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ABSTRACT

This report summarizes the many investigations made on the
empricial Bayesian analysis of component failure data. In this study
the analysis of attribute data of the failure-on-demand type was con-
sidered for components with low failure probabilities. Major areas
emphasized in the study include (i) the development of computer tech-
niques to obtain estimates of the prior distribution from observed
failure data, (ii) the use of simulation studies to investigate the
inherent properties of different prior parameter estimation techniques,
(1ii) the computation and comparison of probability and confidence in-
tervals for the failure probability of individual components, and (iv)
the use of non-beta prior distributions such as a mixture of beta
distributions or a gamma distribution.

Four methods were examined for estimating parameters of the assumed
prior beta distribution from failure data: (i) matching the moments of
the prior distribution to those of the data, (ii) matching the moments
of the marginal distribution to those of the data, (iii) the maximum
likelihood method based on the prior distribution, and (iv) the maximum
likelihood method based on the marginal distribution. From the analysis
of actual failure data for diesel engines and the analysis of failure
data randomly generated from a known beta distribution, it was found
that method (i) is computationally the simplest, almost always yields
parameter estimates, gives the smallest bias and mean square error in the
parameter estimates for small sample sizes, and yields estimated prior
distributions which are more conservative from a safety viewpoint than
those estimated by the other estimation methods. These findings are
very significant for application purposes particularly since methods (ii),
(iii) and (iv) are generally used for estimation. Moreover the last
three methods occasionally failed to give parameter estimates or occa-
sionally produced totally unrealistic parameter estimates for low prob-
ability failure data of small sample size (510). Method (iii) almost
always failed for samples of size greater than 20, and hence is judged
unsuitable for the analysis of failure data from components with low

failure probabilities.
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Computer programs are presented for calculation of (i) beta parameter
estimates by the three viable estimation techniques, (ii) variance and co-
variance estimates associated with the prior parameter estimates, (iii)
plots of the estimated prior distributions, (iv) plcts of the posterior
distributions,and (v) confidence and probability intervals for corponent

failure probabilities.



FOREWORD

The overall purpose i this project was to apply computer techniques
to investigate properties of parameter estimation methods for use with
Bayesian statistical analysis of component failure data. In this final
report, the results obtained from the many investigations begun under
this contract are summarized. During the course of this project several
major statistical analysis programs were developed, and many important
discoveries were made about the characteristics of several statistical
analysis procedures. The success of this project depended upon the
cooperative efforts of many people. In particular the authors would
like to thank W. Buranapan, R. Lakshminarayan, Way Kuo, T. Applegate,
and Yang Pan who helped the authors during various phases of this work.
Also special appreciation is extended to W. E. Vesely who reviewed much

of the work and suggested many avenues of fruitful investigation.
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1. REPORT SUMMARIES

1.1 Executive Summary

In this project, statistical methods were developed to estimate
the uncertainty distributions for component failure probabilities ("per
demand"). In WASH-1400, a log normal distribution was used to describe
the uncertainties on the compcnent failure probatilities. The log normal
was chosen because it seemed to fit adequately the sparse data. The
particular log normal distribution selected for a component was based on

examination of general industrial data and on judgment.

As more failure data are collected the log normal distribution may
not be adequate to describe the uncertainties and variations associated
with the data. Also, instead orf subjectively estimating the parameters
of the distribution (e.g., the spread and median for the log normal),
the parameters of the distribution should be estimated using formal
statistical techniques. Such formal estimation of the parameters is

based soley on the data themselves and not on any subjective judgment.

In this project, a beta distribution was used to describe the un-
certainties in the component failure probabilities. The beta distri-
bution is the distribution most coften used to describe the variation
of a quantity which ranges from O to 1 (here the component failure
probability). The beta distribution is flexible in that it can accommo-
date a great many shapes over the interval 0 to 1, some of which are roughly

similar to the log normal in shape and some of which are very different.

For the beta distribution, techniques are developed to estimate
the parameters of the distribution soley from the observed data of failures
and successes for a set of components treated as coming from the same
population. For the components in the population, it is not assumed
that their failure probabilities are necessarily equal but rather that
their variation is describable by the beta distribution. Because of
the different distribution shapes accommodated by the beta, this
assumption for the population is much less restrictive than assuming
equal probabilities. (If indeed the probabilities are very nearly
equal, then the beta distribution which best describes the components

will be very peaked about the representative value with small spread.)
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A particular estimation technique called "method i" in the
subsequent technical discussions was found to be the best technique
for estimating the beta parameters. There were several evaluation
criteria used for "bestness" and method i was the best in all of these
criteria. This finding is significant since method i is not the
usual method employed in statistical analyses to estimate the beta

parameters.

Comprehensive analyses and sensitivity studies were performed to
evaluate the properties of four different parameter estimation techniques
and the adequacy of using the resulting beta distribution (with the
ectimated parameters) to describe failure probabilit: variations. Diesel
data obtained from nuclear plant Licensee Evaluation Reports (LERs) were
analyzed as an example of actual collected data. Monte Carlo calculations
were also performed to generate simulated data representing other possible

data behaviors. 11 these analyses are described in detail in this report.

Finally, computer codes were produced to allow the analyst or
engineer to fit his own data with the best fitting beta distribution.
These distributions can then be used in the same manner as the log
normal distributions were used in WASH-1400--to determine the uncertainties
in the system and accident probabilities from the uncertainties in com-
ponent failure probabilities. The computer programs are documented in

the Appendices to this report.
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1.2 Technical Summary

This report is a summary of investigations into methods for the
Bayesian analysis of failure-on-demand attribute data. Of particular
interest was the analysis of components with low failure probabilities, and
to illustrate the various analysis techniques, both actual failure data for
emergency diesel engines at U.S. nuclear power plants and simulated fa’ ire
data have been used. From this study many features of Bayesian analysis of
low probability events have been determined and viable computational tech-
niques to apply this analysis to low probability failure data have been
developed.

1.2.1 Estimation Techniques for the Prior Distribution

In Section 3, four methods for estimating values of the parameters of
the assumed beta prior distribution from observed failure data are reviewed.
These methods are (i) matching the moments of the prior distribution to
those of the failure data, (ii) natching moments of the marginal distri-
bution to those of the data, (iii) the naximum likelihocd method based on
the prior distribution, and (iv) the maximum likelihood method based on
the marginal distribution. In this phase of the study the following results

were obtained:

«Computer codes were developed to estimate the beta prior parameters
by each of four estimation techniques.

*Estimation of the variance of the parameter estimators were performed
for methods (i) and (iv). For method (i) a first order Taylor's
series expansion technique was used to obtain variance estimates
of the beta parameters from the variances of the data moments. In
method (iv) both an exact and an approximate method for values of
the lower bound of the variances aad covariance were used (based
on the Cramer-Rao-Frechet inequality for the covariance matrix).

The approximate method was found to g.ve nearly identical results
compared to those of the exact method.

*The prior matching moments technique (wethod (i)) was the only method
which yields closed-form results for the parameter estimates. Further,

the estimators were shown to be positive for very mild restrictions on
the failure data.

*The prior maximum likelihood method (method (iii)) was shown to be
infeasible for any failure data sample for which zero failures were
observed for any component.

*For certain groupings of the diesel engine failure data, both marginal-
based estimation metltiwas (methods (ii) and (iv)) were observed to
yield no numerical solutions.
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*The observed diesel engine failure data were grouped by manufacturer
and by number of starts and beta prior estimators were obtained for
each grouping. For the results obtained with the prior matching
moments method, only a few significant differences at the 0.05

level were found.

*Methods were developed for placing error bands on both the es* !mated
prior density and prior cummulative distributions. These methcods,
which require variance and covariance estimates of the beta para-
meter estimators, were applied to estimated prior distributiors for
the diesel engine data.

Based on the diesel data analyzed, the prior matching moments
technique (method i) appeared to be the best of the four methoas for
estimating the beta parameters from the data. The techniques for esti-
mating variances and error spreads also seemed to be suitable fcr
practical applications. The diesel data themselves did not show any
strong clustering into distinct groups when analyzed by the various

Bayesian approaches.

1.2.2 Characteristics of the Estimated Beta Prior

To determine how well the four estimation techniques for the prior
parameters are able to predict the beta prior distribution, all four methods
were used to analyze many samples of simulated failure data which were
generated from a known beta-binomial (marginal) distribution. In this way,
properties of the sampling distribution of the estimators and distributions
of other related statistics were obtained. Important results from this

phase of the study include:

*Only the prior matching moments estimation technique (method 1)
always yielded realistic prior parameter estimators for all 65.0
simulated data samples of various sizes.

*Both marginal-based estimation techniques (methods ii and iv) would
occaslionally fail to yield parameter estimates or yield outlier
estimates which were much too large in size. This deficiency was
more severe for data generated from a beta prior skewed towards

low failure probabilities than for data generated from a symmetric
beta.

*The distributions of the prior parameters estimators for all four
estimation techniques were found to have positive bias for small
sample sizes (Ng20) which ’‘ecreased in magnitude as the sample size
increased. The prior matching moments estimators had smaller bias
for all sample sizes, while the estimators from the twe marginal-
based techniques had the largest bias.

*The mean squared error and variance of the estimators for all four
methods decrease as the sample size increases. The estimators obtained

kg 1426 216



from the prior matching moment methods have the smallest variance
while the marginal-based methods produce estimators with the largest
variances for samples of sizes Ns50.

*For small sample sizes (N$10) the median of the prior parameter
estimators from the matching moments method is nearest to the true
values. However for larger sample sizes (N250) the median appears

to underestimate the true values while the medians from both marginal-
based methods approach the correct parameter values.

*There is a large correlation between the beta parameter estimates.

*The distribution of the estimated prior mean and variance was obtained
from the parameter estimators. The distribution of the prior mean
estimators was found to be nearly identical for the three estimation
techniques considered (prior matching moments and the two marginal-based

methods). No outliers were observed in the distribution of means
since even the outlier estimates of the beta parameters yielded

good values of the mean. However the large outlier parameter esti-
mates (obtained only with the marginal-based methods) yielded prior
variance estimates which were far too small.

*From the estimated prior distributions, the distribution of the esti-
mated 95-th percentiles (i.e., the failure probability for which 95%
of the area of the failure distribution falls below) was examined.
The prior matching moments method appeavs to be slightly more con-
servative from a safety viewpoint since slightly higher values of

the 95-th percentiles are obtained with this method than with the
marginal-based techniques. Further, the marginal-based methods
yielded several 95-th percentile estimates which were much too small,
a result of the outliers obtained for the prior parameter estimators.

*The distribution of the fraction of the estimated prior distribution
greater than the true 95-th percentile was also investigated. Again

the prior matching moments method gave slightly more conservative
results since the mean of these distributions were always slightly
greater than the true value of 0.05, while the mean of the distributions
produced by the marginal-based techniques were observed to oscillate
around the true value. The variances of these distrilt utions generated
by the different estimation technique were nearly edual .ad they de-
creased as the sample size increased.

*The variance and covariance lower bounds for the pArameter estimates
determined with the marginal maximum likelihood method were compared
to the variances of the parameter estimator distributions. The prior
matching moments method (which produced no outliers and hence had the
smallest variances) came closest to these lower bounds and for large
sample sizes (N250) actually were smaller. The estimator variances
from the marginal-based methods were more than 50 to 100% higher than
the lower bounds even for sample sizes as large as 50.

*Bias removal schemes for the beta parameter estimators were briefly
examined for the prior matching moments method. The bias was seen to
decrease inversely to the rample size; however, no completely satis-
factory empirical bias removing formula was found.
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*The distribution of the beta parameter estimators as determined by

the prior matching moments method was found to be described well by

a shifted log normal distribution.

Thus based on these additional simulation studies, the prior matching
moments technique (method i) was again the best method for estimating the
beta parameters from the failure data. The parameters estimated by this
method generally had the smallest bias and the smallest mean square err-r.
Moreover, this simple prior matching moments technique always yielded
realistic parameter estimates (unlike the other three estimation tech-
niques examined) and consequently is well-suited for practical appli-

cations.

1.2.3 Probability Intervals for the Estimated Failure Probability

The calculation of both the classical confidence interval and the
Bayesian probability interval for the estimated failure probability of
an individual component with a given failure history was described by
the equation involving the incomplete beta function. It was shown that
the solution for the intervals could be expressed in terms of the Snedecor
F-distribution. Also an approximdte solution in terms of the xz distri-
bution was derived. For the special case of no failures observed for the
component, explicit closed form results were obtained for the interval.
Finally an algorithm to obtain a numerical solution for the probability
limits was developed. Several numerical examples for low failure prob-
ability components are presented.

With these techniques, the analyst or engineer can thus calculate
the uncertainty interval on the component failure probability by either

Bayesian or classical techniques.

1.2.4 Extended Beta Priors

Two mq}hods were briefly examined for describing the Bayesian prior
distribution when this distribution was not a member of the beta family.

*For the case in which data are generated from a mixture of different
beta distributions, the resulting overall prior (a weighted sum of
betas) is itself not in the beta family. Methods are described
whereby this overall prior may be approximated by a single beta.
Numerical examples are given, and a method for constructing the
weighting fractions is developed.
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«It was shown that for low failure probability components, the binomial
conditional distribution could be approximated by a Poisson distribution,
further, the beta prior distribution was shown to be described approxi-
mately by a gamma distribution.

*For the diesel engine failure data, both the approximate gamma moilel
and the beta distribution gave nearly identical resnlts for the rrior
distribution.

«Both the binomial-beta model and the gamma-Foisson approximate model were
found to give very similar results for the mean and variance of the
posterior distribution for each diesel engine.

Based on these findings, the analyst confronted with a reliable
component can thus treat ite failure occurrences as being Poisson with
the Poisson parameter having a gamma distribution to describe the un-
certainty and parameter variations. This treatment, which is often
simpler to apply, will give results which are essentially the same as

the exact binomiai-beta approach.

1.2.5 Computer Code Development

A major aspect of this study was the development of computer codes
to perform many of the analyses described above. Although many programs
were written in the course of this study, two were thought to be of
general interest and are included in the Appendices of this report.

«BETA 111 calculates estimates of the beta prior parameters by all
four estimation techniques as well as variance estimates of the

parameters for methods (i) and (iv). Options are available to give
plots of the estimated beta prior density and cummulative distributions.

*TAILS calculates both the classical confidence interval and the

Bayesian probability interval for the failure probability of a
component with a given failure history.

These codes give the analyst or engineer the capability to analyze
data of failures and successes of a set of components which are assessed
to be similar but not necessarily having exactly the same failure prob-
abilities. The codes will estimate the parameters of the beta distri-
bution describing the variation of the component failure probabilities.
This distribution can then be used in subsequent reliability and risk

analyses.
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2. INTRODUCTION

0f considerable importance in the reliability analysis of nuclear
power plants is a description of the distribution of failure prob~
abilities for plant components, e.g., standby diesel generators. The
performance data for a particular component, e.g., k failures in n start-
ups, may be so sparse or may vary so much among "similar" components that
classical estimates of the failure probability (k/n) may be deemed of
little use. The classical estimates k/n are particularily noninfermative
when the component has never been observed to fail (k=0). 1In an effort
to obtain a more meaningful description of the failure probability of such
a4 component, additional external information is often inserted into a
probability moc for the component. For example, use of failure data
from similar components anu/or an engineer's judgemental estimates of
the component's reliability can be incorporated with the actual perfor-
mance data of a particular component to yield a better probability mod. i
for that component. The components which are judged to be similar do
not all have to have exactly the same failure probabilities; it is only
assumed that they are described by the same distrilution. The insertion
of ervvaneous information is the cornerstone of the Bayesian method [1]
which over the past few years has been increasingly used in the description

of components with low failuie probabilities.

2.1 Bayesian Statistical Description of Failure-on-Demand Data

For any particular component in a power plant, e.g., a standby diesel
generator, the probability of failure, p, is often assumed to be constant
and not to vary among similar components. Under the assumption that p is
constant, the probability of obtaining k failures in n tests, e.g., k
nonstarts in n tries to start the standby diesel generator, is given
by the binoaial distribution,*

£(k|n,p) = [‘;) pia-p™E (2.1)

&
In this report, a bar is used to separate the random variables from

the constants, i.e., f(kln,p) denotes k is a random variable and n
and p are constants,

L
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For a power plant component, the failure probability, p, is sometimes
better mcdeled as being a random variable which will vary both with
experience, e.g., learning to operate the generator better, and with
the plant, e.g., different plant conditions may cause variation in the
failure probability. In these cases when sampling similar components
from different plants, a distribution of failure probabilities is more
realistic a model than assuming all failure probabilities to be equal.
The distribution for the failure probability between similar components
is termed the prior distribution. Because of its ability to model a
variety of different distributional shapes and because of the ease with
which it is incorporated into the mathematical description, the beta
distribution is usually used as the prior distribution to describe the
variation in the failure probability [3]. The beta distribution (density
fuaction) for p, g(pla,b), is given by

2*: g™t

g(pla,b) = 5(ab) , (a,b>0) , (2.2)
where
B(a,b) = [§ x*7F (-0 ax = §§§%£§91 2.3)

and I is the gamma function. The mean, u, and variance, 02, are

given by [2]

(2.4)

and

o = °§ . (2.5)
[(a+b) " (a+b+1)]

As previously stated, the beta distribution of Eq. (2.2) is often
used because (i) the range of a and b describe a wide variety of distri-
bution shapes with support on (0,1), and (ii) it ie combined analytically
with the binomial distribution with ease. The values of a and b which
determine the explicit distribution of p must be subjectively assumed
or can be estimated from experimental data, i.e., from records of failures
and successes. Methods for the estimation of a and b are presented in
the next section.

When p is treated as a random variable, the probability of exactly
k failures in n tries, h(k|n,a,b), is obtained by integrating the binomial
distribution Eq. (2.1) over all p weighted with the beta distribution,
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1
h(k|n,a,b) = J f(k!n,p) g(pla,b) dp
0

. [nl_B(a+k,b+n-k)
b} e . @.)

The distribution h(kin.a,b) is termed the marginal distribution since all
possible values of p are considered. This particular marginal distri-
bution is called the "beta-binomia." or "hyperbinemial" and is encountered
frequently in Bayesian statistics [3]). The expectation and variance of

k described by the above marginal distribution are found to be

E(k|n,a,b) = prrgll 2.7)
Var(k|n,a,b) = Dablatbin) (2.8)
(a+b) " (a+b+1)

The prior distribution, which in this study is assumed to belong
to the beta family, describes the distribution of the failure probability
among all components judged tc be similar. The prior distribution is
based on past experience and information. If a particular component
is observed to fail k times in n demands, this additional (new) infor-
mation can be used to revise the distribution for the possible values
of p for the cumponent. This updated distribution is called the posterior
distribution and depends upon the original assessment of the distribution
for p (the prior distribution) and the observed k failures in n demands
(the new information). From Bayes' theorem one can calculate this
posterior distribution, £(p|k,n,a,b), for a component which has experienced
k failures in n tries and which is assumed to belong to a class of com-
ponents whose failure probabilities are distributed according to the

prior distribution. Explicitly Bayes' theorem can be stated as

f(k|n a,b
£(p|k,n,a,b) -—ngztfﬁfffgy‘-)'.

which upon substitution of Egqs. (2.1), (2.2), and (2.6) yields the posterior
distribution

atk-1 btn-k-1

£(p|k,n,a,b) = B B(a+£f;£g_k) v (2.9)
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This posterior distribution of p for a particular component is also a
beta distribution but with larger parameters, a+k and b+n-k. The larger
parameters generally produce a smaller variance (see Eq. (2.5)) which
corresponds to more knowledge or less uncertainty about p. This result
is intuitively reasonable since the description of p is based on both
prior intuition (Eq. (2.2)) as well as actual experimental knowledge.
Consequently, one would expect a higher degree of certainty (about p)
for this case than a case in which only prior intuition or actual
experimental knowledge is used.

