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ABSTRACT

This report summarizes the many investigations made on the
empricial Bayesian analysis of component failure data. In this study

the analysis of attribute data of the failure-on-demand type was con-
sidered for components with low failure probabilities. Major areas

emphasized in the study include (i) the development of computer tech-
niques to obtain estimates of the prior distribution from observed
failure data, (ii) the use of simulation studies to investigate the
inherent properties of different prior parameter estimation techniques,
(iii) the computation and comparison of probability and confidence in-
tervals for the failure probability of individual componenes, and (iv)
the use of non-beta prior distributions such as a mixture of beta
distributions or a gamma distribution.

Four methods were examined for estimating parameters of the assumed

prior beta distribution from failure deta: (i) matching the moments of

the prior distribution to those of the data, (ii) matching the moments
of the marginal distribution to those of the data, (iii) the maximum
likelihood method based on the prior distribution, and (iv) the maximum
likelihood method based on the marginal distribution. From the analysis

of actual failure data for diesel engines and the analysis of failure

data randomly generated from a known beta distribution, it was found
that method (i) is computationally the simplest, almost always yields
parameter estimates, gives the smallest bias and mean square error in the
parameter estimates for small sample sizes, and yields estimated prior
distributions which are more conservative from a safety viewpoint than

those estimated by the other estimation methods. These findings are

very significant for application purposes particularly since methods (ii),
(iii) and (iv) are generally used for estimation. Moreover the last

three methods occasionally failed to give parameter estimates or occa-
sionally produced totally unrealistic parameter estimates for low prob-
ability failure data of small sample size (s10). Method (iii) almost
always f ailed for samples of size greater than 20, and hence is judged
unsuitable for the analysis of failure data from components with low

failure probabilities.
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iv

Computer programs are presented for calculation of (i) beta parameter
estimates by the three viable estimation techniques, (ii) variance and co-

variance estimates associated with the prior parameter estimates, (iii)

plots of the estimated prior distributions, (iv) plcts of the posterior

distributions,and (v) confidence and probability intervals for conponent

failure probabilities.
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FOREWORD

The overall purpose of this project was to apply computer techniques
to investigate properties of parameter estimation methods for use with
Bayesian statistical analysis of component failure data. In this final

report, the results obtained from the many investigations begun under
this contract are summarized. During the course of this project several

major statistical analysis programs were developed, and many important

discoveries were made about the characteristics of several statistical
analysis procedures. The success of this project depended upon the

cooperative efforts of many people. In particular the authors would

like to thank W. Buranapan, R. Lakshminarayan, Way Kuo, T. Applegate,

and Yang Pan who helped the authors during various phases of this work.
Also special appreciation is extended to W. E. Vesely who reviewed much
f the work and suggested many avenues of fruitful investigation.

1426 204



vii

TABLE OF CONTENTS

Section Page

1 REPORT SUMMARIES. 1. . . ..................

1.1 Executive Summary. 1..................

1.2 Technical Summary. 3....... ...........

2 INTRODUCTION. 8. . . . . ..................

9 1 Bayesian Statistical Description of Failure-
on-Demand Data . 8. ..................

2.2 Scope of Study . 11. ..................

3 EMPIRICAL METHODS FOR ESTIMATING THE PRIOR DIFTxIL? TION . 13.

3.1 Method of Matching Moments of Prio ? to Data. 13. . . .

3.2 Maximum Likelihood Method Based on the Prior
Distribution . 15. . ..................

3.3 Method of Fbtching Moments of the Marginal Distri-
bution to Data Moments . 17...............

3.4 Maximum Likelihood Method Based on Marginal
Distribution . 19. . ..................

3.5 Results for Diesel Engine Data . 20...........

3.6 Maximum Likelihood Bounds on the Variances of
Prior Parameter Estimates. 30..............

3.7 Variance Estimates from the Method of Matching
Moments to the Prior Moments . 35............

3.8 Error Bands for Estimated Prior Distributions. 37. . . .

4 SIMULATION STUDY OF PRIOR ESTIMATION TECHNIQUES . 47. . . . .

4.1 Generation of Simulated Failure Data . 47. . . . . . . .

4.2 Distribution of Prior Parameter Estimates. 51. . . . . .

4.2.1 Bias and Variance of Prior Parameter
Estimates . 57..................

4.2.2 Mean Squared Error of Estimators. 63. . . . . . .

4.2.3 Median of Estimators. 63.............

4.2.4 Comparison to Results from a Symmetric
Beta Prior. 68..................

4.3 Distribution of Estimators for the Mean and
Variance of the Prior Distribution . ........69

4.4 Distribution of the 95-th Percentile Estimators. 83. . .

4.5 Fraction of the Estimated Prior Distribution
Above the True 95-th Percentile. 92...........

4.6 Comparison of Maximum Likelihood Variance Bounds
to Measured Variances. 97................

4.7 Bias Removal for the Prior Matching Moments
Method . 101. . . . . ..................

4.8 Fit of Empirical Distribution for a and 6 to the
to the Gamma and Log Normal Distributions. 105. . . . . .

5 CALCULATION OF CONFIDENCE AND PROBABILITY INTERVALS
FOR COMPONENT FAILURE PROBABILITIES . 112...........

5.1 Classical Estimation of Confidence Levels. 112. . . . . .

5.2 Bayesian Estimation of Probability Intervals . 114. . . .

G' a
.,

1426 205



viii

Section
Page

5.3 Solution for Interval Limits in Terms of the
Snedecor F-Distribut . 1. .116. . . . . . . . . . . . . .

5.4 Approximete Solution tor the Interval Limits .117. . . .

5.5 Numerical Evaluation of Interval Bounds. .119. . . . . .

5.6 Numerical Results. . . . . . . . . . . . . . . . . 120.

6 NON-BETA PRIOR DISTRIBUTIONS. .124. . . . . . . . . . . . . .

6.1 Mixture Distributions. .124. . . . . . . . . . . . . . .

6.1.1 Mixture of Two Beta Distributions . . 126. . . . .

6.1.2 Estimates of the Weights from Test Samples. .128.

6.2 Gamma Prior Distribution with the Conjugate Poisson
Conditional Distribution . .131. . . . . . . . . . . . .

6.2.1 Estimation of Gamma Parameters. .133. . . . . . .

6.2.2 Comparison of Beta and Gamma Priors for
Diesel Engine Data. .135. . . . . . . . . . . . .

7 REFERENCES. .141. . . . . . . . . . . . . . . . . . . . . . .

APPENDIX I: User's Guide to BETA III . .142. . . . . . . . .

APPENDIX II: User's Guide to TAILS 189. . . . . . . . . .

;426 206
:

,. }



ix

LIST OF FIGURES

NUMBER TITLE PAGE

3.1 A Contour 'ot of the Logarithm of the Likelihood
Function .sc a Three Component Case . . . . . . . . . . . 20

3.2 Contour Plot of the Logarithm of the Likelihood
Function for a One Component Case . 22. . . . . . . . . . . .

3.3 Contour Plot of the Logarithm of the Likelihood
Function for the Four ALCO Diesel Engines of Table
3.1 . 25. . . . . . . . . . . . ........... . . . .

3.4 The Estimated Beta Prior Distribution for the Diesel
Engine Data of Table 3.1 Crouped by Manufacturer 28. . . . .

3.5 The Estimated Beta Prior Distribution for the Diesel
Engine Data of Table 3.1 Grouped by Number of Starts 29. . .

3.6 The Estimated Prior Density Distribution with the
Estimated One Sigma Error Bounds for all 25 Diesel
Plants 45. . . . . . . . . . ....... . . . . . . . . .

3.7 The Estimated Prior Cummulative Distribution with the
Estimated One Sigma Error Bounds for all 25 Diesel
Plants 46. . . . . . . . . . ........ . . . . . . . .

4.1 Distribution of Beta Parameter Estimators for Samples
of Size N=5 . 52. . . . . . . ............... .

4.2 Distribution of Beta Parameter Estimators for Samples
of Size N=10 53. . . . . . . ............ . . . .

4.3 Distribution of Beta Parameter Estimators for Samples
of Size N=20 54. . . . . . . ....... . . . . . . . . .

4.4 Distribution of Beta Parameter Estimators for Samples
of Size N=50 55. . . . . . . . . ...... . . . . . . . .

4.5 Variation of the Bias of the Beta Parameter Estimators 61. .

4.6 Variation of the Mean Squared Error of the Beta Parameter
Estimators 65. . . . . . . . .. ..............

4.7 Variation of the Median of the Beta Parameter Estimators 67.

4.8 Variation of the Bias of the Beta Parameter Estimators 71. .

1426 207

..
5

r e



x

LIST OF FIGURES (CONTINUED)

NUMBER TITLE PAGE

4.9 Variation with Sample Size of the Mean Squared Error
of the Beta Parameter Estimators 72. . . . . . . . . . . . .

4.10 Distribution of the Means of the Estimated Beta Prior
Distributions from Samples of Size N=5 74. . . . . . . . . .

4.11 Distribution of the Means of the Estimated Beta Prior
Distributions from Samples of Size N=10 . 75. . . . . . . . .

4.12 Distribution of the Means of the Estimated Beta Prior
Distributions from Samples of Size N=20 . 76. . . . . . . . .

4.13 Distribution of the Means of the Estimated Beta Prior
Distributions from Samples of Size N=50 . 77. . . . . . .. .

4.14 Distribution of the Variances of the Estimated Beta
Prior Distributions from Samples of Size N=5 79. . . . . . .

4.15 Distribution of the Variances of the Estimated Beta
Prior Distributions from Samples of Size N=10 . 80. . . . . .

4.16 Distribution of the Variances of the Estimated Beta
Prior Distributions from Samples of Size N=20 . 81. . . . . .

4.17 Distribution of the Variances of the Estimated Beta
Prior Distributions from Samples of Size N=50 . 82. . . . . .

4.18 Distribution of the 95th Percentiles of the Estimated
Beta Prior Distributions for Samples of Size N=5 84. . . . .

4.19 Distribution of the 95th Percentiles of the Estimated
Beta Prior Distributions for Samples of Size N=10 . 85. . . .

4.20 Distribution of the 95th Percentiles of the Estimated
Beta Prior Distributions for Samples of Size N=20 . 86. . . .

4.21 Distribution of the 95th Percentiles of the Estimated
Beta Prior Distributions for Samples of Size N=50 . 87. . . .

4.22 Distribution of the Fraction of the Estimated Beta
Prior Distribution that Lies Above the 95th Percentile
of the Beta Function used to Generate the Simulated
Failure Data (a=1.2, b=23). Size of Samples used was
N=5 . 93. . . . . . . . . ..... . . . . . . . . . .. . .

4.23 Distribution of the Fraction of the Estimated Beta
Prior Distribution that Lies Above the 95th Percentile
of the Beta Function used to Generate the Simulated
Failure Data (a=1.2, b=23). Size of Samples used was
N=10 . . . . 94. . . . . . . . . . ....... . . . . .

'L .

1426 208



xi

LIST OF FIGURES (CONTINUED)

NUMBER TITLE PAGE

4.24 Distribution of the Fraction of the Estimated Peta
Prior Distribution that Lies Above the 95th Percentile
of the Beta Function used to Generate the Simulated
Failure Data (a=1.2, b=23). Size of Samples used was
N=20 95. . . . . . . . . . . ................

4.25 Distribution of the Fraction of the Estimated Beta
Prior Distribution that Lies Above the 95th Percentile
of the Beta Function used to Generate the Simulated
Failure Data (a=1.2, b=23). Size of Samples used was

96N=50 . . . . . . . . . . . ................

5.1 Comparison of the Classical and Bayesian Estimates of
the Upper Limit on the Failure Probability at Various
Confidence Levels . . . . . . . . . . . . . . . . 121. . . .

5.2 Comparison of the Classical and Bayesian Estimates for
the Upper Confidence Limit at the w =0.5 Level . 122. . . . .

6.1 Estimated Gamma and Beta Prior Distributions . . . . . . 138

1426 209



xiii

LIST OF TABLES

NUMBER TITLE PAGE

3.1 Diesel Engine Failure Probability Data 23..........

3.2 Comparison of Calculated Prior Distribution Parameters
26by Three Different Techniques . ..............

3.3 Results of Matching Data to Marginal Distribution Moments
(Method II) for the Fairbanks Engines 27...........

3.4 Estimates of Beta Prior Parameters and Variance Bounds
for the 25 Diesel Engines of Table 3.1 34..........

3.5 The Estimated Prior Beta Distribution Parameters and Their
Standard Deviations as Calculated by the Prior Matching
Moment Technique for Various Groupings of the Diesel

38Engine Data . . . . . . ..................

3.6 The Z Statit tic and Cummulative Unit Normal for Equation

(3.55) 39. . . . . . . . ..................

3.7 The Z Statistic and Cummulative ' snit Normal for Equation

(3.56) 40. . . . . . . . ... .... .........

4.1 Algorithm for Optimal Calculation of Number of Failures,
k. 50. . . . . . . . . . ..................

4.2 Number of Successful Solutions and Failures for Prior
Parameter Estimates . 56. ..................

4.3 Simulated Failure Data from a Beta-Binomial . . . . . . . 58

4.4 The Bias for Deviation of Mean of Estimators from True
Parameters 60. . . . . . ..................

4.5 Variances and Covariance of Parameter Estimators for
Different Sample Sizes and Estimation Techniques 62. . . . .

4.6 Mean Squared Error About the True Beta Parameters . 64. . . .

4.7 Median Values for the Estimates 9 and b for Different
Sample Sizes 66. . . . . ..................

4.8 The Bias and Mean Squared Error of the Estimators of tne
Parameters for a Symmetric L'ta Prior Distribution 70. . . .

: -

f

|~.

1426 210



xiv

LIST OF TABLES (CONTINUED)

NUMBER TITLE PAGE

4.9 Mean and Variance of the Estimators for the Mean
of the Beta Prior . 78. . . . . . . . . . . . . . . . . . . .

4.10 Mean and Variance of the Estimators for the Mean
of the Beta Prior . 78. . . . . . . . . . . . . . . . . . . .

4.11 Median, Mean and Variance of the Distributions of the
95th Percentile Estiaators 88. . . . . . . . . . . . . . . .

4.12 Number and Percent of Simulated Failure Data Samples
which Yielded Estimated 95th Percentiles Greater Than

(GT) or Less Than (LT) the True Value of 0.13586 90, . . . .

4.13 Smallest 95th Percentile Estimators Observed for Simulated
Failuce Data Samples of Size N 91. . . . . . . . . . . . . .

4.14 Median, Mean and Variance of the Distribution for the

Pobability(p1ph5 ) 98. . . . . . . . . . . . . . . . . .

4.15 Variance Bounds and Covariance Bounds for Parameter
Estimators 99. . . . . . . . . . . . . . . . . . . . . . . .

4.16 Selected Simulated Failure Data Samples Used to Estimate
Variance Bounds . . 100. . . . . . . . . . . . . . . . . . . .

4.17 Ratio of Measured Variances and Covariances them

Parameter Estimators 102. . . . . . . . . . . . . . . . . . .

4.18 Results of the Beta Parameter Estimators as Calculated
by the Prior Matching Moments Technique . 104. . . . . . . . .

4.19 Least Squares Coefficients for the Bias Predicting
Formulas . 106. . . . . . . . . . . . . . . . . . . . . . . .

24.20 X Goodness-of-Fit Results foc the Gamma Model . 107. . . . .

24.21 X Goodness-of-Fit Results for the Log Normal Model . . 110. .

24.22 X Goodness-of-Fit Results for the Shifted Log Normal
Model . . . 111. . . . . . . . . . . . . . . . . . . . . . .

6.1 The Mean, Variance, and Beta Parameters of Mixed Beta
Distributions of the Exponential Type . 127. . . . . . . . . .

6.2 The Mean, Variance, and Beta Parameters of the Mixture
Distribution of 13 GM Diesel Engines with Four ALCO
Engines . . . . . . . . . . . . . . . . . 129. . . . . . . .

}k2b
a' -

-
. .



XV

LIST OF TALBES (CONTINUED)

h14BER TITLE PAGE

6.3 The Mean, Variance, and Beta Parameters of the Mixture
Distribution of 13 GM Diesel Engines with Four ALCO
Engines . . 129. . . . . . . . . . . . . . . . . . . . . . . .

6.4 The Mean, Variance, and Beta Parameters of the Mixture

Distribution of "0 ':5 Starts" with "More Than 100
Starts" . . 130. . . . . . . . . . . . . . . . . . . . . . .

6.5 The Mean, Variance, and Beta Parameters of the Mixture

Distribution of "0-25 Starts" with "26-50 Starts" . . 130. . .

6.6 Parameter Values for the Beta and Gamma Prior Models . 136. .

6.7 Mean and Variance of Component Posterior Distributions . 139.

6.8 Mean and Variance of Component Posterior Distributions
for Both the Beta and Gamma Models . . . . . 140. . . . . .

}k2b



1

1. REPORT SUFDfARIES

1.1 Executive Summary

In this project, statistical methods were developed to estimate

the uncertainty distributions for component failure probabilities ("per

demand"). In WASH-1400, a log normal distribution was used to describe

the uncertainties on the component failure probabilities. The log normal

was chosen because it seemed to fit adequately the sparse data. The

particular log normal distribution selected for a component was based on

examination of general industrial data and on judgment.

