Project No. 115-16, prepared for Consolidated Edison Company of New York, Inc., September 1973.

TABLE A-3
WHITE PERCH IMP:NGEMENT DATA FOR THE BOWLINE POINT GENERATING STATION

January 1973 - Decenber 1976: Ref. (1)
Values for RATE (collection rate) ${ }^{1}$ and NUMBER (number collected) were taken directly from data sheets in Ref. (1).

January 1977 - December 1977: Ref. (2)
Values for RATE (collection rate) ${ }^{1}$ and NUMBER (number collected) were taken directly from data sheets in Ref. (2).

PERCENTC (percent of the ite perca collected that were young-of-the year):

January 1975 - December 1976: Calculated from monthly data on length-frequency in 1 -centimeter langth intervals of white perch in impingement collections (from Tables 10.2-13 and 10.2-14 in Ref. (3)). The "OIVISION" criteria specified by Texas Instruments were used as the cut-off length between young-of-the-year and yeariing white perch (see Table $A-10$ in this appendix).

January 1973 - Decenber 1974 and January 1977 - December 1977: in the absence of monthly values during these two periods, estimates were calculated as the average of the 1975 and 1976 PERCENTO values for each month.

$$
\text { RATEO }=\text { PERCENTO } \cdot \text { RATE } / 100 \text { and RATE1 }=\text { RATE }- \text { RATEO. }
$$

NLMBERO $=$ PERCENTO \cdot NUMBER $/ 100$ and NLMBER1 $=$ NUMBER - NLMBERO.

RATE, NUMBER, and PERCENTO are defined abovs. RATEO and RATE1 are the collection rates for young-of-the-year and for yearling and older white perch, respectively. NUMBERO and NUMBER1 are number collected for young-of-the-year and for yearling aid older white perch, respectively.

[^4]TABLE A－3（continued）

T8A8	4087\％	3ス7E	474383	P88こをsto	8xさz0	34781	40438a3	y0n 3881
1973	1	296.13	17021	32.6	24.51	51.527	14059	2961.7
1973	2	353．79	15199	78． 3	278．94	75.045	12753	3431.0
1973	3	288.74	4476	84.3	284.35	33.339	3795	680.4
1973	4	462.56	23373	34.8	392． 25	70． 309	20270	3633.3
1973	5	235．90	14739	59.0	162.77	13． 139	10175	4569． 1
1973	6	19.55	339	0.0	0.00	19．549	0	809．0
1973	7	13.78	692	4． 3	6.15	1.533	31）	382.0
1973	8	45.44	2723	18． 2	35． 53	9.905	2130	593.3
1973	9	4．76	285	81.6	3.38	3.375	233	－ 52.8
1973	10	5.32	325	92.6	4． 65	0.371	302	24.1
1973	11	9． 51	500	96.0	9.13	2．333	980	20.0
1973	12	373.31	13263	98.3	366． 67	6．34 1	17753	307.0
1978	1	1092.37	58925	92.6	902． 71	133． 153	18259	10166.0
1974	2	1219：94	97003	78.3	961.31	258．627	37042	9965.7
1978	3	963.98	51689	34.3	321.59	147．233	． 3832	7856.7
1974	4	322.48	55707	34.8	782.26	140.217	48257	3649．9
1978	5	91.30	2901	69.0	63.07	23． 335	2502	899.3
1874	6	19.79	1423	0.0	0.00	13.992	0	1423.0
1978	7	5.28	533	44.3	2.37	2.715	239	294.2
1974	8	3.33	372	18．2	2.69	0.749	29\％	81.1
1978	9	4． 49	529	81.6	3.56	2． 325	432	97.3
1974	10	29.32	3597	92.6	27． 15	2． 170	3423	273.6
1978	11	497.17	43360	96.0	477.28	13．337	． 1625	1730．a
1974	12	885.08	73795	98.3	830.71	14． 366	38563	1531.6
1975	1	$1898.5{ }^{\circ}$	176382	69.3	1317.62	530.753	122009	53972.9
1975	2	97.21	1351	68.3	66． 11	31． 109	5001	2353.3
1975	3	303.00	24651	71.8	217.56	95.827	17699	6951.6
1975	4	1350.70	113529	72.2	975． 21	375．495	81953	31555.5
1975	5	173.82	9488	38.1	66.23	107.597	3615	5873． 1
1975	6	15.06	1223	0.0	－1．00	15.058	9	1228.0
1975	7	19． 28	1809	39.5	17.26	2． 225	1619	189.9
1975	9	4.23	345	66.7	2． 32	1．407	297	148.5
1975	9	1.85	190	75.0	1.39	0． 352	143	47． 5
1975	10	2.39	133	35.2	2.03	0． 352	113	19.7
1975	11	20.34	1351	76． 5	19.63	0.7119	1014	36.79
1975	12	622．38	54906	99.1	616.78	5.5015	54412	190． 15
1976	1	61.55	2936	35.7	58.90	2.5467	2810	126． 25
1976	2	94.34	3335	39.7	85.07	9.768 ？	3413	391.92
1976	3	261.00	13906	97.7	255.30	5.3932	13586	319．3a
1976	a	687.90	57131	37．5	570.70	17． 1975	55703	1428.28
1975	5	22.98	1996	100.0	22.98	9.2595	1996	3.00
1976	6	9.25	912	0.3	0.00	9.2459	0	312.00
1975	7	2.91	308	0.0	0.30	2． 7057	3	108．00
1975	3	113.36	13978	99.7	102.13	11．7273	9753	1120.43
1976	9	15.32	1512	38.2	13.51	1．3033	1339	178． 22
1976	10	1.06	49	120.3	1.06	0.0000	49	0.00
1975	11	510.50	32966	95．a	582.31	23.3929	3145）	1515.48
1976	12	1711.03	143371	97.5	1668． 25	42.7757	145637	3734.29
1977	1	295． 29	25081	32.6	243.91	51.3853	20717	4364.09
1977	2	306.57	23551	78.8	24.53	64.9927	18952	5098.81
1977	3	197.91	12597	3a． 8	125．23	22．3929	10757	1929．94
1977	a	31.73	1069	34.3	69.31	12． 4236	5998	1074．34
1977	5	91.35	3520	69.0	63.03	29．3135	5879	2641． 20
1977	6	24.37	1952	0.0	0.00	24．5678	0	1952.00
1977	7	5.26	338	44.3	2.36	2.3019	151	186.58
1977	9	56.36	7922	78.2	51.39	14．4664	5117	1705.20
1977	7	1.90	164	31.5	1.55	）． 3530	138	30． 18
1977	10	59.17	5122	92.5	54． 80	a． 3789	5669	453.03
1977	11	298．47	29756	96.0	282．59	11．7739	23765	990． 29
1977	12	357.43	31356	38.3	353.32	6． 1193	30528	527.95

