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INDEPENDENT ASSESSMENT OF FRAPCON-1 AND FRAP-TS

E. T. Laats
EG&G Idaho, Inc.

The fuel behavior programs, FRAPCON-1 and FRAP-T5, have been
independently assessed. The objectives of the assessment effort were
to demonstrate where best estimate model capabilities exist and to
provide guidance for model development where improvements seem
warranted. FRAPCON-1 is the steady state fuel behavior program
derived from the FRAP-S3 program developed by EG&G Idaho and the
GAPCON-Thermal-3 code developed by Battelle Pacific Northwest
Laboratories in Richland, Washington. FRAP-T5 is the fifth version of
the transient fuel rod behavior program developed at EGRG Idaho. The
primary application of FRAPCON-1 is to supply initial conditions to
FRAP-TS to account for steady state irradiation prior to a transient
event.

Two general types of analyses were conducted during the
assessment of FRAPCON-1 and FRAP-T5. First, the analysis of fuel
behavior for commercial rods was used to evaluate general code
performance characteristics. Second, the analysis of results between
code calculations and the measured behavior of test rods was used to
evaluate model accuracy.

Overall, FRAPCON-1 exhibited better calculational accuracy than
the previously assessed FRAP-S3 code. The centerline temperatures are
predicted well for the unpressurized rods and generally overpredirted
for pressurized rods. Better centerline temperature agreement is also
noted when (a) as-built pellet-cladding gap size is less than 2% of

(ETL-1)
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the pellet diameter, and (b) rod operating power levels are greater
than 45 kW/m. Rod internal pressures are well characterized at
startup, but unpressurized rods are underpredicted and pressurized
rods are overpredicted at higher burnups. Also, the extent of
permanent fuel deformation is accurately predicted, but the amount of
permanent cladding deformation is overestimated.

Since FRAPCON-1 and FRAP-T5 are sister codes, model consistency
is necessary. Results of the commercial rod studies show that the
steady state models are consistent between FRAPCON-1 and FR”’-T5 at
beginning-of-1life, and the permanent effects of prior irradiation are
correctly communicated from FRAPCON-1 to FRAP-T5 at higher burnups.

Results of the FRAP-TS calculation/data comparisons indicate
improvement in overall code predictability. When calculating the
onset of critical heat flux, adequate code predictability is observed
for pressurized water reactor system conditions, but a modeling
deficiency is noted for boiling water reactor low mass flux
conditions. During a reactor shutdown event, the initial temperature
and the rate of temperature decrease are overestimated, but
equilibrium temperature following shutdown is accurately predicted.
During reactivity initiated accidents (RIA), performance of the
FRAP-T5 thermal model is reasonable, but the cladding failure criteria
for RIA-type scenarios are questionable and warrant further
development., For loss-of-coolant accidents, the FRAP-T5 thermal model
reproduces data trends well, but the deformation models seem overly
sensitive to system operating conditions.
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Subjects Analyzed During
Independent FRAPCON-1
Assessment

e Commercial rod studies

e Code-data comparisons
e Thermal models
¢ Pressure models

¢ Deformation models

INEL-S-22 683
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Predicted rod internal pressure (MPa)
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Permanent Cladding Hoop

Strain Comparison
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FRAPCON-1 Standard NModel Error

Sample Size Standard
Output Parameter (Rods/Points) Deviation

32/274 (P)
61/472 (U)

294 K
170 K

i Fuel centerline temperature

! Released fission gas 145/145 15.9%

§ Rod internal pressure 20/330 (V)

281285 (P)

1.38 MPa
1.93 MPa

# Gap closure heat rating 88/88 11.4 kW/m

Axial fuel thermal expansion 18/160 0.37%

Permanent fuel axial
deformation

971354

0.45%

INEL-S-22 660
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FRAPCON-1 Standard Model Error

Output Parameter

Permanent cladding hoop
strain

Permanent cladding axial
strain

Cladding surface corrosion
layer

Cladding hydiogen
concentration

Gap conductance

Fuel off-centerline
temperature

Sample Size
(Rods/Pcints)
154/358
96/119
40/69
33/46
171112 (U)

20/115 (P)

20/111

Standard
Deviation

0.47%

0.15%

5.8 um

37.2 ppm

10821 Wim3K
21200 W/im2K

208 K

INEL-S-22 658
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Subjects Analyzed During
independent FRAP-T5
Assessment

e Commercial rod studies
e Code-data comparisons
e CHF onset
¢ Reactor shutdown
e Reactivity initiated accident
e Blowdown during LOCA
e Refill during LOCA

INEL-S-22 678
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CHF Power Error Under Known Flow
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Fuel Thermal Decay Constant
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Centerline Temperature History
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Cladding Surface Temperature

History for RIA 1-1, Rod 801-3
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Cladding Surface Heat Transfer
History (LOC-11C)
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Centerline Temperature History
(LOC-11C)
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Cladding surface temperature (K)
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Standard Model Errors
FRAP-T5

Output parameter Sample Standard error
(rods/pts) 0.5
n .
(P; — M-)2
Z A
(n—1)
=
CHF power at known
fiow 30/87 0.04 kW/cm? channel
CHF flow at known
power 30/87 390 kg/s-m?
Initial fuel center
temperature at shutdown 21/32 250 K
Fuel thermal decay
constant during 21/32 9.7 s
shutdown
Equilibrium fuel center
temperature during
shutdown 21/32 57 K
INEL-S-22 684




Summary
FRAPCON-1

e Centerline temperatures are predicted
well for unpressurized rods, and generally
overpredicted for pressurized rods

e Rod internal pressures are well
characterized at startup, but
unpressurized rods are underpredicted
and pressurized rods are overpredicted at
higher burnups

* The extent of permanent fuel deformation
is accurately predicted,; the extent of
permanent cladding deformation is
overestimated.

