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EVALUATION OF METHOD FOR PREDICTING
RESIDUAL STRESSES IN GIRTH-BUTT WELDS

SUMMARY

A finite element model for predicting residual stresses due to
girth-butt welds in pressure vessels and pipes was developed at Battelle's
Columbus Laboratories. The residual stress model for girth-butt welds was
verified for welds in pipes ranging from 2 to 30 passes. The model also
accurately predicts residual deformations. Comparisons of results from the
model with data indicate that the model can be extended to accurately repre-
sent weld repairs in pressure vessels. A summary of the accomplishments

directed at developing and evaluating the model is given in the following:

® A critical review of the literature was made to evaluate
analy.ical techniques for developing the model and identify
residucl stress data to be uscd in verifying the models.

e Experimental studies of two girth-butt welded pipes were
conducted to provide temperature data and residual siress
data for verifying the modcls. Data obta.ned from these
experirvnts include residual stresses, tcuperatures during
welding, strains during welding, and r sidual deflections
of the weldoed pipe.

® Two experirints on girth=butt welded pipes were identified
frow the literature as test cases for the model.

® A description of the pipes for which data was obtained
from the experimental study and through the literature
is given in the following. All pipes arce 304 stainless

stoel.
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Pipe ldentification

Outside Pipe
Diameter (in.)

Pipe Wall
Thickness (in.)

Number of
Weld Passes

BCL Model No. 2

BCL Model No. 3
Argonne Pipe

General Tlectric Pipe

12.75 .180 2
12.75 .375

4.50 7 .337 7
28.00 1.300 30

e A model for predicting residual stresses in girth-butt welds

of pressure vessels and pipes was developed. The model consists
of two parts; a temperature model and a stress analysis model.
The temperature model was developed through modification of a
model described in the literature review. Good comparisons
between temperature data and computations by the model were
obtained for each pass of the two-pass and six-pass welds. The
temperature model includes heat input, pipe thickness, location
of weld pass, thermal properties of the pipe, torch speed,
efficiency of the weld process, and time dependent effects.

A finite element model for girth-butt welds was developed. The
model includes temperature dependent material properties,
elastic-plastic stress strain effects, the effects of changing
geometry of the pipe as it is welded, and linear elastic unload-
ing from an elastic-plastic state of stress. The weld georetry
and number of weld passes arec also represented by the model.
Results of the residual stress model showed good agrecment with
residual stress data in the licop and axial directions on the

insides and outsides of the four pipes described above.

Preliminary results were obtained using the residual stress
model to represe: . a weld repair of the HSST Intermediate

Vesscl V-8. While the model needs further development before it
can adequately represent the weld repair geometry, qualitative
agrecm nt between residual stress data and results of the model

were obtained.
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e Thus, an analytical model for predicting residual stresses in
girth-butt welds has been developed and verified by comparison
with experimentally.obtained data for four pipes. It was demon-
strated that with further development, the model can be applicable
to other weld configuratiqns such as weld repair of pressure
vessels.

The following sections describe the model's capabilities and

limitations, the girth-butt welds used for the validation study, and
comparisons of predicted residual stress distributions and those obtained

from the welds.

MODEL CAPABILITIES AND LIMITATIONS

Pigure 1 shows an illustration of a girth-butt weld. The residual
stress model is comprised of two parts: a heat flow model and a stress
analysis model. The heat flow model provides transient temperature
distributions which are the input for the finite element stress analysis
model. The stress analysis model gives the magnitudes and distributions of
the residual stresses including variations through the pipe thickness. The
model represents important parameters of the welding process. These are
contained in the following list:

e Size and number of weld passes

e Elastic-plastic temperature dependent response of the
pipe and weld materials
Heat flow analysis
Geometry of pipe and weld groove
Heat input of weld process
Speed of weld torch
Time dependent transient aspects of the weld process

Interpass temperatures

Mechanical end restraints of the pipes.
The model for pipe welds is limited to axisymmetric representations

and hence does not contain variations in stresses around the circumference
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Girth-Butt Weld
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FIGURE 1. ILLUSTRATION OF GIRTH-BUTT WELD
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of the pipe. This is however not a serious limitation because circumferen~
tial variations in residual stresses can be explained with results of the
model. Purthermore, the weld répair model does contain circumferential
variations in the residual stress distribution.