REFERENCES FOR TABLE A-3

1. Letter dated March 3, 1978, from William J. Cahill, Jr. of Consolidated Edison Company of New York, Inc. (Con Ed) to Robert P. Geckler of the U. S. Nuclear Regulatory Commission (US NRC), inc luding a response to Questic: X.1, which is the identification number for a question in Enc losure 2 of a letter dated July 26, 1977, from George W. Knighton (US NRC) to William Canili, Jr. (Con Ed).
2. Letter dated May 5, 1978, from Edward G. Kelleher of Consolidated Edisun Company of New York, Inc. (Con Ed) to Henry Gluckstern of the U. S. Environmental Protection Agency (US EPA), including a response to Question A-4, which is the identification number for a question in the enc losure of a letter dated March 23, 1978, from Henry Gluckstern (US EPA) to Kenneth L. Marcellus (Con Ed).
3. Ecological Analysts, Inc. Bowline Point Generating Station. Near-field Eff zts of Once-through Cooling System Operation on Hudson River Biota. Prepared for Orange and Rockland Utilities, Inc., July 1977 (Exhio it JT-7).

WHITE PERCH IMPINGEMENT DATA FOR THE DANSKAMMER POINT GENERATING STATION

RATE (collection rate): 1
January 1972 - December 1976: average of the daily collection rates for each month were copied directly from data sheets in Ref. (1).

January 1977 - December 1977: average of the daily collection rates for each month were copied dirctly from data sheets in Ref. (2).

NUMBER (number collected):
January 1972 - December 1977: calculated from the monthly collection rates (RATE) described immediately above and monthly values of actual total plant intake flow in millions of gallons for the particular month, from data sheets in Ref. (3) for 1972 1976 and from data sheets provided by the U. S. Environmental Protection Agency, Region II, New York, New York for 1977.

PERCENTO (percent of the wite perch collected that were young-of-theyear):

No estimates of PERCENTO were available for Danskammer. Consequently, all monthly values for PERCENTO were approximated based on data from Roseton, which is adjacent to Danskarmer. (See Table A-9 in this appendix. Monthly PERCEN values tabulated for Danskammer are exactly the same as those tabu!ac a for Roseton for July 1973 - December 1977; monthly PERCENTO values for January 1972 - June 1973 were calculated as the average of the 1575 and 1976 Roseton values for each month.)

RATE $=$ PERCENTO \cdot RATE $/ 100$ and RATEL $=$ RATE - RATE.
NUMBER $=$ PERCENTS \cdot NUMBER $/ 100$ and NUMBER 1 $=$ NUMBER - NUMBERS.

```
PAl collection rates were converted from number of white perch collected per million gallons to number of white perch collected per million cubic meters by multiplying by 264.17 gallons per cubic meter. Collection rates were assumed to equal impingement mortality rates.
```

RATE, NLMBER, and PERCENTO are defined above. RATEO and RATE 1 are the collection rates for young-of-the-year and for yearling and older white perch, respectively. NLMBERO and NLMEER1 are number collected for young-of-the-year and for yearling and older white perch, respectively.

TABLE A-4 (continued)

REFERENCES FOR RABI : A-4

1. Letter dated March 3, 1978, from William J. Cahill, Jr. of Consolidated Edison Company of New york, Inc. (Con Ed) to Robert P. Geckler of the U. S. Nut lear Regulatory Commission (US NRC), including a response to Question IX.1, which is the identification number for a question in Enclosure 2 of a letter dated July 26, 1977, from George W. Knighton (US NRC) to William Cani!1, Jr. (Con Ed).
2. Letter dated April 14, 1978, from Kenneth L. Marcellus of Consolidated Edison Company of New York, Inc. (Con Ed) to Henry Gluckstern of the U. S. Environmental Protection Agency (US EPA), including a response to Question A-5, which is the identification number for a question in the enclosure of a letter dated March 23, 1978, from Henry Gluckscern (US EPA) to Kenneth L. Marcellus (Con Ed).
3. Letter dated October 31, 1977, from Kennet.i .. Marcellus of Consolidated Edison Company of New York, Inc. to Henry Gluckstern of the U. S. Environmental Protection Agency, including in Attachment 2 a response to Question 7 (9/27/77) of Attachment C which accompanied the October 12, 1977 EPA "Motion to Spec if Area of Requestors' Testimony To Be Cross-Examined During Initial Phase of Hearing."

TABLES A-5, A-6, A-7
WHITE PERCH IMPINGEMENT DATA FOR
INDIAN POINT UNITS 1, 2, AND 3

RATE (collection rate): 1
June 1972 - December 1975: Copied directly from data sheets provided in Ref. (1).

January 1976 - December 1977: Copied directly from data sheets provided in Ref. (2).

