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ABSTRACT

The computer code COMMIX-2 has been developed for analyzing and

designing thermal-hydraulic aspects of nuclear reactor components.

The code employs a two-fluid model for solving transient, three-

dimensional two-phase (or single phase) nonhomogeneous and nonequi-

librium flow conditions.

This report presents numerical results of four problems selected

to demonstrate the capabilities of COMMIX-2: (1) transient single-

phase flow with heat source; (2) two-phase flow in a vertical tube,

where the surface heat flux is sufficiently high that a single-phase

liquid emerges as a mixture of liquid and vapor; (3) separation of

vapor and liquid; and (4) a high-pressure jet impinging on a ver-

tical plate. The third and fourth problems we'.e selected to demon-

strate, respectively, that the code can handle computational diffi-

culties usually encountered in problems with sharp interfaces, and

the important role of interfacial mass and momentum exchange.
The numerical results obtained by COMMIX-2 code are very en-

couraging. It has not only demonstrated the computational capa-
bility but has also exhibited the ability of modeling complex

phenomena of the jet impingement problem with very simple inter-
facial drag and evaporation models.

466 040
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1. INTRODUCTION

During loss of coolant ur transient everpower accident situations,

boiling uf liquid coolant in a reactor core is expected due to high tempera-

tures of fuel pins. The fluid mixture of liquid and vapor, in sucn circum-

stances, is nonhomogeneous with both phases being in nonequilibrium thermo-

dynamic states. It is, therefore, desirable to develop a computer code for

obtaining numerical solutions of three-dimensional, transient, two phase

(gas-liquid) flow system with nonequilibrium and nonhomogeneous conditions.

Accordingly, we have developed a transient, three-dimensional, two-phase

computer code called COMMIX-2. It is an extension of our COMMIX-1 code,[2]

which is restricted to single-phase flow.

The pr esent version of COMMIX-2 uses the two-fluid model of Harlow and
Amsden [3] to describe the conservation equations of mass, momentum and

energy. Consequently, we can analyze a wide spectrum of flow conditions; i.e.,

from homogeneous and equilibrium to nonhomogeneous and nonequilibrium con-
ditions. The interactions between two fluids are accounted for by incorpora-

Ling the corresponding terms in all of the conservation equations.

In the finite difference formulation, we use a staggerod grid system

with central and partial donor cell finite differencing. The formulations

ar e partially implicit. The iterative scheme is similar to the point

relaxation technique without linearization developed by Rivard and Torrey

[4]. The conservation equations are solved as a boundary value problem

in space and an initial value problem in tire.

This report presents some of the results of four problems treated by

the current version of COMMIX-2:

(1) Transient single-phase flow with heat source;

(2) Two-phase flow with heat flux;

(3) Separation of vapor and liquid; and

(4) High-pressure jet impingenent on a vertical wall.

These results confirm the ability of COMMIX-2 to handle transient,

three-dimensional two-phase flow conditions.

Section 2 describes the basic field equations for two-phase flow

system. Section 3 provides the numerical solution procedure for inte-

grating those field equations. Sections 4, 5, 6, and 7 present the

results of the four problems.

dhh Ild d
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2. Two-Phase Governing Equations

2.1 Two-Phase Flow

When a mixture of two phases (liquid and vapor) is in the non-

equilibrium and nonhomogeneous state, transfer of mass momentum and energy
between the two phases occurs at the interface. This interaction is a

very compicx phenomenon and is not well understood. There are several

mathematical models in the open literature which postulate the inter-

action betwen the two phases; consequently, thcre are several formulations

which describe the governing conservation equr.tions.

The current version of COMMIX-2 uges the two-fluid model of

ilarlow and Amsden. In this model, separate conservation equations are

formulated for each phase, and the interaction between the phases is

accounted for by including evaporation (or condensation), interfacial

drag and interfacial heat transfer terms in the corresponding mass,

momentum, and energy equations, respectively. The code, therefore,

solves the two-continuity, six-momentum, and four-energy conservation
equations and the required thermodynamic constitutive relations.