The posterior distribution can be used to obtain representative
values for the failure probability of a particular component. For

example, the posterior mean value for p, P is from Eq. (2.4)

B’
+
Fiplk,n,a,b) = pg = ;f_b—kﬁ ' (2.10)

By contrast, the classical estimator of the failure probability for a

particular component is
k
p : ¢ (2.11)

For many components the failure probability is intentionally designed
to be very small, and in a relatively small number of tests, e.g., attempts
to start a standby diesel generator, often zero failures will be observed.
From these data, classical statistics would yield an estimate of the failure
probability of the component to be zero, which is unrealistic. Bayesian
statistics, however, which uses prior information based upon experience
or information from similar components will give a nonzero value for
the expected failure probability. Furthermore, the Bayesian approach
gives a complete distribution £(plk,n,a,b) for the possible values of
the failure probability for a particular component and not just one
"best" estimate. In the Bayesian framework, the posterior distribution
represents the complete knowledge of the uncertainty of the failure

probability for a component.

2.2 Scope of Study

In this report the results of a study are reported on various techniques

end applications of the preceding Bayesian analysis to describe the failure
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of comporents with expected low failure probabili-.jes. A major portion
of this study deals with methods to estimate values of the parameters

of the beta prior distribution. Sometimes the particular prior distri-
bution for a particular application is o -‘v.ced from expert judgment;
however in this study four techniques for estimating the prior parameter
based upon only observed failure data are investigated. Such techniques
which use only observed historical data are commonly referred to a
"empirical" Bayes methods since the prior parameters are empirically
deduced from the data. These techniques were then used to analyze
failure data obtained from standby diesel enziues at many U.S. nuclear
power plants. Methods were also investigated to -btain estimates of

the variance and covariance asso-. ‘ed with the bets »rior parameters.
With these variance estima’.. techniques were develope. for obtaining
confidence bands around the prior distributions to account for the fact
that the beta parameters were es :=~* ., from data.

Also considered in this study was an evaluation of which of the para-
meter estimation procedures is "best" for use with low failure event
situations. Through a cimulation study, the biasedness and mean error
of each estimation technique are evaluated. Further the effect of sample
size is examined - an effect of considerable importance for situations
characterized by a paucity of historical failure data.

Methods are also presented whereby both the claisical confidence intervals
and Bayesian probability intervals for the failure probability of a particular
component can be evaluated. Of considerable importance in this stage of the
study were the development of accurate numerical techniques to evaluate these
intervals as well as the development of approximate methods.

In Section 6, brief investigations are presented of the effect of
mixing two distributions and using a single prior distribution to model
the mixed distribution. An alternative description of the failure-on-demand
problem is also presented by using a Poisson conditional and its natural
conjugate, the gamma distribution, as the prior distribution.

In the appendices of this report, two of the major computer programs
developed in this study are described. These programs can ve used to
evaluate the beta prior parameters from historical failure data, plot
estimated prior cumulative and probability distribution functions, and
calculate probability and confidence intervals for the failure probability.
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3. [EMPIRICAL METHODS FOR ESTIMATING THE PRIOR DISTRIBUTION

To use the Bayesian approach, the prior distribution, g(p), of
Eq. (2.2) must first be obtained. Generally this is done by (i) subjective
assessment, (ii) past experience, or (iii) from a fit to experimental data
from similar components. For any particular component, given only its
number of failures-on-demand and total number of demands, there are in-
sufficient data to estimate a and b. However, if several independent
sets of data, i.e., failure records for several components, are assumed
belong to the same population and consequently to be described by same
prior probability distribution, this observed data can be used to obtain
estimates of the parameters of the prior distribution.* In this chapter
four methods for obtaining estimates of the beta prior distribution from
failure data are discussed and applied to the analysis of diesel engine

data.

3.1 Method of Matching Moments of Prior to Data

Although there is no unique method to estimate the parameters of the
prior distribution from the failure records, one method of estimation is
to equate the mean (the first moment) and the variance (the second moment
minus the square of the first moment) of the failure probability estimates
to the corresponding expressions for the prior model involving the distri-
bution parameters. In effect, these parameters are estimated by '"matching
moments' of the data to those of the prior model. If there are ki failures
out of n, tries for the i-th component of a random sample of size N, an
estimate of the failure probability, pi, for each sample is ki/ni’ and

thus the observed mean and variance of the pi estimates are

N
1 i
i Z _n £3.1)
and
N k
2 1 3 2
o = N-1 Z (ni . i]ob) : A3.%)

*It is interesting to compare this assumption with the usual classical
analysis. In the classical analysis, the failure probabilities of similar
components are assumed to be equal. Here, we allow the probabilities to
vary and only assume the variation is describable by a general beta distri-
bution whose parameters are to be determined. ‘ 426 225



where N is the total number of components in the same population for which

failure data are available. By matching these sample moments, which use
only the observed data, to the expressions of the mean and variance of the
assumed beta prior distribution (Egs. 2.4) and (2.5)), a relationship between
the parameters of the distributions, a and b, and the observed data can

be obtained, namely

= 8
0ob Mo b (3.3)
and
0% wof: ab . (3.4)

(a+b)? (atb+l)

These equations can be solved for a and b in terms of ﬁob and dib to give

2

a=9 gy g (3.5)

62 ob ob :

ob
and

W P SR (3.6)

62 ob ob : '

ob

One of the major advantages of this method is its simplicity and
the existence of a closed-form solution for the parameter estimates
(Eqs. (3.5) and (3.6)). However, these solutions for the parameter esti-
mates do not necessarily yield positive values as is required for the
beta parameters. For example the use of failure data {ki'ni} = (1,100),
(1,50), (99,100), (49,50) in Eq. (3.5) yields a negative value for a.
Nevertheless, for low failure probability data, this estimation method
generally gives positive and hence realistic values for the parameter

estimates. To see this, rewrite Eq. (3.5) for a as

ob 2 2
- | {ﬁob " by °ob}'
ob

which upon substitution for fob and oib (which are always non-negative)

from Eqs. (3.1) and (3.2) yields

1426 226



15

fl
ob (1 ¢ * 1 ¢ =2 1 2
a=—== (Elp, -z l0;+ Q p)°}
p ki B B b S B S
ob
fi
1 N
2y ey a-ggepl
6, 1

If the expression for the sample variance (Eq. (3.2)) had been divided

by N rather than (N-1), the N-1 factor in the above inequality would

have been replaced by N, and since 0 :_ﬁi < 1, the right hand side of this
inequality would then be > 0. However if we require the ﬁi to be limited

to a slightly more restrictive range, 0 5‘91 < (N-1)/N, the above expression
yields,

n
a z% 8—;‘3 {Zﬁi(l-ﬁi)} >0 . (3.7)

ob
For sufficiently large N or for small to moderate pi values, this
additional restriction on the pi values is ;nconsequential. Even for
the most restrictive case (N=2), positive estimates of a are always
btained if 0 < pi < 's which is satisfied for low probability failure
data. Finally, if the estimate for a is positive, then so must bec the

estimate of b since from Eq. (3.3)
b = a(l-ﬁob)/ﬁob > 0 ifa>0 . (3.8)

Thus this simple prior matching moments method yields parameter
estimates which are positive for the type of low probability failure
data considered in this study. Although the estimation of Py by
ki/ni may appear to introduce a questionable approximation especially
for low probabilitv events (i.e., small pi), it will been seen in Section 4
that tiris method has several additional advantages over the more complex

estimation techniques also investigated in this study.

3.2 Maximum Likelihood Methoa Based on the Prior Distribution

The method of maximum likelihood can be used to obtain estimates of
the prior parameters by constructing a likelihood function based on the

prior beta distribution. Define the Ilikelihood function
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N
L(a,b|p,sPys++-Py) = 1 glp.|a,b) (3.9)
i N par i

where g is the prior beta defined by Eq. (2.2). Explicitly, this likeli~-
hood function is the probability of observing PysPyseeesPy as values for
the failure probabilities from components 1,2,...,N respectively. The
values of a and b which maximize the likelihood function are called the
maximum likelihood estimators, 4 and B, i.e., the probability of obtain-
ing the observed values is maximized. Intuitively, this choice is very
appealing. The maximum likelihood approach has been shown to have many
general properties and is widely used in statistical analysis [3].

For the actual failure-on-demand problem considered in this study,
failure probabilities, pi, are not observed directly, but rather must be
approximated by the estimates pi- ki’“i' The maximum likelihood estimators

of a and b are then the solutions to

== Inl(a,b) = 0 (3.10)

and

3 -
TS inL(a,b) = 0 (3.11)

Upon substitution of the explicit form of the beta function, g(p), these

likelihood equations become

N

¥(a) - w(atb) - N § Inp, =0 (3.12)
i=1
-1 N

¥(b) - v(atb) - N ] In(l-p) =0 (3.13)
i=1

where ¢(z) = d[inl(z)]/dz, the digamma function. The solution to these
simultaneous transcendental equations cannot be obtained analytically;
however, if d& and b are not too small the following approximate result

may be used [3]:

a = 1/2 (1 g ( )lln]f ¥ e ﬁ lln]'l (3.14)
s = - ‘-p 1 - i - - »
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N 1/n N 1/n N 1/my~-1
Py }[1 ] {3.15)

n Ip - I @Q-p,)
i=1 o i=1 i

b= 1/2 [1-
This approximate solution may also be used as starting values for an
iterative numerical solution of the likelihood equations.

This maximum likelihood method, while suitable for some problems,
is not applicable to those situations in which some of the observed ki
are zero. In these cases the estimated failure probability Py is also
zero and the likelihood function becomes unbounded or zero depending
upon the value of a. Consequently, little use was made of this estimation
technique in this study which was concerned with small failure probabilities
and with data for which k1'0 is not unusual. A variation of this maximum
likelihood technique based on the marginal distribution and which does

not suffer from this deficiency in a zero failure case is discussed in

Section 3.4.

3.3 Method of Matching Moments of the Marginal Distribution to Data
Mcments

An alternative to the technique of Section 3.1 is to substitute the
moments of the marginal (or mixture) distribution of Eq. (2.6) for the
moments of the prior distribution. Conceptually this technique is more
attractive since only the proportion of failures ki/ni (which are observed
data) are involved, whereas in matching the data to the prior moments, the
failure probabilities, Pi» (which were not actually observed) had to be
estimated as kilni'

For the present case, the sample sizes are of unequal sizes, i.e.,

different n,, and thus a weighting scheme should be used in the esti-

i
mation procedure. Define the following statistics:

N k
p_% ) "1‘1 (3.16)
i=1 i
N ki 2
S = w [ﬁ - ——} s (3.17)
121 i ni
where
N
we 1w,
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and wy is the weight assigned to the i-th sample. By setting the above

statistics equal to their expected values (of the marginal distribution),

estimates for the prior mean and variance are obtained [4]:

po=p (3.18)
and
N w w
s-pal ] = (1 --D)]
8% = a(1-9) = = wi - 4 (3.19)
i i i
pal ) v -—=) - ] = Q--9)
gmy . 2 Yooo=1 M .

where § = 1-p . Kleinman [4] fvrther suggests that better estimates are
obtained if S,in Eq. (3.19), is replaced by (N-1)S/N. The choice of
weights is made such that the estimate of u is the linear unbiased
estimate with minimum variance, i.e., weight each ki/n1 with the inverse

of its variance, namely

.
" TTER, D (3-20)
where
r 2 ot/ (u(i=n)) . (3-21)

Once fl and 62 of the prior distribution are calculated from
Eqs. (3.18) and (3.19), the parameters a and b are found by solving
Eqs. (2.4) and (2.5) for a and b. However, to calculate (I and 62, the

weights, w,, must be known, which from Eq. (3.20) implies that r (or 62)

i
must be known. Thus Eqs. (3.18)-(3.20) can be viewed as three equations

for the quancities w,, u, and 02 which can be solved by the following

i

iteration scheme. Choose r = 0 so that w, = n, ("binomial weighting")

and solve for the resulting (i and 62. With these values of 62 and {i

calculate r and new values of w, from Eqs. (3.20) and (3.21) ("empirical

i
weighting"). Continue iterating until {, 62. and w, no longer change
("converged weighting'"). Finally it should be noted that 62 may be

negative from Eq. (3.19). For this case r is set to zero, i.e., only
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binomial weighting is used. One major disadvantage of this method is
that the iterative scheme just outlined occasionally does not converge
or converges extremely slowly. Even the first iteration ("binomial

weighting") occasionally produces infeasible solutions.

3.4 Maximum Likelihood Method Based on Marginal Distributions

A fourth technique for obtaining estimates of beta parameters a
and b from the observed data is based on the marginal or mixture distri-
bution of Eq. (2.6). The likelihood function

N
L(a,blkl,kz...kN,nl_ camy) = n h'a blki,n ) (3.22)

is the probability of obtaining kl,kz,...,kN failures in Nysfyseee,fy
tries of components 1,2,...,N, respectively, for components whose
probability distribution for failure is given by the prior distribution
of Eq. (2.2) with parameters a and b. The values of a and b which maxi-
mize the likelihood function are called the maximum likelihood estimates,
a and b. If k1 and n, are the observed data, then the maximum likelihood
estimates maximize the probability of obtaining the observed values
over all possible parameter values a and -

Unfortunately the maximum likelihood estimators cannot be determined
analytically when the marginal distribution, h, in Eq. (3.22) is a beta-
binomial distribution. Thus numerical methods must be used. Substitution

of Eq. (2.6) into Eq. (3.22) yields

L(a,b) = L(a,blkl. ,nl...nN) =
N I(a+k, )T (btn.~k,)

{ria???‘,)} i [‘ta+b+n; A (3.23)
i=1 i

where
[ni} F'(n,+1)
C. = = —_, (3.24)
i ki T(ki+l)r(n1-ki+1)

The problem is to find the values of a and b (constrained such that

a»>o and b>o) which maximize L, or equivalently, which maximize In[L].
This latter form is preferrable for numerical purposes since the Inl
function varies more slowly than does the I' function. An example of

a typical likelihood function is shown in Fig. 3.1. The extrema of
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Fig. 3.1 A contour plot of the logarithm of the likelihood function for a
three component case (ny=100, ny,=392, n3=230, k1=6, ko=1, k3=11).
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InL(a,b) are obtained from solutions to

J

>a InL(a,b) = 0
2 InL(a,b) = 0
b .
or explicitly
N
N{v(a+b) - y(a)} + J {w(a+ki) - Y(atbtn )} = 0 (3.25)
i=1
and
N
q{v(atb) - ¢(b)} + ] {ubtn ~k.) - y(atbtn )} = 0 . (3.26)
i=1

where y(z) = %;[lnr(z)], the digamma function. The numerical solution of
these two simultaneous e¢quations is obtained by standard numerical tezh-
niques (such as the Newton-Raphson method [5], with the matching moments
solution as the starting points). Care must be taken since (a,b) = is
also a solution of Egqs. (3.25) and (3.26). If the sample data consist
solely of one component (N=1), the only solution of the equation is for
a=b== although a/b is finite such that from Eqs. (2.4) and (2.5) the
mean of the prior is py=k/n and the variance is 02=0 -- an expected result
when only one sample is used (see Fig. 3.2). However, it has been found
that for some data with N>1, Egqs. (3.25) and (3.26) may also have no
finite positive solution.

3.5 Results for Diesel Engine Data

The beta prior distribution parameters (mean, variance, a and b) were
estimated for standby diesel engine data (see Table 3.1) for various engine
groupings by the three feasible methods described in the previous sections.
The prior based maximum likelihood method (see Section 3.2) was not
used as a result of inherent difficulties for zero faili .e cases. A
listing of the computer code is given in Appendix I, and the results are
summarized in Table 3.2.

From these results, several interesting features are apparent. First
the meximum likelihood method (Method III) and the matching moments to
the marginal distribution (Method II) did rot always produce estimates of
the prior variance, i.e, only values of b/a (or the mean) resulted. For

the marginal-based maximum likelihood method, the solution, was for a,b*»
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Table 3.1 Diesel Engine Failure Probability Data [6].

No. of
No. of Starts Failures

Plant Units Manufacturer (ni) (ki)
Yankee 3 GM 100 6
Peach Bottom I 1 = 392 1
Oyster Creek 2 " 230 11
Monticello 2 - 48 5
Turkey Point 3 2 " 23 4
Maine Yankee 2 " 23 0
Fort Calhoun 2 E 12 2
Nine Mile Pt. 2 " 99 0
Surry 1, 2 3 i 33 3
Dresden 2, 3 3 " 126 9
Quad Cities 1, 2 3 - 47 .
Haddam Neck 2 " 87 1
Point Beach 1, 2 2 . 71 2
San Onofre 2 FAIRBANKS 656 3
HB-PRobinson 2 G 73 5
Millstone 1 1 " 35 1
Vermont VYankee 2 - 37 1
Indian Pt.-2 3 ALCO 13 0
Ginna 2 " 95 2
Palisades 2 5 51 2
Pilgrim 2 " 35 2
Zion 1 3 COOPER 17 7
Dresden 1 1 GE 335 4
Big Rock Pt. 1 CATEPILLAR 206 9
LaCrosse 1 ALLIS-CHALMERS 76 1
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but with a finite ratio and hence well-defined mean (see Fig. 3.3

for a contour plot of the maximum likelihood function for the four

ALCO engine case). For the marginal distribution matching moments
method, estimates of r of the prior variance were negaicive. Interesting-
ly, these two methods failed for the same cases.

Second, while the method of matching moments to the assumed
beta prior distribution (Method I) always yields finite positive re-
sults, the estimated means ard standard deviations are always greater
than the estimates obtained by the other methods.

Third, the iteration scheme used to calculate the weighting
values, Wi in Method 11 (marginal distribution matching) did not
always converge evenly or quickly. For example, the iterated results
for the four FAIRBANKS diesel engines are shown in Table 3.3. On
the other hand, the thirteen GM diesel engines gave results which
converged smoothly to five significant figures in only four iterations.

Finally, when they are obtainable the marginal-based maximum
likelihood results and the converged results of matching marginal distri-
bution moments are usually nearly equal, with the former usually yielding
slightly larger estimates of the prior standard deviation. An assessment
as to the ability of these three methods to estimate accurately the
prior parameters from data generaced from a pure beta distribution was
undertaken in the second phase of this study. The results of this
simulation study are presented in Section 4.