NUMBER (number collected) :
May 1972 - December 1976: Copied directly from appendix tables in Refs. (3) - (5). However, if a NLMBER value in these Texas Instruments (TI) appendix tables was lower than the corresponding NUMBER value in Refs. (1) and (2), then the updated NUMBER value in Refs. (1) and (2) was used. For example, such substitutions were made for Indian Point Unit 2 (Table A-6 in this appendix) for all months of 1973. In general, the NUMBER values presented in the TI appendix tables are the same as or higher than the NUMBER values presented in Refs. (1) and (2), for the reason discussed by Cen Edison in their response to Question VI. 2 in Ref. 1. Thus, the substituted, higher values from Refs. (1) and (2) can still be low, because they were selected by TI to include on if data that represented known flow volumes and associated impingement collections.

January 1977 - December 1977: Copied directly from data sheets proveded in Refs. (7) and (3).

PERCENTO (percent of the white perch collected that were young-of-theyear):

June 1975 - December 1976: Calculated from data on magnetic tapes provided by Consolidated Edison. The two tapes used were Texas Instrum ts 1975 Impingement Data (Record Type 0) and Texas Instrum ; 1976 Impingement Data (Record Type 0). Monthly estimates ur PERCENTO were calculated for each unit for which there were white perch impingement data as follows:

PERCENTO $=\frac{\text { Number of impinged white perch in Length Class } 1}{\text { Total number of impinged white perch }} \cdot 100$,
where the bounds on Length Class 1 are 0 mm to DIVISION, where OIVISION is the seasonally-vasying, total body length in millimeters which is used as the cutoff length between young-of-the-year and yearling white perch (see Table A-10 of this append $i x$).

RATE $=$ PERCENTS \cdot RATE $/ 100$ and RATE 1 $=$ RATE - RATE.
NUMBER $=$ PERCENTS \cdot NUMBER $/ 100$ and NLMBER1 $=$ NUMBER - NLMBERO.

RATE, NUT $3 E R$, and PERCENTO are defined above. RATEO and RATE I are the collection rates for young-of-the-year and for yearling and older white perch, respectively. NUMBERO and NUMBER1 are number collected for young-of-the-year and for yearling and older white perch, respectively.

TABLE A-5 (continued)

7EAE	H0374	3 ATE	304.E\%	peecespo	8ATEO	3A781	yosbeso	yungert
1972	5		1921	94.4			1819.	
1972	6	65.80	11320	0.0	0.00	55.3)0	1819	11320.9
1972	7	52.70	2427	45. 1	23.63	28.768	959	1167.5
1972	8	232.93	10560	34. 3	197.53	35.375	3955	1605. 1
1972	9	380.37	12337	94. 5	321. 16	58.910	10213	1873.4
1972	10	2236.00	84607	9 c .0	2101.34	135.153	79530	5076.4
1972	11	1705.50	35933	96.7	1649.32	56.285	34748	1185.3
1972	12	843. 20	17920	96.4	313.31	33.331	16793	627.1
1973	1	62.30	1733	74.9	58.56	3. 744	7457	476.0
1973	2	.	64540	97.3	58.6	3.744	52797	1742.5
1973	3	*	205433	91.1	.	.	188030	13369.5
1973	4	985. 50	163253	97.3	-		159662	3591.6
1973	5	885.50	23533	94.4	336.01	49.594	19478	1155.5
1973	5	186.27	4527	0.0	0.00	195.257	19	4526.7
1973	7	11.53	2543	45.1	. 0	19.25	1196	1394.5
1973	9	11. 53	15367	84.8	9.73	1.753	13031	2335.7
1973	9	.	1963	84. 5	*	.	1234	226.3
$\begin{aligned} & 1973 \\ & 1973 \end{aligned}$	10 11	*	287 .293	94.0	.	-	269	17.2
1973	12	*	12.87	96.7 96.3	*	-	$\begin{array}{r}4132 \\ \hline\end{array}$	141.0
1974	1	3798.37	32197	94.0	3570. 18	227.38a	11748 30180	438.7 1925.3
1978	2	1661.33	49557	97.7	1616.38	21.356	30180 43363	1926.4 1203.3
1974	3	1680.33	43213	91.1	1530.78	149.550	39367	3846.0
1974	4	1826.13	56220	97.3	1785.96	4). 175	54983	1236.8
1979	5	598.57	13593	94.4	561.37	33. 301	14802	378.1
1978	6	161.20	7627	0.0	0. 00	101.230	- 3	7646.7
1978	7	35.73	1573	45.1	16. 12	19.618	710	863.8
1978	3	22.60	1190	34.8	19. 16	3.235	967	173.3
197a	10	60.20 831.87	2973	94. 5	50.37	9.331	2512	960.9
197a	10 11	631.87 895.00	30227 15733	94.0	593.35	31. 912	28913	1813.6
1974	12	6291.97	143867	96.7	866.43 6016.77	29.568 221.573	15214	519.2
1975	1	4255.13	52007	94.9	3999.33	255.308	138687 58286	5179.2 3720.8
1975	2	6964.67	102847	97.3	6775.52	139.026	79681 7961	2766.1
1975	3	2460.07	33213	91.1	2241.12	218.946	35723	2490.0
1975	5	4757.20	74073	97.9	1652.54	103.553	12444	1629.6
1975	5	371.73 58.27	3197	94. 4	445.32	26. 117	4890	1629.6 290.1
1975	6	58.27	927	0.0	0.00	53.257	3	326.7
1975 1975	9	63.37 63.73	427	56.9	42.15	21.715	268	138.3
1975	,	63.13	287	90.9	57.39	5.775	261	26. 1

TABLE A-6 (continued)