2.2 Governing Equations

The field equations for the two-fluid model are:

(1) Mass Conservation:

3(9,0t) +

(0,0 2 s,) = r ( 2.1), --- + 7 U-

2st s

for the liquid phase, and

3(C o t}+7-s +'
(0 p U ) =r F (2.2)=-

3t ggg g 7

for the vapor phase.

(2) Momentum Conservation:

3(0 p $;)L , , . , ,,

+V- (O a U U ) = - O VP + V (0 o ) + S-

3 g g g g gg g

+ 0 p,,d + K($ - ) (2. 3)
t t g

for the liquid phase, and

e
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4

3(0 p U)
,, _, ,

(0 c )+S(9 pg g g g)UU = - 0 VP + V+V --

,t g gg mga

+ 0 a $ + K($ E) (2.4)gg g

for the vapor phase.

(3) Energy Conservation:

3(0 p H) 3pg g g ,,

(0,p HU)=0, -- + U V P +FH + R,(T - T,)+V -

e 3t t t g < g,t t R 1 1 t r

(K 0,VT.) + Q, (2.5)+:+V -

t i t < <

for the liquid phase, and

- [ FT3(0 p H)
VP +' K + m;E I ($ - b ),(e p H$)=0 $E + U9EE +V

'
--

g 2at gggg g at g ( .j

(K e VT ) (2.6)+Q + EH + R (T, - T ) + ; + V -

g gg g 5 g g gg g

for the vapor phase.

In the foregoing equations, e is the density, p is the pressure, H is

and g denote thethe enthalpy, and 0 is the void fraction, and the subscripts ,

ui+v}+w$,liquid and gaseous phases, respectively. The velocity vector =

where u, v and w represent the velocity components in x, y and z directions

respectively. P and F are the volumetric source terms in the continuity
g g +

equations due to condensation or evc, oration. In the momentum equation C is

the gravitational body force, K is the interfacial drag coefficient, S
m

is the momentum transfer due to mass transfer at the interface, and a is the

viscous stress tensor. Similarly, in the energy equation, R is the inter-

facial heat transfer coefficient, k is the thermal conductivity, O is the

viscous dissipation term, and Q is the heat source. We have assumed that
all energy due to mass transfer and momentum transfer at the interface
enters the gaseous phase only. For a two-phase flow, we have

Og+0 =1 ( 2. 8)

The derivation of the quasi-continuum governing equations is

described in Appendix A.

In the present formulation, we have two-mass, six-momentum, and
two-energy equations. These equations are solved for 0, (or 0 ), pressure p,

8c

six velocities, and two enthalples. The densities and temperatures are

obtained through the use of the equations of state. 4hh }})
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3. Numerical Procedure

3.1 Formulation

The partial dif ferential equations in Section 2 are solved using

the finite difference procedure. We use a staggered grid system to

differentiate between the field and flow variables. Thus we define field

variables (p, p , 0, H, T) at the center of a cell, and flow variables

(u, v, v) at the surface of a cell. The finite difference equations are

formulated using the partial donor cell differencing scheme for all con-

vectf.ve fluxes, and central differencing scheme for the rest of the

t e rr.s . Except for the convective and diffusion terms, the variables in

al' terms are defined at new time variables. Therefore, the formulations are

pa rtially implicit and consequently requires an iterative solucion procedure.

3.2 Iterncive Scheme

Tne finite difference equations of mass, momentum, and energy are
nel;cd as an initial value problem in time and boundary value problem in
space. The procedure is iterative anu the main steps necessary to determine
the flow conditions at t ime t+ lt from those at time t are as follows:

(1) The pressure distribution at time t + Lt is estimated.

(2) The momentum equations are solved to yield a first
approximation of the three velocity components of each of

the two phases.

(3) Partial energy equations are solved for approximating

enthalples of both phases.

