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THE MATMOD APPROACH TO MODELLING
OF ZIRCALOY NON-ELASTIC DEFORMATION *

Alan K. Miller
Department of Materials Science and Engineering

Stanford University

SUMMARY OF PRESENTATION

The MATMOD constitutive equations represent a unified model for the

non-elastic deformation behavior of metals and alloys. The equations are,

to some extent, a bridge between materials science and structural analysis:

The overall form of the equations follows from the dislocation-controlled

physical nature of mast non-elastic deformation, but the actual expressions

and materials constants are deterrained by fitting the mechanical test data.

The equations are probably most useful in treating various mixed situations,

such as creep-fatigue interaction, mixtures of thermal and irradiation creep,

or interactions of strain hardening and recovery. They have been applied

in detail to Zircaloy, to type 316 austenitic stainless steel, and to

2 1/4Cr-1Mo ferritic alloy steel.

As seen in Figure 1, the central MATMOD equation is one which expresses
*

the non-elastic strain rate e as a function of the current stress a andh

temperature T and also as a function of four structure variables. The

first two of these (F and R) are history-dependent state variables which
def

represent, respectively, the current states of isotropic and directional

sol,2) "#"hardening. The second two structure variables (F and F

temperature and strain-rate dependent solute strength variables which

represent, respectively, the effects of alloying elements which either

do not or cijl interact synergistically with strain hardening. Each of the

* Research on Zircaloy sponsored by EPRI (RP-456, RP-700); research on
austenitic stainless steels and 2 1/4Cr-1Mo steel sponsored by U.S.

Department of Energy (EY-76-S-03-0326PA57).
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four structure variables corresponds to a specific strengthening mechanism

(Figure 1).

The fact that there is only one non-elastic strain variable for out-

of-reactor situations (instead of the traditional separation into " creep"

and " plastic" strains) leads to straightforward predictions of interactions

between " creep" and " plasticity" (Figure 2) and between monotonic and cyclic

deformation (Figure 3). Recovery effects are also predicted in a straight-

forward manner because both R and Fdef *** 8 ***"* I "# "" "E~#*~

covery type equations (Figure 4).

Dynamic strain aging effects such as (1) plateaus in the yield strength

versus temperature curve (Figure 5), (2) a local minimum in the strain-rate

sensitivity versus temperacure curve (Figure 6) , and variations with temper-

ature in the slope of the creep rate versus stress curve (Figure 7) are

simulated in a natural way through the solute strengthening variables

and F
sol,1 sol,2*

1rradiation effects have been added (to the above descriptions of

out-of-reactor deformation) by (1) adding a neutron flux hardening term

to the strain hardening term in the equation controlling Fdef' #" (

by adding a steady-state irradiation creep rate to b . With theseg

additions, the equations make reasonable predictions of (1) the fluence

dependence of the yield strength for both cold-worked and annealed Zircaloy

(Figure 8) and (2) the creep-rate versus stress behavior obtained in-reactor,

out-of-reactor, and post-irradiation (Figure 9).

Figures 10 and 11 compare the model's predictions against independent

data for strain-rate change tests. For annealed and for CWSR materials

the average errors in predicted stress are 8% and 17%, respectively.

Figure 12 shows the stress relaxation behavior of the model; it compares
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favorably against independent data over a 25*C to 500*C temperature range.

A major deficiency of the model, as applied to Zircaloy, has been the

*
fact that the yield strength plateau, simulated in annealed material, is

erased by cold work, leading to the inaccuracy shown in Figure 13. This

deficiency has been rectified in recent modelling work on 316 stainless

steel in which F was introduced; Figure 14 shows how the latest
2

equations can actually simulate an increase in dynamic strain aging effects

with increasing cold work.

In summary, the MATMOD approach has the advantages of: (1) physical

basis (useful for extrapolations) and (2) great breadth; Figure 15 lists

the large number of phenomena covered by the model. The approach has the

disadvantages of (1) less accuracy than special-purpose equations fitted

to specific regimes of behavior and (2) a relatively difficult procedure

for calculating the materials constants for other alloys.

A list of references on the MAIMOD constitutive equations *is attached.
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MATMOD CONSTITUTIVE EQUATIONS

I. General Form:

A. Thermal strain rate:

b () [ c/E - R, F l=

th def' sol,l'* sol.2

B. History-dependent state variables:

1. R (" Rest stress" or back stress):
D_irectional (kinematic) hardening associated with pileups or disloca-
tion bowing

def (" Friction stress due to deformation"):*

Isotropic hardening associated with subgrains, forest dislocations, ir-
radiation

g , d_R , work-hardening _
thermal recoveryR

dt term term

def work-hardening flux-hardening _ thermal recoveryp ,, ,

def de term term term

C. Temperature and strain-rate dependent solute strengthening variables:

sd (" Friction stress due to solutes"):F

Isotropic strengthening associated with solute atmospheres, dynamic strain
aging, etc.

F = f(T, c )
sol

sal: independent of strain hardening (substitutional solutes?)1. F

sC : synergistic with strain hardening (interstitial solutes?)2. F

II. Specific Equations (1-dimensional form):

E = BO' sinh
~

sgn( 0/E - R) (1)g

def (1+FsoU).. . /F, +F JJ

R=Hb - H BO' [ sinh (A |R|)]" sgn(R) (2)g

$ = H [C2+|R|-(A/A)F E8 " ^2 def ) ()def 2 2 def th + "3 - 22
A.

F = f( | cg|, T ) (4)g
F
sol

ff | ,c ,T) (5)F
soh 2 ,

|Cg|/exp(- sol ) eq
b exP(- )(|d/E)"2 ($)P sgn(c) (6)irr " 2

C= C ()th irr
'ou .

''

~0' is similar to exp(- )
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Phenomena Simulated by the
MATMOD Constitutive Equations

1. " Plasticity", including:
(a) essentially clastic behavior followed

by gradual yielding

(b) strain-rate sensitivity

(c) temperature sensitivity
2. " Creep", including:

(a) primary creep
(b) steady-state creep
(c) sich variation of steady-state cre.p

rate with stress

3. Cyclic stress-strain behavior, including:

(a) Bauschinger effect

(b) cyclic hardening and cyclic softening
(c) shakedown to a saturated condition of

constant stress and strain amplitudes

4. Recovery:
*

(a) static recovery

(b) dynanic recovery
5. Dynanic strain-aging effects, including:

(a) plateau in yield strength vs. temperature
(b) negative strain-rate sensitivity
(c) effect on creep rate

6. Complex histories:

(a) stress changes
(b) strain-rate changes
(c) temperature changes

7. Irradiationveffects:

(a) irradiation hardening

(b) irradiation-enhanced creep
(c) channelling (strain softening)
(d) swelling

8. Interactions of all of the above
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