As more failure data are collected the log nornal distribution may

not be adequate to describe the uncertainties and variations associated

with the data. Also, instead of subjectively estimating the parameters

of the distribution (e.g., the spread and median for the log normal),

theparametersofthedistributionshoEldbeestimatedusingformal
statistical techniques. Such formal estimation of the parameters is

based soley on the data themselves and not on any subjective judgment.

In this project, a beta distribution was used to describe the un-

certainties in the component failure probabilities. The beta distri-

bution is the distribution most often used to describe the variation

of a quantity which ranges from 0 to 1 (here the component failure

probability). The beta distribution is flexible in that it can accommo-

date a great many shapes over the interval 0 to 1, some of which are roughly

similar to the log normal in shape and some of which are very different.

For the beta distribution, techniques are developed to estimate

the parameters of the distribution soley from the observed data of failures

and successes for a set of components treated as coming from the same

population. For the components in the population, it is not assumed

that their failure probabilities are necessarily equal but rather that

their variation is describable by the beta distribution. Because of

the different distribution shapes accommodated by the beta, this

assumption for the population is much less restrictive than assuming
equal probabilities. (If indeed the probabilities are very nearly

equal, then the beta distribution which best describes the components
will be very peaked about the representative value with small spread.)

1426 213
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A particular estimation technique called " method i" in the

subsequent technical discussions was found to be the best technique

for estimating the beta parameters. There were several evaluation

criteria used for "bestness" and method I was the best in all of these

criteria. This finding is significant since method i is not the

usual method employed in statistical analyses to estimate the beta

parameters.

Comprehensive analyses and sensitivity studies were performed to

evaluate the properties of four different parameter estimation techniques

and the adequacy of using the resulting beta distribution (with the

estimated parameters) to describe failure probabilitf variations. Diesel

data obtained from nuclear plant Licensee Evaluation Reports (LERs) were
analyzed as an example of actual collected data. Monte Carlo calculations

were also performed to generate simulated data representing other possible

data behaviors. <11 these analyses are described in detail in this report.

Finally, camputer codes were produced to allow the analyst or

engineer to fit his own data with the best fitting beta distribution.

These distributions can then be used in the same manner as the log

normal distributions were used in WASil-1400--to determine the uncertainties

in the system and accident probabilities from the uncertainties in com-

ponent failure probabilities. The computer programs are documented in

the Appendices to this report.

ir ,
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1.2 Technical Summary

This report is a summary of investigations into methods for the

Bayesian analysis of failure-on-demand attribute data. Of particular

interest was the analysis of components with low failure probabilities, and

to illustrate the various analysis techniques, both actual failure data for

emergency diesel engines at U.S. nuclear power plants and simulated fai? ire
data have been used. From this study many features of Bayesian analysis of

low probability events have been determined and viable computational tech-
niques to apply this analysis to low probability failure data have been

developed.

1.2.1 Estimation Techniques for the Prior Distribution

In Section 3, four methods for estimating values of the parameters of

the assumed beta prior distribution from observed failure data are reviewed.
These methods are (i) matcht.ng the moments of the prior distribution to

those of the failure data, (ii) matching moments of the marginal distri-

bution to those of the data, (iii) the maximum likelihood method based on

the prior distribution, and (iv) the maximum likelihood method based on
the marginal distribution. In this phase of the study the following results

were obtained:

Computer codes were developed to estimate the beta prior parameters
by each of four estimation techniques.

Estimation of the variance of the parameter estimators were performed
for methods (i) and (iv). For method (i) a first order Taylor's
series expansion technique was used to obtain variance estimates
of the beta parameters from the variances of the data moments. In

method (iv) both an exact and an approximate method for values of
the lower bound of the variances and covariance were used (based
on the Cramer-Rao-Frechet inequality for the covariance matrix).
The approximate method was found to give nearly identical results
compared to those of the exact method.

The prior matching moments technique (method (1)) was the only method
which yields closed-form results for the parameter estimates. Further,

the estimators were shown to be positive for very mild restrictions on
the failure data.

The prior maximum likelihood method (method (iii)) was shown to be
infeasible for any failure data sample for which zero failures were
observed for any component.

For certain groupings of the diesel engine failure data, both marginal-

based estimation methods (methods (ii) and (iv)) were observed to
yield no numerical solutions.

1426 215,
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The observed diesel engine failure data were grouped by manufacturer
and by number of starts and beta prior estimators were obtained for
each grouping. For the results obtained with the prior matching
moments method, only a few significant differences at the 0.05
level were found.
Methods were developed for placing error bands on both the estimated
prior density and prior cummulative distributions. These methods,
which require variance and covariance estimates of the beta para-
meter estimators, were applied to estimated prior distributiova for
the diesel engine data.

Based on the diesel data analyzed, the prior matching moments
technique (method i) appeared to be the best of the four methods for
estimating the beta parameters from the data. The techniques for esti-

mating variances and error spreads also seemed to be suitable fcr

practical applications. The diesel data themselves did not show any
strong clustering into distinct groups when analyzed by the various

Bayesian approaches.

1.2.2 Characteristics of the Estimated Beta Prior

To determine how well the four estimation techniques for the prior
parameters are able to predict the beta prior distribution, all four methods

were used to analyze many samples of simulated failure data which were

generated from a known beta-binomial (marginal) distribution. In this way,

properties of the sampling distribution of the estimators and distributions

of other related statistics were obtained. Important results from this

phase of the study include:

Only the prior matching moments estimation technique (method 1)
always yielded realistic prior parameter estimators for all 6500
simulated data samples of various sizes.

Both marginal-based estimation techniques (methods 11 and iv) would
occasionally fail to yield parameter estimates or yield outlier
estimates which were much too large in size. This deficiency was
more severe for data generated from a beta prior skewed towards
low failure probabilities than for data generated from a symmetric
beta.

The distributions of the prior parameters estimators for all four
estimation techniques were found to have positive bias for small
sample sizes (Ns20) which decreased in magnitude as the sample size
increased. The prior matching moments estimators had smaller bias

for all sample sizes, while the estimators from the two marginal-
based techniques had the largest bias.

The mean squared error and variance of the estimators for all four
methods decrease as the sample size increases. The estimators obtained

j,-
''" - '
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from the prior matching moment methods have the smallest variance
while the marginal-based methods produce estimators with the largest
variances for samples of sizes Ns50.

For small sample sizes (Ns10) the median of the prior parameter
estimators from the matching moments method is nearest to the true
values. However for larger sample sizes (N250) the median appears
to underestimate the true values while the medians from both marginal-
based methods approach the correct parameter values.

There is a large correlation between the beta parameter estimates.

The distribution of the estimated prior mean and variance was obtained
from the parameter estimators. The distribution of the prior mean
estimators was found to be nearly identical for the three estimation
techniques considered (prior matching moments and the two marginal-based
methods). No outliers were observed in the distribution of means
since even the outlier estimates of the beta parameters yielded

good values of the mean. However the large outlier parameter esti-
mates (obtained only with the marginal-based methods) yielded prior
variance estimates which were far too small.

From the estimated prior distributions, the distribution of the esti-
mated 95-th percentiles (i.e., the failure probability for which 95%
of the area of the failure distribution falls below) was examined.
The prior matching moments method appears to be slightly more con-
servative from a safety viewpoint since slightly higher values of
the 95-th percentiles are obtained with this method than with the
marginal-based techniques. Further, the marginal-based methods
yielded several 95-th percentile estimates which were much too small,
a result of the outliers obtained for the prior parameter estimators.

The distribution of the fraction of the estimated prior distribution
greater than the true 95-th percentile was also investigated. Again
the prior matching moments method gave slightly more conservative
results since the mean of these distributions were always slightly
greater than the true value of 0.05, while the mean of the distributions
produced by the marginal-based techniques were observed to oscillate
around the true value. The variances of these distritations generated
by the different estimation technique were nearly equal aad they de-
creased as the sample size increased.

The variance and covariance lower bounds for the parameter estimates
determined with the marginal maximum likelihood method were compared
to the variances of the parameter estimator distributions. The prior

matching moments method (which produced no outliers and hence had the
smallest variances) came closest to these lower bounds and for large
sample sizes (Nd50) actually were smaller. The estimator variances
from the marginal-based methods were more than 50 to 100% higher than
the lower bounds even for sample sizes as large as 50.

Bias removal schemes for the beta parameter estimators were briefly
examined for the prior matching moments method. The bias was seen to

decrease inversely to the rample size; however, no completely satis-
factory empirical bias removing formula was found.

o'_ 1426 217a ,
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The distribution of the beta parameter estimators as determined by
the prior matching moments method was found to be described well by
a shif ted log normal distribution.

Thus based on these additional simulation studies, the prior matching
moments technique (method 1) was again the best method for estimating the
beta parameters from the failure data. The parameters estimated by this

method generally had the smallest bias and the smallest mean square err'r.
Moreover, this simple prior matching moments technique always yielded
realistic parameter estimates (unlike the other three estimation tech-

niques examined) and consequently is well-suited for practical appli-

cations.

1.2.3 Probability Intervals for the Estimated Failure Probability

The calculation of both the classical confidence interval and the

Bayesian probability interval for the estimated failure probability of

an individual component with a given failure history was described by

the equation involving the incomplete beta function. It was shown that

the solution for the intervals could be expressed in terms of the Snedecor

F-distribution. Also an approximate solution in terms of the X distri-

bution was derived. For the special case of no failures observed for the

component, explicit closed form results were obtained for the interval.

Finally an algorithm to obtain a numerical solution for the probability

limits was developed. Several numerical examples for low failure prob-

ability components are presented.

With these techniques, the analyst or engineer can thus calculate

the uncertainty interval on the component failure probability by either

Bayesian or classical techniques.

1.2.4 Extended Beta Priors

Two me,thods were briefly examined for describing the Bayesian prior
distribution when this distribution was not a member of the beta family.

*For the case in which data are generated from a mixture of dif ferent
beta distributions, the resulting overall prior (a weighted sum of
betas) is itself not in the beta family. Methods are described

whereby this overall prior may be approximated by a single beta.
Numerical examples are given, and a method for constructing the
weighting fractions is developed.

\'' ! 1426 218'-- -
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It was shown that for low failure probability components, the binomial
conditional distribution could be approximated by a Poisson distribution,
further, the beta prior distribution was shown to be described approxi-
mately by a gamma distribution.
For the diesel engine failure data, both the approximate gamma model
and the beta distribution gave nearly identical results for the Trior
distribution.

Both the binomial-beta model and the gamma-Foisson approximate model were
found to give very similar results for the mean and variance of the
posterior distribution for each diesel engine.

Based on these findings, the analyst confronted with a reliable
component can thus treat its failure occurrences as being Poisson with
the Poisson parameter having a gamma distribution to describe the un-
certainty and parameter variations. This treatment, which is often
simpler to apply, will give results which are essentially the same as
the exact binomial-beta approach.

1.2.5 Computer Code Development

A major aspect of this study was the development of computer codes
to perform many of the analyses described above. Although many programs

were written in the course of this study, two were thought to be of

general interest and are included in the Appendices of this report.

BETA III calculates estimates of the beta prior parameters by all
four estimation techniques as well as variance estimates of the
parameters for methods (i) and (iv). Options are available to give

plots of the estimated beta prior density and cummulative distributions.
* TAILS calculates both the classical confidence interval and the
Bayesian probability interval for the failure probability of a
component with a given failure history.

These codes give the analyst or engineer the capability to analyze

data of failures and successes of a set of components which are assessed

to be similar but not necessarily having exactly the same failure prob-

abilities. The codes will estimate the parameters of the beta distri-

bution describing the variation of the component failure probabilities.

This distribution can then be used in subsequent reliability and risk

analyses.

1426 219
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2. INTRODUCTION

Of considerabic importance in the reliability analysis of nuclear
power plants is a description of the distribution of failure prob-
abilities for plant components, e.g., standby diesel generators. The

performance data for a particular component, e.g., k failures in n start-

ups, may be so sparse or may vary so much among "similar" components that
classical estimates of the failure probability (k/n) may be deemed of
littic use. The classical estimates k/n are particularily noninformative
when the component has never been observed to fail (k-0). In an effort

to obtain a more meaningful description of the failure probability of such
a component, additional external information is often inserted into a
probability moc for the component. For example, use of failure data

f rom similar con.ponents and/or an engineer's judgemental estimates of

the component's reliability can be incorporated with the actual perfor-
mance data of a particular component to yield a better probability modci
for that component. The components which are judged to be similar do

not all have to have exactly the same failure probabilities; it is only
assumed that they are described by the same distribution. The insertion

of cr.tcancous information is the cornerstone of the Bayesian method [1]
which over the past few years has been increasingly used in the description
of components with low failure probabilities.

2.1 Bayesian Statistical Description of Failure-on-Demand Data

For any particular component in a power plant, e.g., a standby diesel

generator, the probability of failure, p, is often assumed to be constant
and not to vary among similar components. Under the assumption that p is
constant, the probability of obtaining k failures in n tests, e.g., k

nonstarts in n tries to start the standby diesel generator, is given
by the binosial distribution,*

f(k|n,p)= p (1-p)"~ (2.1)

*

In this report, a bar is used to separate the random variables from
the constants, i.e., f(k|n,p)denoteskisarandomvariableandn
and p are constants,

*
gi

\ . . .
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For a power plant component, the failure probability, p, is sometimes
better modeled as being a random variable which will vary both with

experience, e.g., learning to operate the generator better, and with

the plant, e.g., dif ferent plant conditions may cause variation in the

failure probability. In these cases when sampling similar components

from dif ferent plants, a distribution of failure probabilities is more

realistic a model than assuming all failure probabilities to be equal.

The distribution for the failure probability between similar components

is termed the prior distribution. Because of its ability to model a

variety of different distributional shapes and because of the case with

which it is incorporated into the mathematical description, the beta

distribution is usually used as the prior distribution to describe the

variation in the failure probability [3]. The beta distribution (density

function)forp,g(pla,b),isgivenby

g(p|a,b)=P (a,b > 0) ,' (2.2),
B

where

I ") )B(a,b) E [0 x"-I (1-x) - dx = f(a+b) (2.3)

2
and P is the gamma function. The mean, p, and variance, o , are

given by (2)

" (2.4)p =
3+b ,

and

" (2.5)a = .

[(a+b) (a+b+1)]

As previously stated, the beta distribution of Eq. (2.2) is often
used because (i) the range of a and b describe a wide variety of distri-

bution shapes with support on (0,1), and (ii) it is combined analytically
with the binomial distribution with ease. The values of a and b which

determine the explicit distribution of p must be subjectively assumed
or can be estimated from experimental data, i.e., from records of failures

and successes. Methods for the estimation of a and b are presented in

the next section.

When p is treated as a random variable, the probability of exactly
kfailuresinntries,h(k|n,a,b),isobtainedbyintegratingthebinomial
distribution Eq. (2.1) over all p weighted with the beta distribution,
i " ;

1426 221-
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1
h(k|n,a,b)= f(k!n,p)g(p|a,b)dp

so

'n' B(a+k,b+n-k)
(2.6)"

*

,k, B(a,b)

Thedistributionh(kin,a,b)istermedthemarginaldistributionsinceall
possible values of p are considered. This particular marginal distri-

bution is called the " beta-binomia2" or "hyperbinomial" and is encountered
frequently in Bayesian statistics (3). The expectation and variance of

k described by the above marginal distribution are found to be

"E(k|n,a,b)= n, (2.7)b

Var (k|n,a,b) = "" (" (2.8).

(a+b) (a+b+1)

The prior distribution, which in this study is assumed to belong

to the beta family, describes the distribution of the failure probability

among all components judged tc be similar. The prior distribution is

based on past experience and information. If a particular component

is observed to fail k times in n demands, this additional (new) infor-

mation can be used to revise the distribution for the possible values

of p for the component. This updated distribution is called the posterior

distribution and depends upon the original assessment of the distribution

for p (the prior distribution) and the observed k failures in n demands

(the new information). From Bayes' theorem one can calculate this

posterior distribution, ((p|k,n,a,b),foracomponentwhichhasexperienced
k failures in n tries and which is assumed to belong to a class of com-

ponents whose failure probabilities are distributed according to the

prior distribution. Explicitly Bayes' theorem can be stated as

C(p |k,n,a,b) = f(k n,p)g(p a,b)
'h(k n,a,b)

which upon substitution of Eqs. (2.1), (2.2), and (2.6) yields the posterior

distribution

a+k-1 y_p)b+n-k-1E(p|k,n,a,b)=p (**

B(a+k,b+n-k)

1426 222-
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This posterior distribution of p for a particular component is also a

beta distribution but with larger parameters, a+k and b+n-k. The larger

parameters generally produce a smaller variance (see Eq. (2.5)) which
corresponds to more knowledge or less uncertainty about p. This result

is intuitively reasonable since the description of p is based on both

prior intuition (Eq. (2.2)) as well as actual experimental knowledge.