In addition to the nxisywnefric simplification of the girth-butt
veld program, several additional simplifications were examined. Onme which was
included primarily because of the reduction in computer costs, was treating
the girth-butt weld procedure as being symmetric about the plane which is
perpendicular to the axis of the pipe and passes through the center of the weld
bead. This resulted in a computer cost savings of approximately 50 percent.
Closely related to this simplification and in part resulting from it, war the
modeling of a sequence of weld passes as a layer rather than as individual wela
passes. The savings resulting from this simplification is dependent on the
pipe siz> and number of pesses, with the savings being greater for pipes with
more passes. The method of modeling a general multipass girth-butt weld under

the: : two assumptions is shown in Figure 2.

DETAILS OF THE MODELS FOR HEAT FLOW
AND RESIDUAL STRESSES

The focus of this study is'on the magnitude and distribution of
residual stresses. However, a representative model for predicting residual
stresses requires accurate information about the temperatures due to the
velding processes. Temperature information can come from thermal measure-
ments, models for predicting temperatures, or a combination of these two
sources. The approach taken here was to develop a temperature analysis
procedure and verify the capability of the model to predict temperature
distributions by comparing results with the data. The following sections

describe the temperature analysis.
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Weld Centerline
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FIGURE 2. COMPARISON OF ACTUAL AND MODEL WELD CROSS SECTIONS
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Temperature Analysis During Welding

The technique for modeling the temperature distributions is based
on the distribution of temperatures around a moving point-heat source in
an infinite solid. The temperature due to this moving heat source is given

by the following equation.

(1)

T (r,%
(r.8) = To . 4t

n[”q’('a — 2a
’
where )
T = Temperature
T = Ambicent temperature
= Ro.c of heat irput
Theimal conductiviey

= Heat source velocity

- < X DO
n

= Xe-distance from heat source

Distance fro~ heat scurce

-
n

¢ = Heat capacity
a=K/c.

*
o that presentced by Rosanthal [23). Time does not

-

Equation (1) 1s identical
explicit: arpc2r as a variugble in Equation (1) because, althouh the temperature
distridution is variatle with respect to a stationmary point in a solid, it is
unchanging witl, respect to the heat source since stcady-state conditions are assuTil

to ¢ pruesent. HKowever, time docs appear implicity in Equatioen (1) since
= xo -Vt > (2)

where Xo ie the distance by tween the stationary point and tho heat source wh. 1
t = 0.

The nu=.ri¢ 1 technique approximates the termperature rise due to the
moving source in a fi.ite thickness platc by supcerposing a serics of hcat soureces.

One heat source, locatced on the pipe, is the actual welding source. Othe heat

# Numbers in bruckots denote references in the Bibliography and References Secticn.
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sources are placed outside of the pipe to eliminate the heat tranafer through
the inside pipe surface and the outside surface. The actual pipe temperature
distribution is obtained by superposing at least 28 (emperature sources.

The superposition of heat sources, each described by £quation (1), 1is
used to compute time dependent temperatures for the heat source moving along the
circumference of a pipe of specified thickness. The pipe 1is represented as a
plate wvith length equal to the circumference of the pipe.

The solution for the point heat source given by Equation (1) is valid
only for physical properties independent of temperature. The solution also
applies only outside of the fused zone of the weld. The time temperature curve

for all points inside the fused zone are generated by

- TB & il & % , (2)

where To' q, K, and () are identical to the variables defined for Equation (1).

