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FOREWORD

This Topical Repor: [WCAP-9500) serves as a reference core design report
for those Westinghouse Pressurized Water Reactors which employ a new
fuel assembly design herein referred to as the Optimized Fuel Assembly
(OFA) design.

The Optimized Fuel Assembly design presented here consists of a 17x17
array of fuel rods having a reduced diameter relative to the presently
Ticensed 17417 design. It also employs the use of Zircaloy spacer grids
in all positions except the top and bottom grids, which will continue .0

- 4

be of Inconel. These design changes result in an impr- ater-to-
uranium ratio and reduced parasitic neutron absorption, which aid in
neutron economy and allow for more efficient use of the fuel. The 17x'7
OFA design wil! be generally available for use in all three and four

loop plants, including those now under construction.

This report presents the information contained in Chapters 4, 15, and 16
of a typical Safety Analysis Report, and is in conformance with the
requirements >f Regulatory Guide 1.70 "Standard Format and Content of
Safety Analysis Reports for Nuclear Power Plants," November 1978, Revi-
sion 3. Places in the text where references are give) to sections other
than 4, 15, or 16 (e.g., Chapter 5) are for use when plant specifics
have been included in the form of other chapters of a particular SAR.
The design improvements of the OFA will also be usad in reload regions.
Therefore, a description of the methodology to be applied to analyze
cores containing combinations of fuel assemblies of standard and OFA
design has been included in a section designated as "Chapter 18". The
methoaology described applies not only to 3 and 4 loop 17x17 plants but
generically for plants having other standard arrays . .g. 14x14, 15x15
and 16x16). In these cases the two significani design features of OFA
may be applied together as with 17x17 or independently based upon the
economics involved.
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In the preparation of this report, two types of four loop Westinghouse
plants were studied and are documented toc enhance the applicability of
this document in future licensing efforts.

Plant A - s a typical four loop, 12 foot core with non Upper Head
Injection (UHI) Emergency Core Cooling System (ECCS) and
incorporating the Integrated Control and Protection System
(IPS). This plant ripresentation appears on white paper in
the text.

Plant B - is a typical four loop, 12 foot core incorporating a conven-
tional control and protection system with a UHI, ECCS.
Those white pages of the text affected by the Specific Plant
B features are to be superceded by a corresponding blue rage.

while other plant types are not documented herein (e.g. three loop) the
mechanical design is applicable to all 17x17 12 foot core Westinghouse
PWR's. Appropriate nuclear, thermal-hydraulic, and safety analysis
information will be provided as part of plant specific application®

Ouplicate text and fijures are providei where appropriate to facilitate
separation of Plant A and B material. Chapter 4 has interspersed white
and blue pages, while Chapters 15 & 16 have two complete chapters each:
one white, one blue.

The major differences in Plant A and B are the IPS vs conventional con-
trol and protection system, and UHI vs Non-UHI (for ECCS analysis). It
s instructive to note that the IPS does not impact on the ECCS analy-
sis, and vice versa. For example it is possible to use this document
for a UHI plant with the IPS. The new document would consist of white
pages, except for Section 15.0.5 which would require blue pages. (Some
minor modification to Chapter 16, "Technical Specifications" 'y be
required, but it would be largely a question of plant specii.c informa-
tion).



Two topicals are to be used to aid in the regulatory review process for
applications containing optimized fuel:

1. A previously submivced topical, WCAP-9401 (Proprietary), (also
represented by a Non-Proprieta v version, WCAP-9402) "Verification
Testing and Analyses of the 17x17 Optimized Fuel Assembly", docu-
ments the results of the tests and analyses performed by
Westinghouse to verify design adequacy of the new 17x17 OFA.
(Note: The structural analysis of fuel grids in WCAP-9401 demon-
strates that LOCA and seismic lnads do not require combination to
insure adequate design margin)

2. This topical report (WCAP-9500) which describes the design and eval-
uation of steady state reactor performance, reactor transients, and
accidents for new and relosd cores.