Consequently, one would expect a higher degree of certainty (about p)
for this case than a case in which only prior intuition or actual

experimental knowledge is used.
The posterior distribution can be used to obtain representative

values for the failure probability of a particular component. For

example, the posterior mean value for p, p ' 18 '# * 9* (* )
B

F(p|k,n,a,b) E pB " a b+n (**

By contrast, the classical estimator of the failure probability for a
particular component is

p =b. (2.11)
c n

For many components the failure probability is intentionally designed
to be very small, and in a relatively small number of tests, e.g., attempts

to start a standby diesel generator, often zero failures will be observed.

From these data, classical statistics would yield an estimate of the failure

probability of the component to be zero, which is unrealistic. Bayesian

statistics, however, which uses prior information based upon experience

or information from similar components will give a nonzero value for

the expected failure probability. Furthermore, the Bayesian approach

gives a complete distribution C(p|k,n,a,b) for the po >sible values of
the failure probability for a particular component and not just one

"best" estimate. In the Bayesian framework, the posterior distribution
represents the complete knowledge of the uncertainty of the failure
probability for a component.

2.2 Scope of Study

In this report the results of a study are reported on various techniques
and applications of the preceding Bayesian analysis to describe the failure

,

a* ,

* ' - |
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of components with expected low f ailure probabilP.ies. A major portion

of this study deals with methods to estimate values of the parameters
of the beta prior distribution. Sometimes the particular prior distri-

bution for a particular application is ceduced f rom expert judgment;
however in this study four techniques for estimating the prior parameter
based upon only observed failure data are investigated. Such techniques
which use only observed historical data are commonly referred to a
" empirical" Bayes methods since the prior parameters are empirically
deduced from the data. These techniques were then used to analyze
failure data obtained from standby diesel engines at many U.S. nuclear
power plants. Methods were also investigated to ?btain estimates of

the variance and covariance asso 1 ed with the betr ,rior parameters.
With these variance estimat... techniques were developeu for obtaining
confidence banda around the prior distributions to account for the fact
that the beta parameters were esi --*co from data.

Also considered in this study was an evaluation of which of the para-
meter estimation procedures is "best" for use with low failure event

situations. Through a simulation study, the biasedness and mean error
of each estimation technique are evaluated. Further the effect of sample

size is examined - an effect of considerable importance for situations
characterized by a paucity of historical failure data.

Methods are also presented whereby both the cla1sical confidence intervals

and Bayesian probability intervals for the failure probability of a particular
component can be evaluated. Of considerable importance in this stage of the
study were the development of accurate numerical techniques to evaluate these
intervals as well as the development of approximate methods.

In Section 6, brief investigations are presented of the effect of

mixing two distributions and using a single prior distribution to model

the mixed distribution. An alternative description of the failure-on-demand
problem is also presented by using a Poisson conditional and its natural

conjugate, the gamma distribution, as the prior distribution.

In the appendices of this report, two of the major computer programs
developed in this study are described. These programs can oe used to

evaluate the beta prior parameters from historical failure data, plot
estimated prior cumulative and probability distribution functions, and
calculate probability and confidence intervals for the failure probability.

{hf
: -

'"
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3. EMPIRICAL METHODS FOR ESTIMATING THE PRIOR DISTRIBUTION

To use the Bayesian approach, the prior distribution, g(p), of

Eq. (2.2) must first be obtained. Generally this is done by (1) subjective

assessment, (ii) past experience, or (iii) from a fit to experimental data

from similar components. For any particular component, given only its

number of failures-on-demand and total number of demands, there are in-

sufficient data to estimate a and b. However, if several independent

sets of data, i.e., failure records for several components, are assumed

belong to the same population and consequently to be described by same

prior probability distribution, this observed data can be used to obtain

estimates of the parameters of the prior distribution.* In this chapter

four methods for obtaining estimates of the beta prior distribution from

failure data are discussed and applied to the analysis of diesel engine

data.

3.1 Method of Matching Moments of Prior to Data

Although there is no unique method to estimate the parameters of the

prior distribution from the failure records, one method of estimation is

to equate the mean (the first moment) and the variance (the second moment

minus the square of the first moment) of the failure probability estimates

to the corresponding expressions for the prior model involving the distri-

bution parameters. In effect, these parameters are estimated by " matching
moments" of the data to those of the prior model. If there are k failuresg

out of n tries for the i-th component of a random sample of size N, an

estimate of the failure probability, p , for each sample is k /n , and

thus the observed mean and variance of the p estimates are

"
1 i

= 3 [1 - (3.1)Ogg
i= i

and

b"N1 ~ ob *

i=1 1

*It is interesting to compare this assumption with the usual classical
analysis. In the classical analysis, the failure probabilities of similar
components are assumed to be equal. Here, we allow the probabilities to
vary and only assume the variation is describable by a general beta distri-
bution whose parameters are to be determined.

1426 225
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where N is the total number of components in the same population for which

failure data are available. By matching these sample moments, which use

only the observed data, to the expressions of the mean and variance of the

assumed beta prior distribution (Eqs. 2.4) and (2.5)), a relationship between

the parameters of the distributions, a and b, and the observed data can

be obtained, namely

(3.3)Dob " " ab

and

2 2 ab
8 ,c g (3.4).

(a+b) (a+b+1)

2
These equations can be solved for a and b in terms of Dob ""O

Oob
t give

0

f(1-Oob) - Oob (3.5)a=
8

ob

and

b= (1-Oob) +0 -1 . (3.6)0b
8

ob

One of the major advantages of this method is its simplicity and

the existence of a closed-form solution for the parameter estimates

(Eqs. (3.5) and (3.6)). However, these solutions for the parameter esti-

mates do not necessarily yield positive values as is required for the

beta parameters. For example the use of failure data {k ,n } = (1,100),y 1

(1,50), (99,100), (49,50) in Eq. (3.5) yields a negative value for a.

Nevertheless, for low failure probability data, this estimation method

generally gives positive and hence realistic values for the parameter
estimates. To see this, rewrite Eq. (3.5) for a as

00b 2 2
a= D -O -O

2 ob ob ob '
8

ob
2

which upon substitution for p b "" Oob (which are always non-negative)o

from Eqs. (3.1) and (3.2) yields

. ,
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*~ 5 i - N-1 2 i
B i i (N-1)N i

ob
0

1 N
>520b{ b - N-1 ib} *

i-

6 i
ob

If the expression for the sample variance (Eq. (3.2)) had been divided
by N rather than (N-1), the N-1 factor in the above inequality would
have been replaced by N, and since 0 $ p $ 1, the right hand side of this
inequality would then be > 0. However if we require the p to be limited

1

to a slightly more restrictive range, 0$p 5 (N-1)/N, the above expression
yields,

0

a > f f {[p (1-p )} > 0 (3.7).

f
e

ob

For sufficiently large N or for small to moderate p values, this

additional restriction on the p values is inconsequential. Even for

the most restrictive case (N=2), positive estimates of a are always

5 5 which is satisfied for low probability failure1obtained if 0 $ p

data. Finally, if the estimate for a is positive, then so must be the

estimate of b since from Eq. (3.3)

> 0 if a > 0 . (3.8)b = a(1-Dob)/06

Thus this simple prior matching moments method yields parameter

estimates which are positive for the type of low probability failure

data considered in this study. Although the estimation of p by

k /n may appear to introduce a questionable approximation especially
f f
for low probability events (i.e., small p ), it will been seen in Section 4

that this method has several additional advantages over the more complex

estimation techniques also investigated in this study.

3.2 Maximum Likelihood Methoa Based on the Prior Distribution

The method of maximum likelihood can be used to obtain estimates of
the prior parameters by constructing a likelihood function based on the
prior beta distribution. Define the likelihood fm:ction

;. '
-

..
_,
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N
L(a,b|p ,p ,...p ) H 8(p la,b) (3 M)y 2 N i

i=1

where g is the prior beta defined by Eq. (2.2). Explicitly, this likeli-

hood function is the probability of observing p ,p '***,p as valu s f ry 2 N
the failure probabilities from components 1,2,...,N respectively. The

values of a and b which maximize the likelihood function are called the

maximum likelihood estimators, a and 6, i.e., the probability of obtain-

ing the observed values is maximized. Intuitively, this choice is very

appealing. The maximum likelihood approach has been shown to have many

general properties and is widely used in statistical analysis [3].

For the actual failure-on-demand problem considered in this study,

failure probabilities, p , are not observed directly, but rather must be

approximated by the estimates p = k /n . The maximum likelihood estimatora
i g f

of a and b are then the solutions to

hZnL(a,b)=0 (3.10)

and

InL(a,b) = 0 (3.11)

Upon substitution of the explicit form of the beta function, g(p), these

likelihood equations become

$(a) - $(a+b) - N- Inp =0 (3.12)
i=1

$(b) - $(a+b) - N~ Zn(1-p ) = 0 (3.13)
i=1

where $(z) 5 d [lnI'(z) ] /dz , the digamma function. The solution to these

simultaneous transcendental equations cannot be obtained analytically;

however, if a and 6 are not too small the following approximate result
may be used [3]:

r N 1/n' ( N 1/n N 1/n' -1
a = 1/2 1- H (1-p ) 11 - H (1_p) (3.14)p _ H

L i=1 *l ii=1 11 <

p126 228
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N 1/n' * N 1/n N 1/n'-l-

6 = 1/2 1- Hp 1- Hp - H (1 - p ) (3.15)
f

i=1 i=1i=1 --

This approximate solution may also be used as starting values for an
iterative numerical solution of the likelihood equations.

This maximum likelihood method, while suitable for some problems,

is not applicable to those situations in which some of the observed k
are zero. In these cases the estimated failure probability p is also

zero and the likelihood function becomes unbounded or zero depending

upon the value of a. Consequently, little use was made of this estimation
technique in this study which was concerned with small failure probabilities
and with data for which k =0 is not unusual. A variation of this maximum

f

likelihood technique based on the marginal distribution and which does
not suffer from this deficiency in a zero failure case is discussed in

Section 3.4.

3.3 Method of Matching Moments of the Marginal Distribution to Data

Mcments

An alternative to the technique of Section 3.1 is to substitute the

moments of the marginal (or mixture) distribution of Eq. (2.6) for the
moments of the prior distribution. Conceptually this technique is more

attractive since only the proportion of failures k /nf (which are observed
data) are involved, whereas in matching the data to the prior moments, the
failure probabilities, p , (which were not actually observed) had to be

f

estimated as k /n .f f
For the present case, the sample sizes are of unequal sizes, i.e.,

different n , and thus a weighting scheme should be used in the esti-
g

mation procedure. Define the following statistics:

11
- (3.16)0 = g [1 w

i
i= i

N k ,2,

g,

i{1 p - "1
S= w (3.17),

= s

where
N

[wW = f,
i=1

1426 229-
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and w is the weight assigned to the 1-th sample. By setting the above

statistics equal to their expected values (of the marginal distribution),

estimates for the prior mean and variance are obtained [4]:

0 =# (3.18)

and

N w w
S - p4[ [ f (1 f)]

'
O = O(1-0) (3.19),

N w N w w
p4 [ [ w (1 -) - [ f (1 - f)]" "

i=1 i=1 "1

where Q E l-p . Kleinman [4] further suggests that better estimates are

obtained if S,in Eq. (3.19),is replaced by (N-1)S/N. The choice of

weights is made such that the estimate of p is the linear unbiased
estimate with minimum variance, i.e., weight each k /n with the inverseg f

of its variance, namely

"i ( - 0)"i " l + r(n - 1)
i

where

rE o /(p(1-p)) (3-21).

Once 0 and 8 of the prior distribution are calculated from

Eqs. (3.18) and (3.19), the parameters a and b are found by solving
Eqs. (2.4) and (2.5) for a and b. Ilowever, to calculate 0 and 0 , the

weights, w , must be known, which from Eq. (3.?0) implies that r (or 0 )
must be known. Thus Eqs. (3.18)-(3.20) can be viewed as three equations

for the quantities w , p, and a which can be solved by the following
1

f (" binomial weighting")iteration scheme. Choose r = 0 so that w =n
f

2 2
and solve for the resulting 0 and 8 . With these values of 6 and 0

calculate r and new values of w from Eqs. (3.20) and (3.21) (" empirical
f

2
weighting"). Continue iterating until 0, 0 , and w no longer change

f

(" converged weighting"). Finally it should be noted that 6 may be

negative from Eq. (3.19). For this case r is set to zero, i.e., only

OC
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binomial weighting is used. One major disadvantage of this method is

that the iterative scheme just outlined occasionally does not converge

or converges extremely slowly. Even the first iteration (" binomial
weighting") occasionally produces infeasible solutions.

3.4 Maximum Likelihood Method Based on Marginal Distributions

A fourth technique for obtaining estimates of beta parameters a
and b from the observed data is based on the marginal or mixture distri-

bution of Eq. (2.6). The likelihood function

N
II h|a,b|k ,n ) (3.22)L(a,b|k ,k ...k '"P'"2***"N)2 N f g

i=1

is the probability of obtainir.g k ,k , . . . ,k failures in n '"2'''''"Ny 2 N l

tries of components 1,2,...,N, respectively, for components whose

probability distribution for failure is given by the prior distribution

of Eq. (2.2) with parameters a and b. The values of a and b which maxi-
mize the likelihood function are called the maximum likelihood estimates,

a and b. If k and n are the observed data, then the maximum likelihood
1

estimates maximize the probability of obtaining the observed values

over all possible parameter values a and c

Unfortunately the maximum likelihood estimators cannot be determined

analytically when the marginal distribution, h, in Eq. (3.22) is a beta-
binomial distribution. Thus numerical methods must be used. Substitution

of Eq. (2.6) into Eq. (3.22) yields

L(a,b) E L(a,b |k . . .%,n . . .n ) =N

N N f (a+k ) T (b+n -k )f(a+b) g (* }
f(a)T(b) i f(a+b+n )g

where
mg F(n +1)f (*

i ,k " P (k +1) T (n -k +1)
*

g f g

The problem is to find the values of a and b (constrained such that
a>o and b>o) which maximize L, or equivalently, which maximize In[L].
This latter form is preferrable for numerical purposes since the Enr
function varies more slowly than does the r function. An example of
a typical likelihood function is shown in Fig. 3.1. The extrema of,

-
. o ,.;
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InL(a,b) are obtained from solutions to

-- InL(a,b) = 0

p InL(a,b) = 0

or explicitly
N

N{$(a+b) - $(a)} + [ {$(a+k)-$(a+b+n)}=0 (3.25)
f g

i=1

and

N

N{$(a+b) - $(b)} + [ {$(b+n-k)-$(a+b+n)}=0. (3.26)g
i=1

d
where $(z) E g-[inr(z)], the digamma function. The numerical solution of
these two simultaneous equations is obtained by standard numerical tech-

niques (such as the Newton-Raphson method [5], with the matching moments
solution as the starting points). Care must be taken since (a,b)+= is

also a solution of Eqs. (3.25) and (3.26). If the sample data consist

solely of one component (N=1), the only solution of the equation is for

a=b== although a/b is finite such that from Eqs. (2.4) and (2.5) the
mean of the prior is p=k/n and the variance is a =0 -- an expected result
when only one sample is used (see Fig. 3.2). However, it has been found

that for some data with N>1, Eqs. (3.25) and (3.26) may also have na

finite positive solution.

3.5 Results for Diesel Engine Data

The beta prior distribution parameters (mean, variance, a and b) were

estimated for standby diesel engine data (see Table 3.1) for various engine

groupings by the three feasible methods described in the previous rections.

The prior based maximum likelihood method (see Section 3.2) was not
used as a result of inherent difficulties for zero failt .e cases. A

listing of the computer code is given in Appendix I, and the results are

summarized in Table 3.2.
From these results, several interesting features are apparent. First

the meximum likelihood method (Method III) and the matching moments to

the marginal distribution (Method II) did not always produce estimates of

the prior variance, i.e, only values of b/a (or the mean) resulted. For

the marginal-based maximum likelihood method, the solution, was for a,b+=

w .

t' ~
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Table 3.1 Diesel Engine Failure Probability Data [6].

No. of
No. of Starts Failures

Plant Units Manufacturer (n ) (k )
f

Yankee 3 GM 100 6

"Peach Bottom I 1 392 1

"Oyster Creek 2 230 11
"Monticello 2 68 5

"Turkey Point 3 2 23 4

"Maine Yankee 2 23 0
"Fort Calhoun 2 12 2

"Nine Mile Pt. 2 99 0

"Surry 1, 2 3 33 3

"Dresden 2, 3 3 126 9

"Quad Cities 1, 2 3 47 2

"Haddam Neck 2 87 1

"Point Beach 1, 2 2 71 2

San Onofre 2 FAIRBANKS 656 3

"HB-Robinson 2 73 5

"
Millstone 1 1 35 1

"Vermont v.ankee 2 37 1

Indian Pt.-2 3 ALCO 13 0
"Ginna 2 95 2

"Palisades 2 51 2

"Pilgrim 2 35 2

Zion 1 3 COOPER 17 7

Dresden 1 1 GE 335 4

Big Rock Pt. 1 CATEPILLAR 206 9

Lacrosse 1 ALLIS-CHALMERS 76 1

.