The multipass welding of a pipe is modeled by the following procedure.
Temperatures will be calculated for the root pass by applying and locating the
main heat source at the centroid of the rvot pass. For the second pass, tempera-
tures are calculated by locating the heat source at the center of the second pass.
The total temperature will be obtained by adding the temperatures to an experi-

mentally deterinined ambient temperature for the seoncd pass.

Numerical Results for Temperatures

The temperature model was used to generate temperature-time profiles
for comparison with the thermocouple data. These comparisons are shown in
Figures 3 and 4. Figure 3 displays comparisons for the gas-tungsten arc root
pass and Figure 4 shows comparisons for the second or gas-metal arc pass. The
smallest time value in each figure corresponds to the time at which the thermo-
couple nearest the weld centerline reached its maximum temperature. The difference
betwecen the results of the temperature modecl and the experim-ntal data was less

than 9 percent for the first pass and less than 17 percent for the second pass.
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FPinite Element Model for Residual Stresses

. Pigure 5 shows an axisymmetric, finite element representat on for a
portion of a 323.85-mm diameter pipe welded by two passes. The cross section
of the pipe and the weld groove are rfftcoontod by finite elements. Each element
is assigned to one of three zones. Zone 1 represents the weld material that is
being deposited. Since the model consists of finite elements representing the
entire weld region, a zone with essentially zero stiffness is assigned to eleren:s
in the areas which are to be filled by subsequent passes. This artificial zone
is represented by Zone 2. Zone 3 consists of a portion of the pipe and the
previously deposited weld material that experience a transient temperature increas:
as a result of the welding.

During each weld pass, thermal deformations are calculated from tempera-
ture distribution: determined by the thermal model. These residual deformations
at the end of each pass are added to determine an updated ccnfiguration of the
model beflore analyzing the next pass. Therefure, a large deformation, elastic-
plastic problem is broken into a series of incrementally linear problems. The
analysis procedure also includes temperature-dependent material properties which
are varied for each pass. Material properties of 304 stainless stecl used in
this study are shown in Figure 6 as a function of temperature.

The analysis procedure is also based on several assumptions given
as follow.. Melting or dilution of the pipe material is not included in the
analysis. The mass of the weld and base materials are also neglected. The
shape of each weld pass is obtained from photographs of the experimental weld-
pass cross sections.

An axisymmetric finite element computer program with the capabiliry
to model elastic unloading from an elastic-plastic state of stress was used to
represent the pipe. The need to include unloading of this type arises because .
high stresses that occur near the weld are reduced a- the weld and base metal
cool. Thus, finite elements in this area must permit a reduction in stress
while maintaining a residual plastic strain. In the computer program, an unloac-
ing criterion is automatically checked at each element. The criterion is a
reduction of equivalent stress between two consccutive load increments. If an

element meets this criterion, then during the next load incrcment that element is

. assigned a stiffness based on the elastic material properties.
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Numerical Results

A numerical test case fpt unloading was conducted to demonstrate that
the stress-strain behavior of the elements could follow the input stress-strain
curve. A stainless stecl with a yield stress of 220.0 MPa, a thermal expansion of
17.6 x 10.6 an/mo/C an {initial modulus sf 186 x 103 MPa, and a modulus of 20.7 x 10
above the yield stress was selected for the tcit case. A thermal load of 66 C
vas applied to a 25.4 mm x 76.2 mr steel plate of unit thickness in four load
increments, and reduced to 33 C in four increments. All sides of the plate were
rigidly clamped. The stress-strain behavior of a typical element during this
loading history is shown in Figure 7 along with the theoretical curve for the

3

stress-strain behavior.