TEA8	40874	347\%	104388	P8Rこを3\%	34780	8at 21	40 \#8E80	
1972	6	42. 3	960	0.0	0.0	22. 40	3	960
1972	9	39.3	1397	34.5	9.0	5.31	1138	209
1972	10	135. 1	1687	94.0	127.0	9. 11	1585	101
1973	1	3853.1	7933	94.0	3636.0	232.09	7457	475
1973	2	4578. 3	63693	97.3	2954.7	123. 52	61978	1720
1973	3	4230.1	2) 1547	9 i. 1	3899.2	380.93	183609	17938
1973	4	3696.1	1176	97.8	4592.8	133. 31	115071	2589
1973	5	1136.1	2256	94.4	1072.4	63.62	19409	1151
1973	6	97.9	4^{*},	0.0	0.0	77. 93)	4527
1973	7	38. 6	2543	45. 1	17.4	21. 19	1146	1397
1973	9	187.0	13180	35. 8	158.5	23. 42	12873	2307
1973	9	31.3	1453	34. 5	26.4	4. 35	1223	225
1973	10	5. 3	287	94.0	5.0	9. 32	257	17
1973	11	273.3	3239	96.7	264.3	9.02	4061	139
1973	12	1264. 1	12187	96.4	1218.5	15.51	11793	439
1974	1	12814.7	137313	94.0	12045.3	768.38	138945	8869
1978	2	12823.3	153027	97.3	12a77.1	345.23	138895	4132
1974	3	9218.7	259980	91.1	8398. 2	320. 26	236842	23139
1974	4	8378.7	471647	97.3	8193.3	183. 33	461279	10376
1978	5	4351.4	75843	94.4	4107.7	243.68	373673	22167
1978	6	020.5	49550	0.0	0.0	425.53	3	49560
1974	7	32.3	4753	45. 1	19.1	23.24	2194	2610
1974	a	69.7	9160	83.8	59.1	13.59	6923	1290
1974	9	205.0	23359	84.5	179.1	31.93	19739	3621
1974	10	305.3	75780	93.0	757.0	49. 32	71233	4547
1974	11	1897.3	156967	96.7	1825.1	62.28	161457	5510
1978	12	6787.3	370153	96.4	6533.0	295, 39	356828	13326
1975	1	4415.0	212357	9 at 0	4151.0	264.96	199643	12743
1975	2	3496.1	165833	97.3	3401.7	93. 30	161356	4478
1975	3	3171.2	37973	91.1	2889.0	282.29	81966	8008
1975	\square	5900.1	451100	97.8	5770.3	129.3)	441178	9924
1975	5	397.9	33373	94.4	761.8	45.19	78704	4669
1975	6	90.5	12207	0.0	0.0	30.27	2	12207
1975	7	92.7	11713	56.4	52.3	40.40	6606	5107
1975	8	1030.1	89720	98.5	1013.7	15. 25	88375	1346
1975	9	640.0	73593	95.0	608.0	32.00	70009	3685
1975	10	657.5	87720	95.8	529.9	37.51	45716	2008
1975	11	1729.9	173393	95.2	1545.9	82.99	170732	8608
1975	12	2837.1	294000	97.9	2787.3	59.79	287825	6179
1975	1	9597.3	510283	99.0	9021.5	575.84	573626	36617
1975	2	3731.8	180087	95.6	3567.5	153. 29	172163	7974
1976	3	1563.0	123327	91.1	1423.9	139. 11	112077	10949
1976	a	205.0	287	97.7	239.1	5. 5 a	293	7
1976	6	35.9	493	9.9	0.0	36. 33	0	493
1975	9	290.3	9227	90.7	253.3	27. 30	7052	765
1975	10	2332.7	256390	95.7	2225.4	107. 30	244587	11793
1975	11	1432.5	20900	98.3	1808.1	2a. 35	20545	355
1976	12	22551.3	530529	94. 1	21220. 3	1330.53	649779	40741
1977	1	36380.7	2164790	94.0	34197.3	2132.33	2334856	12988 a
1977	2	58953.3	1251797	97.3	66605.1	1898.24	1227718	39068
1977	3	5005.5	a58480	94.1	4560.9	145.49	417675	40805
1977	4	10549.3	237347	97.8	10317.2	232.09	232125	5222
1977	5	339.73	25253	93.1	320. 71	19.025	24594	1959.9
1977	6	299.37	37567	0.0	0. 30	297.357	2059	37566.7
1977	7	104.37	947	45.1	47. 11	57. 352	427	519.7
1977	9	163.07	43460	84.8	392.58	73. 335	36854	6605.9
1977	10	196.87 2064.00	22723	34.5	124. 10	22.764	19367	3552.6
1977	10	2064.00	322980	93.9	1940.16	123.323	393131	193a8. 8
1977	11	9770.57	937973	36.7	9448.23	322.432	908954	31019.1
1977	12	.	543540	96.2	-	.	523973	19567. 2