(4) Densities and temperatures of both phases are calculated
using equation of state and estimated enthalples and
pressures.

(5) Liquid void fraction 0,, is estimated from the continuity

equatiou of liquid. Ga7 void fraction 0 is then
8

calculated from the relation 0 1 - 9,.=

8 r

(6) The gas continuity equation is now checked if it is

satisfied. If the equation is not satisfied, the pressure

is corrected, the amount of correction being dependent on
the mass residual. Steps (2) to (6) are then repeated.

This iterative procedure is continued until the mass

residual is less than the prespecified value.

466 052



9

(7) Energy equations are solved for enthalpies. Temperatures

and densities are then calculated using the equatior.s of

state.

(8) A new time step is chosen and steps (1) to (7) are repeated.

4. Single Phase Flow With Uniform Heat Source

4.1 Problem

At time t=0, a horizontal duct (open at both ends) cor.tains air

at constant pressure with zero velocity. Due to uniform heat source and
''nstant outlet pressure boundary conditions, air begins to move and an

osciliatory type pressure distribution is created inside the duct. The

schematic layout is shown in Fig. 4.1.

This problem was selected to enable a comparison of numerical
results with the following analytical solution. The transient pressure

distribution for a one-dimensional compressible flow problem with uniform

heat generation is given by

7 '*p(t,x) = p e (4,1).

where

y(t,x) = 5
- 0(*0 0(*) ~ 0(*0) O(* l n3x

c "* "'" ' *

0 ? ' I

n P'[Y (*0 1(*0)-Y (z0 0(*0}l
~

0 7

z= 2n g,a (3,3)c ,

,

c' = p/p, (4.4)

are ssel funcdons, and h subscript 0 is for timeY'
O 1* O' 1

t = 0.

4.2 Results

Figure 4.2 shows the transient pressure fluctuatis at the center

plane of the duct. We can see that our numerical results are in close
agreement with the analytical solution.

5. Two-Phase Flow in a Vertical Tube

5.1 Problem

The schematic layout is shown in Fig. 5.1, and the geometric
and input parameters are given belov:

466 05
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Geometry: 0.1 m x 0.1 m x 0.9 m long square duct

Inlet Temp: 99.75 C

Inlet Pressure: 1 atm

Inlet Velocity: 1 m/s

Surface Heat Flux = 5.375 x 10 W/m
Fluid = H O

2
To obtain the homogeneous-equilibrium flow conditions, very large

values of the interface friction and interface heat transfer parameters

were prescribed during computation. The evaporation rate was computed

from excess liquid enthalpy over liquid saturation enthalpy.

5.2 Results

The steady-state numerical results are shown in Figure 5.2 and
5.3. The comparison with the theoretical overall energy balance shows
that the numerical results are very close to the theoretical steady state

solution.

We observed in this problem that numerical results do not converge

for high heat flux case due to high rate of vapor generator. On the other

hand, for very low heat flux case, we face the problems of round of errors.

In order to obtain a good, stable and converging solution, the entire

problem was run in double precision on IBM 370.

6. Separation of Steam and Water

6.1 Problem

At time t = 0, we have an isothermal uniform mixture of steam

and water in a rectangular vertical closed duct. As time proceeds, due

to gravity, vapor starts moving up and liquid starts moving down. The

separation continues until all vapor occupies the upper section of
the duct and all liquid occupies the lower part of the duct.

6.2 Results

To determine the effect of interfacial drag on separation,

we have carried out numerical computation for interfacial drag

coefficient K = 10 , 10 , and 10 kg/m s. Figure 6.1 shows the liquid

particle distribution at various time steps. Figure 6.2 shows the

variation of void fraction with time in the top and the bottom cells

of the vertical duct. The rate of separation increases as inter-

facial drag coefficient decreases. Figure 6.3 shows the transient

variation of void fraction in the duct.