%

* 4
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but with a finite ratio and hence well-defined mean (see Fig. 3.3
for a contour plot of the maximum likelihood function for the four
ALCO engine case). For the marginal distribution matching moments
method, estimates of r of the prior variance were negative. Interesting-

ly, these two methods failed for the same cases.
Second, while the method of matching moments to the assumed

beta prior distribution (Method I) always yields finite positive re-
sults, the estimated means ard standard deviations are always greater
than the estimates obtained by the other methods.

Third, the iteration scheme used to calculate the weighting
values, w , in Method II (marginal distribution matching) did not
always converge evenly or quickly. For example, the iterated results

for the four FAIRBANKS diesel engines are shown in Table 3.3. On

the other hand, the thirteen GM diesel engines gave results which
converged smoothly to five significant figures in only four iterations.

Finally, when they are obtainable the marginal-based maximum

likelihood results and the converged results of matching marginal distri-
bution moments are usually nearly equal, with the former usually yielding
slightly larger estimates of the prior standard deviation. An assessment
as to the ability of these three methods to estimate accurately the
prior parameters from data generaced from a pure beta distribution was
undertaken in the second phase of this study. The results of this
simulation study are presented in Section 4.

In Figs. 3.4 and 3.5 the estimated beta prior distributions obtained
by the prior matching momenta method (Method I) are shown for the diesel

engine data grouped by manufacturer and by the number of starts, respectively.
Notice that the Fairbanks and ALCO groupings appear to be very similar in
shape, while the GM and Others, although of the same shape, have prior
distributions which appear to be quite different from those of the Fair-
banks and ALCO groupings. The estimated prior distributions for data
grouped by number of starts reveal an apparent aging phenomenon. For the

group 0-25 starts the prior distribution has no mode and is highly skewed
towards zero failure probability. The three other groupings all are uni-
modal with the failure probability at the mode (most probable failure
probability) decreasing as the engines age (or more experience is cbtained).
In Section 3.7 a more critical comparison is presented of these results

}h ^f36
for the diesel engine failure data.
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Tables 3.2. Comparison of calculated prior distribution parameters by three
different techniques: (I) matching data to prior moments, (II)
matching data to marginal moments, (III) marginal maximum like-
lihood method.

Problem Method Mean, p Stand. Dev., o a b

13 GM I 0.0592 0.0577 0.9303 14.80
Diesel II 0.0491 0.0373 1.595 30.88
Engines III 0.0502 0.0437 1.204 22.79

Fairbanks I 0.0322 0.0266 1.385 41.66
Diesel II 0.0270 0.0177 2.236 80.58
Engines III 0.0291 0.0245 1.342 44.81

Four 1 0.0294 0.0245 1.364 45.12
ALCO II 0.0309 negative b/a = 31.333333
Engines III 0.0309 not obtained b/a = '1.333316

Other I 0.120 0.195 0.2139 1.567
Four II 0.110 0.159 0.3209 2.584
Engines III 0.108 0.126 0.5550 4.570

Engines I 0.150 0.169 0.5222 2.949
Uith 0-25 II 0.151 0.128 1.029 5.808
Starts III 0.145 0.152 0.6318 3.728

Engines I 0.0492 0.0263 3.287 63.46
With 25-50 II 0.0481 negative b/a = 19.77778
Starts III 0.0481 not obtained b/a = 19.77775

Engines I 0.0350 0.0268 1.612 44.44
With 50-100 II 0.0339 0.0154 4.626 131.7
Starts III 0.0341 0.0186 3.192 90.55

Engines I 0.0303 0.0281 1.100 35.16
With more II 0.0283 0.0230 1.447 44.67
Than 100 starts III 0.0287 0.0271 1.062 35.97

k 1426 238
.,.
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Table 3.3. Results of Matching Data to Marginal Distribution Moments
(Method 11) for the Fa.'rbanks Engines.

Iteration Mean Stand. Dev, a b

1 (binomial) 0.012484 0.026654 0.2042 16.149

2 (empirical) 0.031138 0.0092698 10.9001 339.183

3 0.019762 0.023373 0.68098 33.778

4 C.029899 0.013094 5.0284 163.151

5 0.023544 0.020929 1.2123 50.279

6 0.028791 0.015238 3.4382 115.98

7 0.025300 0.019462 1.6220 62.486

8 0.028030 0.016395 2.8131 97.547

. . . . .

. . . . .

. . . . .

28 0.027004 0.017704 2.2368 80.596

29 0.027000 0.017708 2.2351 80.549

30 0.027003 0.017705 2.2363 80.58a
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3.6 Maximum Likelihood Bounds on the Variances of Prior Parameter
Estimates

One of the most attractive features of the maximum '.ikelihood
method is that, besides yielding estimates of the parameters, this method
can also yield lower bounds on the variances and the covariance of the

parameters. These lower bounds can often be used as useful approximations
to the variances and covariance. In this section a brief review of the

pertinent aspects of this method is presented, and the method is applied
to the problem of estimating variances and the covariance of the prior
beta parameter estimates.

For N independent observation, x ,x '*****N, where the i-th
2

observation is from a distribution h (x|0_), i.e. , the marginal
distribution for the i-th component, the likelihood function is
defined by

N

L(0|x,x****N) II h (0|x ) (3.27)y 2
i=1

where x and O_ represent the sampl<. randem variable and parameter
vector, respectively. The maximum likelihood estimators of 0_ are de-
noted by O_ , and are those values of the parameters which maximize
L, i.e.,

a

30'LCU!*1'*2****N
i = 1,2,...,N (3.28)=

,

0 =5

or equivalently maximize InL, i.e.,

a

30' b(S *l****N) =0, i = 1,2,...,N .

i=1

The elements of the information matrix I(0), are defined as

2 2' - - -

I (0) 5 E d*1 ,d*2 ... b03 L(Sl*1****N}d"~

30 '
,

i,j=1,2,...,N (3.29)

?

* l ' ., $\ h
'
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where the integration (or summation in the case of a discrete distribution)

is over all possible values of variables x ...x If the distribationy g
of the likelihood function with respect to each parameter is symmetrical

in the neighborhood of 5, then

'2 '2
' '

g 3
E (3.30).

30 30 30 30
i 3 1 J. e=e.,

Asymptotic properties of the likelihood function guarantees that
the above approximation is valid provided N is sufficiently large

regardless of the symmetry of the likelihood function.

One of the most important theorems about the maximum likelihood
method is known as the Cramer-Rao-Frechet inequality [3] which states

g(0) < variance ($ ) (3.31)o
f

and

|og (0)|<|covariance($ ,0 )[ (3.32)
1 3

where o_ is the inverse of the information matrix I. In effect this

theorem provides lower bound estimates of the variance and covariance
of the parameters. In fact under rather weak restrictions [3]

lim (' }E[0] = 0N* -
- ,

N[ var ($ )] = o (3.34)g

and

N[cov(6 ,$ )] = o (3.35)
7 g.

With finite sample sizes, the information matrix is thus often used to

give approximate values of the variances and covariance which asymptotically
converge to the true values as the sample sizes become increasingly large

[3].
To apply the above results to the problem of estimating the variances

and covariances of the two parameters of the prior beta distribution,

begin by constructing the information matrix for Eq. (3.27),

'e

. 5' ,''
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'2
., 3 tnL'

k(3 InL'',3 2, aa3b ,

I(a,b) E - . (3.36)

'a Int ~ 'a Int'
3a P'o 2,. gys

,

The derivatives of the logarit.hm of the likelihood function, i.e. ,

Eq. (3.23), are given by,

2 N

(a,b) = N{ $' (a+b) - $' (a) } + [ { $ ' (a+k ) - $' (a+b+n ) } (3. 37 )g
3a 1-1

2 N
(a,b)=N{$'(a+b)-$'(b}}+ [ {$'(b+n-k)-$'(a+b+n}}f

Bb i=1

(3.38)
and

2 -[ N

(a,b) = N$'(a+b) - [ $'(a+b+n ) (3.39)
i=1

where $'(x) E d [lnr(z)]/dz is the trigamma function [8] (see

Appendix I for computational aspects of this function). The ex-

pectation values for the matrix elements in Eq. (3.36) are calculated

from Eq. (3.22), by*

"i "2 "N
E[*] E [ [ [ [ * ] L (a,b | k . . .k '"l* * * N) (3.40).... y N

k =0 k =0 k =0y 2 N

"i

Since [ h(k|n,a,b)=1,thesubstitutionoftheexplicit form of the
k =0
f

likelihood function from Eq. (3.27) and simplification gives the follow-

ing results for the matrix elements of the information matrix:

*The dot in the square brackets represents the various derivatives
given in Eq. (3. 36 ) .

' y ' ' .'s } k 2 h 2 ''.
'*

'
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372g N "i
E =N{$'(atb)-$'(a)}+ [ [ $'(a+k )h(k |n ,a,b)2 f f g

aa i=1 k =0'

f

N

- [ $'(a+b+n ) (3.41)
i=1

N "i2 ,

E = N{$'(a+b)-4'(b)} + [ [ $'(b+n -k )h(tc |n ,a,b)
1

ab i=1 k =0-

f

N

- [ $'(a+b+n ) (3.42)
i=1

'a ZnL'
E N$'(a+ ) - '(a+bh ), 3aab, i (3.43).

i=1

'

Finally from Eqs. (3.31) and (3.32) wc have the following approximations

for the variance and covariance of the maximum likelihood estimators:

-1(a,$)]11Var (a) = [1 (3.44)

Var (6) = [I-1(3,g)l (3.45)22

Cov(a,6) = [I- (a,$)]g (3.46)

where the maximum likelihood estimates a and 6 are substituted for the
true parameter values.

The numerical evaluation of the expected values of the matrix

clements of the information matrix can be qtite time consuming especially

if the n are large and the number of components N grouped inte theg

class is also large. Application of Eq. (3.30) allows a much more

expedient, but approximate, evaluation of these matrix elements.

Specifically one has

= N$'(a+$)-N$'(a)E =
_3 3

3a ' '

b=6 l=6

{ 2kN

[{$'(a+k)-$'(a+$+n)}, (3.47)+g .. - ..'
i=1

1 1

,
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= N$'(a+b)-N$'(6)E =
,3 3

3b * abd- s
b=g b=6

N

[ {$' (b+n -k ) -$' (a+$+n ) } , (3.48)+ g g g
i=1

2
g(a Int' '3 EnL' - = NC'(S+$) - $'(ad+n). (3.49)a=a i3aab ,a=a

Laaab 'b=6 i,lg

b=6

In practice, it has been found that the information matrix con-

structed from these approximations (Eqs. 3.49-3.51) gives very similar

results for large sample size, N, im the more complicated, but exact,

method of Eqs. (3.41)-(3.4 3) . As an application of the covariance-

variance calculations, the 25 diesel engines of Table 3.1 were fit to

a single beta prior by the maximum likelihood method based upon the

marginal distribution (Section 3.4). The results of the calculations

of the variance and covariance bounds are presented in Table 3.4.

Table. 3.4 Estimates of Beta Prior Parameters and Variance Bounds for
the 25 Diesel Engines of Table 3.1. The Maximum Likelihood
Method Bas 2d on the Marginal Distribution (Eq. 3.27) was used.

Estimated Exact Aprox.
Parameters Eqs. (3.41)-(3.43) Eqs. (3.47)-(3.49)

a = 1.0522 Var (a) = 0.1763 0.1545

Var (b) = 81.67 93.73

b = 19.902 Cov(a,5) = 3.273 3.283

The calculation of the variance bounds by both the exact and

approximate information matrix is provided as an option in the

computer program BETA III, listed and discussed in Appendix I.

dr,
u-

-

- - ri
s , t

1426 246
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3.7 Variance Estimates from the Method of Matching Moments to the Prior
Moments

A simple, but approximate method to estimate variances for the beta
parameters a and b can be obtained from the closed-form solution for the
beta parameter estimates derived in Section 3.1. From the matching of

data moments to those of the beta prior, the following results were
previously obtained for the beta parameters (namely, Eqs. (3.5) and (3.6)):

2
0

ob (1-Oob) - Oob (3.50)a=
2

8ob

and
O

ob (1-Oob)2 + O~l " "(l'0ob)/ bob . (3.51)b=
2 ob

Oob

Equations (3.50) and (3.51) can be used to find expressions for esti-
mates of the variances of a and b from the following first order Taylor
series approximation [9):

" ^
s (a) = s (0 )+ s (8 ) (3.52),

2
' ob '38

ob

' ab '
2(Oob)

'

2 '3b 2(0g) + 2

2
8 (3.53)s (b) = s ,

gg
ob' '38 g-

g

where s (Oob) and s (8 ) are estimates for the variances of D
and 8 .

ob
In these first order approximations, the covariances are assumed to be

negligible. Other approximations (discussed later) can incorporate the

covariance between D and S Estimates for s (0 ) and s (8 ) are
ob ob.

[10]:

8
(3.54)s (Dob) = ,

and

2(8 )
s (8 )= (3.55)*

N

1426 247

8 :. ci
..



36

To obtain this last result it has been assumed that s (82)w no c ._411y.

distributed. Wilks [11] presents a distribution independent formula:
'

2 1 N-3 4'
2(8ob) " II 4 - N-1 (3.56)

s M
,

4where u is the fourth central moment, is de spe of de sample4 c

variance. Equations (3. 5 2) and (3.5 3) become, upon substLtution for

2(Dob) nd s2(Bob) fr m the normal based Eqs. (3.54) and (3.55)
2s

'

o 02 (y_g ) 2 (g2 )2
(a)={{ (20 -300b)l~l}

bs + 2 (3.57)g N 2
ob ( ob} '

and

s (b) = [ + 1 - 400b + 3pob2 l + N-1 ( ""ob (
N6

_6
,

It should be emphasized that the above result is only approximate
since the covariance between the mean and the variance of the beta
prior have been assumed to be zero. Nevertheless, order of magnitude
values for the variances can be obtained with this approximation. For

example, the above method (based on Eqs. (3.54) and (3.56)) gives for
the 25 diesel engines of Table 3.1 var (a) = 0.1393 and var (b) = 24.03.
These values compare with the maximum likelihood results of var (a) = 0.1763
and var (b) = 81.66.

Once estimates have been obtained for the prior beta parameters
and for their variances, various statistical tests can be used to
search for significant differences between the estimates for various
groupings of the diesel engine data considered in Section 3.5. One of

the simplest tests is based on the statistic

(c,1-E )/[s (C ) + s [(C )] (3.59)z=
2 y 2

where E and s ((1) are respectively the estimated prior paramber (a or b)
and its estimated variance for the i-th data grouping. Under very
general conditions, the z statistic will be asymptotically distributed
as a unit normal deviate [16]. Thus the cumulative unit normal distri-
bution can be used as a test criterion, if it is assumed that the sample
sizes used to obtain the estimates of the prior parameters are sufficiently
large for the asymptotic normality of z to be valid.

.

/hA
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In Table 3.5 the estimates are presented for the prior beta para-

meters obtained by the prior matching moment technique, together with

two estimates of their variances. The first variance estimates for s (a)
and s (b) are based upon an assumption of normality for the distribution

of s (Oob) (Eq. (3.55)) and are computed directly from Eqs. (3.59) and
(3.58). Tae second variance estimate is based on a distribution-independent

result (Eq. (3.56)) for s (8 ). Both variance estimation techniques

are seen to give comparable results with the distribution-independent

estimates always being slightly smaller than the normal-based estimates.

With these variance estimates, the z statistic may be computed from

Eq. (3.59) for pairs of groupings of the diesel failure data. In Table

3.6 the z values are given for the case of the normal-based estimate

of s (6 ) while Table 3.7 presents the results based of the distribution-

independent estimate of s (Bob). From the values of the cumulative

normal in these two tables it is apparent that one cannot conclude the

estimated prior parameters for various diesel groupings are significantly

different at the 5% level (i.e., 0(z) < 0.025 or t(z) > 0.975 > 0.975).
Thus while the estimated diesel prior distributions shown in Figs. 3.4

and 3.5 appear to have noticeable differences for the different diesel

engine groupings, these differences may arise more from the paucity of

the data used to estimate the prior parameters than from any real physical

differences.

3.8 Error Bands for Estimated Prior Distributions

In this section a method is presented to estimate the confidence

bounds on the estimated prior distribution, both for the estimated

probability distribution functica (pdf) and for the estimated cumulative

distribution function (cdf). The pdf estimate for failure probability

p is given as

g(p) = f(a)P(b) p(a-1) (1-p) (b-1) (3.60)f(a+b)
.

'1426 249
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Table 3.5. The estimated prior beta distribution parameters and
their standard deviations as calculated by the prior
matching moment technique for various groupings of
the diesel engine data (sca Table 3.1). The quantity
N equals the number of plants in each grouping.