The Topical Reports therefore provide licensing basis for evaluating
the Optimized Fuel Assembly o its own merits as well as its applicaticn
to new and reload cores. Once approved they will serve as the basis for
applications and amendments incorporating the OFA design features.
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4.0 REACTOR

1.1 SUMMARY DESCRIPTION

This chapter describes (1) ihe mechanical components of the reactor and
reactor core including the fuel rods and fuel assemblies, (2) the nuclear
design, and (3) the thermal-hydraulic design.

The reactor core is comprised of an array of fuel assemblies which are
identical in mechanical design, but different in fuel enrichment. The
initial design employs three enrichments in a thre2-region core, whereas
more enrichments may be employed for a particular refueling scheme. Fuel
cycle times of 6 months to 18 months are possib'2 and may be employed
with the core described herein.

The core is cooled and moderated by light wa'e: at a pressure of 2250
psia in the Reactor Coolant System. The mocerator coolant contains boron
as a neutron poison. The concentration of boron 1n the coolant i ied
as required to control relatively slow reactivity changes including the
effects of fuel burnup. Additional boron, in the form of burnable poison
rods, is employed to establish the desired initial reactivity as dis-
cussed in Subsection 4.2.2.3.

Two hundred and sixty-four fuel rods are mechanically joined in a square
array to form a fuel assembly. The fuel rods are supported at intervals
along their length by grid assemblies which maintain the laiteral spacing
between the rods throughout the design life of the assembly. The top and
bottom grids are made of Inconel and the intermediate grids are made of
Zircaioy. The grid assemblies consist of an "egg-crate" arrangement of
interlocked straps. The straps contain spring fingers and dimples for
fuel rod support as well as coolant mixing vanes. The fuel rods consist
of slightly enriched uranium dioxide ceramic cylindrical pellets con-
tained in slightly cold worked Zircaloy-4 tubing which is plugged and
seal welded at the ends to encapsulate the fuel. A1l fuel rods are
pressurized with helium during fabrication to reduce stresses and
strains, and to increase fatigue life.

4.1-1



The center position in the assembly is reserved for use hy the incore
instrumentation, while the remaining 24 positions in the a-ray are
equipped with guide thimbles joined to th2 grids and the to., and bottom
nozzles. Depending upon the position of the assembly in the core, the
guide thimbles are used as core lo:ations for rod cluster control assem-
blies (RCCA's), neutron source assamblies, and burnable poison assem-
blies. Otherwise, the guide thimbles are fitted with plugging devices to
limit bypass flow.

The bottom nozzle is a box-like structure which serves as the bottem
structural element of the fuei assembly and directs the coolant flow
distribution to the assembly.

The top nozzle functions as the upper structural element ¢© the fuel
assembly in addition to providing a partial protective housing of the
RCCA or other components.

The RCCA's each consist of a group of individual absorber rods fastened
at the top end to a common hub or spider assembly, containing full length
absorber material to control the reactivity of the core under operating
conditions.

The nuclear design analyses and evaluations establish physical locations
for contrnl rods, burnable poison rods, and physical parameters such as
fuel enrichments and boron conceatration in the coolant. The nuclear
design evaluction established that the reactor core has inherent charac-
teristics which together with corrective actions of the reactor control
and protective systems provide adequate reactivity contrul even if the
highest reactivity worth RCCA is stuck in the fully withdrawn position.

The design also provides for inherent stability against diametral and
azimutnal power os.illations and for control of induced axial power
oscillation through the use of control rods.



The thermal-hydraulic design analyses and evaluations establish coolant
{low parameters which assure that adequate heat transfer is provided
between the fuel cladding and the reactor coolant. The thermal design
takes into account local variations in dimensions, power generation, flow
distribution, and mixing. The mixing vanes incorporated in the fuel
assembly spacer grid design induce additional flow mixing between the
various flow channels within a fuel assembly as well as between adjacent
assemblies. Instrumentation is provided in and out of the core to ni-
tor the nuclear, thermal-hydraulic, and mechanical performance of tn
reactor and to provide inputs to sutomatic contrel functions.