460 US/



E

I
4
g 4.20 g g i i i i

o' THEORETICAL (Energy Balance) '

-

2 --- - NUM E RI C A L '
-

'-.c
4. | 9 -

'-v

,/
_

>- -
'O. -

'_J -'< -

f 4.18 -

2
w
w

4.17 I I I I I I I I0
<
m O O.I O.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9w
> Z,m
<

Fig. 5.2. Enthalpy Distribution in a Vec tical liented Duct.

ON
Gs

CD
U7
CD



100.50 O.50; ; i i i i

100.25- O.40

0
2

-100.00 -
- O.30

w _

m F
D M >- Og
H <t

%< 99.75 - 0,20g
w Qc. _

2 O
>''

99.50 - - 0.10

99.25 I I I I I I I I O
O O.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9

Z,m

A

Fig. 5.3. Variation of Temperature and Void Fraction in a Vertical Heated Duct

a
U7
C

"
w



16

p ts r. .r ..pT.r0.?m...e:
w .-...

tu....v*...
-

.

.. . . . .,

s. .q. . ,.y . , -. . ~ ; . . .
*

.

n., o;t.t ;
. v. , .., . t :_-

.
. .

:..
,i :*.- ..

..- . . . . . :.

,c v,, .., .%,; . . v.;;;: ..
. .. . .

r * .
. . . . . . , . .. .*....eo

. .

.~ .j
. . .u' P.o :, . - .c. . ,

c. * t

.. ,\.
. .

. . , .. . . . . . . . . , . ., . ':
J.'||M:.2: o.c y.n.-n
* . -

. . ....g.

?.g',a.G '': : : =.'. . "..' : '

. .:: .. .. :. : y . r
- .

,.., . e : . . . .. .. -. . . . . s. . . .

. . .;.,p;., ..., g e. ., ,.: . .a. :. . ...
.s. .,. . . ~ ;,, . r . .. . . .. .e . . :: . . . . : .

., .v: :"|., . . 1 r. . -
.:.. .

.n . ..
-; . .

v ..
2 :.: :.. ,..;.,

'.s.. T n
.>. *

. s !. ? .: .1 / .'

;p. ,v. .. , .. .= - . .. . ...., ..s... s 7'::. y.

, . . . .

.s..,..............4.,
>..

p. c - . . '.
..

I,','M, @Y..v. . .
. . . . . , . . .
.

.. ... . . .

f.;...e:j:
,a... s ... . .

. .:x,:
.

<

: . m.,r;.,,0$!.$p,..c. .. W. ,i-.: )., 'a%'%. c. .
,.<r..> . .

.

.. - ....

. . %. "9,.:N. , r. . . ,. .|. . ... v
/ '. g, ; .. s . , . , . . . ,

|..?; i;Cw. .
,t.

g%. . , . ' ' e. a * 9.t.14 o. . . ,%

;:: g&l''p'.''qa .h. .:>,*::;{ ..':4:sj }p.' '
: 4

* ' ,a
. u. t. ,. t

,.

. . . . ~ * .k. *s.;~ . - . *:
' >

s.
.f.

* .
.a. f i . .'g ..r

-

.. .*,
s , f *., .['.,. v. .O.f '. , ,f . . . "m.

*.. / .

. j .t. g.. y. .. w > 3.

.

,.. * -
. .;r 5 ,. \ n;1,- at . r....i~.*:.-..2

.s.
- . .;t o:.* . 1p

.t.,. r g%., . a. .
ys < < !; . .. ., e. i_7,s't ,, . (..o , o.

- . 4- ,
, ..s, , ..

N' 5 ,7 '.|,: 14. 7.. ' .< s... . ,. ? d
.

de,...d. t.-4/G'f,% %' c <a)c'Q ;.;, r -t.b. fi,jd.-
k i. . :* 2e. .s. a

O.M00 0.I70I

.

.
* *

. .. .-

. . .
*

.

. . . .. .
. . .. . . . . .

, ,. .
. .... ..

. . . .s.. .., . .
...