TABLE A－7（continued）

73x	SONP4	AAPE	30ヶ＊\％	PERニマロT0	31780	QAPE1	YOABEBO	10\％8E8 1
1974	3	38． 93	6	51.1	35.16	3.455	5	0.5
1978	a	999.34	3371	97．3	977.35	21.997	4275	96.2
1978	5	158．90	677	94.3	133． 20	25.538	639	37．9
1974	6	34.73	1739	0.0	0.00	84． 729	0	1430.0
1974	7	5.71	20	a5． 1	2.53	3． 131	7	11.0
1974	9	0.53	3	34．9	0.53	0.096	2	0.4
1974	9	2． 20	13	84.5	1． 36	）． 311	11	2． 0
1974	10	19.13	33	94． 3	17．98	1． 148	85	5.4
1975	2	216． 36	3974	99.0	442．39	1． 359	3935	39． 7
1976	4	333.39	8554	97.3	326． 05	7．338	4454	100.2
1976	5	：9－57	7373	9a．a	99.56	5． 312	6965	412.9
1976	6	20.51	2256	0.0	0.00	26． 514	0	2254．3
1976	7	16.31	1509	13.0	2． 19	12． 529	195	1312．5
1976	8	45． 13	1173	64.9	29．48	15．945	2706	$1463: 7$
1976	9	39． 27	3199	67.9	26.53	12．6a5	2169	1029．9
1976	10	221．57	21355	30.7	201． 41	20． 163	19876	1989.8
1975	11	1332.03	118993	96.6	1296．75	45．239	114464	1028． 3
1976	12	919．24	55425	97.2	796．30	22．937	54846	1579．9
1977	1	－953．43	92889	94．0	1836． 22	117．236	37315	$55 / 3.3$
1977	2	5655.71	127396	97.3	5503.98	152．731	123956	3 39．7
1977	3	352．47	29314	91.1	321． 10	31．310	26705	－ 299.0
1977	4	559.00	55317	97.3	546.70	12． 298	55569	1250.0
1977	5	346． 41	62640	94.4	327． 02	17．379	59132	3507． 8
1977	6	38． 36	11370	0.3	0.00	84.357	0	11370.0
1977	7	32.23	a 756	25.1	14.54	17．533	2145	2610.9
1977	b	94.06	13133	3a． 8	79.76	14． 297	11179	2003.8
1977	9	40.06	5931	8a． 5	33.35	5.229	5012	919.4
1977	10	119.64	4212	9 a .2	112． 46	7． 179	3769	240.6
1977	12	518.26	18124	96.1	495.74	13．513	17472	652.5

REFERENCES FOR TABLES A-5, A-6, AND A-7

1. Letter dated March 3, 1978, from William J. Cahill, Jr. of Consolidated Edison Company of New York, Inc. (Con Ed) to Robert P. Geckler of the U.S. Nut lear Regulatory Commission (US NRC), including a response to Question VI.3, which is the identification number for a question in Enclosure 2 of a letter dated July 26 , 1977, from George W. Knighton (US NRC) to William Canill, Jr. (Con Ed).
2. Letter dated May 3, 1978, from Kenneth L. Marcellus of Consolidated Edison Company of New York, Inc. (Con Ed) to Henry Gluckstern, of the U. S. Environmental Protection Agency (US EPA), including a response to Question $A-3$, which is the identification number for a question in the enclosure of a letter dated March 23, 1978, from Henry Gluckstern (US EPA) to Kenneth L. Marcellus (Con Ed).
3. Texas Instruments, Inc. Indian Point Impingement Study Report for the Period 15 June 1972 through 31 December 1973. Prepared for Consolidated Edison Company of New York, Inc., December 1974. (Tables A-1.5 through A-1.8).
4. Texas Instruments, Inc. Indian Point Impingement Study Report for the Period 1 January 1974 through 31 December 1974. Prepared for Consolidated Edison Company of New York, Inc., November 1975. (Tables 3-2 through 3-4).
5. Texas Instruments, Inc. Indian Point Impingement Study Report for the Period 1 January 1975 through 31 December 1975. Prepared for Consolidated Edison Company of New York, Inc., November 1976. (Tables A-A and A-5).
6. Texas instruments, Inc. Hudson River Ecological Study in the Area of Indian Point. 1976 Annual Report. Prepared for Consolidated Edison Company of New York, Inc., December 1977. (Tables A-2 and A-3).
7. Monthly letters from Eugene R. McGrath of Consolidated Edison Company of New York, Inc. to Peter A. A. Berle of the New York State Department of Environmental Conservation, which are sent as specified in Section 401 Certification and which include data sheets giving daily fish counts by species for each unit at Indian Point.
8. Monthly letters from William J. Cahill, Jr. of Consolidated Edison Company of New York, Inc. to James P. O'Reilly of the U. S. Nuclear Regulatory Commission, which are sent as specified in Appendix B of Unit Nos. 1, 2 and 3 Technical Specifications and which include data sheets giving daily fish counts by species for each unit at Indian Point.
9. Exhibit UT-105. Tat le 1. Summary of Collection Efficiency Tests and Related 95\% Confidence Intervals at Indian Point Units 2 and 3, 1974-1977. U. S. Environmental Protection Agency, Region II, Adjudicatory Hearing, Docket No. C/II-WP-77-01, introduced into evidence on June 6, 1978.

TABLE A-8

WHITE PERCH IMPINGEMENT DATA FOR THE

 LOVETT GENERATING STATIONJanuary 1973 - December 1976: Ref. (1)
Values for RATE (collection rate) ${ }^{1}$ and NUMBER (iumber collected) were taken directly from data sheets in Ref. (1).

January 1977 - December 1977: Ref. (2)
Values for RATE (collection rate) ${ }^{1}$ and NUMBER (number collected) were taken directly from data sheets in Ref. (2).

PERCENTO (percent of the white perch collected that were young-of-theyear):

Mo estimates of PERCENTO were available for Lovett. Consequently, all monthly values for PERCENTO were approximated based on data from Indian Point, which is located only $1 \frac{1}{2}$ miles upriver and across the river from Lovett.

June 1975 - December 1976
Used the average of the observed monthly values for the units at Indian Point for the corresponding month and year (see Tables A-5 to $A-7$ in this append ${ }^{2} x$).

January 1973 - May 1975 and January 1977 - December 1977
Used the monitaly approximations calculated for Indian Point (same for all units at Indian Point) (see Tables A-5 to A-7 in this append $i x$).

$$
\text { RATEO }=\text { PERCENTO } \cdot \text { RATE } / 100 \text { and RATE1 }=\text { RATE }- \text { RATEO. }
$$

NLMBERO $=$ PERCENTO \cdot NLMBER $/ 100$ and NLMBER1 $=$ NUMBER - NLMBERO.