Computed values for the residual stress at the inner and outer surfaces
of the two-pass welded pipe are compared to the experimentally obtainad values in
Figures 8 and 9, respectively. Qualitatively, the experimcntal peints and the
analytical curves agree well. As can be seen from these figures, the quantitative
agreement at the inner surface is better than that for the outer surface, and
the hoop stresses generally show better agreement than the axial stresses at both
surfaces. The figures show that some oscillation in the calculated hoop stresses
occurs in the hoop stresses at the outer surface. This is due to the discontinuicy
of modulus which results at the interface between the weld material and pipe
material. This behavior is more noticeatle at the outer surface because during
the placement of the ocuter pass, the root pass and the pipe material act as one
material, and oscillations in the stresses due to the prior application of the

inner pass are reduced by the plasticity resulting from the outer pass.
Deformations of the welded pipes were alsc compared with measured

values as a means of verifying the model. A comparison of predicted values
and measurements for the two pass weld are shown in Figure 10. This figure
shows good agreement between the predictions on the model and the data.

The figure also shows that the results are not overly sensitive to logical
variations in representing the temperature distributions. This is a

desirable trait for the model.
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Modeling Argonne National Lnborntogz gANLZ
Experiment, Seven-Pass Weld

The data for this girth-butt welded pipe was obtained from measure-

ments taken by ANL based on lcfcrcncc.)(Zb) and [25]. The weldment is
denoted by W 27A and was selected because of the relatively small pipe
diameter. This pipe is Type 304 stainless steel with an outer diameter
of 4.5-inches and a thickness of 0.337-inch. The cross section is shown
in Pigu-e 11.

The finite element grid generated for the seven-pass pipe is shown
in Pigure 12. The model has 314 elements and 350 nodes. The material
vas 304 stainless steel with the assumed temperature dependent properties
shown in Figure 6. Figure 13 shows a comparison of the calculated and

experimentally measured maximum temperature profiles.

Residual Stress Calculations

Figure 14 shows a comparison of experimentally determined
stresses and values computed from the model for the inside surface of the
ANL seven-pass welded pipe. The bars on this figure indicate the effect
of taking data at different angular positions about:the pipe circunference.
The effect of nonsymmetric behavior about the weld centerline is indicated
by the right and left symbols. Again, the side of the pipe on which the
last pass was applied showed the largest experimentally measured stresses.
The results indicate that the concept of spreading tte heat input over the

entire weld layer appears to be an effective representation.

Modeling Gereral Electric Company
Experiment, Thirty-Pass Weld

This girth-butt welded pipe was fabricated by GE and selected
because of the relatively large number of weld passes. The pipe material
is Type 304 stainless steel with an outer diameter of 28 inches and a
thickness of 1.3 inch. The cross-sectional geometry of the thirty-pass
weld was obtained from Figure 15 which was obtained from the GE report

describing the experiment, Reference [26].
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FIGURE 11.
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The finite element grid for the thirty-pass pipe is shown in
Figure 16. The model has 214 elements and 248 nodes. The material
properties used with this model -are shown in Figure 6.

The computed residual stresses for the inside surface of the
thirty-pass model are compared with experimental measurements in Figure 17.
The bars on this figure indicate the effect of taking measurements at
different angular locations around the pipe circumference. Though experi-
mental measurements were made on both sides of the weld centerline, data
points from both sides generally fell within the same range.

The calculated stresses in both the axial and hoop directions
agree quite well wvith the data. The axial stress sign reversal agrees
vith the experimenta! values better than for the seven-pass pipes.

One aspect of the modeling of pipes with large numbers of passes,
that was briefly addressed during the study of the thirty-pass pipe, is the
possibility of grouping layers of passes in the analysis procedure. At
this time, not enough studies have been done to fully answer the questicn
of hov many passes can be represented by one layer in the model. However,
results indicate there is merit to the modeling concept of using a layer

that contains one row of weld passes.