.. |
. v. ... . .. .. .

. . . . *. g . . . , . . . .... ..
. . . . . ,. . .. ...... .. .. .

*o . .. .

*o . *: . .. , =. . .

. . ' . ~ . . .. .
. ..

, . . . . . . .

.....e}*,..t...
> ..ec.:.y;>* . . s *.

, . . , , .s. .o . . . . . -

.t'..:
..

rp. ::.|,.~.,:.. . , i. '
. . r : ~;.g...~..,.*- . . .. . . :. t < , ; J . q.- ..

, r..

, ,- : ten -

>, , . . . t :,, ,1 ~.,. 1- r. ., ,' . ,m. % ;o ..,~ y:e.s,,...:n. t, .,g,. .w,. .' , p?.y:. Y.,)~.. <v.?.:.=,*.

. .s

ny/ {.,,,y# (,.,. .H, y'' I .r|<t. y?,8 wy r.:w,.. ..n, . ;u
..i.... , . ;. . ., a i .. e. . .. , : <..

,<,- .,
- . , . . . . .

. . . ....- v. ' - . J c. . -<
./. f. .- ' . 6 .i .;f -f. /-

=. p'' .. s. .$<9.:.6. r . , - P ('. :
e - .

d N,h.;,ts.;c .:s. t t;,4p:|4. Q.,. :.
( *'h.. .

.px- ;:
. ..' .

**1.. ,e '

.. t ,..I. s...J .

.d
, > A... . 4 .-.

th'Ngbh','NN
.

!!'N''Nfb
0.6231 0.0001

466 060
Fig. 6.1. Distribution of liquid particles at

t = 0, 0.1701, 0.6231, and 0.8001 s.



1.0 - K:1000
__ {

TOP CE L L -*-
0.9 K:10000.

-

0.8
K:100000. INITIAL CONDITIONS

0.7 -

5 22 P:1.0132.5 x 10 N/m
bOS T : 100* C
M S: 0.40o:' 0.5

2)G: 9.8 m / so
5 0,4 -

'>

O.3 -

0.2 -

K:100000.
0.1 K= 10000.

BOTTOM CELL-+-
':1000. 1 I ,0 -

0 0.5 1.0 1.5 2.0

TIME , s

Fig. 6.2. Effect of Interfacial Drag Coefficient K on the Variations of Void
_g

0' Fraction in Top and Bottom Cells
0

t:
c
t.~]\
w



18

0.10 i i i i . . i i i

t = 0.0 s e e t = 0.05 s ec

/ /
J.09 - - e -

/ // -

0.08 -
,

-

,

/ t :0.2 s ec

/-

|/
-0.07 *-

,*

0'06 - t =1.0 s ec -

/
STEADY-STATE'

*

E
. 0.05 - ' -

,

i / 2
to * I

0.04 -- [ f
-

*

/ I
'

0.03 -- * -

/ /
* *

0.02 -- f -

. .

'

0.01 *

/ /
-

l i t i l 1 I I I

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

VAPOR VOID FRACTION

Fig. 6.3. Variation of sold Fraction with Time for

Drag Coefficient K = 10 .



19

There are no experimental measurements available to verif y the
computed values. However, the trends are typical of the behavior expected
in a real physical situation.

7. High Pressure Jet Impingement

7.1 Problem

At time t = 0, a high-pressure jet containing a mixture of steam
(67%) and water (33%) enters into a stagnant atmosphere and impinges on a

vertical wall. The schematic layout is shown in Fig. 7.1.

This two-phase problem was selected for the following reasons:
(1) The high-pressure liquid jet expands as it leaves

the nozzle. Due to expansion, some of the liquid

evaporates. The problem, therefor 2, involves a

source term in the continuity equation.

(2) Experimental measurements [5] for a steady-state case
are available for verification of our numerical results.