* ** * **Grouping N a o (a) 02(1) b o (b) 0y 2( )

Manufacturers

GM 13 0.930 0.645 0.610 14.795 7.432 6.654
Fairbanks 4 1.385 1.623 1.308 41.662 38.502 25.444
Alco 4 1.364 1.606 1.256 45.120 41.751 25.472
Others 4 0.214 0.490 0.440 1.567 2.523 1.955

Number of Starts

0-25 5 0.522 0.720 0.611 2.948 2.987 2.070
26-50 5 3.287 2.817 2.115 63.462 47.5s'1 31.200
51-100 9 1.612 1.160 0.908 44.437 25.118 15.369
>100 6 1.100 1.095 0.892 35.162 26.202 16.553

*

Based on normality of s (6ob), Eq. (3.55)
**
Distribution-independent estimate, Eq. (3.56)

Ote> :, . .
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Table 3.6. The z statistic and cumulative unit normal,

4(z), used to compare the differences between
pairs of the estimated prior parameters of

2Table 3.5. Variance estimates for s (a) and
2(b) are based on the normality result ofs

Eq. (3.55).

Grouping b
Comparison ,( ) 4(z)
i=2 - i=1

By Manufacturer

Fairbanks-GM -0.261 0.397 -0.681 0.248
ALCO-GM -0.251 0.401 -0.715 0.237
ALCO-Fairbanks 0.009 0.504 -0.061 0.476
Others-GM 0.884 0.812 1.685 0.954
Others-Fairbanks 0.641 0.755 1.039 0.851
Others-ALCO 0.685 0.753 1.041 0.851

By Number of Starts

(26-50)-(0-25) -0.951 0.171 -1.269 0.102

(51-100)-(0-25) -0.798 0.212 -1.640 0.050

(51-100)-(26-50) 0.550 0.709 0.354 0.638

(>100)-(0-25) -0.441 0.330 -1.222 0.111

(>100)-(26-50) 0.724 0.765 0.521 0.699

(>100)-(51-100) 0.321 0.626 0.256 0.601

}42b 2 hl
5J- ..:
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Table 3.7. The z statistic and cumulative unit normal,
4(z), used to compare the differences between
pairs of the estimated prior parameters of
Table 3.5. Variance estimates for s2(a) and2s (b) are based on the distribution-independent

2result for s (8 ), i.e., Eq. (3.56).

Grouping
'" b

* "_ f z 4(z) z 4(z)

By Manufacturer

Fairbanks-GM -0.315 0.376 -1.022 0.153
ALCD-GM -0.311 0.378 -1.152 0.125ALCO-Fairbanks 0.012 0.505 -0.096 0.462Others-GM 0.952 0.829 1.907 0.972Others-Fairbanks 0.849 0.802 1.571 0.942
Others-ALCO 0.864 0.806 1.705 0.956

By Number of Starts

(26-50)-(0-25) -1.256 0.105 -1.935 0.026
(51-100)-(0-25) -0.996 0.160 -2.675 0.004
(51-100)-(26-50) 0.728 0.767 0.547 0.708
(>100)-(0-25) -0.535 0.296 -1.931 0.027
(>100)-(26-50) 0.953 0.830 0.801 0.789
(>100)-(51-100) 0.402 0.656 0.411 0.559

.

r
.

.
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If the estimators a and b are assumed to be uncorrelated, an esti-

mate for the variance of g(p) can be obtained by the following pro-

pagation of error formula [9]*:

2 2r $

22(g(p)) , 2(a) + s (b) (3.61)g .s

The first partial derivative of the prior distribution is given

by

3 " ,r(a+b) (1-P)(b-1)' P(a-1) ,np + 'p " (1-p)(b-1)* 3r(a+b)'

o
3a r(a)T(b) F(a)T(b) Ba

,

1(a+b)p"" (1-p) 3[l/r(a)] (3.62),

f(b) 3a
, ,

with

OI( ) = 4(a+b)T(a+b) (3.63),

and

3[l/r(a)1 , , $(a) (3.64)'3a f(a)

where 4(a+b) and 4(a) are the digamma functions that can be calculated
from a subroutine given in the BETA III computer code (given in Appendix I).

Thus, this partial derivative can be simplified to

3A = g(p) [lnp + $(a+b) - $(a)] (3.65).

3a

The partial derivative with respect to b is given by

p (a-1) ( )(b-1) }Br(a+b),

a ) p(a-1) ( (1_p) (b-1) In(1-p)] += -

'P(a+b) p(*~ (1-p)( 3[1/r(b)] (3.66)+ '

f(a) ab
,

,

* Equation (3.61) is based on a Taylor's series expansion. The second
order and higher derivatives of g(p) with respect to a and b have been
assumed to be small compared to the first order derivatives. Likewise
the parameters a and b have been assumed to be un opre19tet. The in-
clusion of covariance is considered later. } 4 h [ J .)

3
-

,
, ,
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with

$(a+b)T(a+b) (3.67)=
,

3[1/r(b)] , _ $(b)
3b P(b) (3.68).

Thus, this partial derivative becomes

= g(p) [ln(1-p) + $(a+b) - $(b)] . (3.69)

Hence, the estimate of the variance on g(p) is given by

[g(p)] = [g(p)] {[lnp+$(a+b)-$(a)]s (a)a

+ [ln(1-p) + $(a+b) - $(b)] s (a)}. (3.70)

A variance estimate can also be constructed in a similar manner
for the cumulative distribation function (cdf) which utilizes the esti-
mators for a and b. The cdf is given by

'P
G(p) = g(t) dt, (3.71)

'O
or

(# }
G(p) = f(a)P(b) t("~ (1-t) (b-1) dt . (3.72)

'O

which is simply the incorplate beta function [8]. If the estimators, a

and b,are again assumed, as a first approximation, to be uncorrelated

random variables, the estimate for the variance of G(p) can be obtained
in a similar fashion as was used in Eq. (3.61) for the pdf, i.e.,

3 P) 2(b) (3.73)[G(p)] = s (a) + ss .

The partial derivative with respect to a is

) dt (3.74)=
,

or

'P 'P3G
g(t) Int dt + $(a+b) g(t) dtg=O' 'O

'P
,

- $(a) g(t) dt, (3.75)(' 0
,

, , ,

~
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or upon substitution for g
,

"E3_G, , T(a+b) (a-1)( -t)(b-1)lnt dtG
3a f(a)T(b)

.' O

+ [$(a+b) - $(a)] t("- )(1-t)( -1) dt (3.76).

,0 '

Similarly, the partial derivative with respect to b is

dt (3.77)=

or
,

'pDG ,T(a+b) (a-1) (b-1) In(1-t) dt
ab F(a)T(b) 'O

+ [$(a+b) - $(b)] t("- }(1-t) - } dt (3.78)
,0 '

The integrals in Eqs. (3.76) and (3.78) must be. calculated by numerical
means although the second integral in both of these equations can be
expressed in terms of the incomplete beta function (see Eq. (3.72)).

The above derivation for the variances of the prior density and

cumulative distributions is based on a first order Taylor series expansion

and on the assumption that the beta parameters a and b are uncorrelated.
In the next chapter it is demonstrated that the estimated a and b para-

meters have a large positive covariance. If the covariance term is

included in the derivation of Eqs. (3.61) and (3.73), these equations

become

<2 ,2

s [g(p)] = s (a) + s (b) + cov(a,b) 3.79)

and
2

P) 2
,--

s (b) + 3 P) P) cov(a,b). (3.80)23
s [G(p)] = s (a) +

The expressions just obtained for the evaluation of the derivatives

in the above expressions remain unchanged and hence to obtain approximate
variances for the prior distribution, one needs only to have estimates

of the variances and covariances of the beta prior parameters. With the

matching moments technique, only estimates for s (a) and s (b) were
obtained. Ilowever, with the maximum likelihood method, estimates for

lower bounds of the covariance of a and b can be obtained from Eq. (3.32).

?i m . 1426 255'
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Often this bound is taken as an estimate of the actual covariance, and for
the diesel engine data such an estimate was always found to be positive.
With this estimate an additional term appears to be added to the variance
estimates for the pdf and cdf if the first partials with respect to a and
b are both positive or both negative (see Eq. (3.79) and (3.80) above);
thus, the error bands around the estimated prior distribution would be-
come even larger or further apart. However, it was found for the various

diesel engine groupings that the covariance contribution generally de-
creased the variance estimates s [g(p)] and s (G(p)], although this
decrease (compared to the results obtained without the covariance con-
tribution) was usually quite swill.

As an example, the beta prior density and cumulative distributions
for all 25 diesel plants of Table 3.1 as estimated by the marginal maximum
likelihood method are shown in Figs. 3.6 and 3.7 respectively. For this

grouping of all the diesel data, the maximum likelihood estimates for
the beta prior parameters are a = 1.0522 and b = 19.902 with variance
estimates of s (a) = 0.1763, s (b) = 81.67 and cov(a,b) = 3.273. For

both the density and cumulative distributions, the one sigma error bounds
(s [g] or is [G]) are also shown as calculated with and without the co-
variance contribution. It is seen from this example that the inclusion

of the covariance contribution decreases the spread between the upper and
lower error bound.

The error bounds for other subgroupings of the diesel engine data
give similar results as for the 25 engines example, namely, the spread
between the upper and lower error bounds are sufficiently large that the
various estimated prior distributions tend to lie within the error bounds

of each other. Such large uncertainty in the estimated prior distributions
for the various groupings indicate there may be no significant differences
between these estimated priors in the region where the bocnds overlap.

1426~256&. : ,
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4. SlMULATION STUDY OF PRIOR ESTIMATION TECHNIQUES

From the Bayesian analysis of the diesel engine failure data, the

beta prior distributions, whose parameters were estimated from observed

data, have modes in the region of small failure prcbabilities and are

highly skewed away from high failure probabilities. Such mode behavior

4 nd skewness is expected for components which are designed to have low

failure probabilities. However, the diesel data with which the early

phase of this study was concerned have typically small sample sizes.

Thus the question arises of biasedness and variance in the parameter
estimates used for the beta priors and of the effects on the subsequent

prediction of failure probability. To determine which of the four para-

meter estimation techniquea discussed in the previous chapter is the

most " conservative" or yields parameters closest to the true values, it

is necessary to determine the distribution of the parameter estimates

for each method. Consequently the objective of the study described here

was to determine the properties of each of the four parameter estimation

techniques. For such an investigation multiple sets of failure data in

small sample sizes were generated randomly from known beta prior or

marginal distributions. With these simulated failure data the distri-

butions of the prior parameter estimates could be determined numerically

for each estimation technique and from these distributions many properties

of the four estimation techniques can be investigated.

4.1 Generation of Simulated Failure Data

To determine the distributional properties of each parameter esti-

mation technique by numerical simulation, it is first necessary to

generate a large number of failure data pairs (k failures in n tries) in

which the number of failures k are distributed according to a known beta-

binominal distributien with parameters a and b, i.e., according to the

marginal distribution

'n' r(a+b) T (a+k) T (b+n-k)h(k|n,a,b)= (4*1)*

r )r b) TP+3+n)

Thus to generate the simulated failure data, the number of demands, n, is

first selected randomly from a uniform distribution between n and ny 2'
The number of demands n was allowed to vary in this manner to simulate

better the type of failure data encountered in actual practice (see

/'
"'
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Table 3.1). Then with n determined, and the beta parameters a and b
fixed, the number of failures, k, is chosen from the above beta-binomial

distribution. This two step process is repeated until a sufficient number

of data pairs have been generated. Explicit details for each step are as

follows:

For each step a random number, u, from a distribution,which was
uniformly distributed between 0 and 1, was generated f rom the routine
RANDU [12] and which subsequently was used to generate an n or k value.

To select n, which for this study was assumed to be uniformly distributed
between two positive integers n and n , the following algorithm was used:y 2

"ny + integer [u/p] , u/p

y + integer [u/p] - 1, u = pn

where p5 (n -"l-1) which is simply the probability of obtaining any2
integer between n and n

I"'l"8i""1 ' i* '' "1 21 " 21 " 2 The abovey 2 7

algorithm is equivalent to

'n 0<u<py ,

n +1 p < u < 2py

. .

.
.

.
.

n= n +1 ip < u ;[ (i+1)p (4.3)y .

. .

. .

. .

n 1-p < u < 1
2

.

Once the number of failures, n, had been selected a new random

number, u, was generated and used with the inverse transformation
technique to obtain a value for k from the cumulative distribution

of h(k), i.e. , from

k
F(k) E [ h(m|n,a,b) , k = e,1...n . (4.4)

m=0

The value of k selected is the minimum integer for which u ;[ F(k),
or equivalently,

1A26 260p
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'0 0 < u < F(0)
1 F(0) < u < F(l)
. .

. .

. .

k= 1 F(1-1) < u < F(i) (4.5).

. .

. .

. .

,n F(n-1) < u < F(n) = 1

In essence this method for changing a random variable, u, with a uniform
distribution on (0,1) to a random variable, k, distributed according to
a beta-binomial on (0,n) requires the sequential evalcation of the
cumulative distribution, F(k). The use of Eq. (4.4) for each evaluation
would be very time consuming if large amounts of simulated failure data
were to be generated. However, considerable computational effort may be
saved in the sequential evaluation of F by using the following recursion
relation

F(k+1)=F(k)+h(k+1|n,a,b) (4.6)

with

h(k+1|n,a,b)=h(k|n,a,b) f"f (4.7).k +1)

For situations involving beta parameters which yield a prior distri-
bution with a low f ailure probability, (i.e. , for which the above inverse
technique would be expected to yield small values of k), the sequential
search is best begun at k=0. Similarly if a prior corresponding to large

expected values of k is used, then the sequential search is best bagen at
k=n. More generally, to min.?. mire the length of the sequential search, the
search should be begun near the mean of the beta-binomial distribution of
interest. However, this optimal search method requires that the integer
nearest to the mean and the cumulative distribution at that integer be
initially evaluated and stored for all possible values of n. This search

algorithm is outlined in Table 4.1.

1426 261-
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Table 4.1. Algorithm for Optimal Calculation of Number of Failures, k,
by the Inverse Transformation Technique.

Part I: Selection of Starting Values for Sequential Search

1. Calculate means, pf, of beta-binomials for all possible n
(i.e., for n = n , n +1,....n )*f f y 2

2. Round off means to nearest integer, M
1

3. Calculate F(M ) and h(M |n ,a,b)
1 f g

4. Store values of M , F(M ) and h(M ) in a vector to be used as
1 1 1

starting points in sequential search.

Part II: Sequential Search to Calculate k for Given n

1. Generate u from a uniform distribution on (0,1) by RANDU

2. If u = F(M ), then k = M
f 1

3. Otherwise, set K = M , h(K) = h(M ) and F(K)=F(M )
f

4. If u<F(M ) go to step 6 ; otherwise go to step 5
f

5. Compute:

)" } (b+n -K-1)(K+1)

F(K+1) = F(K) + h(K+1)

If u < F(K+1), then k = K+1and exit; otherwise set K=K+1 and go
_

back to beginning of step 5.

6. Compute

F(K-1) = F(K) - h(K)

If u>F(K-1), then k-K-1 and exit; otherwise calculate,

K (n -K+b)g
h(K-1) = h(K) (K-l+a)(n -K+1)

t

set K=K-1, and go back to beginning of step 6.

_

n 3, 1426 262
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4.2 Distribution of Prior Parameter Estimates

To investigate how the estimates of the beta prior parameters are

distributed, simulated failure data were analyzed by the four empirical

estimation techniques described in Chapter 3. Since this study was con-

cerned primarily with low failure probability events, a beta prior with

parameters of a=1.2 and b=23 was used as the basis for generating the
simulation f ailure data *. The number of starts, n , was randomly selectadg

from a uniform distribution between 30 (n ) and 300 (n ), inclusively. Fory 2

a given n , the number of failures, k , was selected randomly from a beta-y g

binomial (marginal) distribution using the technique described in

Section 4.3. In all, 1500 samples of size 5 (i.e., five k and n 1

pairs), 10, and 20 were generated. Additionally 500 samples of size 50

were computed.
With these simulated failure data, estimates of the parameters a and

b were calculated and compared to the true values of a=1.2 and b=23. The

frequency distribution of the estimates a and b as calculated by the four
estimation techniques for the four sample sizes are shown in Figs. 4.1
through 4.4. All theFe frequency distributions exhibit several common

features. In particular all estimation methods exhibit a slowing decaying
tail at high values. The mean of the distribution is always on the
high side of the true value. For small sample sizes (Ns10) there were

obtained an appreciable number of inordinately large estimators,

or outliers, especially by the two most complicr.ted estimation techniques--
the marginal maximum likelihood method and the marginal tatching moments

method. Furthermore, only the simplest estimation method, the prior

matching moments method, always yielded results for all samples regardless

of size. For small sample sizes (Ns5) the marginal matching moments and

marginal maximum likelihood methods often yielded no parameter estimates,
while for large sample sizes the prior maximum likelihood method was un-
able to give an estimate as a result of at least one k =0 in the sample
(a likely occurrence for the low failure probability case studied). In

Table 4. 2 the observed success history for each of the four methods is

given.

*These particular values of a and b are the marginal maximum likelihood
estimates for the failure data of the 13 GM diesel engines in Table 3.1.

1426 263
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Table 4. 2 Number of successful solutions and failures for prior para-
meter estimates from the simulation failure data for the
four estimation techniques.

