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SUMMARY OF PRESENTATION

The MATMOD constitutive equatious represent a unified model for the
non-elastic deformation behavior of metals and alloys. The equations are,
to some extent, a bridge between materials science and structural analysis?
The overall form of the equations follows from the dislocation-controlled
physical nature of most non-elastic deformation, but the actual expressions
and materials constants are deterrined by fitting the mechanical test data.
The equations zce probably most useful in treating various mixed situations,
such as creep-fatigue interaction, mixtures of thermal and irradiation creep,
or interactions of strain hardening and recovery. They have been applied
in detail to Zircaloy, to type 316 austenitic stainless steel, and to
2 1/4Cr-1Mo ferritic alloy steel.

As seen in Figure 1, the central MATMOD equation is one which expresses
the non-elastic strain rate Eth as a function of the current stress O and
temperature T and also as a function of four structure variables. The

first two of these (F and R) are history-dependent state variables which

def

represent, respectively, the current states of isotr.pic and directional

hardening. The second two structure variables (Fsol,l and Psol,z) are
temperature and strain-rate dependent solute strength variables which
represent, respectively, the effects of alloying elements which either

do not or do interact synergistically with strain hardening. Each of the

* Research on Zircaloy sponsored by EPRI (RP-456, RP-700); research on
austenitic stainless steels and 2 1/4Cr-1Mo steel sponsored by U.S.
Department of Energy (EY-76-S-03-0326PA57).
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four structure variables corresponds to a specific strengthening mechanism
(Figure 1).

The fact that there is only one non-elastic strain variable for out-
uvf-reactor situations (instead of the traditional separation into "creep"
and "plastic" strains) leads to straightforward predictions of interactions
between "creep" and "plasticity" (Figure 2) and between monotonic and cyclic
deformation (Figure 3). Recovery effects are also predicted in a straight-
forward manner because both R and Fdef are governed by work hardening-re-
covery type equations (Figure 4).

Dynamic strain aging effects such as (1) plateaus in the yield strength
versus temperaturc curve (Figure 5), (2) a local minimum in the strain-rate
sensitivity versus temperacure curve (Figure 6), and variations with temper-
ature in the slope of the creep rvate versus stress curve (Figure 7) are
simulated in a natural way through the solute strengthening variables
Fsol,l " Fsol,Z'

Irradiation effects have been added (to the above descriptions of
out-of-reactor deformation) by (1) adding a neutron flux hardening term
to the strain hardening term in the equation controlling F

def
With these

, and (2)
by adding a steady-state irradiation creep rate to Eth'
additions, the equations make reasonable predictions of (1) the fluence
dependence of the yield strength for both cold-worked and annealed Zircaloy
(Figure 8) and (2) the creep-rate versus stress behavior obtained in-reactor,
out-of-reactor, and post-irradiation (Figure 9).

Figures 10 and 11 compare the model's predictions against independent
data for strain-rate change tests. For annealed and for CWSR materials

the average errors in predicted stress are 8% and 17%Z, respectively.

Figure 12 shows the stress relaxation behavior of the model; it compares
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favorably against independent data over a 25°C to 500°C temperature range.

A major deficiency of the model, as applied to Zircaloy, has been the
fact that the yield strength plateau, simulated in annealed material, is
erased by cold work, leading to the inaccuracy shown in Figure 13. This
deficiency has been rectified in recent modelling work on 316 stainless
steel in which Fsol,z was introduced; Figure 14 shows how the latest
equations can actually simulate an increase in dynamic strain aging effects
with increasing cold work.

In summary, the MATMOD approach has the advantages of: (1) physical
basis (useful for extrapolations) and (2) great breadth; Figure 15 lists
the large number of phenomena covered by the model. The approach has the
disadvantages of (1) less accuracy than special-purpose equations fitted
to specific regimes of behavior and (2) a relatively difficult procedure

for calculating the materials constants for other alloys.

A list of references on the MATMOD constitutive equations‘'is attached.
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MATMOD CONSTITUTIVE EQUATIONS

I. General Form:

A. Thermal strain rate:

Eth = £(T) f[ O/E - R

v Fdef’ Fsol,l"Fsol.Z J

B. History-dependent state variables:

1. R ("Rest stress' or back stress):
Directional (kinematic) hardening associated with pileups or disloca-

tion bowing
2. Pdef ("Friction stress due to deformation"):
Isotropic hardening associated with subgrains, forest dislocations, ir-
radiation
5w dR _ work-hardening _ thermal recovery
dt term term
P & dFdef _ work-hardening + flux-hardening _ thermal recovery
def dt term term term

C. Temperature and strain-rate dependent solute strengthening variables:

Fsol ("Friction stress due to solutes'):

Isotropic strengthening associated with solute atmospheres, dynamic strain
aging, etc.

F ., = £(T,€)

sol
1. Fsol ¢ independent of strain hardening (substitutional solutes?)
s Fsol 9 ¢ synergistic with strain hardening (interstitial solutes?)
b4

I1I. Specific Equations (l-dimensional form):

15"
£ ™ BO' {sinh [(/ lo/e - B| ﬁ) l} sgn( 0/E - R)
Fsol,l o Fdef(1+Fsol,2)
. . 2 n
R=He, - HBO' [sinh(Allkl)] sgn(R)
Fooo=Hc, + |R| - (a,/a)F, 12]|& | + 0,6 - ,C BO'[sinh(aF, 12"
def "2 2"717 def th 3 272 2 def

Poor,1 = o 1Egb T) 1'“‘r _/\
sol

Foor,2 = £ legh T)

. Q
€irr = Byexp(- %%£)(|0V3)02 ()P sgn(o)

I;: | fexp (- Qsol ) —
th KT

= +
. Eih Eirr

v .
6' is similar to exp( T )
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Phenomena Simulated by the
MATMOD Constitutive Equations

"Plasticity”, including:

(a) essentially elastic behavior followed
by gradual yielding

(b) strain-rate sensitivity
(c) temperature sensitivity
"Creep", including:

(a) primary creep

(b) steady-state creep

(c) sich variation of steady-state cre.p
rate with stress

Cyclic stress-strain behavior, including:
(a) Bauschinger effect
(b) cyclic hardening and cyclic softening

(c) shakedown to a saturated condition of
constant stress and strain amplitudes

Recovery:

(2) static recovery

(b) éynaaic recoverv

Dynanic strain-aging effects, including:
(a) plateau in yield strangth vs. temperature
(b) negative strain-rate sensitivity

(c) effect on creep rate

Complex histories:

(a) stress changes

(b) strain-rate changes

(c) temperature changes

Irradiation effects:

(a) irradiation hardening

(b) irradiation-enhanced creep

(c) channelling (strain softening)

(d) swelling

Interactions of all of the above
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