Table 4.1-1 presents a comparison of the principal nuclear, thermal-
hydraulic and mechanical design parameters between the Byron/B 1idwood
units and the Optimized Fuel Assembly. The effects of fuel densification
were evaluated with the methods described in Reference[l] The amalytical
techniques employed in the core design are tabul .’ed in Table 4.1-2. The
loading conditions considered in general for the core internals and com-
ponents are tabulated in Table 4.1-3. Specific or limiting loads con-
sidered for design purposes of the various components are listed as
follows: fuel assemblies in Subsection 4.2.1.1.2, neutron absorber rods,
burnable poison rods, neutron source rods and thimble plug assemblies in
Subsection 4.2.1.6.

4,1-3



v




The thermal-hydraulic design analyses and evaluations establish coolant
flow parameters which assure that adequate heat transfer is provided
oetween the fuel cladding and the reacto~ coolant. The thermal design
takes into account local variations in dimensions, power generation, flow
distribution, and mixing. The mixing vanes incorporated in the fuel
assembly spacer grid design induce additional flow mixing between the
various flow channels within fuel assembly as well as between adjacent
assemblies. Instrumentation is provided in and out of the core to moni-
tor the nuclear, thermal-hydraulic, and mechanical performance of the
reactor and to provide inputs to automatic control functions.

Table 4.1-1 presents a comparison of the principal nuclear,
thermal-hydraulic and mechnaical design parameters between the W. B.
McGuire units and Optimized Fuel Assembly. The effects of fuel
densification were evaluated with the methods described in Reference [1].
The analytical techniques employed in the core design are tabulated in
Table 4.1-2. The loading conditions considered in general Tor the core
internals and components are tabulated in Table 4.1-3. Specific or
limiting lToads considered for design purposes of the various components
are listed as follows: fuel assemblies in Subsection 4.2.1.1.2, neutron
absorber rods, burnable poison rods, neutron source rods and thimble plug
assemblies in Subsection 4.2.1.6.
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REACTOR DESIGN COMPARISON TABLE

W. B. McGUIRE OPTIMIZED FUEL
THERMAL AND HYDRAULIC DESIGN PARAMETERS UNITS 1 and 2 ASSEMBLY
1. Reactor Core Heat Output, (100%), MM 3411 3411
2. Reactor Core Heat Output, 106 Btu/hr 11641.7 11641.7
3. Heat Generated in Fuel, % 97.4 97.4
4. System Pressure, Nominal, psia(l) 2250 2280
5. System Pressure, Minimum Steady State, psia(l) 2220 2250
6. Minimum DNBR at Nominal Condi:ions
Typical Flow Channel 2.05 2.4
i Thimble (Cold Wall) Flow Channel 1.72 2.26
%- 7. Minimum DNBR for Design Transients
v Typical Flow Channel 21.3 >1.49
Thimble Flow Channel >1.3 >1.47
R. DNB Correlation "R" (W-3 with Modified wRB-1
Spacer Factor)
COOLANT FLOW
- 9. iotal Thermal Flow Rate, 10° 1b_/hr 144.7 143.3
10. Effective Flow Rate for Heat Transfer,
— 10% 1 shr 133.9 134.7
G 11. Effective Flow Area for Heat Transfer, ft2 51.1 54.1
12. Average Velocity Along Fuel Rods, ft/sec 16.6 15.8
13. Average Mass Velocity, 106 lbm/hr-ft2 2.62 2.49

(1) Values used for thermal hydraulic core analy,is







TABLE 8.1 (Cont'd)

® ® 6

- e “wy
W. B. McGUIRE OPTIMIZED FUEL
THERMAL AND MYDRAULIC DESIGN PARAMETERS UNITS 1 and 2 ASSEMBLY
26. Power Density, kW per Liter of Core(*) 104.5 104.5
27. Specific Power, kW per kg Uranium 38.4 41.8
FUEL CENTRAL TEMPERATURE
28. Peak at Peak Linear Power for Prevention
of Centerline Melt, °F 4700 4700
29. Pressure Drop(++)
Across Core, psi 25.9+2.6(***) 25.7+2.6
™ Across Vessel, Including Nozzle psi 46.314.6“") 45.7+4.6
v
- CORE MECHANICAL DESIGN PARAMETERS
30. Design RCC Canless RCC Canless
17 x 17 17 x 17
31. Number of Fuel Assemblies 193 193
32. UO2 Rods per Assembly 264 264
33. Rod Pitch, in. 0.496 0.496
34, Qverall Dimensions, in. 8.426 x B8.426 8.426 x 5.426
35. Fuel Weight (as UOZ)' 1b 222,739 204,236

36. Clad Weight, 1b 50,913 43,376

+ Based on cold dimensions and 95% of theoretical density fuel
++ Based on best estimate reactor flow rate as discussed in Section 5.1
+++ Pressure drops revised based on results from Reference 2.