In Figs. 3.4 and 3.5 the estimated beta prior distributions obtained
by the prior matching moment s method (Method I) are shown for the diesel
engine data grouped by manufacturer and by the number of starts, respectively.
Notice that the Fairbanks and ALCO groupings appear to be very similar in
shape, while the GM and Others, although of the same shape, have prior
distributions which appear to be quite different from those of the Fair-
banks and ALCO groupings. The estimated prior distributions for data
grouped by number of starts reveal an apparent aging phenomenon. For the
group 0-25 starts the prior distribution has no mode and is highly skewed
towards zero failure probability. The three other groupings all are uni-
modal with the failure probability at the mode (most probable failure
probability) decreasing as the engines age (or more experience 1svcbtained).
In Section 3.7 a more critical comparison is presented of these results

for the diesel engine failure data. \ A'Zé

56
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Fig. 3.3 Contour plot of the logarithm of the likelihood functicn for the
four ALCO r1esei engines of Table 3.1.
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Tables 3.2. Comparison of calculated prior distribution parameters by three
different techniques: (I) matching data to prior moments, (II) i
matching data to marginal moments, (III) marginal maximum like- |
lihood method. |

|

Problem Method Mean, u Stand. Dev., o a b |

13 GM I 0.0592 0.0577 0.9303 14.80 |

Diesel 11 0.0491 0.0373 1.595 30.88

Engines 111 0.0502 0.0437 1.204 22.79

Fairbanks 1 0.0322 0.0266 1.385 41.66

Diesel 11 0.0270 0.0177 2.236 80.58

Engines II1 0.0291 0.0245 1.342 44.81

Four I 0.0294 0.0245 1.364 45.12

ALCO II 0.0309 negative b/a = 31.333333

Engines 111 0.0309 not obtained b/a = ”1.333316

Other I 0.12C 0.195 0.2139 1.567

Four ' 3 0.110 0.159 0.3209 2.584

Engines III 0.108 0.126 0.5550 4.570

Engines 1 0.150 0.169 0.5222 2.949

With 0-25 II 0.151 0.128 1.029 5.808

Starts 111 0.145 0.152 0.6318 3.728

Engines I 0.0492 0.0263 3.287 63.46

With 25-50 II 0.0481 negative b/a = 19.77778

Starts 111 0.0481 not obtained b/a = 19.77775

Engines 1 0.0350 0.0268 1.612 44 .44

With 50-100 11 0.0339 0.0154 4.626 131.7

Starts II1 0.0341 G.0186 3.192 90.55

Engines L 0.0303 0.0281 1.100 35.16

With more I1 0.0283 0.0230 1.447 44,67

Than 100 starts 111 0.0287 0.0271 1.062 35.97
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Table 3.3. Results of Matching Daeta to Marginal Distribution Moments
(Method 11) for the Fa'rbanks Engines.

Iteration Mean Stand. Dev. a b

1 (binomial) 0.012484 0.026654 0.2042 16.149
2 (empirical) 0.0311386 0.0092698 10.9001 339.183
3 0.019762 0.023373 0.68098 33.778
4 €.029899 0.013094 5.0284 163.151
5 0.023544 0.020929 1.2123 50.279
6 0.028791 0.015238 3.4382 115.98
7 0.025300 0.019462 1.6220 62.486
8 0.028030 0.016395 2.8131 97.547
28 0.027004 0.017704 2.2368 80.596
29 0.027000 0.017708 2.2351 21,549
30 0.027003 0.017705 2.2363 80.585
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Fig. 3.5 The estimated beta prior distributions for the diesel engine data of Table 3.1 grouped

by numer of starts. The beta parameters for each distribution were obtained by the prior
matching moments technique.
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3.6 Maximum Likelihood Bounds on the Variances of Prior Parameter
Estimates

One of the most attractive features of the maximum 'ikelihood

method is that, besides yielding estimates of the parameters, this method
can also yield lower bounds on the variances and the covariance of the
parameters. These lower bounds can often be used as useful approximations
to the variances and covariance. In this section a brief review of the
pertinent aspects of this method is presented, and the method is applied
to the problem of estimating variances and the covariance of the prior

beta parameter estimates.

For N independent observation, X 9XgyeeesXy, where the i-th
observat.on is from a distribution hi(xlg), i.e., the marginal
distribution for the i-th component, the likelihood functionm is
defined by

N
L(B[x)sxyecexy) = T h, (8]x,) (3.27)
i=1
where x and 6 represent the sampl: randcm variable and parameter
vector, respectively. The maximum likelihood estimators of 6 are de-

noted by 6 , and are those values of the parameters which maximize

Ly Liley

3
S‘é: L(glxl,xz...xn) ~o R B T RS (3.28)
6 =6

or equivalently maximize InL, i.e.,

g
53; L(glxl...xN) =0, 1i=1,2,...,N.

-~

0=0

The elements of the information matriz 1(8), are defined as

2 2
: 3"InL |_ 3" InL
Iij(g) - E[- aeiaej] - jdx1 Idx2 e deN aeiaej L(ngl"'xN) R

1,3=1,2,.44,N (3.29)
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where the integration (or summation in the case of a discrete distribution)
is over all possible values of variables Xpve e Xy If the distril. tion

of the likelihood function with respect to each parameter is symmetrical

in the neighborhood of é, then

* 1§ 1 3

& | ——— 3 (3.30)
96, 36 36, 96
1% 173) |4

E

|@>

Asymptotic properties of the likelihood function guarantees that
the above approximation is valid provided N is sufficiently large
regardless of the symmetry of the likelihood function.

One of the most important theorems about the maximum likelihood

method is known as the Cramer-Rao-Frechet inequality [3] which states

oii(g) x variance(ﬂi) (3.31)
and

|o (9)I§Jcovariance(éi,6j)| (3.32)

ij
where 0 is the inverse of the information matrix I. In effect this
theorem provides lower bound estimates of the variance and covariance

of the parameters. In fact under rather weak restrictions [3]

lim ~T (3.33)

R E(8] = 8 ,

lim A .

N N[var(ei)] o4 (3.34)
and

lim A A :

e N[cov(@i,ﬁj)] = Oij . k3.35)

With finite sample sizes, the information matrix is thus ofien used to
give approximate values of the variances and covariance which asymptotically
converge to the true values as the sample sizes become increasingly large
[3].

To apply the above results to the problem of estimating the variances
and covariances of the two parameters of the prior beta distribution,

begin by constructing the information matrix for Eq. (3.27),
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)
E{aZZnL} E[azlnL]
aaz \aaab
1(a,b) = - . (3.36)
[aZZnLJ [azlnL]
Bl E
3a’o Al
| b~ 7

The derivatives of the iogarithm of the likelihood function, i.e.,
Eq. (3.23), are given by,

h Z"L(a b) = N{y'(a%b) - v' @)} + § {4’ (atky) = ¢' (atbin )} (3.37)
aa i-1
Zm‘( ob) = N{y'(atb) - ¥"(b)} + f {v' (b+n,-k,) - w'(a+b+n1)}
ab“ i=1
(3.38)
and
gag;:'« ,b) = Ny’ (atb) - igl ¥' (atbn, ) (3.39)

where y'(x) = dzllnr‘(z)]/dz2 is the trigamma function [8] (see

Appendix I for computational aspects of this function). The ex-

pectation values for the matrix elements in Eq

. (3.36) are calculated
from Eq. (3.22), by*

™ - 3 N
E[+] = ) I eeo 1 [f] LGablkyaciky,nyeng) . (3.40)
k1=0 k2=0 kN=0
fi
Since kz.o h(kilni,a,b) = 1, the substitution of the explicit form of the
i

likelihood function from Eq. (3.27) and simplification gives the follow-
ing results for the matrix elements of the information matrix:

The dot in the square brackets represents the various derivatives
given in Eq. (3.36).
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n

3% InL N i
E[““T ) = N{y'(avb)-y"(a)} + | ] ¥' (a+kh(k, |n ,a,b)
da i=1 k, =0
N
= L ¥'(atbin)) (3.41)
i=1
32 InL NoOT4
EL——i—) = N{W'(a+b)-0'(b)} + z z W'(b+ﬂi‘ki)h(ki|ni,a,b)
b i=1 kiao
N
- 1 ¥'(atbin)) (3.42)
i=1
2 N
3 InL : ,
E[ﬁ) = Ny'(atb) - 121 ¥ (a+b+ni) . (3.43)

Finally from Eqs. (3.31) and (3.32) we have the following approximations

for the variance and covariance of the maximum likelihood estimators:

var(a) = (17(a,B)],, (3.44)
var(b) = [1’1(3.6)122 (3.45)
cov(a,b) = [17'(a,b)1,, (3.46)

where the maximum likelibood estimates &4 and b are substituted for the

true parameter values.

The numerical evaluation of the expected values of the matrix
elements of the information matrix can be q‘ite time consuming especially
if the n, are large and the number of components N grouped intc the
class is also large. Application of Eq. (3.30) allows a much more
expedient, but approximate, evaluation of these matrix elements.

Specifically one has

[azlnL)
. 2
Ja

= Ny'(a+b)-Ny'(4)

3.0
3 ZnH
a=a ~ ( 2 ’wa

b6 % it

N : A5
+ Zl{w'(aﬂi) - ' (atd4n )}, \QZb (3.47)
i=
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2 2
E{a_szlla-a - [ bz"‘) -a = Ny’ (a+b)-Ny' (B)
b . TS g
[b=b b=b
) b (3.48)
L] . s .
+ 121 {v' (ot =k)) -¥' (a+b+n )} ,
2 2 X
3 inL _ 13 inL B Sihats o _— 3
F[Aaab ]asa . (m_):.g NU' (4+b) 121 V' (atb+n,). (3.49)
b=b -

In practice, it has been found that the information matrix con-
structed from these approximations (Eqs. 3.49-3.51) gives very similar
results for large sample size, N, as the more complicated, but exact,
method of Eqs. (3.41)-(3.43). As an application of the covariance-
variance calculations, the 25 diesel engines of Table 3.1 were fit to
a single beta prior by the maximum likelihood method based upon the
marginal distribution (Section 3.4). The results of the calculations
of the variance and covariance bounds are presented in Table 3.4.
Table. 3.4 Estimates of Beta Prior Parameters and Variance Bounds for

the 25 Diesel Engines of Table 3.1. The Maximum Likelihood
Method Bas:d on the Marginal Distribution (Eq. 3.27) was used.

Estimated Exact Aprox.
Parameters Eqs. (3.41)-(3.43) Eqs. (3.47)-(3.49)
a4 = 1.0522 Var(a) = 0.1763 0.1545

Var(b) = 81.67 93.73
b = 19.902  Cov(a,b) = 3.273 3.283

The calculation of the variance bounds by both the exact and
approximate information matrix is provided as an option in the

computer program BETA III, listed and discussed in Appendix T.

o 1426 246
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3.7 Variance Estimates from the Method of Matching Moments to the Prior
Moments

A simple, but approximate method to estimate variances for the beta
parameters a and b can be obtained from the closed-form solution for the
beta parameter estimates derived in Section 3.1. From the matching of
data moments to those of the beta prior, the following results were

previously obtained for the beta parameters (namely, Eqs. (3.5) and (3.6)):

2
ob
as= -8-2— (l-ﬁob) - ﬁob (3.50)
ob
and
bt 0 3240 1= alep )/
22 fob fob all=,p,) /0 - (3.51)
ob

Equations (3.50) and (3.51) can be used to find expressions for esti-
mates of the variances of a and b from the following first order Taylor

series approximation [9]:

2 ’ 2
2 2a |° 2 3 2,.2
s (a) ’{ag J 5 (ﬁob) + t——a-z——] s (Oob) > (3.52)
cbh aoob
2 2
2 ab 2 3b y P
s (b) = [55—-} 8 (ﬁob) + {—TTJ s (8ob) » (3.53)
ob aaob

2 I 2
where s (ﬁob) and s (Gob) are estimates for the variances of ﬂob and Oo

b’
In these first order approximations, the covariances are assumed to be
negligible. Other approximations (discussed later) can incorporate the

- 2 Rt
covariance between ﬁob and aob. Estimates for s (ﬁob) and s (Oob) are

[10]:

a2
2 ob
s (ﬁob) N N (3.54)
and
2 i
2(87,)
" S ob .
s (Gob) N-1 (3.55)
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To obtain this last result it has been assumed that sz(dzb) 1o nurmially
distributed. Wilks [11] presents a distribution independent formula:
> 1 N-3 4
s (Gob) ‘ﬁ [“1. - n (8] ] (3.56)

where u4 is the fourth central moment, o“

is the square of the sample
variance. Equations (3.52) and (3.53) become, upon subst:tution for

82(000) and sz(bib) from the normal based Eqs. (3.54) and (3.55)

22 2 2 ..2 2
. (1-0 ) (6.,)
2 1 2 2 %b ob*" “ob ob
s (a) {[T(zoob-aoob)l -1} - g e (3,57)
ob ob
and
2 i) 2
2 1 2 2 2 |"ob 2 .
s (b) = = [30b +1 - l’ﬁob + 3uob] + No1 [-——2' (l-uob) I (3.38)
ob - ob

It should be emphasized that the above result is only approximate
since the covariance between the mean and the variance of the beta
prior have been assumed to be zero. Nevertheless, order of magnitude
values for the variances can be obtained with this approximation. For
example, the above method (based on Egs. (3.54) and (3.56)) gives for
the 25 diesel engines of Table 3.1 var(a) = 0.1393 and var{(b) = 24.03.
These values compare with the maximum likelihood results of var(a) = 0.1763
and var(b) = 81.66.

Once estimates have been obtained for the prior beta parameters
and for their variances, various statistical tests can be used to
search for significant differences between the estimates for various
groupings of the diesel engine data considered in Section 3.5. Omne of

the simplest tests is based on the statistic
= T -2 c 2 L}
2 = (o)=6,)/[s°(5)) + s°[(£,)] (3.59)

where &1 and sz(Ei) are respectively the estimated prior paramber (i or b)
and its estimated variance for the i-th data grouping. Under very

general conditions, the z statistic will be asymptotically distributed

as a unit normal deviate [16]. Thus the cumulative unit normal distri-
bution can be used as a test criterion, if it is assumed that the sample
sizes used to obtain the estimates of the prior parameters are sufficiently

large for the asymptotic normality of 2z to ve valid.
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In Table 3.5 the estimates are presented for the prior beta para-
meters obtained by the prior matching moment technique, together with
two estimates of their variances. The first variance estimates for sz(a)
and sz(b) are based upon an assumption of normality for the distribution
of sz(dgb) (Eq. (3.55)) and are computed directly from Eqs. (3.59) and

(3.58). Tae second variance estimate is based on a distribution-independent

result (Eq. (3.56)) for sz(bgb). Both variance estimation techniques
are seen to give comparable results with the distribution-independent

estimates always being slightly smaller than the normal-based estimates.

With these variance estimates, the z statistic may be computed from
Eq. (3.59) for pairs of groupings of the diesel failure data. In Table
3.6 the z values are given for the case of the normal-based estimate
of sz(cgb) while Table 3.7 presents the results based of the distribution-
independent estimate of sz(aib). From the values of the cumulative
normal in these two tables it is apparent that one cannot conclude the
estimated prior parameters for various diesel groupirgs are significantly
different at the 5% level (i.e., %(z) < 0.025 or %(z) > 0.975 > 0.975).
Thus while the estimated diesel prior distributions shown in Figs. 3.4
and 3.5 appear to have noticeable differences for the different diesel
engine groupings, these differences may arise more from the paucity of
the data used to estimate the prior parameters than from any real physical

differences.

3.8 Error Bands for Estimated Prior Distributions

In this section a method is presented to estimate the confidence
bounds on the estimated prior distribution, both for the estimated
probability distribution functica (pdf) and for the estimated cumulative
distribution function (cdf). The pdf estimate for failure probability

p is given as
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Table 3.5. The estimated prior beta distribution parameters and
their standard deviations as calculated by the prior
matching moment technique for various groupings of
the diesel engine data (sc> Table 3.1). The quantity
N equals the number of plan:s in cach grouping.

o * *k * ok
rouping N a cl(a) 02(1) b ol(b) oz(b)

Manufacturers

CM 13 0.930 0.645 0.610 14.795 7.432 6.654
Fairbanks 4 1.385 1.623 1.308 41.662 38.502 25.444
Alco 4 1.364 1.606 1.256 45.120 41.751 25.472
Others 4 0.214 0.490 0.440 1.567 2.523 1,955
Number of Starts

0-25 5 0.522 0.720 0.611 2.948 2.987 2.070
26-50 5 3.287 2.817 2+115 £3.462 47.5%1 31.200
51-100 9 1.612 1.160 0.908 44.437 25.118 15.369
>100 6 1.100 1.095 0.892 35.162 26.202 16.553

*
Based on normality of sz(dgb), Eq. (3.55)

*k
Distribution-independent estimate, Eq. (3.56)
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Table 3.6. The z

statistic and cumulative unit normal,
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¢(z), used to compare the differences between

pairs of the estimated prior parameters of

Table 3.5. Variance estimates for s?(a) and

s2(b) are based on the normality result of

Eqg. (3.:55).

hosin v, . b
j=2 - i=] z ®(z) z ®(z)

By Manufacturer
Fairbanks-GM -0.261 0.397 -0.681 0.248
ALCO-GM -0.251 0.401 -0.715 0.237
ALCO-Fairbanks 0.009 0.504 -0.061 0.476
Others-GM 0.884 0.812 1.685 0.954
Others-Fairbanks 0.641 0.755 1.039 0.851
Others-ALCO 0.685 0.753 1.041 0.851
By Number of Starts
(26-50)~-(0-25) -0.951 0. 17% -1.269 0.102
(51-100)-(0-25) -0.798 0.212 -1.640 0.050
(51-100)-(26-50) 0.550 0.709 0.354 0.638
(>100)-(0-25) -0.441 0.330 -1.222 0.111
(>100)~(26-50) 0.724 0.765 0.521 0.699
(>100)~-(51-100) 0.321 0.626 0.256 0.601
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0(2).
pairs
Table
s%(b)

3.5.
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statistic and cumulative unit normal,
used to compare the differences between
of the estimated prior parameters of
Variance estimates for s’(a) and
are based on the distribution-independent

result for sz(dob), i.e., Eq. (3.56).

