APPLICATION OF PELE-IC TO BWR

CONTAINMENT ISSUES

C. S. Landram, LLL

The PELE-IC computer code couples an incompressible Eulerian fluid
algorithm to a Langrangian finite-element shell module. The code was
developed to assess fluid-structure interaction problems in BWR
pressure-suppression systems. In these systems steam is forced down
large pipes and is condensed in a water pool contained in a steel or
concrete structure. Loads occur on the structure both during the air and
steam jetting into the water and later during oscillatory condensation of
the steam bubbles at lower mass-flow rates. The computer code calculates
the loads and the structural response.

Previous documentation(]) has included a description of the computer
program and some verification problems (drainage tanks, a Rayleigh bubble
growth, and a submerged vibrating disk) possessing known solutions.
Presented here are our most recent code studies which include
verification of the fluid-structure coupling algorithm for a curved
surface, qualification by comparison with MIT air blowdown experimental
results and applications relative to experiments modeling Mark I and Mark
II BWR pressure-suppression systems.(z) In application to the Mark I
design, we simulated tests done at Lawrence Livermore Laboratory on the
90 and 7.5 degree torus sectors. Calculations were performed to
investigate the influence of torus stiffness and flexible squrts on
observed uploads, and through these calculations we identified the
controlling mechanisms for the uploads. Uploads are caused by bubble
growth toward the free surface with a higher pressure region in the upper
portion of the torus. The movement of the structure and support
contribute a relatively small high frequency component to this main load
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profile. The computed pressure contours show that the geometry of the
structure plays an important role in the magnitude of these loads and
careful design can reduce them,

For the Mark II design, the tank used in the GE4T experiments was
analyzed (1) holding either the bottom plate or the side walls fixed, and
(2) allowing both to be unconstrained. In all cases a representative
pressure signature at the exit of the downcomer was prescribed and
permitted to propogate as an acoustic wave back and forth along the
downcomer, reflecting at both ends. For the bottom center calculated
pressure histories, the dominant fluid-structure frequency content
(calculated at 38 Hz) was seen to be insensitive to GE4T vent acoustic
effects. The fluid effective mass appears to have the effect of reducing
the bottom plate natura’ frequency from 42 Hz to 38 Hz. For the somewhat
less important frequency contents vent acoustic effects (via pulse
reflection every 114 ms) excite end plate movement (at about 42 Hz)
whereas in absence of vent acoustics, such lessor frequency content is
associated with radial side wall motion (at about 43 Hz).
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SUBMERGED CYLINDER FLOW FIELD
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SUBMERGED CYLINDER-SHELL NODAL RESPONSE
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SUBMERGED CYLINDER VELOCITY DISTRIBUTION &
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MIT EXPERIMENTAL APPARATUS
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MIT TANK PRESSURE TIME HISTORIES —
RIGID BOTTOM
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MIT TANK WETWELL PRESSURE
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MIT PRESSURE TIME HISTORY — FLEXIBLE BOTTOM
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FIFTH-SCALE PRESSURE CONTOURS
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FIFTH-SCALE UPLOAD CALCULATIONS L
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GEAT STATIC DISPLACEMENT
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GRID FOR GE4T TANK
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GE4T CALCULATIONS WITH VENT ACOUSTICS
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GE4T VENT ACOUSTICS
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TABLE 1

GEAT FLUID-STRUCTURE FREQUENCIES (Hz) FROM FOURIER TRANSFORM*

Cal-ulation 1 - No axial motion allowed at bottom plate

bottom center 67.6 56.6 14.2 24.2
side wall 67.6 57.2 14,2 24.2

Calculation 2 - No radial motion allowed on cylinder wall

bottom center 4.8 15.4 26.7 41.8
side will 42.4 27.6 16.3 57.2

* Frequencies associated with amplitudes are progressively listed from
left to right. Those having the largest amplitudes appear on the left
with those having the smallest on the right.
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TABLE 11
GEAT FREQUENCY COMPONENTS - TRANSFORM OF PRESSURE PULSES*

Column

W.P.P.S5.S. Pulse Alone

Reflected 12.5 20.7 37.2 29.0 3.9
W.P.P.S.S. Pulse Alone
(Vent Acoustics)

PELE-IC Bottom Pressure
For W.P.P.S.S. Pulse

(no reflection)
(100-200 ms) 38.4 62.6 15.2 25.5 52.6

PELE-IC Bottom Pressure

For W.P.P.S.S. Pulse With Its

Acoustic Reflection
(100 - 273 ms) 39.1 25.4 18.7 53.0 11.5
( 0~ 273 ms) 37.6 25.8 10.5 63.0 18.0

* Frequenc 2s associated with amplitudes are progressively listed from left
to right. Those havin? the largest amplitudes appear on the left with
those having the smallest on the right.
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