8=L'p

ng

37.
38.

39.

al
42,

43.
44,

a5,
a6.
47.
a5,

THERMAL AND HYDRAULIC DESIGN PARAMETERS

Number of Grids per Assembly
Composition of Grids

Loading Technique

CORE _MECHANICAL DESIGN PARAMETERS

FUEL RODS

. Number
. Outside Diameter, in.

Diametral Gap, in.
Cladding Thickness, in,
Cladding Material

FUEL PELLETS

Material

Density (% of Theoretical)
Diameter, in.

Length, in.

TABLE 4.1-1 (Cont'd)

W. B. McGUIRE
UNITS 1 and 2

8 - Type R
Inconel 718

3 Region Noruniform

50,952
0.374
0.0065
0.0225
Zircaloy-4

002 Sintered
95
0.3225
0.530

L)

OPTIMIZED FUEL
ASSEMBLY

2-Type R, 6-Type 2
2 End Grids -
Inconel 718
6 Intermediate
Grids - Zircaloy 4
3 Region Nonuniform

50,952
0.360
0.0062
0.0225
Zircaloy-4

uo, Sintered
95
0.3088
0.507

& ¢
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49.

50.

51.

8.
53.

54.
85.

56.
57.

CORE MECHANICAL DESIGN PARAMETERS

ROD CLUSTER CONTROL ASSEMBLIES

Neutron Absorber
Cladding Material
Cladding Thickness, in.
Number of Clusters

Nuniber of Absorber Rods per Cluster

CORE STRUCTURE

Core Barrel, ID/0D, in.
Ther .,al Shield

STRUCTURE CHARACTERISTICS

L L s A T R SR

TABLE 4.1-1 (Cont'd)

W. B. McGUIRE
UNITS 1 and 2

Ag-In-Cd

Type 304
55-Cold Worked
0.(135
53
24

148.0/152.5
Neutron Pad Design

Core Diameter, in. (Equivalent) 132.7
Core Height, in. (Active Fuel, Cold Limensions) 144
REFLECTOR THICKNESS AND COMPOSITION

. Top - Water plus Steel, in. <10

OPTIMIZED FUEL
ASSEM: Y

B,C (with Ag-In-Cd
tips)
Type 304 SS5-Cold
Cold Worked
0.0385
53
24

148.0/152.5
Neutron Pac Design

132.7
144

<10
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59.
60.
6l.
62.

63.
64.
65.

CORE MECHANICAL DESIGN PARAMETERS

REFLECTOR THICKNESS AND COMPOSISTION

Bottom - Water plus Steel, in.

Side - Water plus Steel, in.

HZO/U Molecular Ratio, Cell (Cold)

HZO/U Molecular Ratio, Core Average,
Cold (first core)

FEED ENRICHMENT, W/0

Region 1
Region 2
Region 3

TABLE 4.1-1 (Cont'd)

W. B. McGUIRE
UNITS 1 and 2

210

w15
2.43
2.78

2.10
2.60
3.10

OPTIMIZED FUEL
ASSEMBLY

+10
s15
.13

- 3.16

2.10
2.60
3.10






ANALYSIS

3. Axial Power

Distributions
Control Rod
Worths, and
Axial Xenon
Distribution

. Fuel Rod Power

Effective
Resonance
Temperature

. Criticality of

Reactor and
Fuel Assemblies

Thermal-Hydraulic
Design

2L-L'y

. Steady-state

. Transient

Departure from
Nucleat Boiling
Analysis

TABLE 4.1-2

1-D, 2-Group
Diffusion Theory

2D and 3D 2-Group Model
Analysis Code

Integral Transport Theory
Monte Carlo Weighting

Function

1-D, Multi-group Transport
Theory
3-D Monte Carlo

Subchannel analysis of
local fluid conditions

in rod bundles, including
inertial and crossflow
resistance terms, solution
progresses from core-wide
to hot assembly to hot
channel