Sample Marginal Matching Mom. Prior Matching Mom.
Size Sol. No-Sol. % Success Sol. No-Sol. % Success

5 1383 117 92.20 1500 0 100.0

10 1499 1 99.93 1500 0 100.0
20 1500 0 100.0 1500 0 100.0

50 500 0 100.0 500 0 100.0

Sample Marginal Max. Likelihood Prior Max. Likelihood
Size Sol. No-Sol. % Success Sol. No-Sol. % Success

5 1349 151 89.93 850 650 56.67

10 1497 3 99.E0 466 1034 31.07

20 1500 0 100.0 157 1343 10.47

50 500 0 100.0 0 500 0.00

\c
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Table 4. 3 displays some simulation data samples for which no para-
meter estimates could be obtained by three of the estimation tectn! ques.

No noticeable features about these particular data seem to distinguish

them from other data samples for which the estimation methods yielded
solutions. A test to screen small data samples to determine whether a

particular sample permits a solution by each method has not been found.

4.2.1 Bias and Variance of Prior Parameter Estimanes

The degree of bias inherent in any parameter estimation technique is

often of concern. The bias of an estimator, 0, is defined as

Bias E E[0-0] = 0-0 (4.8)

where e is the true value of the parameter (e.g., a or b) and 0 is the

mean of of the estimators. All of the estimation techniques investigated

in this study were found to yield biased estimates of the prior parameters,

especially for small sample sizes.

In the estimation of the mean or bias of the estimators from the

empirically derived distributions of Figs. 4.1-4.4, the treatment of out-

liers present some difficulties. For the estination techniques based on

the marginal distribution, estimates of a and b would occasionally be

obtained which were orders of magnitude greater than the true values. In

this section those outlier estimates which were greater than one huadred

times the true value were classified together with those samples which

yielded no solution and hence were not used in the computation of statistics
from the distribution of estimates. If those outlier values were included,

values of bias and variance of the estimator distributions would be determine <'
principally by the outlier values. For example, the distribution for N=5

of Fig. 4.1 for a estimated by the marginal maximum likelihood method

yields a mean a=7.23 and a varicuce var (a)=2581 if all data are used, while
if the outliers (S>100a) are suppressed, a mean a=3.79 and a variance

var (a)=59.5 results (the true value of a is 1.2). Unless explicitly specified

to the contrary, all outliers are suppressed in the subsequent analyses

of the distributions of a and b.

In Table 4.4 the results are presented of the bias of the beta para-

meter estimators for each estimation method considered. The variation of

am; i 1426 269e ..



Table 4.3 Simulated failure data k from a beta-binomial (a=1.2, b=23) for which the marginal-based
estimation methods yielded no solution.

Q
***M ' SI'' "*53, Sample Stre N=10
1. Data for which marginal maximum likelihood and marginal matching

'

moments give no solution: 1. Sample for which marginal matching moments method found no solution:

'
[129

235 290 30 97) [38 207 87 114 108} [225 85 73 71 238 167 245 91 187 67}'

8 8 14 1 5) ( 1 8 3 3 5) ( 7 1 2 0 7 4 4 1 0 IJ
[110 218 123 282 226} [237 74 287 245 147){ ( 3 10 7 11 13J ( 3 2 1 4 2J 2. Samples for which marginal maximum likelihood method failed

{113
64 81 56 145} [ 49 154 155 48 264}

4 2 4 6 7) ( 3 7 4 0 9J 4G 111 108 273 217 207 254 31 284 108

{64
65 62 197 166} [274 60 250 197 60} O 7 0 14 1,

0 2 1 2 5J ( 11 5 14 15 4j 36 206 254 97 95 99 276 233 253
281]

[ 84
33 266 242 133} [215 221 76 32 70} J

7 3 20 17 7) ( 4 7 1 2 3J 152 86 85 206 75 88 267 279 111 229
10 8 4 12 11 4 18 11 3 16

2. Data for which only the marginal matching momente method failed:

( 92
263 225 71 146 [193 192 292 277 264)3 18 11 2 4 ( 11 8 22 11 12) Ln

[ 85
87 123 269 63} [253 32 39 150 97)

oc
3 6 7 6 3J ( 2 2 2 10 4J

[38
128 46 175 223} [246 249 227 167 155}

O 2 1 1 7) (12 13 4 8 14J

(166
59 61 104 150} [208 60 33 253 151}5 4 3 6 13) ( 6 2 1 7 10J

(237
67 77 227 47 213 89 209 248 122

2 0 1 7 1 9 3 5 3 2

3 Data for which only the marginal maximum likelihood method failed:

[100 87 253 181 97} [187 151 50 45 272}( 7 3 22 19 5J ( 3 2 4 0 5J

[271 43 253 273 169} [ 98 101 60 229 81}(10 3 10 7 IJ ( 7 7 9 18 11J

(279
206 59 64 122} [137 80 123 88 45}~

8 8 0 0 3J { 11 0 0 4 5JM
[144 284 220 207 277} [31 205 68 48 255)N l1 11 8 7 5J { 0 18 2 6 22J

@ [238 237 35 39 261} [289 37 280 91 204}( 8 8 0 4 6) ( 5 2 5 1 8J
N
N
CD
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the bias in a and 6 with sample size is shown in Fig. 4.5. Notice

that as the sample size increases, the bias of the estimators decreases
towards zero as would be expected. However, from Fig. 4.5 all of the
methods except the simplest method - the prior matching moments - always
yield a positive bias. The prior matching moments method has the smallest
bias of all four methods and actually changes sign for sample sizes of
about 20 or larger.

The bias results for the prior-based maximum likelihood method, how-

ever, are relatively poor for the large sample sizes since, for the assumed
prior beta, many of the simulated samples contain at least one k =0 whichg

makes this estimation method f ail (see Table 4.1). Since all the samples

which preclude estimation of the prior parameters with this method have at
least one k =0, it can be expected that the estimators may inherently con-

g

tain a bias. In fact, from Fig. 4.5 it is seen that the bias appears to

level off at some small positive value as the sample size increases.
The mean values of a and 6 for the various sample sizes and esti-

mation techniques are readily obtained from Table 4.4 by adding to the
tabulated values of bias the true value of the parameter, a=1.2,

or b=23 . The variance and covariance of the distribution of the estimates
are presented in Table 4.5. As would be expected, the variances and co-

variance for all estimation techniques decrease as the sample size in-
The minimum variance for a given sample size was always obtainedcreases.

with the simplest estimation technique, i.e., with the prior matching

moment method. Those estimation methods based on the marginal distribution

always yielded the largest variances, a result of the slowly decaying tail
of the distributions for a and 6 and of the presence of unsuppressed out-
liers which were more prevalent with these methods.

The covariance of a and $ were always observed to be positive which
indicates that large values of a are associated with large values of 6.
In fact, the outliers were observed to have just this property, namely
that a sample which produced a large va.ue for a also generated a large

A

value for b.

,

. . .,. ..
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Table 4.4 The bias or deviation of mean of estimators from true parameters [a=1.2, b=23.0].__,

_. Each data set consisusof 500 simulation samples.
.

_ Marc. Match. Mom. Prior Bbtch. Mom. Marn. Max. Like. Prior Max. Like.
- Sample D.ata Set

Size (N) No. 3-a $-b 3-a b-b 3-a 3-b 3-a b-b

1 3.24 76.2 0.566 16.5 2.76 63.1 1.49 2.0
5 2 2.68 61.8 0.739 21.9 2.08 30.6 2.05 47.01

3 3.30 72.8 0.835 2.41 2.91 68.4 1.95 45.6

1 1.20 26.3 0.124 3.72 0.887 21.2 0.673 10.6
10 2 1.12 26.5 0.104 3.72 0.772 19.2 0.691 11.8

3 1.38 33.1 0.125 4.82 0.872 23.5 0.660 13.0

1 0.471 10.2 -0.0238 0.0602 0.325 7.37 0.479 6.07
20 2 0.412 9.50 -0.0574 0.299 0.268 6.71 0.439 6.48

3 0.568 13.4 0.0118 1.44 0.373 9.34 0.491 7.38

50 1 0.164 3.40 -0.142 -2.58 0.100 2.22 * *
,

*
Method always failed for sample size N=50 since each sample contained at least one k =0.

i
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Fig. 4.5 Variation of the bias of the beta parameter estimators with sample size for the different
estimation techniques. True values of the beta parameters are a=1.2 and b=23.
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Table 4.5 Variances and covariance of parameter estimators for different
sample sizes and estimation techniques. True beta parameter
values are <=1.2 and b=23.0. Results for marginal-based methods
are presented with and without outliers (a>100a or 6>100b)
included.

Prior Matching Moments Prior Maximum Likelihood
" *

var (a) var (6) cov (a,6) var (a) var ($) cov (a,6)g

5 4.42 3.79 (3) 1.03 (2) 9.29 8.44 (3) 2.23 (2)
10 5.50 (-1)* 2.86 (2) 1.01 (1) 8.40 (-1) 4.39 (2) 1.63 (1)
20 2.11 (-1) 9.97 (1) 3.79 2.02 (-1) 1.08 (2) 3.81
50 6.72 (-2) 3.05 (1) 1.23 - - -

~1
* read as 5.50 x 10

Marg. Match Mom. w/o Outliers Marg. Match. Mom. with OutliersSample
Size var (a) var (6) cov (a,6) var (3) var (6) cov (a,6)

5 5.20 (1) 2.50 (4) 9.90 (2) 8.15 (4) 3.41 (7) 1.64 (6)
10 1.23 (1) 5.76 (3) 2.51 (2) 2.69 (1) 1.15 (4) 5.40 (2)
20 8.01 (-1) 4.49 (2) 1.69 (1) 8.01 (-1) 4.49 (2) 1.69 (1)
50 1.75 (-1) 8.13 (1) 3.44 1.75 (-1) 8.13 (1) 3.44

Marg. Match. Like. w/o Outliers Marg. Max. Like. with Outliers
b" "

var (a) var (6) cov (3,6) var (a) var (6) cov (a,6)g

5 5.94 (1) 2.74 (4) 1.15 (3) 2.58 (3) 6.39 (6) 1.18 (5)
10 5.60 4.09 (3) 1.37 (2) 2.89 (3) 1.08 (6) 5.59 (4)
20 5.70 (-1) 3.39 (2) 1.22 (1) 5.70 (-1) 3.39 (2) 1.22 (1)
50 1.14 (-1) 5.83 (1) 2.27 1.14 (-1) 5.83 (1) 2.27

yh
1

-
. .
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4.2.2 Mean Squared Error of Estimators

For safety analyses the mean square error of an estimator is generally
of concern. Although a particular method may have a small bias, the
variance of the estimates may be quite large and hence the analysis of an
individual sample could lead to parameter estimates which are significantly
different from the true values. For safety considerations in which only a

few samples are to be analyzed it is important that the mean square error
of the estimates be small even if the estimates are slightly biased.

For the simulated data the mean squared error (MSE) is estimated as

MSE=f (0 -0) (4.9)
i=1

where 0 represents the estimate a or $ and 0 represents the true value.
From this equation, it is seen that outliers (i.e., estimates which
are "ar removed from the true value) will change the value of the mean

squarc1 error greatly, and that estimates close to the true value have
little influence. From the distributions of a and 6 shown in Figs. 4.1-

4.4, it is seen that there are typically several outliers produced by the
marginal-based estimation methods, especially for small sample sizes. To
compare the mean squared error for the different estimation methods, these
outliers were suppressed by ignoring those values of a or b which were more
than one hundred times the true values of a and b. The results of the

mean squared error analysis for the simulated failure data are cresented
in Table 4.5 and in Fig. 4.6.

From these results it is seen that for small or moderate sample sizes

(Ns50) the prior matching moment estimation techniques yields the lowest
mean squared error. The two estimation methods based on the marginal
distribution produce the poorest results, i.e., the largest mean squared

errors. These large errors are a direct result c f the occasional high

estimates of a and b obtained with these methods.

4.2.3 Median of Estimators

To suppress naturally the effect of outliers without actually ignoring
them, the median of the empirical distributions for a and 6 were calculated.
The results for the median of the distributions are given in Table 4.7 and

the variation of the median with sample size is shown in Fig. 4.7. In the

calculation of the median values, the outlier estimators were included.

*t

u.
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Table 4.6 Mean squared error about the true beta parameters (a=1.2, b=23) for the simulated failure
data. Each data set contained 500 samples.

Marginal Match. Mom. Prior Match. Mom. Marginal Max. Likelihood Prior Max. Likelihood
< . . Sample Data Set

~

Size (N) No. MSE(a) MSE(6) MSE(a) MSE(6) MSE(A) MSE(6) MSE(a) Var (6)

L 55.9 33,200 2.57 1,740 77.6 35,000 6.76 3,780
5 2 58.0 27,500 6.43 4,860 43.4 21,000 17.1 11,500

3 70.8 28,900 5.80 6,050 77.1 37,100 14.9 15,100

1 11.7 4,880 0.629 308 7.12 4,670 1.52 524
10 2 7.61 4,480 0.526 290 4.68 3,090 1.20 566

3 22.0 10,400 0.535 310 7.12 5,860 1.14 639

1 0.971 472 0.215 95.3 0.618 314 0.422 125 os
#'20 2 0.806 455 0.185 89.1 0.680 382 0.288 128

3 1.33 782 0.235 115 0.781 503 0.520 193

50 1 0.201 92.7 0.0874 37.1 0.123 63.1 - -

__ :
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Tabic 4. 7 Median values for the estimates a and 6 for different
sample sizes and estimation techniques. For sample
sizes of 5, 10 and 20, 1500 simulated failure data
were used, and for sample size 50, 500 simulated data
were used. The true value of the parameters are a=1.2
and b=23.0.

Sample Marginal Match. Mom. Prior Match. Mom.
Size (n) a b d 6

5 2.22 46.3 1.31 27.8

10 1.72 33.5 1.76 23.0

20 1.47 28.4 1.10 21.4

50 1. 7.8 24.4 1.02 19.6

Sample Marg. Ibx, Like. Prior Max. Like.

Size (N) 3 g ; g

5 1.77 36.9 2.09 39.2

1C 1.47 28.9 1.65 29.9

20 1.33 25.6 1.67 29.2

50 1.23 23.3 - -

t. . _
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For small sample sizes (Ns10) the simple prior matching moments method

yields median values which are closest to the true values of the parameters.
However, for larger sample sizes the prior matching moment methods gives
a median which is smaller than the true value. Only tbc estimation methods

based on the marginal distribution appear to yield medians which approach
the true value as the sample size becomes very large.

4.2.4 Comparison to Results from a Symmetric Beta Prior

The results in the previous section were estimated from simulation

failure data based on a specific beta prior distribution which was highly
skewed towards low failure probabilities (the mean of the beta prior = a/(a+b)
= 1.2/(1/2+23) = 0.043). To determine whether the results obtained
for the estimators of this particular beta prior are applicable only
to similarly skewed beta priors or to more generally distributed beta
priors, failure data were simulated for a symmetrically distributed beta
prior with parameters a=b=5 and consequently with a mean of 0.5 Simulated
failure data sets of 500 samples of size 5, 10 and 20 were generated
from this symmetric beta distribution. The four estimation techniques
were used to analyze these data.

From this analysis of failure data generated from a symmetric
beta prior, it was found that both marginal-based estimation techniques
yielded numerical solutions for a larger fraction of the samples than
they did for the nonsymmetric case. For example, 98.8% of the size 5

sr.mples yicided results with the marginal matching moments method and

96.0% of the same samples were successfully analyzed by the marginal
maximum likelihood method. For the nonsymmetric case these success rate

percentages were (see Table 4. 2) 92.2% and 89.9%,respectively. Unlike

the nonsymmetric case, all data samples of size greater than 5 yielded
solutions by all four methods. Moreover, the estimator outliers obtained

with the symmetric samples were far less objectionable (i.e., fewer in

number and closer in value to the main distribution) than were the
outliers for the corresponding nonsymmetric cases. For the case of a

symmetric beta prior, none of the simulated failure samples contained
a k =0 (or k =n ), and hence, unlike the skewed beta prior case, the

f g g
prior maximum likelihood estimation method produced parameter estimates
for all samples.

J 6 280_
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The results for the bias and the mean squared error of the esti-

mators are given in Table 4.8 for various sample sizes. Figures 4.8 and

4.9 show the variation with sample size of the bias and mean square
error, respectively. Because the true beta parameters are equal (a=b=5),
one would expect the plots of the bias for a to be the same as for o. In-

deed the small observed differences in Fig. 4.8 or in Table 4.8 are a
result of statistical uncertainties arising from the relatively small
number of samples (500) used to construct the distributions of a and b.

From Fig. 4.8 all four methods appear to give zero or very small
bias if the sample size becomes sufficiently large. As with the skewed

case, all four methods tend to overestimate the prior parameters for
small sample size, and only the simplest method, the prior matching
moments technique gives a slight negative bias for samples of size greater
than about N=15. Also, as was seen with the skewed case, the two estimation

techniques based on the marginal distribution give essentially identical

results which are considerably poorer than those obtained with the prior
based methods. Thus the prior matching moments techniques had a periormance
which was as good or better than the other techniques in this symmetric case

also.