Grouping -

C::gafi::? z $(z) z ¥(z)
By Manufacturer
Fairbanks-GM =0. 315 0.376 -1.022 0.153
ALCO-GM -0. 311 0.378 -1.152 0.125
ALCO-Fairbanks 0.012 0.505 -0.096 0.462
Others-GM 0.952 0.829 1.907 0.972
Others-Fairbanks 0.849 0.802 1.571 0.942
Others~ALCO 0.86%4 G.806 1.705 0.956
By Number of Starts
(26-50)~-(0-25) -1.256 0.105 -1.935 0.026
(51-100)~(0-25) -0.996 0.160 -2.675 0.004
(51-100)-(26~50) 0.728 0.767 0.547 0.708
(>100)-(0-25) -0.535 0.2%6 -1.931 0.027
(>100)-(26-50) 0.953 0.830 0.801 0.789
(>100)-(51-100) 0.402 0.656 0.411 0.559
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If the estimators a and b are assumed to be uncorrelated, an esti-
mate for the variance of g(p) can be obtained by the following pro-
pagation of error formula [9]*:

2 2
s(g(p)] = (%g) s(a) + [%g] s2(b) . (3.61)

The first partial derivative of the prior distribution is given

by
. (a-1) (b-1)
ag _ [r(atb) -} _(a-1) , » (1-p) 3T (a+b)
%a (r(a)r(b) (1-p) ] P o * ( T(a)T(b) ] %a
(a=-1) (b-1)
T(a+b) p (-p) a[l/r(a)]
+ [ 5 ] @l -, (3.62)
with
353%§91 = y(a+b)T(atb) , (3.63)
and
afi/rqa)] _ _ v(a)
3a r(a) ’ (3.64)

where y(a+b) and y(a) are the digamma functions that can be calculated
from a subroutine given in the BETA III computer code (given in Appendix I).

Thus, this partial derivative can be simplified to

38 - g(p) (D + v(atd) - ¥(@)] (3.65)

The partial derivative with respect to b is given by

p(a'l)(l-p)(b‘l) ) ar (a+b)
T(a)r (b) ab

-1 (b-1)
. [F(a+b);p(ar(:§1'P) } 3l1/gébll ' (3.66)

*Equation (3.61) is based on a Taylor's series expansion. The second
order and higher derivatives of g(p) with respect to a and b have been
assumed to be small compared to the first order derivatives. Likewise

the parameters a and b have been assumed to be ofre . The in-
clusion of covariance is considered later. ‘K?é ?593
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with
i’1"-%?‘-'3)-- ¢(a+b)T (a+b) , (3.67)
AA/TM)] | w
J—/—(—)—lab ﬂ—lr(b) . (3.68)

Thus, this partial derivative becomes

B < g(p) (1n(1-p) + (atb) = 4(b)] . (3.69)

Hence, the estimate of the variance on g(p) is given by

*((P)] = (81% {[1np + v(ath) - ¥(a)1%s%(a)
+ [1n(1-p) + y(a+b) - y(»)1%s%(a)}. (3.70)

A variance estimate can also be constructed in a similar manner
for the cumulative distributicen function (odf) which utilizes the esti-
mators for a and b. The cdf is given by

P

G(p) = f g(t) dt, (3.71)
0

or

P - "
G(p) = %((:_)% L) e D ey ®D 4. .72)

which is simply the incomplete beta function [8). 1f the estimators, a
and b,are again assumed, as a first approximation, to be uncorrelated
random variables, the estimate for the variance of G(p) can be oktained

in a similar fashion as was used in Eq. (3.61) for the pdf, i.e.,

2 2
s2(G(p)] = [—"’%ﬂ] s2(a) + [ﬁg-éﬂl] s (b) . (3.73)

The partial derivative with respect to a is

P
g_G.[ 58 4 | (3.74)
a 0 Ja
or
3G P P
= f g(t) Int dt + f y(a+b) g(t) dt
a Jo 0

p
- f v(a) g(t) dt, (3.75)
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or upon substitution for g

L ¥
% " TOT® [Jo D00 o

P - -
+ [v(a+b) - y(a)) f e (@D y®=D 4ol . (3.76)
0

Similarly, the partial derivative with respect to b is

P
%‘%‘[ J.Llaab‘ dt (3.77)
0

or

36 _ravd) [P (a-1),_ (b=1) )
b TI'(a)r(b) “0 . (1-t) In(l-t) dt

P o —
+ [V(atb) - ¥(b)] [ ¢ (@1) g4y (0=1) 4, (3.78)
0

The integrals in Eqs. (3.76) and (3.78) must be:calculated by numerical
means although the secund integral in both of these equations can be

expressed in terms of the incomplete beta function (see Eq. (3.72)).

The above derivation for the variances of the prior density and
cumulative distributions is based on a first order Taylor series expansion
and on the assumption that the beta parameters a and b are uncorrelated.
In the next chapter it is demonstrated that the estimated a and b para-
meters have a large positive covariance. If the covariance term is

included in the derivation of Egqs. (3.61) and (3.73), these equations

become
2 ag)” 2 38)% 20,y 4 38 38
s [g(p)] = [aa) s (a) + {ab] s“(b) + 5a 3b cov(a,b) 3.79)
and 2 2
SZ[G(P)] - [29%52) 82(8) + légéEl] sz(b) . E%éﬂl ﬁ%éﬂl cov(a,b). (3.80)

The expressions just obtained for the evaluation of the derivatives
in the above expressions remain unchanged and hence to obtain approximate
variances for the prior distribution, one needs only to have estimates
of the variances and covariances of the beta prior parameters. With the
matching moments technique, only estimates for sz(a) and sz(b) were

obtained. However, with the maximum likelihood method, estimates for

lower bounds of the covariance of a and b can be obtained from Eq. (3.32).
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Often this bound is taken as an estimate of the actual covariance, and for
the diesel engine data such an estimate was alwavs found to be positive.
With this estimate an additional term appears to be added to the variance
estimates for the pdf and cdf if the first partials with respect to a and
b are both positive or both negative (see Eq. (3.79) and (3.80) above);
thus, the error bands around the estimated prior distribution would be-
come even larger or further apart. However, it was found for the various
diesel engine groupings that the covariance contribution generally de~
creased the variance estimates sZ[g(p)] and sZ[C(p)], although this
decrease (compared to the results obtained without the covariance con-

tribution) was usually quite small.

As an example, the beta prior density and cumulative distributions
for all 25 diesel plants of Table 3.1 as estimated by the marginal maximum
likelihood method are shown in Figs. 3.6 and 3.7 respectively. For this
grouping of all the diesel data, the maximum likelihood estimates for
the beta prior parameters are 4 = 1.0522 and b = 19.902 with variance
estimates of sz(a) = 0.1763, sz(b) = 81.67 and cov(a,b) = 3.273. For
both the density and cumulative distributions, the one sigma error bounds
(tsz[g] or 292[61) are also shown as calculated with and without the co-
variance contribution. It is seen from this example that the inclusion
of the covariance contribution decreases the spread between the upper and

lower error bound.

The error bounds for other subgroupings of the diesel engine data
give similar results as for the 25 engines example, namely, the spread
between the upper and lower error bounds are sufficiently large that the
various estimated prior distributions tend to lie within the error bounds
of each other. Such large uncertainty in the estimated prior distributions
for the various groupings indicate there may be no significant differences

between these estimated priors in the region where the bounds overlap.
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4. SIMULATION STUDY OF PRIOR ESTIMATION TECHNIQUES

From the Bayesian analysis of the diesel engine failure data, the
Leta prior distributions, whose parameters were estimated from observed
data, have modes in the region of small failure prcbabilities and are
highly skewed away from high failure probabilities. Such mode bebavior
:nd skewness is expected for components which are designed to have low
failure probabilities. However, the diesel data with which the early
phase of this study was concerned have typically small sample sizes.
Thus the question arises of biasedness and variance in the parameter
estimates used for the beta priors and of the effects on the subsequent
prediction of failure probability. To determine which of the four para-
meter estimation techniques discussed in the previous chapter is the
most "conservative" or yie.ds parameters closest to the true values, it
is necessary to determine the distribution of the parameter estimates
for each method. Consequently the objective of the study described here
was to determine the properties of each orf the four parameter estimation
techniques. For such an investigation multiple seis of failure data in
small sample sizes were generated randomly from known beta prior or
marginal distributions. With these simulated failure data the distri-
butions of the prior pa-ameter estimates could be determined numerically
for each estimation technique and from these distributions many properties

of the four estimation techniques can be investigated.

4.1 Generation of Simulated Failure Data

To determine the distributional properties of each parameter esti-
mation technique by numerical simulation, it is first necessary to
generate a large number of failure data pairs (k failures in n tries) in
which the number of failures k are distributed according to a known beta-
binominal distributicn with parameters a and b, i.e., according to the

marginal distribution

< [n I'(a+b) I'(a+k) I (b+n-k)
h(k|n,a,b) (k] [T TC-otn) " (4.1)

Thus to generate the simulated failure data, the number of demands, n, is
first selected randomly from a uniform distribution between n, and n,.
The number of demands n was allowed to vary in this manner to simulate

better the type of failure data encountered in actual practice (see
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Table 3.1).

fixed, the number of failures, k, is chosen from the above beta-binomial

Then with n determined, and the beta parameters a and b

distribution. This two step process is repeated until a sufficient number
of data pairs have been generated. Explicit details for each step are as
follows:

For each step a random number, u, from a distribution which was
uniformly distributed between 0 and 1, was generated from the routine
RANDU [12] and which subsequently was used to generate an n or k value.

To select n, which for this study was assumed to be uniformly distributed

between two positive integers n1 and nz, the following algorithm was used:

n, + integer(u/p] , u #p

n = (4.2)
n, + integer[u/p] - 1, u = p

where p = (nz-nl--l).l which is simply the probability of obtaining any
integer between nl and n, inclusively, i.e., n1 <n< n2. The above
algorithm is equivalent to

( nl 0<uc<p
n1+1 P <u < 2p
n = nl+i ip < u < (i+l)p . (4.3)
i n, l-p<ux<l

Once the number of failures, n, had been selected a new random
number, u, was generated and used with the inverse transformation
technique to obtain a value for k from the cumulative distribution
of h(k), i.e., from

k
F(k) = } h(m|n,a,b) , k=v,l...n. (4.4)
m=0

The value of k selected is the minimum integer for which u < F(k),

or equivalently,
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[0 0 < u < F(0)
F(0) < u < F(1)

k = i F(i=1) < u < F(i) . (4.5)

| A

l n F(n-1) < u < F(n) =1

|A

In essence this method for changing a random variable, u, with a uniform
distribution on (0,1) to a random variable, k, distributed according to
& beta-binomial on (0,n) requires the sequential evalvation of the
cumulative distribution, F(k). The use of Eq. (4.4) for each evaluation
would be very time consuming if large amounts of simulated failure data
were to be generated. However, considerable computational effort may be
saved in the sequential evaluation of F by using the following recursion

relation

F(k+l) = F(k) + h(k+l|n,a,b) (4.6)
with

h(k+1|n,a,b) = h(k|n,a,b) %g:ﬁ{ka;%i+l) I (4.7)

For situations involving beta parameters which yield a prior distri-
bution with a low failure probability, (i.e., for which the above inverse
technique would be expected to yield small values of k), the sequential
search is best begun at k=0. Similarly if a prior corresponding to large
expected values of k is used, then the sequential search is best b:2gvn at
k=n. More generally, to min'mi:e the length of the sequential search, the
search should be begun near the mean of the beta-binomial distribution of
interest. However, this optimal search method requires that the integer
nearest to the mean and the cumulative distribution at that integer be

initially evaluated and stored for all possible values of n. This search

algorithm is outlined in Table 4.1.



50

Table 4.1. Algorithm for Optimal Calculation of Number of Failures, k,
by the Inverse Transformation Technique.

Part I: Selection of Starting Values for Sequential Search

1. Calculate means, Hys of beta-binomials for all possible n1
(i.e., for n, =mn, nl+l,...,n2).

2. Round off means to nearest integer, M1

3. Calculate F(Mi) and h(Milni,a,b)

4, Store values of Hi’ F(Hi) and h(Mi) in a vector to be used as

starting points in sequential search.

Part II: Sequential Search to Calculate k for Given n,

1. Generate u from a uniform distribution on (0,1) by RANDU
2, If u= F(Mi)’ then k = M
3. Otherwise, set K = M

i
T h(K) = h(Mi) and F\K)*F(Mi)

4, 1If u<F(Hi) go to step 6; otherwise go to step 5

5. Compute: (a+K) (n -K)
h(K+l) = h(K) (b+n —K-1) (K+1)

F(K+1l) = F(K) + h(K+1)
If u < F(K+1),then k = K+land exit; otherwise set K=K+l and go
back to beginning of step 5.
6. Compute
F(K-1) = F(K) - h(K)
1f u>F(K-1),then k=K-1and exit; otherwise calculate,

K (ni—K+b)
h(Kk-1) = h(K) (K-T+a) (a -K+1)

set K=K-1, and go back to beginning of step 6.

[AE 6] 1426 262
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4.2 Distribution of Prior Parameter Estimates

To investigate how the estimates of the beta prior parameters are
distributed, simulated failure data were analyzed by the four empirical
estimation techniques described in Chapter 3. Since this study was con-
cerned primarily with low failure probabi ity events, a beta prior with
parameters of a=1.2 and b=23 was used as the basis for generating the
simulation failure data*. The number of starts, s was randomly selected
from a uniform distribution between 30 (nl) and 300 (nz).inclusively. For

a given n,, the number of failures, ki’ was selected randomly from a beta-

binomial tmarginal) distribution using the technique described in
Section 4.1, 1In all, 1500 samples of size 5 (i.e., five k1 and ny
pairs), 10, and 20 were generated. Additionally 500 samples of size 50
were computed.

With these simulated failure data, estimates of the parameters a and
b were calculated and compared to the true values of a=1.2 and b=23. The
frequency distribution of the estimates & and b as calculated by the four
estimation techniques for the four sample sizes are shown in Figs. 4.1
through 4.4. All theec frequency distributions exhibit several common

features. In particular all estimation methods exhibit a slowing decaying
tail at high values. The mean of the distribution is always on the

high side of the trve value. For small sample sizes (N<10) there were

obtained an appreciable number of inordinately large estimators,

or outliers, especially by the two most complicited estimation techniques--
the marginal maximum likelihood method and the marginal natching moments
method. Furthermore, only the simplest estimation method, the prior
matching moments method, always yielded results for all samples regardless
of size. For small sample sizes (N¢5) the marginal matching moments and
marginal maximum likelihood methods often yielded no parameter estimates,
while for large sample sizes the prior maximum likelihood method was un-
abie to give an estimate as a result of at least one ki-O in the sample

(a likely occurrence for the low failure probability case studied). In

Table 4.2 the observed success history for each of the four methods is

given.

*
These particular values of a and b are the marginal maximum likelihood
estimates for the failure data of the 13 GM diesel engines in Table 3.1.
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Table 4.2 Number of successful solutions and failures for prior para-
meter estimates from the simulation failure data for the
four estimation techniques.

Sample Marginal Matching Mom. Prior Matching Mom.
Size Sol. No-Sol. % Success Sol. No=-Sol. % Success

5 1383 117 92.20 1500 0 100.0

10 1499 1 99.93 1500 0 100.0
20 1500 0 100.0 1500 0 100.0
50 500 0 100.0 500 0 100.0
Sample Marginal Max. Likelihood Prior Max. Likelihood

Size Sol. No-Sol. % Success Sol. No-Sol. % Success

5 1349 151 89.93 850 650 56.67
10 1497 3 99.t0 466 1034 31.07
20 1500 0 100.0 157 1343 10.47

500 100.0 0 500 0.00
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Table 4.3 displays some simulation data samples for which no para-
meter estimates could be obtained by three of the estimation tecltniques.
No noticeable features about these particular data seem to distinguish
them from other data samples for which the estimation methods yielded
solutions. A test to screen small data samples to determine whether a

particular sample permits a solution by each method has not been found.

4.2.1 Bias and Variance of Prior Parameter Estima es

The degree of bias inherent in any parameter :stimation technique is

often of concern. The bias of an estimator, 8, is defined as

Bias = E[6-8) = 8-8 (4.8)

where 6 is the true value of the parameter (e.g., a or b) and e is the

mean of of the estimators. All of the estimation techniques investigated
in this study were found to yield biased estimates of the prior parameters,
especially for small sample sizes.

In the estimation of the mean or bias of the estimators from the
empirically derived distributions of Figs. 4.1-4.4, the *reatment of out-
liers present some difficulties. For the estimation techniques based on
the marginal distribution, estimates of a and b would occasionally be
obtained which were orders of magnitude greater than the true values. In
this section those outlier estimates which were greater than one huadred
times the true value were classified together with those samples which
vielded no solution and hence were not used in the computation of statistics
from the distribution of estimates. If those outlier values were included,
values of bias and variance of the estimator distributions would be determine’
principally by the outlier values. For example, the distribution for N=5
of Fig. 4.1 for a estimated by the marginal maximum likelihood method
yields a mean a=7.22 and a vari..ce var(a)=2581 if all data are used, while
if the outliers (4>100a) are suppressed, a mean a=3.79 and a variance
var(a)=59.5 results (the true value of a is 1.2). Unless explicitly specified
to the contrary, all outliers are suppressed in the subsequent analyses
of the distributions of a4 and b.

In Table 4.4 the results are presented of the bias of the beta para-

meter estimators for each estimation method considered. The variation of
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Table 4.3 Simulated fallure data {h:] from a beta-binomial (a=1.2, b=23) for which the marginal-based
estimation methods yielded no solutionm.

Sample Size N=3:
1. Data for which marginal maximum likelihood and marginal matching
soments give no solution:

129 235 290 30 97 38 207 87 114 108
8 8 14 1 1 “ 3 3 5
110 218 123 282 226 237 74 287 245 147
3 10 7 11 3 2 1 4 2
113 64 81 56 m 49 154 155 «8 zu]
4 2 4 6 3 7 4 0
64 65 62 197 166 274 60 250 197 60)
0 2 1 2 S 1 5 14 15 4)
84 33 266 242 133 215 221 76 32 70
7 3 20 17 7 4 7 1 2 3
2. Data for which only the marginal matching moments method failed:
92 263 225 71 146 183 192 292 2717 264)
3 18 11 2 4 11 8 22 11 12)
85 87 123 269 63 253 32 39 150 97
3 6 ? 6 3 2 2 2 10 4
8 128 46 175 223) 26 249 227 167 255
0 2 1 1 7) 12 13 4 8 14
[xu 59 61 104 150) 208 60 33 253 151
b “ 3 6 13 L & 2 1 7 10
b3V 67 7 227 47) 213 89 209 248 122
2 0 1 7 1) 9 3 5 3 2
3 Data for which only the marginal maximum likelihood method failed:
100 87 253 181  97) i87 151 50 45 272
7 3 22 19 S 3 2 4 0 5
271 43 253 273 169) 98 101 60 229 81
10 3 10 7 1J ? 7 " 18 11
{279 206 59 64 122) 137 80 123 88 45
8 8 o o0 1 11 0 0 A 5
144 284 220 207 217 31 205 68 48 255
1 11 8 7 5 0 18 2 6 2
238 237 35 39 261 289 37 280 91 204
8 8 0 4 6 5 2 5 1

Sale Size N=10

1. Sample for which marginal matching moments method found no solution:

225 85 73 71 238 187
7 1 2 0 7 -

2. Samples for which marginal maximum likelihood method failed:

111 108 273 a7 207
6 8 14 8 10

4“0
0

36 206 254 97 95 99
1 i0 8 3 7 10

52 86 85 206 75 88
8 4 12 11 4

(
[
(50

8¢
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the bias in 4 and b with sample size is shown in Fig. 4.5. Notice

that as the sample size increases, the bias of the estimators decreases
towards zero as would be expected. However, from Fig. 4.5 all of the
methods except the simplest method - the prior matching moments - always
yield a positive bias. The prior matching moments method has the smallest
bias of all four methods and actually changes sign for sample sizes of
about 20 or larger.