The axial velocity and pressure distributions at the mid-plane

between the exit of nozzle and the impinged wall are shown in Figs. 7.2

and 7.3. As time proceeds, the velocity and pressure increase, reach
-5

3.5 x 10 s, and thereafter decrease to steady-statemaximum values at t =

values. Figure 7.4 shows the velocity profile at various axial positions z

for t = 7.2 x 10- s, where z is the distance from the exit of the nozzle.

Figures 7.5 and 7.6 present comparisons between COMMIX-2 cal-

culations and steady-state pressure measurements on the impinged wall, and

corresponding sensitivity study of variations of interfacial drag co-

efficient (K) and evaporation rate (r ). There is good agrrmment between

experimental data on pressure distribution and the calculated results for
12 3 30.1 kg/m s.K = 2.0 x 10 kg/m s, and r =

g

.
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Appendix A

DERIVATION OF QUASI-CONTINUUM GOVERNING EQUATIONS

FOR TWO-PHASE FLOW

A.1 Introduction

In this appendix, a set of quasi-centinuum governing equations for con-

servation of mass, momentum, and energy is derived. These equations are

applicable to a class of systems, such as heat exchangers and fuel rod
bundles, wherein the flow domain contains numerous dispersed solid objects.

The presence of solid objects in a flow domain has two effects on fluid
flow. One is the geometrical effect; here, the presence of solid objects

influences the flow by reducing the available space. We take this effect into

account by including the surface and volume porosities in the governing equations.
The second effect is the physical effect; here, the solid objects influence the

momentum and heat transfer to fluid flow. This we take into account by con-

sidering solid objects within a control volume as distributed resistances to

momentum transfer and distributed sources (or s'nks) for heat transfer.
Although we have considered here only a two-phase (liquid-gas) system,

the formulations can be extended easily for application to a multiphase system.

A.2 Assumptions

In deriving the set of quasi-continuum governing equations we have made

the following assumption:

A real system containing numerous solid objects can be replaced by an
idealized system having uniformly distributed solid objects such that

both systems have the same volumetric porosities, surface permeabilities,

and interactions (momentum and heat transfer) between fluid and solid
surfaces.

A.3 Volume Porosity and Surf ace Permeability

Consider a stationary volume element AxAyAz through which fluid is
flowing (see Fig. A.1). The total volume

AV = AxAyaz = AVf + AV , (A.1)
s

where AV is the volume occupied by fluid, and AV is the volume occupied by
f

all solid objects. We define the volume porosity y as the ratio of they

volume occupied by fluid to tre total volume; i.e.,

Y = AV /(AVf + AV ) = AV /(AxAyAz). (A.2)
f s g
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The surface permeability is defined as the ratio of surface area through

which fluid is flowing,to the total cross-sectional area. Thus, for a surface

permeability in the x-direction (see Fig. A.2),

[7 dy dz (A.3)
*

g g
fluid surface.y =

x (Ayaz)

The surface permeabilities in the y- and z-directions are similarly

defined.

A.4 Continuity Equation

Consider the mass balance of phase 1 (1 - 1 or 2) over a stationary
volume element AxAyaz through which the fluid is flowing (see Fig. A.3) . Let

0 represent the fraction of fluid volume occupied by phase 1, and I' the

source of phase i per unit volume occupied by fluid. The mass balance can be

written as:

-

0 (p 0 y AxAyaz) = p.0.u y Ayaz - p 6 u y Ayaz
ot 1iv 1 i1x _ Ax ii ix p3xg

2 2

(Rate of change) (flux in x-direction)

+ p 0 v y Axaz - fp 6 v y,Axaz\ 31 i 3
\ y7 \ / y+ 7
(flux in y-direction)

\
.6 w y AxAy/ _ Az1 iiz

- p.0 w y oxAy (A.4)+
1 iiz Az

2 2

(flux in z-direction)

+ F Y AxAyaz (source)s

Here, u, v, and w are the velocity components in x, y, and 2-directions,

respectively, and p is the thermodynamic density. By dividing the entire

equation by AxAyAz, we get

A(p 0 u y ) Mp 0 v y ) + W G w y )3 1 t ix i iiy iLiz- (p 0 y ) + + = P.y
et iiv Ax ay Az 1 v . (A.5)

where we define

b h_g

x+ j x- j
(A.6)= -

mx. Axs

J j
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A.5 Momentum Equat ion

For a two-phase fluid flouing in a space which is partially occupied by

solid objects, we have to account for two additional resistances in the

momentum equation. These are due to (1) the interaction between two phases,

and (2) the interaction between fluid and solid surfaces.