4.3 Distribution of Estimators for the Mean and Variance of the
Prior Distribution

For small sample sizes (Ns20) all four parmeter estimation techniques
investigated in this study tended to overestimate values of the parameters

a and b for the beta prior distribution. In fact, for very small sample

sizes (N=5) and for data generated from the beta prior distribution skewed
towards low probability values (a=1.2, b=23), occasional estimates of a and

b were obtained from the marginal-based techniques which were several orders

of magnitude too large.

As previously stated, it was observed that whenever an inordinately

large value of one beta parameter was obtained, the estimate for the other

parameter was also very large. For these overestimation cases, it was

observed that a reasonable estimate of the mean of the beta prior was ob-

tained even with these large parameter estimates, since the mean depends

only cn the ratio a/b, i.e., from Eq. (2.4)

p= (1 + b/a)- (4.10).

.

... .
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Table 4.8 The bias and mean squared error of the estimators of
the parameters for a symmetric beta prior distribution
(a=b=5) as calculated by different estimation techniques
from simulated failure data of various sample sizes.
Each data set consisted of 500 samples.

Sample Marginal Matching Moments Prior Matching Moments
*" ( } a-a 6-b MSE(A) MSE(6) a-a b'-b MSE(a) FGE(b)

5 10.98 10.8 1076. 1092. 3.68 3.38 164.0 124.1

10 2.50 2.56 69.1 94.9 0.535 0.533 12.3 13.2

20 0.79 0.764 6.36 5.91 0.110 -0.13 3.47 3.19

Sample Fbrginal Maximum Likelihood Prior Maximum Likelihood'*' ("
~b-b MSE(a) IEE(b)a-a a-a E'-b MSE(a) FBE(b)

5 10.3 9.99 936. 862 6.16 5.80 272. 210.

10 2.65 2.70 75.3 102. 1.3 1.30 16.7 12.8

20 0.827 0.805 6.19 5.74 0.208 0.186 3.89 3.51

1426 282
,

e a



-'_.

.

12
12

+ Marginal Match. Mom.,,

O Prior Match. Mom....

10 o Marginal Max. Likelihood o o Marginal flax. Likelihood
6 Prior Max. Likelihood p ,

8 -

8 -

6 - O

$ 3
1

i 4-3
4 - 1.0

m * O5 m / w
m g -7,

m,
~

2 -

o) /-

'/9/ o
~

% e

d
0 - o>

' ', i i .

0 0.1 0.20 0.05 0.1 0.15 0.233
## INVERSE SAMPLE SIZEINVERSE SAMPLE SIZE

Fig. 4.8 Variation of the bias of the beta parameter estimators with sample size for the symmetric
beta distribution (a=b=5).



)N MEAN SQUARED ER'AOR FOR 9
'

a
- a
8 8o

. . .ig i i i iisis; i i i i igM
s D O O+

k5 5<
- k s o.t2co m '

m Oo
.e !.-=2-

-

e m
M *EhR

*2 m 5"cjnM > n i- o
Y| h 6 - O D o ?{ hn" r as -o
0 0 N

&5# (D
C 5

O*$ m
nx
rt to
3* N
(D B

*U

j 7 $ - 0 0+
Sm

Ie-
rt N
M (D
H
(1 O

C*
(D rt
rt D*
O tD

S8 MEAN SQUARED ERROR FOR b= m
rt 3
M
& (n

" On = s agg iisiigi . . . .iii . . , i....
o n. ,

D O O4
W ~ ?h$h|| M Z O

$O' $'
,

7o < o. O
'

&" m EeEnro 5
C *c 5 m
*

m - En * E9.p. z- r- o
O > O - O D fa - @o- g as am T 8

-

n rD am

E in

2 A
e m
tD
et
fD
M

O -
O Db +

24



73

The empirical distributions of the estimate of the prior mean was

calculated for different sample sizes, by using the estimators a and b in

Eq. (4.10) previously obtained with the simulated failure data for the skewed
prior case (true mean = (1 + 23/1.2) 1 = 0.0496). These distributions are

~

shown in Figs. 4.10-4.13 and the mean and variance of these distributions
are given in Table 4.9. Because of the inability of the prior maximum

likelihood method to treat low failure probability cases, this method was

not included in the analysis.

From these distributions of mean estimators it is seen that no apparent

outliers are present. Further the mean of the distributions are all within
a small percentage of the true value, although a very slight bias to over-
estimate the mean is noted. As would be expected, the variances of the
distributions decrease as the sample size increases. The most important

feature, however, of these distributions of Q is that all three estimation
techniques appear to give nearly the same distribution for a given sample
size.

Although the presence of outlier estimators for a and b does not
affect the distribution of the mean estimators, the high a and b estimates

will have a profound effect on the estimation of the variance of the beta
prior distribution. The variance of the beta prior is given by (Eq. (2.5))

= [(1 + b/a)(1 + a/b)(a + b + 1)]~ (4.11)o

which becomes very emall as a and b both become large. Thus the use of

outlier estimators a and b to produce an estimate of the variance for

the beta prior will give unrealistical-y small values. In Figs. 4.14-4.17,

the distributions of the variance estimators for the prior beta are shown

for different sample sizes.

Notice that for small sample sizes (e. g. , Fig. 4.14) for which

outlier values are expected for the marginal-based estimation methods,

the empirical frequency distributions of the var.:ance estimators (Eq. 4.11)
are peaked towards the low end. However as the sample size increases,

outlier values for a and b are no longer obtained, and the variance

estimator distribution becomes increasing centered around the true variance

of a = 0.00187. Finally it should be noted from these variance distri-

butions, that the distribution produced by the prior matching moments

results is always slightly more skewed towards the high values as

compared to the distributions for the two marginal-based methods.
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Table 4.9. Mean and variance of the estimators for the mean of the beta
prior (a=1.2, b=23) for different sample sizes. True prior
mean is 0.0496.

Marg. Match. Mom. Prior Match. Mom. Marg. Fbx. Likelihood

MP Mean Variance Mean Variance Mean Variance

5 0.0500 0.0000422 0.0488 0.000423 0.0497 0.000415

10 0.0500 0.000218 0.0500 0.000221 0.0498 0.000218

20 0.0496 0.000113 0.04963 9.000114 0.0495 0.000112

50 0.0500 0.0000422 0.049928 0.0000419 0.0499 0.0000419

*
1500 samplec were used for size 5-20 results; 500 samples were used for
size 50 results.

Table 4.10. Mean and variance of the estimators for the variance of the
beta prior (a=1.2, b=23) for different sample sizes. True
prior variance is 0.00187.

Fbrg. Match. Mom. Prior Match. Mom. Marg. Max. Likelihood
Sample

5 5 5
Size * Mean Var. [x10 ] Mean Var. [x10 ] Mean Var. [x10 )

5 0.00141 0.298 0.00207 0.507 0.00171 0.393

10 0.00167 0.215 0.00227 0.295 0.00185 0.225

20 0.00172 0.116 0.00222 0.145 0.00181 0.102

50 0.00184 0.0468 0.00227 0.0558 0.00188 0.0406

*
1500 samples were used for sizes 5-20 results; 500 samples were used for
size 50 results.
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In Table 4.10 the mean and variance of these variance estimator
distributions are given. It is noted that the mean of the distribr cion

is always slightly less than the true prior variance (o = 0.001d/) but

approaches the true value as the sample size increases. The means of

the prior matching moments distributions, however, always overestimate

the true mean. More importantly, these overestimates do not appear

to approach the true value even as the sample size increases, but rather

appear to remain about 20% higher than the true value.

4.4 Distribution of 95-th Percentile Estimators

Of considerable interest in safety analysis is the estimation

of the prior distribution at high failure probabilities. One widely

used measure of the high probability tail is the 95-th percentile,

i.e., the failure probability, p95, above which there is only a 5%
chance that the true failure probability lies for a component described

by the prior distribution, g(p). For the beta prior distribution used

in this study, the 95-th percentile, p95, is the solution of the follow-
ing equation:

,p95 >P95
a-1 (y_p) M dp. (4.12)

"
0.5 = g(p)dp = pg

The numerical solution of this equation for p is Mscussed in detail
95

in Chapter 5, and a program for performing this calculation is included

in Appendix II.

For each simulated failure data set generated for the beta prior

which was skewed towards the low rrobability end (a=1.2, b=23), an

estimator of the 95-th percentile was obtained by using the estimators

3 and 6 for each set in Eq. (4.12) and solving numerically for the 95-th
percentile. The distribution of the 95-th percentile estimators so

obtained are shown in Figs. 4.18-4.21 for the three estimation techniques

cuitable for analyzing low probability failure data. The mean, variance

and median of these distributions are presented in Table 4.11.

From a safety viewpoint, one would like to use an estimation tech-
nique which has a low inherent probability of yielding 95-th percentile
estimates which are very much less than the true value. In other words,

if the estimator is biased, then it would be better if it were biased

so a to yield overestimates of p95 (with hopefully small minimum
Jmean sqQ~are error). Further, there should be little if any chance of

1426 295
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Table 4.11 Median, mean and variance of the distributions of the 95-th percentile
estimators. True 95-th percentile = 0.13586.

Marginal Matching Moments Prior Matching Moments Marginal Max. Likelihood
l~' # Pe Median Mean Var. Median Mean Var. Median Mean Var.Sz

_

5 0.106 0.114 0.0029 0.121 0.130 0.0035 0.113 0.121 0.0032

10 0.119 0.124 0.0020 0.136 0.140 0.0021 0.125 0.129 0.0020
-- $

20 0.123 0.128 0.0011 0.138 0.141 0.0011 0.129 0.131 0.0010

50 0.133 0.134 0.00045 0.144 0.145 0.00044 0.134 0.135 0.00042

*
1500 samples were used for size 5-20; 500 samples for size 50.
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yielding outliers or values of $95 " "# *#8 *^8"' " " **

than the true value. For the present case the true value of the 95-th

percentile for a=1.2 and b=23 is p =0.13586. In Table 4.11, the number
95

of simulated data samples which yielded estimators greater than or less

than the true p are given. Notice that for small samples all three
95

estimation methods are non-conservative (Prob {p95<P95}>0.5), while as the
sample size increases, the prior matching moments becomes increasingly con-

servative while the medians for the other two methods approach the true

p95 "*1"**

From Table 4.10, all three methods are seen to yield distri-

butions for p 5 with almost equal veriance. However, the two marginal-9
based estimation techniques yield distributions with means and medians

smaller than the true value for all sample sizes although as the sample

size increases the medians and means increase and approach the true value

of p The simple prior matching moments technique also yields distri-
95

butions of p whose mean and median also increase with increasing sample
95

size, but unlike the other techniques, for sample sizes greater than about

seven, the means and medians become greater than the true values, i.e., the

distribution becomes conservative. Further for very large sample sizes this

positive bias does not disappear, although the bias may not be significantly

large.

For small sample sizes (N=5) (see Fig. 4.18) all three methods yield

some estimators p I" * ***' "" "* " (~~ *8* "" "** ^#*'*

95
of course, not conservative. Of considerable concern is how these low

estimates are distributed in this low end bin. Since t'1e marginal-based

estimation techniques occassionally yield very large estimators for a and

b, i.e., outliers, the resulting estimated prior distribution will have a

very small variance and hence the 95-th percentile will be only slightly

greater than the mean. If the mean should turn out to be very small, the

p95 values f r these outliers could be very much smaller than the true
value. Clearly such a feature of these estimation techniques would preclude

their use in safety analyses. In Table 4.13, the lowest 5 values of p
95

found in the present simulation study are listed. It is seen that only

one estimate is smaller than 10% of the true value, and hence the possibility

of obtaining in the $ distmution severe outliers wM are oders of
95

magnitude smaller than the true value does not appear to be very likely.

1426 301c
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Table 4.12 Number and percent of simulated failure data samples which yielded
estimated 95-th percentiles greater than (GT) or less than (LT) the
true value of 0.13586)._,

-

Marg. Match. Mom. Prior Match. Mom. Marg. Max. Likelihood
Sample

LT GT LT GT LT GT**
No. % No. % No. % No. % No. % No. %

5 978 70.7 405 29.3 890 59.3 510 40.7 873 74.7 476 35.3

10 953 63.6 546 36.4 755 50.3 745 49.7 883 59.0 614 41.0

20 873 58.2 627 41.8 701 46.7 799 53.3 820 54.7 680 45.3

50 277 55.4 223 44.6 176 35.2 324 64.8 261 52.2 239 47.8
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Table 4.13 Smallest 95-th percentile estimators observed
for simulated failure data samples of size N.
True value of the 95-th percentile is 0.13586.

Marg. Matching Moments

N=5 N=10 N=20 N-50__

0.0193 0.0362 0.0428 0.0863
0.0206 0.0364 0.0446 0.0871
0.0221 0.0371 0.0503 0.0881
0.0223 0.0387 0.0533 0.0845
0.0234 0.0395 0.0554 0.0922

Prior Matching Moments

N=5 N=10 N=20 N=50

0.0115 0.0385 0.0592 0.0974
0.0196 0.0451 0.0622 0.101
0.0242 0.0491 0.0658 0.101
0.0243 0.0500 0.0673 0.101
0.0256 0.0509 0.0695 0.102

Marginal Maximum Likelihood

N=5 N=10 N=20 N=50

0.0152 0.0269 0.0426 0.0848
0.0154 0.0306 0.0461 0.0870
0.0170 0.0360 0.0503 0.0892
0.0209 0.0369 0.0505 0.0922
0.0239 0.0400 0.0572 0.0924

?. ., - : i426 303
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4.5 Fraction of the Estimated Prior Distribution Above the True
95-th Percentile

The extent of the high probability tail of the estimated beta
prior distribution is of considerable concern in safety analysis. In

the previous section the distribution of the 95-th percentiles of the
estimated prior distributions was discussed. An alternative perspective
is to consider the fraction of the estimated prior that is supported
above the true 95-th percentile, i.e., the probability that the estimated

failure probability is greater than the true 95-th percentile. This

quantity is given by

el
Prob {estimatedp>p #}g g (p) dp , (4.13)=

P 95

where p * is the 95-th percentile of the beta distribution used
to generate the simulated failure data (a=1.2, b=23), and g (p) is

the estimated prior distribution for a particular failure data sample
(i.e., a beta distribution with a=a and b=b).

If the estimation technique used to analyze the failure data should
yield estimators a and b equal to the true values of the beta prior, then
the probability given by Eq. (4.13) would equal 0.05. Of course, the

estimation techniques will not in general yield exact values for the
beta parameters, and those methods which tend to yield estimated priors
skewed more towards higher probability values than the true prior are preferred
for safety analysis since the resulting estimated failure probabilities
will be overestimated and hence conservative.

The distribution of the probability estimates given by Eq. (4.13),
for the three parameter estimation techniques suitable for analyzing
low failure probability data, are shown in Figs. 4.22-4.25. It is seen

that all three estimation methods yield a considerable portion of values
ofProb{p>p }belowtheidealvalueof0.05. As the sample size
increases, these distributions become increasingly centered about 0.05.
However, the distribution for N;20 are all highly skewed towards small
probabilities with a long slowly decaying behavior at high values. The

prior matching moments method in all cases appears to be slightly more
" conservative" by giving a distribution which is not as concentrated at
the low probability values as compared to the distributions obtained with
the other two estimation techniques.

?m : 1426 304
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The median, mean and variance of these distributions are presented

in Tal 4.13. From these results the variances for all three methods
are within a few percent of each other although the mean for the prior

matching moment distribution is considerably higher than that for the
distributions produced by the marginal-based nethods. Moreover, even

for large sample sizes the mean of the distribution for the prior match-
ing moments method is about 20% greater than the ideal value of 0.05.
The marginal-based methods, in contrast, appear to approach the ideal
value as the sample size becomes sufficiently large.

4.6 Comparison of Ibximum Likelihood Variance Bounds to Measured
Variances

In Section 3.6 expressions for the variance and covariance of the
parameter estimators were derived for the marginal maximum likelihood
method. Although these expressions are strictly asymptotic values,

the expreseions are often used as actual estimators of the variance or

covariance of the parameter estimates for finite size data samples. Since

the values of the variances and covariances of the parameter estimates are

important for error propagation (see Section 3.8), one would like to know
how close these maximum likelihood estimated values are to the true values
of the variances and covariance.

Such a determination was started during this projsc!: and some pre-

liminary results are presented in this section. The actual variances

and covariance for the parameter estimators founit in the simulation study

are listed in Table 4.4. Bea,ase of the presene.i of estimator outliers

for small sample sizes (1i510) obtained with both marginal-based esti-

mation techniques, the experimental values of va riances and covariance

depends greatly on how these outliers are treate d. In this study esti-

mators greater than 100 times the true beta par.imeter valuer (a=1.2,
b=23) were ignored.

To evaluate the effectiveness of using the maximum likelthood

expressions is estimators, simulated failure data samples were selected
which produced either excellent or very poor pi'rameter estimates. With
these data samples the marginal maximum likelihood variance bounds were

calculated from Eqs. (3.43)-(3.48). The results for the " good" and

1426 309a
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Table 4.14 Median,meanandvarianceofthedistributionfortheProb{p>p# }. For samples
of size 5, 10 and 20, 1500 simulated failure data sets were used,5while for the9

size 50 sample, 500 rets were used. Beta prior parameters are a=1.2 and b=23.

rg na a c ing M ments Prior Matching Moments Marginal Maximum LikelihoodSample

.,.
Size Median Mean Var. Median Mean Var. Median Mean Var.

h

5 0.0142 0.0425 0.0041 0.0321 0.0570 0.0045 0.0230 0.0493 0.0043 $
10 0.0287 0.0462 0.0025 0.0498 0.0616 0.0027 0.0363 0.0511 0.0026

.