The bias results for the prior-based maximum likelihood method, how-
ever, are relatively poor for the large sample sizes since, for the assumed
prior beta, many of the simulated samples contain at least one ki=0 which
makes this estimation method fail (see Table 4.1). Since all the samples
which preclude estimation of the prior parameters with this method have at
least one ki-O, it can be expected that the estimators may inherently con-
tain a bias. In fact, from Fig. 4.5 it is seen that the bias appears to
level off at some small positive value as the sample size increases.

The mean values of 4 and b for the various sample sizes and esti-
mation techniques are readily obtained from Table 4.4 by adding to the
tabulated values of bias the true value of the parameter, a=1.2,
or b=23 . The variance and covariance of the distribution of the estimates
are presented in Table 4.5. As would be expected, the variances and co-
variance for all estimation techniques decrease as the sample size in-
creases. The minimum variance for a given sample size was always obtained
with the simplest estimation technique, i.e., with the prior matching
moment method. Those estimation methods based on the marginal distribution
always yielded the largest variances, a result of the slowly decaying tail
of the distributions for a4 and f and of the presence of unsuppressed out-
liers which were more prevalent with these methods.

The covariance of & and b were always observed to be positive which
indicates that large values of & are associated with large values of b.

In fact, the outliers were observed tc have just this property, namely
that a sample which produced a large va.ue for a also generated a large

value for b.
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Table 4.4 The bias or deviation of mean of estimators from true parameters [a=1.2, b=23.0].

Each data set consistsof 500 simulation samples.

Marg. Match. Mom. Prior Match. Mom. Marg. Max. Like. Prior Max. Like.

—Saaple Dita Set _ _ _ _ - N »
Size (N) No. a-a o=b a-a b-b a-a b-b a-a b=b
i 3.24 76.2 0.566 16.5 2.76 63.1 1.49 2.0
5 2 2.68 61.8 0.739 21.9 2.08 30.6 2.05 47.01
3 3.30 72.8 0.835 2.41 2.91 68.4 1.95 45.6
1 1.20 26.3 0.124 O 0.887 21.2 0.673 10.6
10 2 1.12 26.5 0.104 3.72 0.772 19.2 0.691 11.8
3 1.38 33.1 0.125 4.82 0.872 23.5 0.660 13.0
1 0.471 10.2 -0.0238 0.0602 0.325 ¢ P 0.479 6.07
20 2 0.412 9.50 -0.0574 0.299 0.268 6.71 0.439 6.48
3 0.568 13.4 0.0118 1.44 0.373 9.34 0.491 7.38
50 i 0.164 3.40 -0.142 -2.58 0.100 2.22 * *

*
Method always failed for sample size N=50 since each sample contained at least one ki-o.
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Fig. 4.5 Variation of the bias of the beta parameter estimators with sample size for the different
estimation techniques. True values of the beta parameters are a=1.2 and b=23.

19



62

Table 4.5 Variances and covariance of parameter estimators for different

sample sizes and estimation techniques.
+=1.2 and b=23.0.

values are

True beta parameter

Results for marginal-based methods

are presented with and without outliers (4>100a or b>100b)

included.
Prior Matching Moments Prior Maximum Likelihood
s;:::e var (4) var (b) cov (4,b) var (a) var (b) cov (&,b)
5 4.42 3.79 (3) 1.03 (2) 9.29 8.44 (3) 2:23 (2)
10 5.50 (=1)* 2.86 (2) 1.01 (1) 8.40 (~1) 4.39 (2) 1.63 (1)
20 2.11 (~1) 9.97 (1) 3.79 2.02 (-1) 1.08 (2) 3.81
50 6.72 (-2) 3.05 (1) 1,23 - - -
*read as 5.50 x 10~}
Sanpls Marg. Match Mom. w/o Outliers Marg. Match. Mom. with Outliers
5ize var (8) var (b) cov (4,b) wvar (&) var (b) cov (4,h)
5 5.20 (1) 2.50 (4) 9.90 (2) 8.15 (4) 3.41 (7) 1.64 (6)
10 1.23 (1) 5.76 (3) 2.51 (2) 2.69 (1) 1.15 (4) 5.40 (2)
20 8.01 (-1) 4,49 (2) 1.69 (1) 8.01 (-1) 4.49 (2) 1.69 (1)
50 1.75 (=1) 8.13 (1) 3.44 1.75 (-1) 8.13 (1) 3.44
Marg. Match. Like. w/o Outliers Marg. Max. Like. with Outliers
Sgt:gie var () var () cov (a,6) wvar (&) var (b) cov (&,6)
5 5.94 (1) 2.74 (4) 1.15 (3) 2.58 (3) 6.39 (6) 1.18 (5)
10 5.60 4.09 (3) 1.37 (2) 2.89 (3) 1.08 (6) 5.59 (4)
20 5.70 (-1) 3.39 (2) 1.22 (1) 5.70 (-1) 3.39 (2) J.22 1)
50 1.14 (-1) 5.83 (1) 2edl 1.14 (-1) 3:83 (1) &27




4.2.2 Mean Squared Error of Estimators

For safety analyses the mean square error of an estimator is generally
of concern. Although a particular method may have a small bias, the
variance of the estimates may be quite large and hence the analysis of an
individual sample could lead to parameter estimates which are significantly
different from the true values. For safety considerations in which only a
few samples are to be analyzed it is important that the mean square error
of the estimates be small even if the estimates are slightly biased.

For the simulated data the mean squared error (MSE) is estimated as

MSE = & ? (éi-e)2 (4.9)

N a1

where 6£ represents the estimate a or b and 6 represents the true value.
From this equation, it is seen that outliers (i.e., estimates which

are ‘ar removed from the true value) will change the value of the mean
squarc | error greatly, and that estimates close to the true value have
littls influence. From the distributions of 4 and b shown in Figs. 4.1-
4.4, it is seen that there are typically several outliers produced by the
marginal-based estimation methods, especially for small sample sizes. To
compare the mean squared error for the different estimation methods, these
outliers were suppressed by ignoring those values of & or b which were more
than one hundred times the true values of a and b. The results of the
mean squared error analysis for the simulated failure data are presented
in Table 4.5 and in Fig. 4.6.

From these results it is seen that for small or moderate sample sizes
(N<50) the prior matching moment estimation techniques yields the lowest
mean squared error. The two estimation methods based on the marginal
distribution produce the poorest results, i.e., the largest mean squared
errors. These large errors are a direct result cf the occasional high

estimates of a and b obtained with these methods.

4.2.3 Median of Estimators
To suppress naturally the effect of outliers without actually ignoring

them, the median of the empirical distributions for & and b were calculated.
The results for the median of the distributions are given in Table 4.7 and

the variation of the median with sample size is shown in Fig. 4.7. In the

calculation of the median values, the outlier estimators were included.
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Table 4.6 Mean squared error about the true beta parameters (a=1.2, b=23) for the simulated failure
data. Each data set contained 500 samples.

Marginal Match. Mom. Prior Match. Mom. Marginal Max. Likelihood Prior Max. Likelihood
Sample Data Set

Size (N) No. MSE(4) MSE(B) MSE(a) MSE(b) MSE{4) MSE(b) MSE(a) var(b)
L 55.9 33,200 2.57 1,740 77.6 35,000 6.76 3,780
5 2 58.0 27,500 6.43 4,860 43.4 21,000 17.1 11,500
3 70.8 28,900 5.80 6,050 77.1 37,100 14.9 15,100
1 11.7 4,880 0.629 308 7.12 4,670 1.52 524
10 2 7.61 4,480 0.526 290 4.68 3,090 1.20 566
3 22.0 10,400 0.535 310 7.12 5,860 1.14 639
1 0.971 472 0.215 95.3 0.618 314 0.422 125 o
20 2 0.806 455 0.185 89.1 0.680 382 0.288 128
3 1.33 782 0.235 115 0.781 503 0.520 193
50 1 0.201 92.7 0.0874 37.1 0.123 63.1 - -
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Fig. 4.6 Variation of the mean squared error of the beta parameter estimators with sample size for
the different estimation techniques. True values of the beta parameters are a=1.2 and b=23.
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Table 4.7 Median values for the estimates 4 and b for different
sample sizes and estimation techniques. For sample
sizes of 5, 10 and 20, 1500 simulated failure data
were used, and for sample size 50, 500 simulated data
were used. The true value of the parameters are a=1.2
and b=23.0.

Sample Marginal Match. Mom. Prior Match., Mom.
Size (n) a g 2 b
5 2,22 46.3 1.31 27.8

10 1.72 33.5 1.76 23.90
20 1.47 28.4 1.10 21.4
50 1.78 24.4 1.02 19.6
Sample Marg. Max. Like. Prior Max. Like.
Size (N) 2 8 2 5
5 1.77 36.9 2.09 39.2

1C 1.47 28.9 1.65 29.9
20 1.33 25.6 1.67 29.2
50 1,23 23.3 - -
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For small sample sizes (N5<10) the simple prior matching moments method
ylelds median values which are closest to the true values of the parameters.
However, for larger sample sizes the prior matching moment methods gives

a median which is smallcr than the true valuc. Only th- estimation methods
based on the marginal distribution appear to yield medians which approach

the true value as the sample size becomes very large.

4.2.4 (omparison to Results from a Symmetric Beta Prior

The results in the previous section were estimated from simulation
failure data based on a specific beta prior distribution which was highly
skewed *towards low failure probabilities (the mean of the beta prior = a/(a+b)
= 1.2/(1/2423) = 0.043). To determine whether the results obtained
for the estimators of this particular beta prior are applicable only
to similarly skewed beta priors or to more generally distributed beta
priors, failure data were simulated for a symmetrically distributed beta
prior with parameters a=b=5 and consequently with a mean of 0.5 Simulated
failure data sets of 500 samples of size 5, 10 and 20 were generated
from this symmetric beta distribution. The four estimation techniques
were used to analyze these data.

From this analysis of failure data generated from a symmetric
beta prior, it was found that both marginal-based estimation techniques
yielded numerical soiutions for a larger fraction of the samples than
thev did for the nonsymmetric case. For example, 98.8%Z of the size 5
simples yielded results with the marginal matching moments method and
96 0% of the same samples were successfully analyzed by the marginal
maximum likelihood method. For the nonsymmetric case these success rate
percentages were (see Table 4.2) 92.2% and 89.9%,respectively. Unlike
the nonsymmetric case, all data samples of size greater than 5 yielded
solutions by all four methods. Moreover, the estimator outliers obtained
with the symmetric samples were far less objectionable (i.e., fewer in
number and closer in value to the main distribution) than were the
outliers for the corresponding nonsymmetric cases. For the case of a
symmetric beta prior, none of the simulated failure samples contained
a ki-O (or ki.“i)' and hence, unlike the skewed beta prior case, the

prior maximum likelihood estimation method produced parameter estimates

for all samples.
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The results for the bias and the mean squared error of the esti-
mators are given in Table 4.8 for various sample sizes. Figures 4.8 and
4.9 show the variation with sample size of the bias and mean sq-are
error, respectively. Because the true beta parameters are equal (a=b=5),
one would expect the plots of the bias for 4 to be the same as for o. In-
deed the small observed differences in Fig. 4.8 or in Table 4.8 are a
result cf statistical uncertainties arising from the relatively small
number of samples (500) used to construct the distributions of 4 and b.

From Fig. 4.8 all four methods appear to give zero or very small
bias if the sample size becomes sufficiently large. As with th: skewed
ase, all fcur methods tend to overestimate the prior parameters for
small sample size, and only the simplest method, the prior matching
moments technique gives a slight negative bias for samples of size greater
than about N=15. Also, as was seen with the skewed case, the two estimation
techniques based on the marginal distribution give essentially identical
results which are considerably poorer than those obtained with the prior
based methods. Thus the prior matching moments techniques had a per.ormance
which was as good or better than the other techniques in this sy ic case

also.

Nistribution of Estimators for the Mean and Variance of

Prior Distribution

For small sample sizes (N<20) all four parmeter estimation techniques
investigated in this study tended to overestimate values of the parameters
a and b for the beta prior distribution. In fact, for very small sample
sizes (N=5) and for data generated from the beta prior distribution skewed
towards low probability values (a=1.2, b=23), occasional estimates of a and
b were obtained from the marginal-based techniques which were several orders
of magnitude too large.

As previously stated, it was observed that whenever an inordinately
large value of one beta parameter was obtained, the estimate for the other
parameter was also very large. For these overestimation cases, it wa:
observed that a reasonable estimate of the mean of the beta pri
tained even with these large parameter estimates, since the

only c¢n the ratio a/b, i.e., from Eq. (2.4)
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Taole 4.8 The bias and mean squared error of the estimators of
the parameters for a symmetric beta prior distribution
(a=b=5) as calculated by different estimation techniques
from simulated failure data of various sample sizes.
Each data set consisted of 500 samples.
Sample Marginal Matching Moments Prior Matching Moments
Stze (N} aca  B-b MSE(a) MSE() @-a  B-b MSE(A) MSE(D)
5 10.98 10.8 1076. 1092. 3.68 3.38 164.0 124.1
10 2.50 2.56 69.1 94.9 0.535 0.533 12.3 13,2
20 0.79 0.764 6.36 5.91 0.110 -0.13 3.47 3.19
Sample Marginal Maximum Likelihood Prior Maximum Likelihood
Stze () Z.a  b-b MsE(a) MSE() a-a  B-b MSE(s) MSE(D)
5 10.3 9.99 936. 862 6.16 5.80 272, 210.
10 2.65 2:.70 75.3 102. 1.3 1.30 16.7 12.8
20 0.827 0.805 6.19 5.74 0.208 0.186 3.89 3.31
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The empirical distributions of the estimate of the prior mean was
calculated for different sample sizes, by using the estimators a and b in
Eq. (4.10) previously obtained with the simulated failure data for the skewed
prior case (true mean = (1 + 23/1.2)—1 = 0.0496). These distributions are
shown in Figs. 4.10-4.13 and the mean and variance of these distributions
are given in Table 4.9. Because of the inability of the prior maximum
likelihood method to treat low failure probability cases, this method was
not included in the analysis.

From these distributions of mean estimators it is seen that no apparent
outliers are present. Further the mean of the distributions are all within
a small percentage of the true value, although a very slight bias to over-
estimate the mean is noted. As would be expected, the variances of the
distributions decrease as the sample size increases. The most important
feature, however, of these distributions of { is that all three estimation
techniques appear -o give nearly the same distribution for a given sample
size.

Although the presence of outlier estimators for a and b does not
affect the distribution of the mean estimators, the high a and b estimates
will have a profound effect on the estimation of the variance of the beta

prior distribution. The variance of the beta prior is given by (Eq. (2.5))
2 -1
o = [(1 +b/a)(1 + a/b)(a+Db + 1)] (4.11)

which becomes very emall as a and b both become large. Thus the use of
outlier estimators 4 and b to produce an estimate of the variance for
the beta prior will give unrealistical.  small values. In Figs. 4.14-4.17,
the distributions of the variance estimators for the prior beta are shown
for different sample sizes.

Notice thkat for small sample sizes (e.g., Fig. 4.14) for which
outlier values are expected for the marginal-based estimation methods,
the empirical frequency distributions of the var ance estimators (Eq. 4.11)
are peaked towards the low end. However as the sample size increases,
outlier values for a and b are no longer obtained, and the variance
estimator distribution becomes increasing centered around the true variance
of 02 = 0.00187. Finally it should be noted from these variance distri-
butions, that the distribution produced by the prior matching moments

results is always slightly more skewed towards the high values as

compared to the distributions for the two marginal-based methods.

1426 285




TRUE VALUE + Marginal Match. Mom. (1383 data)
O Pior Match. Mom. (1500 data)
300k 8 O Marginal Max. Likelihood (549 data)
r%J:j
> =
Q
= +
5
200 |-
3 .
w P
o .
T -
100 |- o yos
| S -
[:liiﬂ
0 - 1 | | ! J
0 002 0.04 006 008 01 >01

MEAN OF ESTIMATED BETA DISTRIBUTION

Fig. 4.10 Distribution of the mean
of size N=5,
parameters a=1.2 and b=2

987 9271

s of the estimated Leta prior distributions from samples

Samples were generated from a beta-binomial distribution with

3 which yield a true prior mean of 0.0496.

WL



/82 9t

FREQUENCY

Fig. 4.11

TRUE VALUE} + Margina! Match. Mom. (1499 data)
4 O Prior Match. Mom. (1500 data)
400 b O Marginal Max. Likelihcod (1497 data)
H0=
300
=ia
200} *s_-bc:j
100 - o= o
O
0 0.02 0.04 0.06 0.08 01 > 01

MEAN OF ESTIMATED BETA DISTRIBUTION

Distribution of the means of the estimated beta prior distributions from samples
of size N=10. Samples were generated from a beta-binomial distribution with
parameters a=1.2 and b=23 which yield a true prior mean of 0.0496

6L



TRUE vu.ue—}
Erej
500} ,
[30= + Marginal Match. Mom. {1500 data)
" O Prior Match. Mom. (1500 data )
400} © Marginal Max. Likelihood (1500 data)
P
Q 300}
4
w
3 x
~0
g = =
WL 2004
=R
100 |-
ﬁ& Edaﬁ
0 r- 1 L 11009 1
0 0.02 0.04 005 0.08 21

MEAN OF ESTIMATED BETA DISTRIBUTION

Fig. 4.12 Distribution of the means of the estimated beta prior distributions from samples
Samples were generated from a beta-binomial distribution with
parameters a=1,2, b=25 which yield a true prior mean of 0.0496.

of size N=20,

9L



400

+ Marginal Match. Mom. (500 data)
O Prior Match. Mom. (500 data)
300 - o Marginal Max. Likelihood (500 data)

TRUE VALUE
—+ooﬂ
200 | 693

FREQUENCY

100

LL

0.02 0.04

0.06 0.08

0.1

MEAN OF ESTIMATED BETA DISTRIBUTION

Fig. 4.13 Distribution of the means of the estimated beta prior distributions from samples

of size N=50. Samples were generated from a beta-binomial distribution with
parameters a=1.2, b=23 which yield a true prior mean of 0.0496.



78

Table 4.9. Mean and variance of the estimators for the mean of the beta
prior (a=1.2, b=23) for different sample sizes. True prior
mean is 0.0496.

Marg. Match. Mom. Prior Match. Mom. Marg. Max. Likelihood
s;:zi: Mean Variance Mean Variance Mean Variance
5 0.0500 0.0000422 0.0488 0.000423 0.0497  0.000415
10 0.0500 0.000218 0.0500 0.000221 0.0498 0.000218
20 0.0496  0.000113 0.04963 7.000114 0.0495 0.000112
50 0.0500 0.0000422 0.049928 0.0000419 0.0499 0.0000419

*
1500 samplec were used for size 5-20 results; 500 samples were used for
size 50 results.

Table 4.10. Mean and variance of the estimators for the variance of the
beta prior (a=1.2, b=23) for different sample sizes. True
prior variance is 0.00187.