The interaction between two phases is a very complex and not well under-

stood phenomenon. At present, there are several mathematical models in

existence in the literature postulating the interaction between two phases.

In the present development, we adopt the model which assumes that the

interfacial resistance can be expressed by the following relation:

Resistance per unit fluid volume = K (Difference in phase velocities). (A.7)

Hence, the total interfacial resistance in x-direction for phase i for control

volume as shown in Fig. A.3 is

Interfacial resistance = K Y AxAyaz(u, - u ). (A.8)xv 1.

Here, K is the inte rf acial f riction coef ficient, which depends on

Reynolds number, void fraction, phase velocity difference, and the shapes

and sizes of dispersed phase (bubbles / droplets). A high value of K represents
that both phases are moving at the same velocity.

In regard to the interaction between fluid and solid surfaces, we

assume that the solid objects in a flow domain produce distributed resis-

tances to flow, and that we can express these distributed resistances through '

source (sink) terms in the momentum equation. With these remarks about in-

teractions and with the definitions of porosities and AC /a x (Eq. A.6), we

can now derive the momentum equation.

Consider the momentum halance in x-direction for phase 1 and for a

control volume as shown in Fig. A.3. First, we describe each term:

Rate of Change of Momentum

(p1 1y u M y N G.O0
v1

Convective Flux
2

--

0 Y u v ) , A(p 0 Y u)w )A(p1 1y ut ) , A(px l1 yy 7 lz 3
-A xAyA z (A.10)

-

Ay AzAx
-

Pressure and Body Force (Fig. A.4; Fig. A.5)

^
AxAyAz - Oy +p 0yg (A.ll)y y vx

.
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The pressure forces are usually considered surface forces.

Ilowever, in this case, it is the pressure gradient force which acts on a

unit volume of the fluid. Hence we regard the pressure force as a

body force term in the present derivation.

Viscous Transfer (Fig. A.5)
_ _

xx xy+ @xy y1+ xz 21 (A.12)Y Y0 Y0
AxAyAz

_
Ay AzAx

,

Here T T and T are the viscous stresses acting on the surfaces of the, ,

control volume.

Distributed Resistance (Fig. A.4)

AxAyAz [R ] , (A.13)

where R is the distributed frictional resistance per unit volume in x-

direction.

Interfacial Force (Fig. A.4)

AxAyAz )y K (u,-u )I (A.14)I

vx 1I.

We now write the momentum balance for x-direction:

2
A(P 0 y u1 1 x y ) + _Mp 0 y u "1) + OIP 0 Y1 1 z"1"13 11yl- (p 0 Yu)+ =

Bt v Ax Ay Az

A (T"Y*) A(T Y A (T**Y )*Y Y) +y K (u -u)-0Y (P) 4 p0y Z

vx 2 1 1v Ax 11vx x Ax Ay Az
-

. (A.15)g -R + +

Equations are similar for other directions.

Energy Equation

As in the previous section for momentum balance, we must account

for two additional interactions; the interactions between the phases, and the
interactions between fluids and solid surfaces. Therefore, we adopt the

same mathematical models to describe these interactions. Thus we define:

Heat transfer between phases per unit fluid volume = (A.16)
R (Temperature dif ference between phases),

and

Heat transfer between fluid and solid surfaces per unit volume = Q . (A.17)
With these definitions, we can now write all terms of the energy equation
for phase 1.
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Rate of Change of Energy

A xAya z [ -(p O g E ) ] = A xA yA z [ (p O g (H -p /p )) ]y

= A xA yA z (o 0 y H ) - (C Y p) (A.18)

Here, E is the son of internal and kinetic energy per unit mass, and H = E + p/p

is the sum of enthalpy and kinetic energy per unit mass.

