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NUMERICAL SIMULATION OF HYDR 0 ELASTIC MOTION WITH

APPLICATION TO THE FULL-SCALE HDR TESTS

W. C. Ri vard
Theoretical Division, Group T-3

University of California
Los Alamos Scientific Laborate.y

Los Alamos, NM 87545

SUMMARY

The K-FIX(3D,FLX) code for coupled fluid-structure interaction simu-

lation has been undergoing extensive testing in preparation for the full

scale blowdown and snapback tests in the Gennan HDR Project (Fig.1).

K-FIX(3D)1 solves the three-dimensional, two-fluid equations for two
2phase flow to describe the fluid dynamics. FLX solves the three-dimen-

sional, linear-elastic shell equations to describe the core barrel dynam-

ics. The shell equations and features of the FLX code are given in Figs.

2-4. The results of several calculations have been compared with analyt-
3ic solutions for the core barrel motion in vacuum. The comparisons in-

clude frequencies and mode shapes of torsional and lateral vibrations and
,

the stiffness to lateral displacement. The core barrel motion is excited

by prescribed displacement, as will occur in the snapback tests, and by

horizontal shaking of the vessel produced through the codes' option to

simulate seismic disturbances. The calculated motion of the core barrel

bottom is shown in Figs. 5 and 6 following its release from an initial

3.5 mm deflection and in response to a horizontal harmonic vessel motion.

The radial displacement histories are well described by W = - 3.5 cos

(35.8 ut) and W = - 0.93 [cos 10nt - cos 35.2 wt], respectively, which
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yield frequencies of 17.9 Hz and 17.6 Hz compared with the analytic de-

termination of 17.0 Hz. Without the mass ring, similar calculations pro-

duce the bottom motion shown in Figs. 7 and 8, which exhibit frequencies

of 38.6 Hz and 37.9 Hz, respectively, compared with the analytic value of

35.5 Hz.
4The analytic results are obtained by a perturbation solution of the

5Timoshenko beam equations that include the effects of shear and rotary

inertia. Solution of the classical beam equations, which neglect both

these effects, yields a frequency of 45.2 Hz without the mass ring. Most

of the 22% reduction associated with the solution of the Timoshenko equa-

tions is due to the softening effect of shear. The significance of shear

is likely to be even greater for a U.S. PWR where the length-to-diameter

ratio of the core barrel is much smaller than in the HDR. The deflection

profiles for the fundamental mode associated with the Timoshenko and

classical beam equations' solutions and the FLX solution are compared in

Fi g. 9. The FLX solution and the solution to the Timoshenko equations

are in quite good agreement.

The ratio of the force applied at the core barrel bottom to the de-

flection there is defined as the stiffness, which depends on the size and

material properties of the core barrel. For a deflection of 3.5 mm, the
11

FLX solution indicates a force of 0.67 x 10 dyn is needed, which im-

11plies a stiffness of 1.91 x 10 dyn/cm. Solution of the Timoshenko

11equations yields 1.81 x 10 dyn/cm.

The frequency and mode shape of core barrel motion initiated by tor-

sion about the longitudinal axis has been determined analytically includ-

ing the mass ring. The FLX calculation exhibits a torsional frequency of
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22.0 Hz, which agrees precisely with the analytic soiution. The mode

shapes are compared in Fig.10 at the end of one period and are also in

excellent agreement.

The analytic solutions have provided a valuable standard against

which to compare the numerical results without introducing the uncertain-

ties and added complexities associated with the realities of experiments.

These comparisons augment parameter and sensitivity studies to provide

insight into the relative significance and origin of departures between

calculated results and data.
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Fi g. 1. Geometry of the HDR vessel (dimensions in cm).
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0ph U = NO,g , g /a + M /a + ph(5 sin 4 - 5 cos &)
4

,

'

ph =N +N - ph 'i ,

"

ph U = q - M + 2M -M -N/a-ph(5cos&+5 sin $)00
,

' 0
N = C(V + vu , yyj ,) ,

z

'

N = C(U0 + W/a + vV ) ,

4

'
N = C(1-v)(VO + V )/2 ,g

" 0
M = D(W + vW - vu /a) ,z

M = D(WOO ,yg" - U j,)O
,

4

'0'
M = - D(1-v)(W - V /a) ,

2 3
C = Eh/(1-v ) D = Eh /12(1-v ), .

Fig. 2. The three-dimensional, elastic shell equations. In these equa-
tions, U, V, and W are the circumferential, axial, and radial

3displacements, respectively; p is the density; (p = 7.9 g/cm );
h is the thickness (h = 2.3 cm); a is the radius of the middle
surface (a = 131.85 cm); v is Poisson's rrtM (v = 0.3); q is
the differential pressure between the ir> 56 and outside of the

12 2core barrel; and E is Young's Module'. J. * . 9' x 10 dyn/cm ),o
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Fig. 3. Location of variables for a computational cell in the FLX code.
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Fi g. 4. Detail of the HDR mass ring and features of the FLX mass ring
model.
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Fi g. 5. Calculated radial displacement history of the core barrel bottom
after release from a static configuration in which the core bar-
rel bottom is deflected 3.5 mm. The frequency is 17.9 Hz.
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Fig. 6. Calculated radial displacement history of the core barrel bottom
in response to a horizontal harmonic vessel acceleration x = 980
cos 10 ut. The frequency is 17.6 Hz.
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Fi g. 7. Calculated radial displacement history of the core barrel bottom
without the mass ring. The motion is initiated by prescribing
the three components of the displacement field from solution of
the Timoshenko beam equation. The frequency is 38.6 Hz.
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Fi g. 8. Calculated radial displacement history of the core barrel bottom
without the mass ring in response to a horizontal harmonic ves-
sel acceleration R = 980 cos 10 wt. The frequency is 37.9 Hz.
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Fig. 9. Fundamental mode shape calculated with FLX compared with analyt-
ic results for solutions of the classical and Timoshenko beam
equations.

1604 176



.,s.

-13-

800

700 -

600 -

e 500 -

3

.5
j400 -

n.

'5
E
< 300

200 -

100 -

I I0
O I 2 3 4 5 6 7 8

Circumferential Displacement (mm)

Fi g. 10. Fundamental torsional mode shape calculated with FLX compared
with the analytic result. The calculated torsional frequency is
22.0 Hz, which agrees precisely with the analytic solution.
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