RATE, NUMBER, and PERCENTO are defined above. RATEO and RATE1 are the collection rates for young-of-the-year and for yearling and older white perch, respectively. NUMBERO and NUMEER1 are numter collected for young-of-the-year and for yearling and alder white perch, respectively.

[^5]TABLE A-8 (continued)

FEx 8	30379	3478	309382	P\%Rこをsto	8x 780	3x\%	* 4 8E89	cusser 1
1973	1	70.80	3536	94.0	66.35	1. 213	3323.3	212. 16
1973	2	31.63	3535	97.3	79. 42	2.204	3488.2	96.30
1973	3	222. 43	11055	91.1	202.53	17. 775	10371.1	983.90
1973	8	195.54	3569	97.3	192.22	4. 324	8380.5	188.52
1973	5	65.09	2703	9a, 3	52.38	3.579	2551.5	15:37
1973	6	49.40	2227	3.0	0.00	49.400	0.0	2297.00
1973	7	16. 38	817	a5. 1	7.19	3.932	388.5	248. 53
1973	9	95.36	3917	34. 8	72.81	13.050	3745.5	671.38
1973	9	13.79	400	35. 5	11.51	2. 27	507.3	93.00
1973	10	2.54	33	$9 \mathrm{a}$. \%	2. 48	3.159	87.4	5.58
1973	11	132. 12	5037	96.7	137.33	1.533	5837.3	199. 22
1973	12	389.55	17292	96.4	375. 62	14.027	16669.5	522.51
1978	1	488. 33	20058	94.0	230.33	27. 530	18954.5	1203.98
197a	2	399.16	12595	97. 3	388. 38	10.777	12352.2	342.17
1974	a	522.26	18835	97.3	510.77	11. 370	18320.5	314.37
1974	5	163.26	5273	94.4	154. 11	9.142	5893.4	349.51
1978	6	40.68	1519	0.0	0.30	3). 532	3.)	1519.00
1974	7	3. 78	194	45. 1	4.05	4. 931	83.0	101.02
1974	8	12.15	992	84.8	10.30	1.387	\& 17.2	74.78
1974	9	10.57	395	34.5	3. 93	1.638	339.6	61.38
1978	10	108.8a	2921	95.0	102.31	5.533	2745.7	175. 26
1974	11	302.78	11753	36.7	292.75	9.990	11365.2	387. 85
1974	12	311.72	120;	96.4	300.50	11.222	11536.3	4.3a. 56
1975	1	850.36	3515%	93.0	799.34	51.022	33998.9	2170.14
1975	2	121.52	4325	97.3	118.24	3.231	4208. 2	116.78
1975	3	163.30	1217	31. ${ }^{\text {a }}$	153.78	15.024	3870.3	378.16
1975	4	546.30	1186/	97.8	534.28	12. 319	11503.3	251.01
1975	5	25.15	756	94.3	24.69	1.465	742.0	44.02
1975	5	25.68	958	0.0	0.00	25.531	0.3	958.00
1975	7	3.70	373	51.2	4. 53	2.870	167.1	105.92
1975	8	92. 30	1642	94.7	40.53	2. 253	1555.0	87.03
1975	9	24. 30	682	95.3	23.09	1.215	609.9	32.10
1975	10	30.38	977	95.8	29.10	1.276	936.3	31.03
1975	11	540.19	15522	95.2	514.55	25.994	15824.1	797.86
1975	12	143.97	4.458	97.9	140.95	3.223	4364. 4	93.62
1976	t	362.71	11976	93.9	340.94	21.752	11163.4	712.56
1975	2	42.27	1265	97.3	11.13	1.131	1230.3	34. 16
1976	3	94. 34	2572	91.1	35.67	8. 370	2952.7	239.59
1976	4	186.50	3765	97.8	182. 20	3. 123	\$ 560.2	109, 33
1976	5	3.19	+930	94.4	+.73	0.759	35.0	5.04
1975	5	26.68	610	0.0	0.00	25.531	0.3	510.30
1976	7	10.30	227	13.0	1.34	3.963	29.7	192.27
1978	3	17. 79	554	64.9	11.19	3. 212	359.5	19 a .45
1976	9	22. 19	514	79.2	17.57	4.516	407.1	105.91
1976	10	12. 32	167	93.2	11.37	2.324	155.5	11.36
1975	11	570.28	19203	97. ${ }^{\text {a }}$	555.25	14. 322	9934.8	265.20
1975	12	530.94	13156	95.6	511.31	23.539	12586.7	579. 30
1977	1	1225.33	39637	94.3	+152.28	73.550	37307.7	2381.39
1977	2	751.36	13633	97.3	731.56	22.323	13254.7	368.09
1977	3	105. 16	1719	91.1	96.99	9.475	1566.0	152.99
1977	$\stackrel{3}{4}$	162.62	2783	97.3	159. 75	3.578	2721.3	51.23
1977	5	21.24	370	74. 9	20.05	1.189	349.3	20.72
1977	6	209.355	3732	3.9	0.000	209.355	0.00	4732.00
1977	7	19. 179	575	45.1	3.550	13.529	259.78	316.22
1977	3	37.433	1319	34.3	34.743	5.590	1193.38	214.02
1977	9	4. 755	121	84. 5	4. 313	2.737	102.24	18.75
1977	10	227.397	5519	34.3	214. 176	13.571	5187.86	331.14
1977	11	490. 205	9767	96.7	2 74. 222	13.133	744a. 59	322. 31
1977	12	42.716	563	96. 4	41.179	1.538	643.--	24.05

REFERENCES FOR TABLE A-8

1. Letter Jated March 3, 1978, from William J. Cahill, Jr. of Consolidated Edison Company of New York, Inc. (Con Ed) to Robert P. Geckler of the U. S. Nuclear Regulatory Cormission (US NRC), including a response to Question X.1, which is the identification number for a question in Enclosure 2 of a ietter dated July 26, 1977 from George W. Knighton (US NRC) to William Cahill, Jr. (Con Ed).
2. Letter dated May 5, 1978 from Edward G. Kelleher of Consolidated Edison Company of New York, Inc. (Con Ed) in Henry Gluckstern of the U. S. Environmental Protection Agency (US EDA), including a response to Question $A-4$, which is the identification number for a question in the enclosure of a letter dated March 23, 1978 from Henry Gluckstern (US EPA) to Kenneth L. Marcellus (Con Ed).