Marg. Match. Mom. Prior Match. Mom. Marg. Max. Likelihood

Sample 5 5 5

Size* Mean Var. [x107] Mean Var. [x107] Mean Var. [x107]
5 0.00141 0.298 0.00207 0.507 0.00171 0.393
10 0.00167 0.215 0.00227 0.295 0.00185 0.225
20 0.006172 0.116 0.00222 0.145 0.00181 0.102
50 0.00184 0.0468 0.00227 0.0558 0.00188 0.0406

*1500 samples were used for sizes 5-20 results; 500 samples were used for
size 50 results.
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In Table 4.10 the mean and variance of these variance estimator
distributions are given. It is noted that the mean of the distribi cion
is always slightly less than the true prior variance (02 = 0.001727) but
approaches the true value as the sample size increases. ‘7he neans of
the prior matching moments distributions, however, always overestimate
the true mean. More importantly, these overestimates do not appear
to approach the true value even as the sample size increases, but rather

appear to remain about 20% higher than the true value.

4.4 Distribution of 95-th Percentile Estimators

Of considerable interest in safety analysis is the estimation
of the prior distribution at high failure probabilities. One widely
used measure of the high probability tail is the 95-th percentile,

i.e., the failure probability, , above which there is only a 5%

p
95
chance that the true failure probability lies for a component described
by the prior distribution, g(p). For the beta pricr distribution used
in this study, the 95-th percentile, Pgsg» is the solution of the follow-

ing equation:

P95 rGadh Pgs o -
0.5 = Jo g(p)dp = _Lr(a)r(b) Jo p- " (1-p)  * dp. (4.12)

The numerical solution of this equation for p95 is discussed in detail
in Chapter 5, and a program for performing this calculation is included
in Appendix II.

For each simulated failure data set generated for the beta prior
which was skewed towards the low rrobability end (a=1.2, b=23), an
estimator of the 95-th percentile was obtained by using the estimators
a and b for each set in Eq. (4.12) and solving numerically for the 95-th
percentile. The distribution of the 95-th percentile estimators so
obtained are shown in Figs. 4.18-4.21 for the three estimation techniques
~uitable for analyzing low probability failure data. The mean, variance
and median of these distributions are presented in Table 4.11.

From a safety viewpoint, one would like to use an estimation tech-
nique which has a low inherent probability of yielding 95-th percentile
estimates which are very much less than the true value. In other words,
if the estimator is biased, then it would be bettcr if it were biased
S0 Qg to yield overestimates of Pgs (with hopefully small minimum

mean square ‘error). Further, there should be little if any chance of
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Table 4.11 Median, mean and variance of the distributions of the 95-th percentile
estimators.

True 95-th percentile = (0.13586.

Marginal Matching Moments

Prior Matching Moments

Marginal Max. Likelihood

sg?:i: Median Mean Var. Median Mean Var. Median Mean Var.
5 0.106 0.114 0.0029 0.121 0.130 C.0035 0.113 0.121 0.0032
10 0.119 0.124 0.0020 0.136 0.140 0.0021 0.125 0.129 0.0020
20 0.125 0.128 0.0011 0.138 0.141 0.0011 0.129 0.131 0.0010
50 0.133 0.134 0.00045 0.144 0.145 0.00044 0.134 0.135 0.00042

*1500 samples were used for size 5-20; 500 samples for size 50.
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yielding outliers or values of 995 wiich are orders of magnitude less
than the true value. For the present case the true value of the 95-th
percentile for a=1.2 and b=23 is 995-0.13586. In Table 4.11, the number
vi simulated data samples which yielded estimators greater than or less
than the true Pgg are given. Notice that for small samples all three
<p95}>0.5), while as the

sample size increases, the prior matching moments becomes increasingly con-

estimation methods are non-conservative (Prob{p95

servative while the medians for the other two methods approach the true
Pgs value.

From Table 4.10, all three methods are seen to yield distri-
butions for §95 with almost equal v-riance. However, the two marginal-
based estimation techniques yield distributions with means and medians
smaller than the true value for all sample sizes although as the sample
size increases the medians and means increase and approach the true value
of Pgs* The simple prior matching moments technique also yields distri-
butions of p95 whose mean and median also increase with increasing sample
size, but unlike the other techniques, for sample sizes greater than about
seven, the means and medians become greater than the true values, i.e., the
distribution becomes conservative. Further for very large sample sizes this
positive bias does not disappear, although the bias may not be significantly
large.

For small sample sizes (N=5) (see Fig. 4.18) all three methods yield
some estimators 695 in the lowest value bin (0-0.04). These values are,
of course, not conservative. Of considerable concern is how these low
estimates are distributed in this low end bin. Since t'ie marginal-based
estimation techniques occassionally yield very large estimators for a and
b, i.e., outliers, the resulting estimated prior distribution will have a
very small variance and hence the 95-th percentile will be only slightly
greater than the mean. If the mean should turn out to be very small, the
595 values for these outliers could be very much smaller than the true
value. Clearly such a feature of these estimation techniques would preclude
their use in safety analyses. In Table 4.13, the lowest 5 values of pgs
found in the present simulation study are listed. It is seen that only
one estimate is smaller than 10% of the true value, aud hence the possibility
of obtaining in the 995 distribution severe outliers which are orders of

magnitude smaller than the true value does not appear to be very likely.
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Table 4.12 Number and percent of simulated failure data samples which yielded
estimated 95-th percentiles greater than (GT) or less than (LT) the
* true value of 0.13586).

Marg. Match. Mom. Prior Match. Mom. Marg. Max. Likelihood
Sg‘;“z’ :e LT GT LT GT LT GT
No. % No. % No. % No. s 4 No. % No. %
5 978 70.7 405 29.3 890 59.3 510 40.7 873 74.7 476 35.3
10 953 63.6 546 36.4 755 50.3 745 49.7 883 59.0 614 41.0
20 873 58.2 627 41.8 701 46.7 799 53.3 820 54.7 680 45.3

50 1T 55.4 223 44.6 176 35.2 324 64.8 261 52.2 239 47.8
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Table 4.13 Smallest 95-th percentile estimators observed
for simulated failure data samples of size N.
True value of the 95-th percentile is 0.13586.

Marg. Matching Moments

N=5 N=10 N=20 N-50
0.0193 0.0362 0.0428 0.0863
0.0206 0.0364 0.0446 0.0871
0.0221 0.0371 0.0503 0.0881
0.0223 0.0387 0.0533 0.0845
0.0234 0.0395 0.0554 0.0922

Prior Matching Moments

N=5 N=10 N=20 N=50
0.0115 0.0385 0.0592 0.0974
0.0196 0.0451 0.0622 0.101
0.0242 0.0491 0.0658 0.101
0.0243 0.0500 0.0673 0.101
0.0256 0.0509 0.0695 0.102

Marginal Maximum Likelihood

N=5 N=10 N=20 N=50
0.0152 0.0269 0.0426 0.0848
0.0154 0.030u6 0.0461 0.0870
0.0170 0.0360 0.0503 0.0892
0.0209 0.0369 0.0505 0.0922
0.0239 0.0400 0.0572 0.0924
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4.5 Fraction of the Estimated Prior Distribution Above the True
95-th Percentile

The extent of the high probability tail of the estimated beta
prior distribution is of considerable concern in safety analysis. 1In
the previous section the distribution of the 95-th percentiles of the
estimated prior distributions was discussed. An alternative perspective
is to consider the fraction of the estimated prior that is supported
above the true 95-th percentile, i.e., the probability that the estimated
failure probability is greater than the true 95-th percentile. This
quantity is given by

1
[ 5 ptrue;
Probestimated p > Pgs } f 8est(P) dp , (4.13)
true
Pgs

Y€ is the 95-th percentile of the beta distribution used

where ptr
95
to generate the simulated failure data (a=1.2, b=23), and gest(p) is
the estimated prior distribution for a particular failure data sample
(i.e., a beta distribution with a=4 and b-g).
If the estimation technique used to analyze the failure data should
yield estimators 4 and b equal to the true values of the beta prior, then
the probability given by Eq. (4.13) would equal 0.05. Of course, the
estimation techniques will not in general yield exact values for the
beta parameters, and those methods which tend to yield estimated priors
skewed more towards higher probability values than the true prior are preferred
for safety analysis since the resulting estimated failure probabilities
will be overestimated and hence conservative.
The distribution of the probability estimates given by Eq. (4.13),
for the three parameter estimation techniques suitable for analyzing
low failure probability data, are shown in Figs. 4,22-4,25. It is seen

that all three estimation methods yield a considerable portion of values
true
95

increases, these distributions become increasingly centered about 0.05.

of Ptob{p >p } below the ideal value of 0.05. As the sample size
However, the distribution for N320 are all highly skewed towards small
probabilities with a long slowly decaying behavior at high values. The
prior matching moments method in all cases appears to be slightly more
"conservative" by giving a distribution which is not as concentrated at
the low prebability values as compared to the distributions obtained with
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The median, mean and variance of these distributions are presented
in Tat 4.13. From these results the variances for all three methods
are within a few percent of each other although the mean for the prior
matching moment distribution is considerably higher than that for the
distributions produced by the marginal-based methods. Moreover, even
for large sample sizes the mean of the distribution for the prior match-
ing moments method is about 20% greater than the ideal value of 0.05.
The marginal-based methods, in contrast, appear to approach the ideal

value as the sample size becomes sufficiently large.

4.6 Comparison of Maximum Likelihood Variance Bounds to Measured
Variances

In Section 3.6 expressions for the variance and covariance of the
parameter estimators were derived for the marginal maximum likelihood
method. Although these expressions are strictly asymptotic values,
the expresvions are often used as actual estimators of the variance or
covariance of the parameter estimates for finite size data samples. Since
the values of the variances and covariances of the parameter estimates are
important for error propagation (see Section 3.8), one would like to know
how close these maximum likelihood estimated values are to the true values
of the variances and covariance.

Such a determination was started during this proj.cc®. and some pre-
liminary results are presented in this section. The actual variances
and covariance for the parameter estimators foun! in the simulation study
are listed in Table 4.4. Be:' . ise of the presen~: of estimator outliers
for small sample sizes (1N<10) obtained with both marginal-based esti-
mation techniques, the exverimental values of viriances and covariance
depends greatly on how these outliers cre treated. In this study esti-
mators greater than 100 times the true beta par meter value: (a=1.2,
b=23) were ignored.

To evaluate the effectiveness of using the maximum like.! ihood
expressions .s estimators, simulated failure dita samples were selected
which produced either excellent or very poor p:rameter estimates. With

these data samples the marginal maximum ]Jikeli'.ocod variance bounds were

calculated from Eqs. (3.43)-(3.48). The resul s for the "good" and
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Table 4.14 Median, mean and variance of the distribution for the Prob{p > p;;“e}. For samples
of size 5, 1U and 20, 1500 simulated failure data sets were used, while for the
size 50 sample, 500 rets were used. Beta prior parameters are a=1.2 and b=23.
Sample Marginal Matching Moments Prior Matching Moments Marginal Maximum Likelihood
- Size Median Mean Var. Median Mean Var. Median Mean Var.
5 0.0142 0.0425 0.0041 0.0321 0.0570 0.0045 0.0230 0.0493 0.0043
10 0.0287 0.0462 0.0025 0.0498 0.0616 0.0027 0.0363 0.0511 0.0026
20 0.0367 0.0456 0.0015 0.0532 0.0595 0.0015 0.0415 0.0489 0.0015
50 0.0467 0.0491 0.00068 0.0596 0.0618 0.00065 0.0478 0.0508 0.00065
o+
N
o
L

86
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"bad" data samples are shown in Table 4.15 and the data samples them-
selves are given in Table 4.16. From these results it is seen that the
"bad" data samples which yield inordinantly large values for 4 and b, al-
so produce extremely large estimates for the variances and covariance and

are much larger than the empirical estimates in Table 4.5.

Table 4.15 Variance bounds [bnd(4) and bnd(b)], and the covariance
bounds [bnd’ ',l,; for parameter estimators [4 and 6], as
calculated by the marginal maximum likelihood method
for selected simulated failure data samples. True
vaiues of the beta parameters is a=1.2 and b=23. The
selected data samples are given in Table 4.16,

Sample 1D & & &
v ol ol a b bnd(4) bnd (b) bnd(a,b)
; 1 1.2444 22.823 0.89839 393.129 16.179
2 528.92 11338. 3.0843x10° 1.417x10'1  6.6111x10°
3 1.2673 23.541 0.42806 193. 50 7.8072
10 10 13 11
4  2080.8 40183. 3.9119x10%0 1.4589x10%3 7.5545x10
- 1.2248 22.720 0.20962 94.5% 3.8150
6  7.1495 137.61 19.074 7309.5 366. 41
» 1.1728 23.094 0.076788 39. 481 1.4846
8 2.8889 58.522 0.67451 308.08 13. 580

The maximum likelihood estimates for the "good" data samples appear much
more reasonable and are genevilly smaller than the empirically observed variances
listed in Table 4.5. To compare these maximum likelihood estimates to the
variances and covariance measured from the distributions of the parameter esti-

mators, the ratio of the measured value to the likelihood bound was calculated.

1424 1
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Table 4.16 Selected simulated failure data samples used to estimat.
variance bounds in Table 4,15.

a beta binomial with parameters a=1.2 and b=23.
read from left to right with the number of failures, k
following the number of t-ies, n

Data were simulated from
Data are

i'

i.
Sample 1D
Size No. (ngoky)
5 1 45 4 216 5 213 25 92 260 9
2 246 12 249 13 227 4 167 255 14
100 2109 9 83 11 242 5 287 19
10 1 247 & 116 6 248 5 195 Z1 256 0
& ( 45 3 265 14 43 1 164 7 288 14
\ A 4 180 15 247 13 163 4 247 8
( 46 4 43 1 276 35 139 0 168 16
5 160 3 84 9 175 2 169 0 219 13
266 37 271 22 247 12 111 4 106 1
20 243 6 111 1 191 9 105 1 228 9
[ 227 4 91 5 287 17 184 3 121 10
" 266 26 137 6 286 8 255 9 11# 8
175 7 128 3 31 2 225 12 150 11
| 166 3 34 3 150 11 188 10 173 7
[ 261 20 33 0 281 11 237 29 203 8
157 35 227 7 44 1 245 6 59 1
155 8 176 10 48 2192 14 82 1
241 7 150 25 255 4 265 3 131 4
7 119 14 148 6 102 8 103 5 87 7
266 0 137 0 178 1 261 3¢ 280 2
144 4 227 11 284 7 244 h 56 1
184 3 101 4 196 2 213 3 125 16
137 0 172 0 122 19 218 8 261 9
- { 80 7 60 2 25 16 241 5 263 "
[ 209 2 77 2 158 13 168 18 213 1
209 19 63 0 196 9 30 2 104 1
224 8 173 11 155 5 143 7 266 20
250 27 42 0 290 17 153 7 101 4
" 286 18 213 15 132 6 56 1 62 4
68 3 273 14 199 2 116 4 80 3
142 14 140 9 208 7 243 13 235 19
287 12 204 0 167 8 300 16 262 8
226 13 142 6 227 2 169 6 124 6
| 165 7 267 3 97 8 163 15 193 1

—
5=

Al

o~
o

(e

—
~
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These ratios are presented in Table 4.17 for each of the three esti-
mation techniques suitable for the low failure probability case studied.
rrom these results it is seen that the empirical variances of the parameter
estimator as determined by the prior matching moment cechnique are much
closer to the likelihood estimates than are the variances for the estimators
as d2termined by either of the marginal based techniques. The marginal-
based estimators, a and 5, have empirical variances which are many times
larger than the likelihood expressions for samples less than 20 in size,
although the variances stiil appear to apprecach the bounds as the sample
size becomes very large.

It should be emphasized that the above conclusions hold for

sartfcular examples of "good" failure data. Whether they hold true
on the average for all data samples is the subject of further investi-
gation. However, it is seen by the "bad" data samples used here, that
the likelihood bounds are capable of yielding completely unrealistic
values, and hence for the analysis of a single failure data sample,
care must be used in using the likelihood bourds as estimates for the

variances of the prior parameter estimators.

4.7 Bias Removal for the Prior Matching Moments Method

In Section 4.2 it was seen that all of the prior parameter estimation
techniques produced a bias in the distribution of the estimators, 4 and b,
especially for small sample sizes. Ideally, one would like an expression for
the amount of bias inherent in each estimator. Thue a cursory examination
of the relatior between parameter estimator bias and the sample size was
undertaken. sjince the prior matching moment estimation technique was
found from se''~-ral considera’ions, to be the best of the four techniques
studied for alysis of low probability failure data, e.g., no outliers,
smallest bi , simplest computationally, and most conservative in describing
the high pruoability tail of the estimated prior , only this estimation
technique was examined in the bias removal study.

To gimplify the generation of failure data, random sampies of the
failure probability, Py» were made directly from a kncwn beta prior distri-

bution, rather than to simulate failure-on-demand data, n, and ki' by

i
sampling from a beta-binomial distribution as was done in all the previous
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Table 4.17 Ratio of measured variances and covariances of the parameter estimators (listed

in Table 4.5) to the marginal maximum likelihood bounds (bnd) (listed in Table 4.15)
for the "good" data samples

Prior Matching Moments Marg. Max. Likelihood

Sg?ple var(a) var(b) cov(a,g) var(a) var(b)
Z€  Pnd(a) bnd (L) bnd(a,b) bnd(a) bnd (B)

Marg. Match. Moments

cov(@,ﬂ) var(a) var(b) cov(a,b)

bnd(a,b) bnd(a) bnd(b) bnd(a,b)
3 4.92 9.64 63.7 61.1 69.7 71.8 57.8 63.6 61.2
10 1.28 1.48 1.29 13.1 21.1 17.6 28.7 29.8 32.1
20 1.01 1.06 0.993 2.72 3.59 3.20 3.82 4.57 4.43
50 0.875 0.773 0.829 1.48 1.48 1.53 2.28 2.06 2.32

701
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sections. The failure proubability samples, Py» were generated by
the inverse transformation technique (described in Section 4.1) where
a random number u was transformed to a failure probability p through the

cumulative distribution of a beta distribution, ..:.,

P = n
i g—((-g-)"—';)(b—) I x " qex)*? 4 . (4.14)
0

For a given value of u, the failure probability p can readily be obtained
by solving the above equation numerically using techniques described in
Chapter 5.

For this bias removal investigation, 500 failure probability
samples of various sizes, N, were generated from two beta distri-

butions:

Population 1: a = 0.39 b = 6.14
Population 2: a = 3 b=17

Population 1 was selected because this beta was found to describe the
prior distribution for a particular grouping of the diesel engine
data of Table .1, while population 2 represents a more centered distri-
bution. For each data sample, the sample mean and variance were calcu-
lated, and beta parameter estimators were obtained by the method of
prior matching moments using Eqs. (3.5) and (3.6).

As would be expected from the earlier study on the estimators 4 and
8, these estimators were again highly biased towards the high values and
a and b were highly correlated. The results are summarized in Table 4.18
where the average of the estimators (denoted by a and E), their ranges,
variances, and the coefficient of linear correlation (r) between 4 and 5
are tabulated.

