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Summary

The high temperature deformation model NORA has been developed for use in

tha SSYST computer code. As this code is used to perform whole core LOCA

analysis the deformation model should not be time consuming. The model is
ar. empiricci one but its parameters have a physical background.

The model development is based on a data bank containing numerous well-
defined deformation data from stress-strain, tensile and tube burst tests.

NORA-model consists of two parts, the description of deformation and of
failure. The deformation properties rely mainly on uniaxial stress-strain
and creep tests and it is postulated that this model can be applied to
describe tube deformation as well. The basic equation is a power law strain
rate equation. It has been proved that this equation is able to model the
deformation behaviour in the whole range of temperatures (6001 T( C) i 1700)
considered here. Yet of greater importance is the modelling of the changes
of material properties due to phase transition, oxidation and strain harden-
ing which are described by the model parameters.

The failure model is based on isothermal furnace heated tube burst tests.
It is demonstrated that the broad scattering of burst strain of tube tests

reported elsewhere is not only due to an azimuthal temperature distribution,
but also to a dependence on the strain rate of deformation. This dependence has

been modelled in a modified strain fraction rule for failure. Deformation
and failure are therefore connected by the strain rate.

In parallel to this modified strain fraction rule, a model based on the life

fraction rule has been developed for alternative use.

The influence of oxidation on the deformation has been derived from the
pseudobinary Zircaloy-oxygen phase diagram using a homologous temperature.
This model has been developed for homogeneously distributed oxygen, but it

can also be applied to layered material with an average oxygen content lower
than 0.8 wt %. The model can also be applied to the failure model, but only
for material with homogeneously distributed oxygen. Due to outer or inner
oxidation of the tube the oxygen is usually inhomogeneous1y distributed.
Therefore an empirical function for strain reduction of oxidized material
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has been established for the failure criterion.

Applying NORA model to tube deformation the axial and azimuthal distribu-

tion of temperature plays a most important part. The azimuthal temperature
distribution reduces the circumferential strain. For this case NORA model
has to be applied locally. The axial temperature distribution has an in-
fluence on the axial shape of ballooning. The shape modifies the tangential
to axial stress ratio at higher strains.

As the temperature is the most sensitive parameter for deformation, differ-

ences between calculated and measured strain of tube burst tests are often
caused by an unknown temperature distribution.
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Tube Burst Test in Inert Atmosphere
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HOMOLOG 0US TEMPERATURE T
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Model for Oxygen
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Tube Burst Tests in Argon and Steam
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Failure criterion
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Temperature Ramp Burst Tests in Steam
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