WHITE PERCH IMPINCJMENT DATA FOR THE ROSETON GENERATING STATION

RATE (collection rate): ${ }^{1}$
July 1973 - December 1976: average of the dafly collection rates for each month were cupled directly from data sheets in Ref. (1).

January 1977 - Decemher 1977: average of the daily collection rates for each month were copled directly from data sheets in Ref. (2).

NUMBER (number collected):
July 1973 - December 1976: copied directly from Table 10.2-14 of Ref. (3).

January 1977 - December 1977: calculated from the monthly collection rates (RATE) described immediately above and monthly values of actual total plant intake flow in millions of gallons for the particular month (fren data sheets provided by the U. S. Environmental Protection Agency, Region II, New York, New York).

PERCENTO (percent of the white perch collected that were young-of-theyear):

January 1975 - December 1976: Calculated from monthly data on length-frequency in 1 -centimeter length intervals of white perch in impingement collections (from Tables 10.2-15 and 10.2-16 in Ref. (3)). The "DIVISION" criteria specified by Texas Instruments were used as the cut-off length between young-of-the-year and yearling white perch (see Table $A-10$ in th is appendix).

July 1973 - December 1974 and January 1977 - December 1977: calculated as the average of the 1975 and 1376 PERCENTO values for each month.

RATEO $=$ PERCENTO \cdot RATE 100 and RATE1 $=$ RATE - RATEO.
NLMBERO $=$ PERCENTO \cdot NLMBER $/ 100$ and NLMBER $1=$ NLMBER - NLMBERO.

```
LAll collection rates were converted from number of white perch collected per million gallons to number of white perch collected per million cubic meters by multiplying by 264.17 gallons per cubic meter. Collection rates were assunied to equal impingement mortality rates.
```


TABLE A-9 (continued)

RATE, NUMBER, and PERCENTO are defined above. RATEO and RATE 1 are the collection rates for young-of-the-year and for yearling and older white perch, respectively. NUMBERO and YUMBER1 are number collected for young-of-the-year and for yearling and older white perch, respectively.
"ABLE A-9 (continued)

7 8x	50\%\%	APE	30888	PSRCEsT0	BAFEO	4 481	sumbero	
1973	7	9.272	91	4. 8	0.445	9. 827	3,9	17. 1
1973	8	98. 530	980	6a.2	63.192	35.238	529.2	350.8
1973	9	\$28. 008	1398	36.5	370.227	57.731	946.3	147.7
1973	10	65a. 270	4522	88.6	579.583	74. 537	9006.5	515.5
1973	11	197.837	1996	35.3	168.755	29. 782	1702.6	293.4
1973	12	27.527	483	73.8	20.315	1.212	357. 2	126.8
1978	1	1.162	5	56.0	0.767	0.395	3.3	1.7
1978	2	0.000	0	53.0	0.000	0.393	0.2	0.0
1978	3	0.423	5	59.3	0.249	0.173	2.9	2.1
1974	${ }^{4}$	148. 701	4897	4a.0	65.329	33.273	215a. 7	2742.3
1974	5	413.637	5272	58.0	239. 310	173.728	3537.8	2634.2
1978	6	106. 566	1105	0.0	0.200	135.558	0.3	1105.0
1974	7	0.587	12	4. 3	0.033	0.654	0.5	9.5
1978	8	54.023	3263	64.2	34.583	17.349	229a. 3	1168.2
1974	9	23.517	1131	36.5	20.429	3.188	978.3	152.7
1974	10	43. 907	10?9	88.6	38.108	1.733	919.7	118.3
1974	11	188.329	12313	95.3	161.071	27.758	10503.0	1810.0
1978	12	109.030	7351	73.8	76.719	27. 255	5525.3	1926.0
1975	1	18.228	1337	59.9	10.918	7. 309	782.9	524.1
1975	2	18. 318	1059	35.6	5.097	3.221	377.3	682.0
1975	3	18.925	1387	38. 5	5.745	9.179	403.1	643.9
1975	a	340.092	23288	7.0	23.305	315.296	1530.2	21657.8
1975	5	164.314	14579	17.2	28.262	136.052	2511.0	12088.0
1975	6	19.707	1613	0.0	0.000	17.797	25.3	16130
1975	7	82. 928	3955	2.3	1.202	41.726	- 108.2	3756.8
1975	8	128. 213	9571	39.7	50.980	71.233	3799.7	5771.3
1975	9	118.348	7924	17.7	91.957	26.392	6063.7	1790.3
1975	10	442.960	33541	79.7	353.039	93.321	26732.2	68.38 .3
1975	11	615.127	20551	16.2	469.184	146.543	31128.5	9722.5
1975	12	21.107	84a	66.0	13.731	7. 175	557.0	287.0
$\begin{aligned} & 1976 \\ & 1976 \end{aligned}$	1 2	19.575 34.712	1323 2287	72.0	18.094	5.981	725.8 1510.3	282.2
1976	2	34.712 17.779	2287 1129	70.4 79.6	28.337 18.152	13.275 3.627	1610.3 898.7	677.0
1976	a	263.513	1129 31993	79.6 81.0	19.152 375.325	3.627	898.7 25509.3	230.3
1976	5	24?.719	22891	38.7	239.564	3.155	20570.1	5983.7 270.9
1975	6	75.370	6455	0.0	0.300	75.370	2.3	6e55.0
1976	7	3.308	325	6.9	0.235	3.173	22.5	303.5
1975	9	22. 692	2107	98.8	20.151	2. 512	1864.3	235.2
1976	9	28.727	2345	95.3	27.567	1. 360	2235.7	110.3
1975	10	+30.359	7927	97.5	136.748	3.511	9678.3	248.2
1976	11	563.316	23006	94, 4	531.710	31.546	217177	1288.3
1976	12	63.376 23.036	3258 1696	31.5	52.059	11.917	2655.3	502.7
1977 1977	1	23.036	1696 351	66.9	15.209 7.097	7.332 6.258	1119.3	576.6
1977	3	67.178	5183	53.0 59.0	7.057 39.535	6.258 27.543	451.0	190.0
1977	4	303.954	15486	49.0	133.740	170.214	7253.8	9232.2
1977	5	735. 106	51144	58.0	426.351	309.713	29837.5	2160 3. 5
1977	6	20.552	1767	3.3	0.200	20.552	0.0	1964.0
1977	7	10.620	1004	4. 9	0.510	13. 112	49. 2	955.8
1977	5	298.346	25903	64. 2	159.439	88.908	16568.7	9239.3
1977	9	78. 207	7288	86.5	57.533	1). 353	6259.5	978.5
1977	10	142.493	13175	38.6	126.249	16. 244	9015.3	1150.1
1977	11	119.88 a	7830	85.3	101.720	17.564	5582.2	1151.6
1977	12	32.942	2296	73.3	27.311	3. 631	1694.4	501.6