INEL-S-22 679

1605 267



Summary
FRAP-T5

The steady state models are consistent
between FRAPCON-1 and FRAP-T5 at
beginning-of-life, and the permanent
effects of prior irradiation are correctly
passed from FRAPCON-1 to FRAP-T5 at
high burnups.

Adequate onset of CHF modeling is used
for PWR system conditions, but deficient
for BWR low mass flux conditions.

During a reactor shutdown event, the rate
of centerline temperature decrease is
overestimated, but equilibrium
temperatures are accurately predicted.

The thermal performance of FRAP-T5
during RIA and LOCA events is

reasonable.
1605 268 INEL-S-22 680
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CLADDING STRESS AT FAILURE

0. L. Hagrman
tG& Idaho, Inc.

One of the principal objectives of fuel behavior research is the
prediction of the configuration of fuel after severe transients. A
recent revision of the cladding failure criteria contained in the
MATPRO materials properties package has clarified several aspects of
the experiment data and promises to place analytical code predictions
on a much sounder basis than has previously been possible.

The new cladding failure criterion is true tangential stress,
Arguments are presented which demonstrate that cladding failure should
be predicted by comparing the tangential component of true stress to
the failure stress, Heating rate and strain rate do not affect this
criterion but irradiation and cold work increase it somewhat. The
failure stress as a function of temperature is given by the following
expressions,

For temperatures less than or equal to 750 K,
oo = 1.36 K, (1)

For temperatures between 750 and 1050 K,

2.0%108
e (2)

OoF = 46.9 KA exp -

For temperatures greater than or equal to 1050 K,

of = 17 K, (3)

1605 270



where
tangential component of true stress at burst (Pa)

= Strength coefficient for annealed cladding as determined
with the MATPRO CKMN subcode (Pa)

T = temperature (K).

For cold-worked or irradiated cladding the failure stress is
increased by four tenths of the increase of the strength coefficient
due to irradiation and cold work.

The new failure criterion has been coupled to a modified version
of the BALLOON code to show that cladding shape at burst is dependent
on all the variables which affect the cladding deformation history,
Burst temperatue, burst pressure, axial temperature gradients, and
circumferential temperature gradients play a major role in determining
the final cladding shape.

1605 271
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Cladding Stress at Failure

Presented by
D.L. Hagriman
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Cladding Stress at Failure

* Previous cladding failure
criteria

* Model develecpment
* Cladding shape at failure

¢ Conclusions INEL-S-22 635
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Previous Cladding Failure
Criteria (FRAIL)

e Failure criteria based on correlations for
e Engineering failure strain (total
circumferential elongation)
e Engineering failure stress

» Failure probabilities calculated with each
correlation and largest probability

assumed

e Inconsistent probabilities, larae
uncertainties and important new data
suggested need for revision

INEL-S-22 625
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Present Cladding Failure

Criterion

e Failure predicted when true stress
exceeds failure stress at any location

oefa“ure = AK + 0.4 AK

K
AK

A

Strength coefficient of annealed
zircaloy

Change in K due to coid work and
irradiation

7.7 for temperatures above 1050
kelvin,1.36 for temperatures below
750 kelvin

INEL-S-22 624



Model Development (l)

Data set coilected using tests which reported
e |nitial cladding dimensions

e Total Circumferential
Elongation (TCE)

e Temperature and pressure at failure
e Wall thickness at failed region

e Estimated radii of curvature (axial
and azimuthal)
INEL-S-22 626
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Model Development (Il)

Data were used to test four proposed failure
criteria

* Engineering strain (TCE)
* Engineering stress
¢ Local strain

* True stress Bk

[l G091
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Engineering Stress Versus

Temperature
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True Stress at Failure vs
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Cladding Shape at Failure

* New failure criterion intended to improve
predictions of ciadding shape at failure
* Calculate cladding shape versus
time with a mechanical code
° Failure occurs when Og =

“6 tailure @nywhere

* This approach explains the large scatter
in TCE. TCE is sensitive to:
* Temperature versus time
* Temperature versus position
° Pressure versus time

* Closed form solutions for symmetric
deformation provide insight INEL-S22 623



Cladding Shape at Failure

* For axial and azimuthal symmetry G

or £9 = LN WO . Q INEL-§-22 622
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Cladding Shape at Failure

* For azmuthal symmetry

= Ln
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Cladding Shape at Failure

* For nonsymmetric deformation a modified
version of BALLOON used

* Perturbation theory approach
(Kramer and Dietrich ANL-77-95)

* Anisotropy added

* MATPRO equation of state for plastic
deformation

* MATPRO cold work annealing model

° Input pressure and temperature
versus time

* Preliminary comparison to ORNL/NUREG/
TM-245 data consistent with true stress
interpretation INEL-5-22 628
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Code Predicted Cross Section
[, %

Failure

C —— TC

TCE 57% INEL-S-22 620
Elevation 18.7 cm
Time to burst 18.4 s
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Cladding Shape at Failure

* TCE away from burst area predicted
accurately

* Large predicted strains in burst area
caused by

* Temperature averaging between
thermocouple locations

* Coarse model grid (8 circumferential
and 8 axial nodes)

* Deformation sensitivity to unknown
axial temperature gradients

* Predicted strain accurate at 67 cm
because strain much less sensitive to
small input errors when strain is small  ecs2 6w
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Conclusions

* Ciadding failure during ballooning best
described by true stress

* Cladding shape at (after) burst affected by
all variables which affect deformation
history

* Preliminary experience with coupling
mechanical codes to new failure criterion
has explained scatter in TCE versus
temperature plots INEL-5-22 633