There is one surprising difference between these results and those
obtained in Section 4.2 from data simulated from the beta-binomial,

i.e., using ki and ny data . The data simulated directly from the

beta distribution always yielded estimators with positive bias whereas
the earlier results indicated the bias becomes slightly negative for
a sample size over 20. This difference is thought to arise because of
the inability of the simulated data taken from the beta-binomial distri-
bution to yield failure probabilities between k/n and (k+1)/n. The data
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Table

4.18

kesnlts of the beta parameter estimators as cilculated by the prior
matching moments technique from simulated faj .ure probability data.

Population 1

(a =0.39, b = 6.14)

-~

N a b min A max 4 min b max b var a var b r
10 0.633 13.4 0.0641 3.12 0.642 143. 0.147 201. 0.620
20 0.507 9.03 0.111 1.76 1.50 43.7 0.0481 32.1 0.708
40 0.449 7.45 0.130 1.02 2:31 2.60 0.0204 9.59 0.757
50 0.444 733 0.178 1.05 - I 21.8 0.0165 &.36 0.740
60 0.432 7.05 0.182 0.845 2.67 16.8 0.0119 5.53 0.741
70 0.429 6.95 0.173 0.770 3.00 17.0 0.0108 4.67 0.743
80 0.425 6.84 0.167 0.792 2.66 15.4 0.0099 4.04 0.780
90 0.423 6./9 0.212 0.805 2.89 14.7 0.0084 3.41 0.754
100 0.418 6.67 0.199 6.836 3.56 12.9 0.0075 2.84 0.765
Population 2 (a=3, b=17)

n a b min a max 4 min b max b var &4 var b r
10 4.06 9.51 0.933 30.6 2.18 49.5 7.60 43.7 0.923
20 3.42 8.04 1.10 13.2 2.76 28.4 1.75 10.6 0.921
30 3.29 .71 1.32 7.63 .71 16.9 1.00 5.98 0.922
40 3.19 7.47 1.52 7.04 3.47 17.8 0.644 3.86 0.917
50 3.18 7.44 1.84 5.58 3.86 14.5 0.506 3.11 0.906
60 3.13 Tu32 1.79 5.07 3.83 12.7 0.369 2.34 0.907
70 3.12 7.29 1.99 5.36 4.25 13.0 0.341 2.09 0.911
80 3.09 7.22 1.87 4.96 3.85 12.1 0.2681 1.52 0.901
90 3.09 o 4 | 1.93 5.16 4.12 12.7 0.223 1.31 0.889
100 3.06 715 1.844 4.64 4.53 11.0 0.194 1.14 0.893
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simulated from the beta distribution, on the other hand, may assume
non-fractional values and be more smoothly distributed.

From the results in Table 4.19, it is seen that the bias on the
parameter estimates (i.e., a-a or S-b) decreases with increasing sample
size, N. In an attempt to find an empirical expression for the bias of

the estimators the following two models were used:

Exponential: bias = a n8

Linear: bias = y + 6n-1 .

The coefficients for each model were computed by fitting each model
to the bias given in Table 4.18 by the methods of least squares. (For
the ex;onential model the logarithm was taken before performing the
least squares analysis.) The values of the coefficients so obtained
and the coefficient of determination, Rz, for each fit are given in
Table 4.19..

The high values of RZ for bYoth models implies that either model
may be considered satisfactory for estimating bias. Furthermore, the
fact that 8 is close to the value -1 in all cases implies that there is
not much practical difference between the two models. What is dis-
tressing is that the values of a, y, and § are so disparate. It had been
hoped that these coefficients would be sufficiently close
in the four cases that the same bias-removing formula could be used for
all beta parac-ters a and b. Clearly these coefficients are functions of
these parameters. Further work to find a bias-removing factor (or term)
that is independent of the true values of a and b is needed. No use has
been made so far of the high correlation between 4 and 6, and this should

also be incorporated into future studies.

4.8 Fit of Empirical Distribution for 8 and b to the Gamma and
Log Normal Distributions

In the study of the distribution of the beta parame.er estimators,
a preliminary investigation was undertaken to see if these empirically
derived distributions could be described adequately by a simple model.
For this investigation the estimator distributions obtained in the

previous Section 4.7 by the prior matching moments technique for the
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Table 4.19 Least squares coefficients for

106

the bias predicting formulas.

POP'N 1: a

Expcnential .9931 1.8704 ~-.9125

Linear . 9997 .00415 2.3619
POP'N 1: b

Exponential .9513 82.0148 -1.0915

Linear .9906 -.30437 73.0225
POP'N 2: a

Exponential + 9952 13.7106 -1.1398

Linear .9915 -. 04964 10.5452
POP'N 2: b

Exponential +9971 34.2282 -1.1439

Linear .9934 -.1132 25.5715

1426 318



107

simulated failure data generated directly from the beta distribution
were used. Both the shifted and unshifted gamma and log normal
distributions were fit to the empirical distributions. The results
of this modelling of the estimator distributions are summarized in
Section 4.8.1 and 4.8.2.

4.8.1 The Gamma Model

The first model fit to the observed estimator distributions

was the gamma distribution

a-1 =-v/B

f(v|a,B) = ~——tee | 0 <V <w, (4.15)

r(a) 8*
where v rzpresents either estimator & or b. Values for the gamma
parameters a and B were obtained by equating, respectively, the variance,
32, and mean, 3, of the empirical estimator distribution to the mean,
af, and variance, aBZ, of the gamma distribution. The resulting estimates

for the gamma parameters are thus

4= et (4.16)
and

é - szlv . (4.17)

The results of these fits to several distributions we~re not
encouraging as can be seen from Table 4.20 in which are presenteu
the results of a x2 goodness-of-fit test using 20 equi-probability

intervals in v (and thus 17 degrees of freedom).

Table 4.20 x2 Goodness-of-fit resul&s for the gamma model.
The criticel values of x“ for the test are:

X2 g5 (17)=27.59, x?01(17)-33.41. xf005(17)=35.72
2
Sample Beta X
Size Population a b
10 1 31.68% 141.36%
50 1 14.56 34.64%
100 1 16.96 31.44%
10 2 97.76% 103.36%
50 2 19.04 24 64
100 2 23.76 19.60

*Indicates a significant difference at the 0.05 level
or lower.

1426 319



Upon examination of the estimator distribution within the 20 equal

probability cells, it was found that for cases which yielded large xz
values there were disproportionately fewer estimates in the cells for
small values of v. This underpopulation in the initial cells results
in the large xz values. In other words, the fitted gamma model predicted
far more small v values than were observed in the simulation results.
This emphasis of the gamma distribution for small v values suggests
that instead of the usual two parameter gamma function, a three narameter
shifted gamma function might be a useful model to fit to ths empirical
distributions. The shifted gamma function is given by

a=1 =(w-8)/8
_ , B <wem (4.18)

f(wla,8,0) = L)€ <

where w=v+8. For a given 6, the estimates for the parameters a and 8
can be obtained, as before, by matching the mean and variance of the
gamma model to those of the empirical distribution. The result is

given by Eqs. (4.16) and (4.17) or equivalently by

a8 = (w-0)2/s2 , (4.19)
and
8 = s2/(w-0) . (4.20)

The choice of a value for 6, however is not so straightiorward
Clearly 6 must be constrained between zero and the minimum observed
value for v. Ideally 6 should be chosen so as to minimize the x2
statistic. Such a technique would require computer analysis; but for
this preliminary investigation on modeling the estimator distributions,
4 more cursory treatment was indicated. The shift parameter 6 was given
several values between zero and the minimum v observed.

While this increase in 6 generally lowered the xz statistic, it
was found that the best x2 values were stilltoo large for the fit by
a shifted gamma model to be acceptable. For example, the case for B
from sample size 10 genzrated from the population 1 beta, the XZ
statistic decreased frow 141.36 for 6=0 to 118.88 for 6=0.32 to 115.92
for §=0,6395, From these and other examples it is concluded that neither
a4 gamma or a shifted gamma distribution is a reasonable model for the
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4.8.2 The Log Normal Mrdel

As an alternative to the gamma distribution, the log normal distri-
bution was also investigated as a possible model for the 4 and b distri-

butions. In this model itwas assumed that Inv is distributed normally,

2.8,
2
f(v|a,8) = —— expl- ilﬁigﬁl-] , 0<v<e, (4.21)
/2r 8 28

Again estimates of the parameters a and g are obtained by matching the
mean, ;, and variance, 92, of the empirical distribution to the mean
and variance of the log normal distribution, respectively. The mean and

variance of the log normal distribution are

u = expla + 82/2] (4.22)
and 2
g* = 3° (of <1} . (4.23)
The inverse relations are
82 = 1 + o%/u?) (4.24)
and
2
a= Iny - B /2. (4.25)

Thus the estimates & and § are obta.ned by replacing u and ¢ in the
above equations by v and s respectively.

With Eqs. (4.24) and (4.25), log normal distributions were fit to
the same example a and b distributions as were used in the preceding
gamma analysis. Again a XZ goodness-of-fit test using 20 equi-prob-
ability intervals was used to compire the fit to the empirical distri-
bution. The results, which are much more encouraging, are shown in

Table 4.21.
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Table 4.21 XZ goodness-of-fit tesulis for the log normal model.
The critical values of x~ for the test are:

o5 = 27-59 gy = 33.61, X505 = 35.72.
2
Sample Beta X
Size Population a b
10 1 14.64 27.28
50 1 22.32 14.08
100 1 12.40 15.52
10 2 35. 76 32. 16
50 2 20.40 13.36
100 2 19. 84 24.24

%
Indicates a significant difference at the 0.05 level.

Most of the computed X2 values indicate adequate fits to the log normal
model and those which show poor fits are, as might be expected, for the
small sample sizes. Thus the log normal appears to fit the data much
better than the gamma models (see Tables 4.20 and 4.21).

However, there is an indication that a better model could be found.
Inspection of the frequency of observed data (4 or b values) in the lower
probability intervals used for the x2 analysis again showed that these
intervals were populated with fewer than expected observations, and
hence made the largest contribution to the calculated x2 values. To
increase the population in the lower probability cells, a shifted

log normal distribution,

(1n(w=08)-a)>
; I,

f(w|a,B8,08) = exp [~ (4.26)

V2n 8 28
could be used. The shift parameter must be constrained between 0 and
the smallest observed a or b. For a fixed 8, the parameters g and g can
be found by matching moments to those of the empirical distribution. In

this way one finds
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82 = In(l + $2/(w-8)%) (4.27)
and
8" = In(w-0) - /2 . (4.28)

To fit Eq. (4.26) to the empirical distributions, the shift
parameter was varied to find the value which yielded the lowest x2
statistic. It was found that the use of a non-zero value for
6 decreased the goodness-of-fit statistic, xz. (However, it must be remembered
that use of a non-zero 9 reduces the degrees of freedom from 17 to 16).
Some results are shown in Table 4.2 2 where it is seen that the fits for
smal] sample sizes have been greatly improved over the non-shifted log

normal and gamma models. In fact all of the example distributions have an

acceptable x2 value.

Table 4.22 x2 goodness-of-fit results for the shifted log normal
mouel. For 6=0 critical value ¥ 05(17) = 27.59, while

for 6>0 the critical valve is g 05(16) = ,..30.

Sample Beta x2 d
Size Population a b
10 1 14.64 (6=0) 27.28 (6=0)
18.88 (6=0.3)
50 1 22.32 (6=0) 14.08 (6=0)
18.24 (6=1)
100 & 12.4 (6=0) 15.52 (6=0)
14.00 (6=1)
10 2 35.76 (6=0)* 32.16 (6=0)*
14.56 (6=0.6) 21.36 (6=1.1)
50 2 20.40 (6=0) 13.36 (6=0)
22.24 (8=1) 13.44 (e=1)
100 2 19.83 (6=0) 24,24 (8=0)

17.44 (6=1)

*Indicates a significant difference at the 0.05 level or lower.

L
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5. CALCULATION OF CONFIDENCE AND PROBABILITY INTERVALS FOR COMPONENT
FAILURE PROBABILITIES

In the previous chapter, techniques were developed to estimate the mcan
failure probability of plant components from the observed number of failures
and the samplc size. Both the classical and Bayesian estimation techniques
were analyzed and applied to diesel engine failure data.

This chapter represents an extension of this estimation work. In
particular, the question of the confidence of the failure probability

estimates is examined. Of prime concern is the determination of a "confi-

dence interval" for the classical description (or a "probability interval”

for the Bayesian description) into which the true failure probability of
a particular component falls with an associated degree of certainty (or
"confidence level"). The question of such interval determination is

reviewed for both the classical and Bayesian descriptions.

3.1 Classical Fstimation of Confidence Levels

The classical description of the failure probability distribution
for obtaining k failures in n tries is given by the binomial distribution

f(kin,p) = ﬁ:—kv p* (1-p)"K, (5.1)
where p is the failure probability. For an observed k failures in n
attempts the failure probability can be estimated by p = k/n. With
what degree of precision is this estimate made? Equivalently, what is
the maximum (or minimum) reasonable value of p for which we would expect to
obtain the observed k failures in n tries at some confidence level a?

The probability of observing k or fewer failures in n tries is

. n! 2 n-2
Fkln,p) = 1 1t P (P (5.2)

2=0
i.e., the cumulative distribution of the binomial. For a fixed n and
k (observed values), F will decrease (increase) continuously as p in-
creases (decreases). Thus the maximum reasonable value of p at the
a-level, is that value of the failure probability, Pys for which one
would observe, with a probability of a/2, k or fewer failures in n

tries, i.2.,
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F(k|n,p)) = a/2 . (5.3)

Similarly the minimum reasonable value of the failure probability at
the a-level, is that value, Po» for which the probability of cbserving

k or more failures in n tries is a/2, i.e.,
1 - F(k-1|n,p ) = a/2 . (5.4)

To find the upper and lower bourds of the component failure prob-
ability, Egs. (5.3) and (5.4) must be solved for Py and Py* However
such solutions require numerical evaluation, and it is easier to convert
these equations into a form more cmenable to numerical analysis. 1In
particular, the cumulative binomial distribution, Eq. (5.2), can be
written in terms of the incomplete beta function. To find this relation,

differentiate Eq. (4.2) with respect to p and simplify the result te

obtain
-
sF(k[n,p) _ _ pr(-p)” ! (5,83
ap B(k+1,n-k) ' !
where
- I(xry)
B,Y) = k) (5.6)
Integration of Eq. (5.5) over p from 0 to p yields
p _k n-k-1
_ el z (1-2)
F(k|n,p) - F(k|n,0) [0 e 9% (5.7)
or equivalently
F(k|n,p) = 1 - Ip(k+l,n-k) . (5.8)
where the incomplete beta function Ip is defined by
2 (o) £ srdee [ ") (10" e (5.9)
p ) T BGEw ' '

With this relation between F and Ip, the equations which determine the

upper and lower bounds on p may be written as

I_ (k,n-k+l) = a/2 (5.10)
pO
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and

Ipl(k+l,n-k) =1 - a/2. (5.11)
The advantage of this form, which still must be solved numerically

for P and Py is that the corresponding probability limits for the
Bayesian analogue are given by equations of the same functional form,
and the same numerical algorithm used to solve the above equation can
be used in the Bayesian analysis.

It is easily shown that P, < p = k/n < Py with the equality de-
fined only if k=0 (po-ﬁ-O) or with k=n (plnﬁ-l).* Of special interest
are situations involving events with low probabilities of failure, for
which one often encounters cbserved values of k=0 for relatively large
values of n. For this case, the upper bound, Pys can be obtained analy-

tically. From Eq. (5.11) one obtains

1
% =1-n J (1-2)"") 4z =« (1-p.)" ,
0 3
or upon solving for Py
B 1/n
P, =1 -5l » k=0. (5.12)

Similarly for high probability events for which one often observes k=n
(and for which p=p1=1), Eq. (5.10) yields

1 n
- J n-1 3 =i

or solving for Py

3 1/n
P0 = (1 - 7) . £5.13)

5.2 Bayesian Estimation of Probability Intervals

In the Bayesian description of the failure probability for a com~
ponent, it is assumed that the failure probability comes from a particular

prior distribution which is known from previous experience or which is

*For k=0, the integrand on the left hand side of Eq. (5.10) becomes singu-
lar and the equation has no solution. In this case the entire confidence
level is often associated with the "upper tail" of the distribution. How-
ever to be consistent with the more general case (k#0,n), we will always
associate only half of the total confidence level with e of? th
tail. A simi,lar convention is used with the k=n case. am ?6 {BL6
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assumed. For the present study, we have assumed that the prior distri-

bution is given by a beta distribution

a-1 b-1
. b__(1-p)
glp) B(a,b) ’

(a,b>0) . (5.14)

If we assume, as in the classical case, the failure distribution is given
by a binomial distribution (Eq. (5.1)), then the use of Bayes' theorem

gives for the poeterior distribution

k-1 b4+n-k-1
£(p|k,n,a,b) = P Q-p) " (5.15)
D B(a+k,b+n-k) : :

This quanti y (also a beta distribution), is the Bayesian estimate
of the distribution of the failure probability, p, for a particular
component which has previously experienced k failures in n tries and
which is assumed to belong to a class of components whose failure prob-
abilities are distributed according to Eq. (5.14).

With the posterior distribution, the probability intervals about the
mean of the posterior distribution,

a atk

P = (a%k) + (b#n-k) ’ (3.16)

are readily formulated for a component which tas experienced k failures
in n tries. Explicitlythe probability that the true failure probability

is greater than some upper bound, pl, at the au/2 level is given by

1
Prob{p>pl} = % = I £(p|k,n,a,b) dp . (5.17)
Py
Similarly the probability that p is less than some lower bound, Py at

the a/2 level is

Po

prob{p<p } = e J t£(p|k,n,a,b) dp. (5.18)
0

Upon substitution for g, the confidence limits are readily expressed

in terms of the incomplete beta function as

1 (a+k,n+b-k) = a/2 (5.19)
Py
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and

Ip (atk,n+b=k) = 1 - a/2 . (5.20)
1

Again these equations have the same form as those for the classical
case (Eqs. (5.10) and (5.11)), although with different arguments for

the incomplete beta function.

5.3 Solution for Interval Limits in Terms of the Snedecor F-Distribution

For other than the extreme cases when one of the arguments of the
incomplete beta function equals zero, Eqs. (5.10) and (5.11) or Egs. (5.19)
and (5.20) cannot be solved analytically for Py and Py- However, the
solutiins can be expres-ed in terms of the inverse values of the Snedecor
F-distribution [13] (also known as the variance-ratio distribution [8]).
Consider the general form of Egqs. (5.9), (5.10), (5.19), or (5.20), namely

Il zx-l(l_z)y--l

B(x,7) dz = B . £5:21)
Py
With the change of variable z=w/(l4w), one obtains
1 x=1 ~(x+y)
e +w = ol
B(x,y) I: W (14w) dw = B (5.22)
i

where '1 = pi/(l-Pi)' To solve for wi. let w = vll-‘/v2 with vy = 2x and

v2-2v. With this substitution, Eq. (5.22) becomes

v v (v,=2)/2 v, =(v,+v,)/2
3 r =7 °* M+ 1% grep (5.23
7 y. 72 b
vZB[—i'§~] i

where l-‘1 = vzwilvi. The quantity on the left hand side of the Eq. (5.23)

is the cumulative distribution of the Snedecon F-distribution between

F1 and =, The solution of Eq. (5.23) is often denoted by

v, - FB(vl.vz) (5.24)
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where values of FB are tabulated for integral values of Vi and vy
(13].
pi'l:: '“*‘:"2' rai'ﬁll
i 1 " '1"72
or
1 -1

p =142 Fg?i%?i;il = 1+ LF_(2y,20] (5.25)
Only for the claesical results of Eqs. (5.10) and (5.11) do the para-
meters x and y (and hence Y1 and vz) always assume integer values and
therefore standard tables of FB can be used. Even most computer pro-
grams written to calculate FB require that the "degrees of freedom"
parameters Vv, and vy be integer values. Consequently the above re-
duction is of little practical consequence for the calculation of the

Bayesian estimates of the confidence limits.