REFERENCES FOR TABLE A-9

1. Letter dated March 3, 1978, from William J. Cahili, Jr. of Consolidated Edison Company of New York, Inc., (Con Ed) to Robert P. Geckler of the U. S. Nuclear Regulatory Commission (US NRC), including a response to Question IX.1, which is the identification number for a question in Enc losure 2 of a letter dated July 26, 1977, from Geory: W. Knighton (US NRC) to William Canill, Jr. (Con Ed).
2. Letter dated April 14, 1978, from Kennetn L. Marcellus of Consolidated Edison Company of New York, Inc. (Con Ed) to Henry Gluckstern of the U. S. Environmental Protection Agency (US EPA), inc luding a response to Question A-5, which is the identification number for a question in the enclosure of a letter dated March 23, :978, from Henry Gluckstern (US EPA) to Kenneth L. Marcellus (Con Ed).
3.- Ecological Analysts, Inc. Roseton Generating Station. Near-field Efforts of Once-through Cooling System Operation on Hudson River Biota. Prepared for Central Hudson Gas \& Electric Corporation, July 1977.

TABLE A-10. "DIVISION" CRITERIA SPECIFIED BY TEXAS INSTRUMENTS AS THE CUTOFF LENGTH BETWEEN YOUNG-OF-THE-YEAR AND YEAR ING WHITE PERCH

Obtained from computer data tapes entitled Texas Instruments 1975 Impingement Data (Record Type E) and Texas Instruments 1976 Impingement Data (Record Type E),
${ }^{2}$ The format for DATE is year-month-day.
${ }^{3}$ The seasonally-varying, total body length which is used to discriminate between young-of-the-year and yearling white perch.
${ }^{4}$ The two year classes separated by DIVISIon.

[^0]: ${ }^{\text {a }}$ The regression model used was $Y=a+b x$, where y is collection rate for yon white perch and X is year. N is the number of data points (i.e., number of years). r^{2} is the coefficient of determination (i.e., the fraction of variability in Y values accounted for by X). b is the slope of the straight line. p is the probability of obtaining a slope this steep (either positive or negative) if the true slope is 0.0 . values ≤ 0.10 are indicated by an asteriak (*).

[^1]: ${ }^{\text {a }}$ Based on analysis of RAIEI values in Iables A-1 through A-9 in Appendix A. The top number of each pair of numbers in the table is the mean collection rate (number of fish collected per willion cubic meters). The bottom number of each pair (in parentheses) is the ranking for that collection rate (nubiber of fish collected per million cubic meters). The bottom number of each pair (in parentheses) is the ranking for that liean coliection rate, with one (i) denotimg the highest rate. The mean monthly callectlon rates are averages over all years for which estimates for that month were avaliable; these mean monthly rates were ranked from 1 to 12 for each power plant, but only entries for the four highest
 fionths are given. The mean annual collection rate for each power plant is the average of the 12 mean monthly rates; hese mean annual rates were ranked from 1 to 8 over power plants.
 biver aile (RM) on the Hudson River, with RM 0 at the Battery.
 ${ }^{\text {C Based on }}$ RAIEI values in Iable A-1 in the Appendix only for the period April 1974-March 1976.

[^2]: 1All collection rates were converted from number of white perch collected per million gallons to number of white perch collected per million cubic meters by multiplying by 264.17 gallons per cubic meter. Collection rates were assumed to equal impingement mortality rates.

[^3]: $1_{\text {All }}$ collection rates were converted from number of white perch collected per million gallons to number of white perch collected per million cubic meters by multiplying by 264.17 gallons per cubic meter. Collection rates were assumed to equal impingement mortality rates.

[^4]: $1_{\text {All }}$ collection rates were converted from number of white perch collected per million gallons to number of white perch collected per million cubic meters by multiplying by 264.17 gallons per cubic meter. Collection rates were assumed to equal impingement mortality rates.

[^5]: $1_{\text {All }}$ collection rates were converted from number of white perch collected per million gallons to number of white perch collected per million cubic meters by multiplying by 264.17 gallons per cubic neter. Collection rates were assumed to equal impingement mortality rates.

