## INTERIM REPORT

| Accession | No. |
|-----------|-----|
|           |     |
|           |     |

Contract Program of Project Title: Thermal Hydraulic LMFBR Safety Experiments

Subject of this Document: June Monthly Highlight Letter

Ty, of Document: Monthly Highlight Letter

Author(s): Owen C. Jones, Jr.

Department of Nuclear Energy Brookhaven National Laboratory Upton. New York 11973

Date of Document: June 1979

Responsible NRC Individua; and NRC Office of Division: Dr. Melvin Silberberg

Dr. Melvin Silberberg Division of Reactor Safety Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555

This document was prepared primarily for preliminary or intenal use It has not received full review and approval. Since there may be substantive changes, this document should not be considered final.

Brockhaven National Laboratory
Upton, New York
Associated Universities, Inc.
for the
U.S. Department of Energy

Prepared for
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555
Under Interagency Agreement EY-76-C-02-0016
NRC Fin No. A-3024

INTERIM REPORT

790730009

NRC Research and Technical Assistance Report

461 335

Monthly Highlights

for

June 1979\*

Thermal Hydraulic LMFBR Safety Experiments
Budget Activity 60-19-20-01

Owen C. Jones, Jr., Head
Thermal Hydraulic Development Division
Department of Nuclear Energy
Brookhaven National Laboratory
Upton, New York 11973

Work carried out under the auspices of the United States Nuclear Regulatory Commission.

1.1 <u>Hvdrodynamic Dispersion</u> (T. Ginsberg, J. J. Barry, G. Zimmer; and J. Chen, Lehigh Uni.)

Work continued in asse bly and lebugging of the gamma traversing device.

1.2 Dispersion in Boiling Fools (T. Ginsberg and J. C. Chen, Lehigh Uni.)

The distribution of power density in electrically-heated boiling pools was investigated analytically. The distribution was found to be dependent upon the two-phase electrical resistivity of the fluid system. Preliminary resistivity measurements were made. Analysis of the results is underway.

1.3 Heat Transfer in Boiling Pools (G. A. Greene and C. E. Schwarz)

An informal report titled," Heat Removal Characteristics of VolumeHeated Boiling Pools With Inclined Boundaries," has been issued (BNL-NUREG26325). This report presents a critical review of the literature in heat
transfer from volume-boiling pools and presents correlations to predict
average heat transfer behavior, as well as void dynamics. Complete analysis
of the local heat transfer and void fraction data is continuing.

- 1.4 <u>Two-Phase Solidification</u> G. A. Greene; and M. S. Kazimi, M.I.T)

  Preparation of a report summarizing the results of the two-phase paraffin/N<sub>2</sub> freezing tests continued.
- 1.5 Technology Assessment Review (G. A. Greene, T. Ginsberg, and M. S. Kazimi, M.I.T.)

Work has continued on an assessment of the existing technology related to thermal-hydraulic events in the transition phase.

## Distribution The mal Hydraulic LMFBR Development Program

BNL RSP Division Heads BNL RSP Group Leaders BNL RSE Personnel

- P. Abramson, ANL
- D. Basdekas, NRC
- J. Boudreau, LASL
- I. Catton, University of California
- J. C. Chen, Lehigh University
- R. T. Curtis, NRC
- W. Gammill, NRC (2)
- D. T. Eggen, Northwestern University
- H. H. Hummel, ANL (2)
- W. Y. Kato, BNL
- M. S. Kazimi, MIT
- H. J. Kouts, BNL
- J. T. Larkins, NRC
- A. Reynolds, University of Virginia
- M. Silberberg, NRC
- M. Stevenson, LASL
- T. G. Theofanus, Purdue University
- J. C. Walker, Sandia Laboratory
- R. W. Wright, NRC

U.S. NRC Division of Technical Information and Control