5.4 Approximate Solution for the Interval Limits

As an alternative to the above procedure, the exact interval bound
equations (Eqs. (5.10) and (5.11) or Eqs. (5.19) and (5.20)) can be ex-
pressed approximately in terms of the Chi-squared distribution [8], i.e.,

2 v
-1 x -1
p(x2lv) = (272 rwn J 2 et2gr, 0<yxcm, (5.26)
0
where v is the degrees of freedom. Consider the general form of the exact

interval equation, Eq. (5.21), whi . can be written as

P x=1 y-1
B z (1-2) N

Upon change of variables u=yz and the use of Eq. (5.6), this equation can

be written as
yp 1

_TGety) 11 x1 . _u’
B = Ty o T Io Ta-9 du. (5.28)

b 4
For large y, (1 + %) =~ ®. and with Stirling's approximation for I(x+y)
and I'(y) one has fou lnige ¥

Txty)
r(y)

IS 1
1426 529 (5.29)

ulh-
n
—

y
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Thus Eq. (4.28) may be approximated for large y by
up

1 J et O P(2yp|v) (5.30)
(s}

ri{x)

B =

with v=2x. If the solution xz is defired by P(xglv) = f, the solution of
Eq. (5.30) for p (and the approximate solution of Eq. (5.27)) can be

written as

p = xé/(ZY) 4 (5.31)

As an example, consider the solution of Eq. (5.11) for Py when k=0.
For this case x=1, y=n, and g=1-a/2. Equation (5.30) can be solved
directly when x=1, namely

L, .y
B = e du=1-e . (5.32)
r)
0
Solving for pl, one obtains
1 --17,0
L & In(1-8) - Zn(z) » (5.33)

Use of a series expansion for the logarithm reduces this result, in the
limit of large n, to the exact result of Eq. (5.12). For n=69 and
a=0.50, Eq. (5.33) yields Py = 0.02009 which is only 1% higher than the
exact value of p1-0.01989.

The approximate interval equation, Eq. (5.30) or (5.31), cannot be
solved analytically except for the case x=1 (k=0). However the use of
the approximately xz-distribution is often preferable to the exact ex-
pression in terms of the Snedecor F-values (Eq. (5.25)) because the values
x: are extensively tabulated (albeit for integral degrees of freedom, v).
However, even for the Bayesian description, for which non-integral values
of v results, interpolation of xg tables is readily effected and appruxi-
mate solution for the interval limits, Py (via Eq. (5.31)) can be obtained.
In Fig. 5.1, a comparison between the approximate and exact values of Py
of the classical description is presented. The agreement is excellent

except for very small vatues of n.
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5.5 Numerical Evaluation of Interval Bounds

A computer program TAILS was developed to solve the general form
of the confidence interval equation (Eqs. (5.10) and (5.11) or Egs. (5.19)
and (5.20)), i.e.,

IP(X,y) =8, (5.34)

for the value of p (given x,y, aud 8). The complete program is listed
in Appendix III.

The incomplete beta function Ip (x,y) is calculated from the follow-

ing expression [14] !

[ (x,y) = INFSUM p™ T(PS+x)  p* (1-p” I'(xty) FINSUM
el T(PS) I(x+1) F(x) T(y+1)

(5.35)

where INFSUM and FINSUM represent two series summations defined as

follows:
© x(1-PS), j
INFSUM = | ——d B | (5.36)
ju1 X !
where
1 , §=0
(1—95)j = (5.37)
(" {14y-PS) /T (1-PS) , J >0
and [y]
FINSUM = E XAx=1)e .. (y-141) 1 (5.38)

j=1 (x+y=1) (xty=2)...(x+y=]) (l-p)j

where [y] is equal to the largest integer less than y. If [y]=0, the
FINSUM=0. 7he quantity PS is defined as

1 if y is integer
PS = (5.39)
y - [y] , otherwise .

The above algorithm (combined with scaling to avoid numerical inaccuracies
encountered when using the gamma function with large arguments) was in-
corporated into a FORTRAN program MDBETA by Bosten and Battiste [ 14].

This program (modified in accordance to remarks made by Pike and Soo Hoo
[14]) was used in the present analysis. The program MDBETA is signifi-
cantly more accurate than the widely used program BDTR [ 13], especially
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for large arguments. For example in the case p=0.5, x=y=2000, MDBETA
gives the correct value, 0.5, while BDTR gives 0.497026.

Once the incomplete beta function can be evaluated numerically,
Eq. (5.34) is readily solved by standard numerical root finding tech-
niques. The solution of Eq. (5.34) for p is limited to the left and the
right by 0 < p < 1, and consequently a "bracketing" technique, i.e., one
which successively approaches the solution from opposite sides, is well
suited to this problem. The proced .re RIMI [13], which solves ron-linear
equations by means of Mueller's iteration scheme of successive bisection

and inverse parabolic interpolation, was found to be effective.

5.6 Numerical Results

With the program listed in Appendix III, sample calculations of con-
fidence intervals were obtained for the low failure probability events
characteristic of the diesel generators in nuclear power plants. Of
special concern are those records in which zero failures are observed
in n startups. Classically the upper failure probability for the classi-
cal description is given by Eq. (5.12); however, the Bayesian description
requires the numerical solution of Eq. (5.20). Results are shown in
Figs. 5.1 and 5.2.

For most of the diesel engine failure data studied in this project,
Bayesian estimates of the prior beta distribution parameters of Eq. (5.14)
were approximately given by a=1, b=20. For this case it is found that the
Bayesian estimate of the upper limit of the failure probability, Pys was
always less than the classical estimate (see Fig. 5.1). For example, for
k=0 and n=69, the upper limit on the classical failure probability at the
a/2 = 25% confidence level is 0.02, while to achieve the same upper limit
with the Bayesian estimates one has only to observe zero failures in 49
startups. In fact for the case a=1, b=20 the Bayesian description requires
about 20 fewer startups to achieve the same upper confidence limit when
k=0 for all confidence levels! This reduction in tihe number of startups
required to estimate a given upper limit on the failure probability with
the Bayesian description, makes this particular description quite attract-
ive for establishment of initial acceptance criteria or maintenance

criteria for diesel generators.
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However, the Bayesian estimate does not always require fewer startups
than the classical description to achieve a given confidence level esti-
mate of a failure probablity. For example, with a=3, b=60, (the same
prior mean as a=1, b=20), the Bayesian estimate of Py is less than the
classical estimate for 1 < n < 33 with k=0, while for n > 33 the Bayesian
estimate is greater (see Fig. 5.2). This result is not surprising, since
for a=3, b=60 the prior distribution is highly peaked around the mean =
a/(ath) = 0,048 (i.e., it has a very small variance) and consequently
a great deal of subsequent experimental observation is required to reduce
the estimate of p1 below this preconceived or biased value. Thus, not
only is the mean (or the a/b ratio) of the prior distribution significant

in establishing Pys but the variance is also of major concern.
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6. NON-BETA PRIOR DISTRIBUTIONS

A brief investigation was initiated to examine the effect of
using non-beta prior distributions in the analysis of failure-on-demand
attribute data. While this phase of the study is incomplete, some pro-
gress was made in two areas. First, a mixture of several beta distri-
butions to form a contagious distribution [15] was examined. Thken it was
shown that a gamma prior distribution could be used fcr the Bayesian
analysis of failure-on-demand data if the failure probability for the
components is small. The results of these two investigations are

summarized in this section.

6.1 Mixture Distributions

Contrasted to the familiar case in which two or more r ndom
variables are combined in a linear fashion is the ~ase in which two
or more probability distribution functions are combined in a linear fashion
This is called a mixture (or comtagious) distribution [15].

In the first case two variables are added to form a new variable "

2.8.,

z = €%, + CoXy (6.1)

In this case the xl and xz values are assumed to be from the same
pruoability distribution function (pdf). The expected value, E[z], and

variance, V[z], of z are given by
E(z]l = clE[xll + czE[le (6.2)

and

2 2
Viz] € V[xll + <, V[le + 2¢c.c Cov[xl,x (6.3)

172 2] ’

In the second case, the mixture (or contagious) distribution is

formed as a linear combination of the pdfs, i.e.,
f(x) = ay fl(x) + a, fz(x), (6.4)
wh:re a,, a, are the relative weights (Q:alil, 059251) and

ay + 02 =1 .
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The pdf, f(x), of Eq. (6.4) can be viewed as the pdf which contains
variables from two distinctly different pdfs, fl(x) and fz(x). 1t
is convenient to establish formulas for the mean (u) and variance
(02) of the mixture population in terms of the means (“i) and variances
(oi) of the component pdfs. Since
E[x] = [xf(x)dx . (6.5)

substitution ivi f(x) in Eq. (6.5) from Eq. (6.4) yields

E[x] = alfxfl(x)dx + azfxfz(x)dx
or

E[x] = by + Ayhy (6.6)

For the variance, one obtains

var[x] = E[XZ] - {Efx]}z

=a, fxzfl(x)dx + azfxzfz(x)dx - [alul + a2u2]2 (6.7)
However
oF = e ax - u]
and Eq. (6.7) can be simplified to give
Var([x] = alol2 - 02022 . aluz(ul-uz)2 (6.8)

Thus the mean (or expected) value (Eq. 6.6) of the random variable
governed by the mixture distribution has the same form as that for the
case when two or more random variables are combined in a linear fashion,
Eq. (6.2). However, the variance is substantially different for these
two cases (compare Eq. (6.3) to Eq. (6.8)).

The above results can be generalized to a mixture of N probability
density functions, i.e.,

N
f(x) = 2 a, £,(x)
i=1 ; W 1
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where the weights are subject to Zui-l. rfor this case the mean and
variance of the mixture diatributién can be expressed in terms of the
means and varlances of the component distributions. The mean is given

by

N
= Z 0 & (6.9)
i=1 - g
and the variance is given by
R PR i
0" = a,0,” + a,(l-a, )y - a,p a,u, « (6.10)
‘ dug TR gy TR L gy Ry XD

6.1.1 Mixture of Two Beta Distributions

If two beta distributions are mixed according to Eq. (6.4), the
shape of f(x) can vary quite widely, e.g., from bimodal to unimodal to
exponential shaped. Thus f(x) may or may not be adequately expressed
as a beta distribution. The object of this section is to investigate

the problems of estimating the weights ( a, and az) and the pacame.ers

1
of the beta used to approximate the mixture distribution. 7Thus one can

write
(a,~1) (b,=1) (a,-1) (b,-1)
-1 b-1 1 1 2 2
pr g (1-p) vo 22 Q-p) e
B(a,b) 1 B(al’bl) 2 B\az,bz)
or
be(a,b) = a4 be(al,bl) + ) be(az,Lz) (6.12)
1f ars bl’ ays b2, A and a, are known, one can use Eqs. {6.6) and

(6.8) together with the relationships for a and b as functions of u and
02, the mean and varian-e of be(a,b), to obtain estimates for a and b

in terms of known quantities. Thus, by matching moments one obtains

(6.13)

) ab ® i ¥ aagar * auual )2 (6.14)
= Q10 AnO- Jd40 Hq4™U . .
(a+b)2(a+b+1) 171 272 17277 "2
139
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In Table 6.1 the values of a and b which result fiom mixing two beta
distributions are listed. The two mixed beta distributions are of the
exponential-type (al,a2<1.0) and the resulting mixture beta distributions
are also of the exponential-type (a<l1.0). The values for the a parameter
increase monotonically with increasing @y and the values for the b para-

meter decrease, although not monotonically.

Tahle 6.1. The mean, variance, and beta parameters of mixed beta
distributions ot the exponential type?.

01 M a a b

0 0.010 0.00160 0.0519 5.1356
0.1 0.019 0.00467 0.0568 2.9352
0.2 0.028 0.00758 0.0726 2.5198
0.3 0.037 0.01032 0.0907 2.3615
0.4 0.046 0.01290 0.1104 2.2904
0.5 0.055 0.01532 0.1315 2.2600
0.6 0.064 0.01758 0.1540 2.2527
0.7 0.073 0.01968 0.1780 2.2604
0.8 0.082 0.02162 0.2036 2.2789
0.9 0.091 0.02339 0.2308 2.3058
3.0 0.100 0.02500 0.2600 2.3400

4The two beta discributions used for mixing have the following means and

variances: _ _
ul - 001 Y uz 0-01

2 2
g, = 0.025, 9 0.0016

Thus the relationships for the mean and variance of the mixed beta
distribution in terms of weighting value o, (a2 = l—al) are given as
T 0.111 + 0.01 (l—al)
6% = 0.025a, + 0.0016(1-a;) + 0.0081a, (1-a )

As further examples of mixing two beta distributions, several
pairs of beta distributions used to describe diesel engine failiure
data were mixed in varying proportions. The mean and variance (calcu-
lated by the prior matching moments method) of several diesel engine

grouping were reported in Section 3.5. The results of the mixture of

1426 339
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two groupings for two different manufacturers are shown in Table 6.2
for "13 GM diesel engines" with "Four ALLO engines". Table 6.3 shows
the results from grouping "13 GM diesel engines" with "Four Fairbanks
diesel engines". Similarly, Table 6.4 shows the results of mixing
"0-25 starts" with "more than 100 starts" and, Table 6.5 "0-25 starts
with "26-50 starts".

6.1.2 Estimates .. the Weights from Test Sanples

To form the contagious distribution, one must first deiermine
values for the weights, s for each subgroup or component distribution.
Since a, can be interpreted as the probability of a failure data sample
being chosen from subgroup i, the probability of obtaining eh samp les
from the  tb subgroup is

s
i a
f(si,ai) =ay - iwm Y. 2.0i0300 o (6.15)

The likelihood fumetionm, L, which is the probability of obtaining
sl,sz,...,sn samples from subgroup 1,2,...,N is thus given by

N
L=C T ai"f 5 (6.16)
i=1

where C is simply the number of permutations of S1s89s s+ a8y in
S = z Sy samples, i.e.,

. N

c=8S8!/(nm si!)
i=1
The choice of the mixture weights to describe the mixture c¢istri-
butions is taken as those values of Qi which maximize the likel’aood

function, or equivalently minimize InL. Since t“e sum of the weights

must be unity, the logarithm of Eq. (6.16) may be written as

N-il Nil
InL = 71C + s Ina, + s Zn{l- a ] (6.18)
i=1 i i N -y p |

To find the values of a which minimize this result, differentiate

with respect to @y i=1,...,N-1, set the result to zero, and solve for

ay to obtain
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Table 6.2. The mean and variance and beta parameters of the mixture distri-
bution of 13 GM diesel engines with 4 ALCO engines.

ro |

'll M ) a D
0.0000000E 00 0.2940000E~01 ). 59v9999E-03 ). 1368845E Cl 0.4519054E 02
0.1000000E 00 0.3238000E-01 ). 9509996E~03 0.1034408E 01 . 3091148E 02

o

~
(o

0.2000000E 00 0.3536000E-01 0.1284000E-02 0.9039839E 00 0.2466116E 02
0.3000001E 00 0.3833999E-01 0.1599000E-02 0.8457108E 00 0.2121246E 02 -
0.4000001E 00 0.4132000E-01 0.1896000E-02 0.8219684E 00 0.1907077E 02 )
0.5000001E 00 0.4430000E-01 0.2175000E-02 0.8180225E 00 0.1764749E 02

0.6000001E 00 0.4728000E-01 ). 2436000E-02 0.8269845E 00 0.1666422E 02
0.7000002E 00 0.5026000E-01 0.2679000E-02 0.8452634E 00 0.1597253E 02
0.8000002E 00 0.5324000E-01 ). 2904000E-02 0.8708609E 00 0.1548639E 02
0.9000002E 00 0.5622000E-01 ). 3111000E-02 0.9026338E 00 0.1515274E 02
).1000000E 01 0.5920000E-01 J. 3300000E-02 0.9399409E 00 0.1493744E 02

~ ~

Table 6.3 The mean and variance and beta parameters of the mixture distri-
bution of 13 GM diesel engines with 4 ALCO engines.

7

L

ll 1 ) Bl b

0.0000000E 00 0.3220000E-01 ). 7000000E-03 0.1401304E 01 0.4211749E 02
0.1000000E 00 0.3490000E-01 0.1023000E-02 0.1114172E 01 0.3081055E 02
0.2000000E 00 0.3760000E-01 0.1443000E-02 0.9849840E 00 0.2518297E 02
0.3000001E 00 0.4030000E-01 ).1627000E~-02 0.9176834E 00 0.23195361E 02
0.4000001E 00 0.4300000E-01 0.1908000E-02 0.8844073E 00 0.1968320E 02
0.5000001E 00 0.4570000E-01 0.2175000E-02 0.8706429E 00 0.18180€0E 02
0.6000001E 00 0.4840000E-01 0.2428000E-02 0.8697135E 00 0.1709955E 02
0.7000002E 00 0.5110000E-01 ). 266 7000E-02 0.8779503E 00 0.1630305E 02
0.8000002E 00 0.5380000E-01 0.2892000E-02 0.8931983E 00 0.1570898E 02
0.9000002E 00 0.5650000E-01 ). 3103000E-02 0.9141374E 00 0.1526526E 02

0.1000000E O1 0.5920000E-01 0.3300000E-02 0.9399409E 00 0.1493744E 02
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Table 6.4 The mean and variance and beta parameters of the mixture distri-
bution of "0-!5 starts" with "more than 100 starts".
al u 02 a b
0.0000000E 00  0.303000GE-01  0.8000000E-03 0.1082539E 01 0. 3464482E 02
0.1000000E 00  0.4227000E-01  0.4866000E-02 0.3093279E 00 0.7008579E 01
0.2000000E 00  0.5424N00E-01 0.8647997E-02 0.2674996E 00 0.4664279E 01
0.300000°E 00 0.6620997E-01  0.1214299E-01 0.2708988E 00 0.3820613E 01
0.4000001E 00  0.7817996E-01  0.1535200E-01  0.2888247E 00  0.3405534E 01
0.5000001E 00  0.9014994E-01  0.1827500E-01  0.3144662E 00 0.3173791E 01
0.6000001E 90 0.1021199E 00 0.2091200E-01  0.3456383E 00  0.3038993E 01
0.7000002E 00 0.1140899E <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>