Note that Y, is not a function of time, and can be eliminated from the

differential with respect to time.

Convective Flux
_ -

A(p 0 "U x l) +
,

+ (A.19)
E A (p VY E)11 1I1y A(p 6 wg E )

- A xAya z ,g
_

which we rewrite in terms of enthalpy and pressure:

1 1"1 z y)." A (p 0 u Y H ) A(p 0 vg y 1 O (0 YHn11 1xy 17+ +-

Ax Ay Az _

"A 0 "Ux ) O( 1"UyP P O( 1"Uz } AxAyA z (A.20)P1 + +-
.

. Ax Ay Az
_

Pressure Work

r -

A(0 ugx ) L (0 vgy ) + A(0 wgz )p pp
1 11

A M,yA z (A.2U- +
(7

, -

Work Due to Viscous Forces

0 1 x( xx"1 xy 1 + T jid al8 Y (Txy"l+ 1+ yz 1V
1 y vv

[ ax Ay

A Ia Y , ( T 1)]1 1+1 1+T
wu y

+ 2 xz yz zz (A.22)'

Az

Work Due to Body Force

1 + g w )] (A.23)AxAyAz [p 0 y (g oy+g v11y y 7 l

Diffusion

A (6 Y'y y) + A (0 y q FA(0 p x x)q 1 9 1z7
(A.24)- AxAyaz +

_
Ax Ay Az

_

Here, q is the conductive heat transfer per unit surface area, which can be

expressed in terms of temperature gradient by
3T BT BT _

A(O Y k ) A (0 Y .k ) A(OYky 1 3 y
AxAyA z + - + (A.25),

_
Ax Ay Az _
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. . . . . . . . . . . . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ __ _

36

Interactions and Heat Source
~

Axayaz Q +yq + y R(T -T) (A. 2 6)
_ 1s y i y 2

.

Interaction between Heat Source Interaction betseen
fluid and solid surface two phases

Here, q is the heat source per unit fluid volurae.

We now write the complete energy equation: (Note that the pressure.

term in the convective flux cancels out the pressure work term.)

'A(P1 1 l x"1 A(p y l y z 7) ]y 7 1 y 1) + A(p
0vyH ewyHy

3

1 1 v"1
_

Ax Ay Az
T + ]It-

3 yx xx"1 + Ixy"1 + Txz"1 A[0 y7 y(T
-

1+T w]A O y (I u1+T v
vz 1xyy - (0 p) + + vy=

V 3t 1 Ax Ay

0hly(Ixz"1 + Tyz 1 + Izz"1 - -
V

z+ + _1 1 v(g uxl+gvyl+gw)P 0yAz zl.
.

BT 3T BT ~
y 0 yk A yklx1 lyy gv yzl 3z+ + - +

.
Ax ay Az

.

.
-

.

yR(T - 1). -(x"1++ Q +y9 y1+Rw). (A.27)s V_ ls y 1 y 2 z1

Here the last term is the source due to distributed resistance. If the kinetic

energy is negligible, we can replace the stagnation enthalpy H by the thermo-
dynamic enthalpy h. Alternatively, we can derive the equation for enthalpy by
subtracting the kinetic energy terms , making use of the momentum equation. We
then get:

x1)+O(P y h ) , ^ (P yh)e e1 ly yl ly(p eyh)+ z 7
l

+ y +T +T~

'v l x _Ixx x xy Ex xz Ax ;

'

Au av Aw '

ly _ xy \ y j + Tyy \ 6y / + Tzy \ Ay /,Y T

~-

Au av Aw
+ 0y T - +T & T1z xz Az yz Az zz Az _
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