Subchannel analysis of
local fluid conditions

in rod bundles during
transients by including
accumulaticn terms in
conservation equations;
solution progresses from
core-wide to hot assembly

to hot channel

(Cont'd)

COMPUTER CODE

PANDA

PALADON

LASER

REPAD

AMPX SYSTEM
of Codes
KENO-1V

THINC-1V

THINC-I (THINC-III)

SECTION
REFERENCED

8333

8.3.3:1;

4.3.2.6

4.4.4.5

4.4.4.5.4
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4.2 FUEL SYSTEM DESIGN

The plant design conditions are divided into four categories in accor-
dance with their anticipated frequency of occurrence and risk to the
public: Condition I - Normal Operation; Condition Il - Incidents of
Moderate Frequency; Condition III - Infrequent Incidents: Condition IV -
Limiting Faults. The bases and description of plant operation and
events involving each Condition are given in the Accident Analysis
Chapter 15.0.

The reactor is designed so that its components meet the following per-
formance and safety criteria:

1. The mechanical design of the reactor core components and their
physical arrangement, together with corrective actions of the
reactor control, protection, and emergency cooling systems (when
applicable) assure that:

a. Fuel damage* is not expected during Condition I and Condition II
events. It is not possible, however, to preclude a very small
number of -od failures. These are within the capability of the
plant cleanup system and are consistent with plant design
bases. The number of rod failures is small enough such that the
dose limits given in 10 CFR 100 will not be exceeded.

b. The reactor can be brought to a safe state following a Condition
[IT event with only a small fraction of fuel rods damaged.* The

extent of fuel damage might preclude immediate resumption of
operation.

c. The reactor can be brought to a safe state and the core can be
kept subcritical with acceptable heat transfer geometry follow-
ing transients arising from Condition IV events.

Fuel damage as used here is defined as penetration of the fission
product barrier (i.e., the fuel rod clad).

4,2-1
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of 2805°C (Reference 2) unirradiated and decreasing by 327C per
10,000 MWD/MTU . While a limited amount of center melting can be
tolerated, the design conservatively precludes center meiting, A
calculated fuel centerline te _erature of 4700% has been selected
as an overpower limit to assure no fuel meliting. This provides
sufficient margin for uncertainties as described in Subsection
4.4.2.9.

Fuel Pellet Density - The nominal design density of the fuel is 95%
of theoretical.

2. Fuel Densification and Fission Product Swelling

The design bases and models used for fuel densification and swelling
are provided in References [3 and 4].

3. Chemical Properties

Refarence [2] provides the basis for justifying that no adverse
chemical interactions occur between the fuel and its adjacent
material,

4.2.1.3 Fuel Rod Performance

The detailed fuel rod design establishes such parameters as pellet size
and density, claddinqg-peliet diametral gap, gas plenum size, and helium
pre-pressurization level. The design also considers effects such as
fuel density changes, fission gas release, cladding creep, and other
physical properties whfch vary with burnup. The integr’ty of the fuel
rods is ensured by designing to prevent excessive fuel temperatures,
excessive internal rod gas pressures due to fission gas releases, and
excessive cladding stresses and strains. This is achieved by designing
the fuel rods to satisfy the conservative design bases in the following
subsections during Condition I and Condition Il events o the fuel
lifetime. For each design basis, the performance of che limiting fuel
rod must not exceed the limits specified.






2.

4.2.

Vib, ation and Fatigue

The grids provide sufvicient fuel rod support to limit fuel rod
vibration and maintain cladding fretting wear to within acceptable
Timits.

)5 Fuel Assembly

Structural Design

As previously discussed in Subsection 4.2.1, the structural integ-
rity of the fuel assemblies is assured by setting design limits on
stresses 2.d deformations due to various nonoperational, operational
and ac.ident loads. These limits are applied to the design and
eviijuation of the top and bottom nozzles, gquide thimbles, grids, and
the thimble joints.

The design bases for evaluating the structural integrity of the tuel
assemblies are:

a. Nonoperational - 6 g loadin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>