Preliminary Application of the Residual Stress Model
to a Weld Repair of a Pressure Vessel

The residual stress model described here has many potential
applications to welds of pressure vessels and pipes. One such application
is to understanding the residual stresses resulting from a weld repair of
& fressure vessel. It is emphasized that the model, in its present form,
would require some extensions before accurately representing several
aspects of the problen. Noneth:zless, it 1is of value to apply the model to
this problem with the intent of obtaining qualitative results. The
following contains a descripéion of the vessel, the weld repair cavity,
and the model. A comparison of residual stress data and results obtained

from the model 1s also presented.
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Description of the Weld Repair

The weld repair of interest was done on the HSST intermediate
vessel V-8, The same weld repair procedure was applied to a two foot long
prolongation cylinder with comparable dimensions to the cylindrical section
of the vessel. The dimension of the weld cavity and the cylin [cal section
of the pipe are shown in Figure 18. The vessel material is ASTM A533,

Grade B class 1 carbon steel. The size of each weld bead is about .1 inch
by .1 inch. Thus, it is estimated that close to 1000 weld passes were
required to fill the weld cavity.

Results of Residual Stress Model

The residual stress data for this we.d repair was available
along a line around the circumference of the cylindrical section of the
vessel. The model is not three dimensional and cannot represent the three-
dimensional aspects of the weld cavity geometry. A model was selected
to represent a section of the vessel in the hoop direction through the
center of the weld cavity. Another approximation in the model concerns
modeling the large number of weld passes. The total number of filler
passes were modeled as a single deposit of material. Because of these
approximations in the model, quantitaflvcly accurate results were nct
expected. However, qualitative comparisons with the data should be attain-
able because the model does include some aspects of the geomtry and the
material properties. Figure 19 shows the comparison of results obtained
by computations with the model and residual stress data obtained at Oak
Ridge National Laboratory. The model exhibits good agreement with the
hoop stress data as shown by comparing the solid and dotted lines. Hoop and
axial stress distributions from the model are on the outer surface of the
vessel. The Oak Ridge data were obtained on the outer surface and from
points just below the outer surface. Axial stress data is shown at one

location and 1s also in agreement with the results of the analysis. These

comparisons are very encouraging and suggest that the model can be a b

useful tool for residual stresses in weld repair.
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CONCLUSTONS 50,
The residual stress .AZ deformation mode. is based on a temperature
model and a finite element analysis model. The model includes elastic-
plastic temperature dependent -atcrial'séhavior for the weld and the
pipe, elastic unloading from an elastic-plastic stress state, the effect
of geometry changes due to welded distortions, the number and size of weld
passes and the parameters included in the temperature analysis. Good
comparisons between experimentally obtained residual stress data and
computed values from the finite element model were obtained for the two
Pipes welded during the program and for two pipes reported in the literature.
The number of weld passes in these pipes ranged from two to thirty. A
comparison of residual stress data and preliminary results obtained for a
veld repair of the HSST-Intermediate Pressure Vessel (ITV-8) indicate the
model can, with modifications, be applied to studying weld repairs.
It is noted that the residual stress data werenot all obtained
in the same manner. The Battelle data was obtained by a chip removal
procedure. The Argonne and General Electric data were obtained by removing
sections of the weldment, and the Oak Ridge data was obtained by a hole
drilling technique. Thus, the model results compared well with various
types of residual stress measuring techniques. ‘
Based on the results of this study it is concluded that
® A mathematical model was developed to predict the
magnitude and direction of residual stresses in
girth-butt welds.
e The model has been verified for pipe welds varying
from 2 to 30 passes. A total of four pipes were used
in the verification.
® The model predicted residual deformations that were
in excellent agreement with data taken from a welded
pipe.
® The model for the pipes is axisymmetric and does not
contain circumferential variatons of residual stress.
However, the model for the weld repair does contain

circumferential variations in the residual stresses.
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The accuracy of the model is due to the represeatation
of the complex nature of the welding process. Hence,
the program is of equal complexity and sophisticetion.
The model has been verified for the welds described
in this enclosure to the Research Information letter.
Purther studies are needed before it can be verified
for other geometries or weld types.
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