20 0.0367 0.0456 0.0015 0.0532 0.0595 0.0015 0.0415 0.0489 0.0015

50 0.0467 0.0491 0.00068 0.0596 0.0618 0.00065 0.0478 0.0508 0.00065
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" bad" data samples are shown in Tabic 4.15 and the data samples them-

selves are given in Table 4.16. From these results it is seen that the
" bad" data samples which yield inordinantly large values for a and 5, al-
so produce extremely large estimates for the variances and covariance and
are much larger than the empirical estimates in Table 4.5.

Table 4.15 Variance bounds [bnd(a) and bnd(b)], and the covariance
bounds [bnd','.,U,j for parameter estimators [a and 6], as
calculated by the marginal maximum likelihood method
for selected simulated failure data samples. True
values of the beta parameters is a=1.2 and b=23. The
selected data samples are given in Table 4.16

a 6 bnd(a) bnd($) bnd(a,b)Sampic ID
Size No.

1 1.2444 22.823 0.89839 393.129 16.179
8 11

2 528.92 11338. 3.0843x10 1.417x10 6.6111x10

3 1.2673 23.541 0.42806 193.50 7.8072
10 10 13 11

4 2080.8 40183. 3.9119x10 1.4589x10 7.5545x10

5 1.2248 22.720 0.20962 94.534 3.8150
20

6 7.1495 137.61 19.074 7309.5 366.41

* * * *

50
8 2.8889 58.522 0.67451 308.08 13.580

The maximum likelihood estimates for the " good" data samples appear much

more reasonable and are generally smaller than the empirically observed variances

listed in Table 4.5. To compare these maximum likelihood estimates to the
variances and covariance measured from the distributions of the parameter esti-

mators, the ratio of the measured value to the likelihood bound was calculated.
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Table 4.16 Selected simulated failure data samples used to estimat.
variance bounds in Table 4.15. Data were simulated from
a beta binomial with parameters a=1.2 and b=23. Data are
read from left to right with the number of failures, k,

g
following the number of t ies, n .

Sample ID
Size No. ("l' i

5 1 45 4 216 5 213 25 92 0 260 9

2 246 12 249 13 227 4 167 8 255 14

100 3 109 9 83 11 242 5 287 19
6 6 248 5 195 21 256 010

,

45 3 265 14 43 1 164 7 288 144
44 4 180 15 247 13 163 4 247 8

'

46 4 43 1 276 35 139 0 168 16
160 3 84 9 175 2 169 0 219 135 264 37 271 22 247 12 111 4 106 1
243 16 111 1 191 9 105 1 228 920 ;

227 4 91 5 287 17 184 3 121 10
264 26 137 6 286 8 255 9 118 86
175 7 128 3 31 2 225 12 150 11
166 3 34 3 150 11 188 10 173 7,

'

261 20 33 0 281 11 237 29 203 8
157 35 227 7 44 1 245 6 59 1
155 8 176 10 48 2 192 14 82 1
241 7 150 25 255 4 265 3 131 4

7 119 14 148 6 102 8 103 5 87 7
266 0 137 0 173 1 261 F. 280 2
144 4 227 11 284 7 244 6 56 1
184 3 101 4 196 2 213 3 125 16
137 0 172 0 122 19 218 8 261 9
80 7 60 2 254 16 241 5 263 650 ;

209 2 77 2 158 13 168 18 213 1
209 19 63 0 196 9 30 2 104 1
224 8 173 11 155 5 143 7 266 20
250 27 42 0 290 17 153 7 101 4
286 18 213 15 132 6 56 1 62 48

68 3 273 14 199 2 116 4 80 3
142 14 140 9 208 7 243 13 235 19
287 12 204 0 167 8 300 16 262 8
226 13 142 6 227 2 169 6 124 6
165 7 267 3 97 8 163 15 193 1

,

till
\4'16

s
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These ratios are presented in Table 4.17 for each of the three esti-

mation techniques suitable for the low failure probability case studied.

From these results it is seen that the empirical variances of the parameter

estimator as determined by the prior matching moment technique are much

closer to the likelihood estimates than are the vr.riances for the estimators

as datermined by either of the marginal based techniques. The marginal-

based estimators, a and 6, have empirical variances which are many times
larger than the likelihood expressions for samples less than 20 in size,

although the variances still appear to approach the bounds as the sampic

size becomes very large.

It should be emphasized that the above conclusions hold for

particular examples of " good" failure data. Whether they hold true

on the average for all data samples is the subject of further investi-

gation. However, it is seen by the " bad" data samples used here, that

the likelihood bounds are capable of yielding completely unrealistic

values, and hence for the analysis of a single failure data sample,

care must be used in using the likelihood bounds as estimater for the

variances of the prior parameter estimators.

4.7 Bias Removal for the Prior Matching Moments Method

In Section 4.2 it was seen that all of the prior parameter estimation

techniques produced a bias in the distribution of the estimators, a and 6,
especially for small sample slees. Ideally, one would like an expression for
the anount of bias inherent in each estimator. Thue a cursory examination

of the relation between parameter estimator bias and the sample size was

undertaken. Since the prior matching moment estimation technique was

found f rom se--ral considera' ions, to be the best of the four techniques

studied for alysis of low probability failure data, e.g., no outliers,

smallest bi simplest computationally, and most conservative in describing,

the high prooability tail of the estimated prior , only this estimation

technique was examined in the bias removal study.

To simplify the generation of failure data, random samples of the

failure probability, p , were made directly from a kncan beta prior distri-
f

bution, rather than to simulate failure-on-demand data, n and k , by
1 g

sampling from a beta-binomial distribution as was done in all the previous

1426 313
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Table 4.17 Ratio of measured variances and covariances of the parameter estimotors (listed
in Table 4. 5) to the marginal maximum likelihood bounds (bnd) (listed in Table 4.15)'*'
for the " good" data samples

Prior Fbtching Moments Ibrg. Max. Likelihood Fbrg. Match. Moments
Sample var (a) var ($) cov(a,b) var (s) var ($) cov(5,$) var (a) var ($) cov(5,$) >"**

bnd(a) bnd(C) bnd(5,6) bnd(5) bnd(6) bnd(5,6) bnd(5) bnd(6) bnd(5,6) O
..

5 4.92 9.64 63.7 61.1 69.7 71.8 57.8 63.6 61.2
10 1.28 1.48 1.29 13.1 21.1 17.6 28.7 29.8 32.1

20 1.01 1.06 0.993 2.72 3.59 3.20 3.82 4.57 4.43

50 0.875 0.773 0.829 1.48 1.48 1.53 2.28 2.06 2.32

N
Ch

u
_
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sections. The failure probability samples, p , were generated byg,

the inverse transformation technique (described in Section 4.1) where

a random number u was transformed to a failure probability p through the

cumulative distribution of a beta distribution, ...e.,

" } a-1 (1-x) dx . (4.14)u = r(a)T(b) x

<0

For a given value of u, the failure probability p can readily be obtained

by solving the above equation numerically using techniques described in

Chapter 5.

For this bias removal investigation, 500 failure probability

samples of various sizes, N, were generated from two beta distri-

butions:

Population 1: a = 0.39 b = 6.14

Population 2: a=3 b=7

Population 1 was selected because this beta was foun'd to describe the

prior distribution for a particular grouping of the diesel engine

data of Table .1, while population 2 represents a more centered distri-

bution. For each data sample, the sample mean and variance were calcu-

lated, and beta parameter estimators were obtained by the method of

prior matching moments using Eqs. (3.5) and (3.6).

As would be expected from the earlier study on the estimators a and

b, these estimators were again highly biased towards the high values and

a and b were highly correlated. The results are summarized in Table 4.18

where the average of the estimators (denoted by a and b), their ranges,

variances, and the coefficient of linear correlation (r) between a and b

are tabulated.

There is one surprising difference between these results and those

obtained in Section 4.2 from data simulated from the beta-binomial,

i.e., using k and n data . The data simulated directly from theg

beta distribution always yielded estimators with positive bias whereas

the earlier results indicated the bias becomes slightly negative for

a sample size over 20. This difference is thought to arise because of

the inability of the simulated data taken from the beta-binomial distri-

bution to yield failure probabilities between k/n and (k+1)/n. The data

1426 315
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Table 4.18 kesults of the beta parameter estimators as esiculated by the prior
matching moments technique from simulated failure probability data.

Population 1 (a = 0.39, b = 6.14)

N a b min a man a min 6 max b var a var 6 r

10 0.633 13.4 0.0641 3.12 0.642 143. 0.147 201. 0.620

20 0.507 9.03 0.111 1.76 1.50 43.7 0.0481 32.1 0.708
40 0.449 7.45 0.130 1.02 2.31 2.60 0.0204 9.59 0.757
50 0.444 7.33 0.178 1.05 2.75 21.8 0.0165 8.36 0.740

60 0.432 7.05 0.182 0.845 2.67 16.8 0.0119 5.53 0.741
70 0.429 6.95 0.173 0.770 3.00 17.0 0.0108 4.67 0.743
80 0.425 6.84 0.167 0.792 2.66 15.4 0.0099 4.04 0.780

90 0.423 6./9 0.212 0.805 2.89 14.7 0.0084 3.41 0.754
1. 100 0.418 6.67 0.199 6.836 3.56 12.9 0.0075 2.84 0.765

5
c

-

Population 2 (a = 3, b = 7)

n a b min a max a min 6 max 6 var a var 6 r
_.

10 4.06 9.51 0.933 30.6 2.18 49.5 7.60 43.7 0.923
20 3.42 8.04 1.10 13.2 2.76 28.4 1.75 10.6 0.921
30 3.29 7.71 1.32 7.63 2.71 16.9 1.00 5.98 0.922
40 3.19 7.47 1.52 7.04 3.47 17.8 0.644 3.86 0.917
50 3.18 7.44 1.84 5.58 3.86 14.5 0.506 3.11 0.906__,

WDs 60 3.13 7.32 1.79 5.07 3.83 12.7 0.369 2.34 0.907rs)
Cys 70 3.12 7.29 1.99 5.36 4.25 13.0 0.341 2.09 0.911

80 3.09 7.22 1.87 4.96 3.85 12.1 0.2681 1.52 0.901,

90 3.09 7.21 1.93 5.16 4.12 12.7 0.223 1.31 0.889---

Os
100 3.06 7.15 1.844 4.64 4.53 11.0 0.194 1.14 0.893

.
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simulated from the beta distribution, on the other hand, may assume

non-fractional values and be more smoothly distributed.

From the results in Table 4.19, it is seen that the bias on the

parameter estimates (i.e., a-a or b-b) decreases with increasing sample
size, N. In an attempt to find an empirival expression for the bias of

the estimators the following two models were used:

0
Exponential: bias = a n

Linear: bias = y + 6n" .

The coefficients for each model were computed by fitting each model

to the bias given in Table 4.18 by the methods of least squares. (For

the exponential model the logarithm was taken before performing the
least squares analysis.) The values of the coefficients so obtained
and the coefficient of determination, R, for each fit are given in

Table 4.19..
The high values of R for both models implies that either model

may be considered satisfactory for estimating bias. Furthermore, the

fact that 8 is close to the value -1 in all cases implies that there is

not much practical difference between the two models. What is dis-

tressing is that the values of a, y, and 6 are so disparate, it had been

hoped that these coefficients would be sufficiently close
in the four cases that the same bias-removing formula could be used for

all beta pararaters a and b. Clearly these coefficients are functions of

these parameters. Further work to find a bias-removing factor (or term)

that is independent of the true values of a and b is needed. No use has

been made so far of the high correlation between a and 6, and this should
also be incorporated into future studies.

4.8 Fit of Empirical Distribution for a and b to the Gamma and
Log Normal Distributions

In the study of the distribution of the beta parameter estimators,
a preliminary investigation was undertaken to see if these empirically
derived distributions could be described adequately by a simple model.

For this investigation the estimator distributions obtained in the

previous Section 4.7 by the prior matching moments technique for the

1426 317r
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Table 4.19 Least squares coefficients for the bias predicting formulas.

R a 8 y

POP'N 1: a
Expenential .9931 1.8704 .9125

Linear .9997 .00415 2.3619

POP'N 1: E
Exponential .9513 82.0148 -1.0915

Linear .9906 .30437 73.0225

POP'N 2: a

Exponential .9952 13.7106 -1.1398

Linear .9915 .04964 10.5452

POP'N 2: E

Exponential .9971 34.2282 -1.1439
Linear .9934 .1132 25.5715

\ ,

s
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simulated failure data generated directly from the beta distribution

were used. Both the shifted and unshifted gamma and log normal

distributions were fit to the empirical distributions. The results

of this modelling of the estimator distributions are summarized in

Section 4.8.1 and 4.8.2.

4.8.1 The Gamma Model

The first model fit to the observed estimator distributions
was the gamma distribution

a-1 -v/6
f(v|a,6)=" O<v<=, (4.15),

f(a) B"
-

where v represents either estimator a or 6. Values for the gamma
parameters a and S were obtained by equating, respectively, the variance,
s , and mean, v, of the empirical estimator distribut .on to the mean,i

a8, and variance, a8 , of the gamma distribution. The resulting estimates

for the gamma parameters are thus
26 = 9 /s (4.16)

and

h = s /v . (4.17)

The results of these fits to several distributions w me not
encouraging as can be seen from Table 4. 20 in which are presentee
the results of a X goodness-of-fit test using 20 equi-probability
intervals in v (and thus 17 degrees of freedom).

2
Table 4.2 0 X Goodness-of-fit resulgsforthegammamodel.

The critical values of X for the test are:
X 05(17)=27.59, X 01( )= ,X 005(17)=35.72

2
X

Sample Beta

Size Population a 6

10 1 31.68* 141.36*
50 1 14.56 34.64*

100 1 16.96 31.44*
10 2 97.76* 103.36*
50 2 19.04 24.64

100 2 23.76 19.60

*

0 r' Indicates a significant difference at the 0.05 level
V - - jor lower.
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Upon examination of the estimator distribution within the 20 equal
probability cells, it was found that for cases which yielded large X
values there were disproportionately fewer estimates in the cells for
small values of v. This underpopulation in the initial cells results

in the large X values. In other words, the fitted gamma model predicted

far more small v values than were observed in the simulation results.
This emphasis of the gamma distribution for small y values suggests

that instead of the usual two parameter gamma function, a three parameter
shifted gamma function might be a useful model to fit to tbc empirical
distributions. The shifted gamma function is given by

-("~ )!Of(w|a,S,0)=(w-0)"~ e
p(9) ga ,01w<= (4.18),

where w=v+0. For a given 6, the estimates for the parameters a and 8
can be obtained, as before, by matching the mean and variance of the
gamma model to those of the empirical distribution. The result is

given by Eqs. (4.16) and (4.17) or equivalently by

a = (U-0) /S (4.19),

and

h=S/(w-0) (4.20).

The choice of a value for 0, however is not so straightforward
Clearly 0 must be constrained between zero and the minimum observed
value for v. Ideally 0 should be chosen so as to minimize the X
statistic. Such a technique would require computer analysis; but for
this preliminary investigation on modeling the estimator distributions,
a more cursory treatment was indicated. The shift parameter 0 was given
several values between zero and the minimum v observed.

While this increase in 0 generally lowered the X statistic, it
was found that the best X values were still too large for the fit by
a shifted gamma model to be acceptable. For example, the case for b

from sample size 10 generated from the population 1 beta, the X
statistic decreased f rmo 141.36 for 0 =0 to 118.88 for 0=0.32 to 115.92
for 0-0.6395. From these and other examples it is concluded that neither
a gamma or a shifted gamma distribution is a reasonable model for the
empirical a or b distributions.

1426 320
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4.8.2 The Log Normal M) del

As an alternative to the gamma distribution, the log normal distri-

bution was also investigated as a possible model for the a and 6 distri-
butions. In this model it was assumed that Inv is distributed normally,

i.e.,

exp[-(""}")2f(v|a,6)= } O < v < =. (4.21),

/2n S 28

Again estimates of the parameters a and 8 are obtained by matching the
2

mean, v, and variance, s , of the empirical distribution to the mean

and variance of the log normal distribution, respectively. The mean and

variance of the log normal distribution are

p = exp[a + 8 /2] (4.22)

0
o =p (e -1) (4.23).

The inverse relations are

Zn[1 + o /p ] (4.24)B =

and

a= Znp - 8 /2 . (4.25)

Thus the estimates a and 5 are obtained by replacing y and o in the
above equations by v and s respectively.

With Eqs. (4.24) and (4.25), log normal distributions were fit to

the same example T1 and b distributions as were used in the preceding

gamma analysis. Again a X goodness-of-fit test using 20 equi-prob-

ability intervals was used to compare the fit to the empirical distri-

bution. The results, which are much trore encouraging, are shown in

Table 4.21.

1426 321
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Table 4.21 X goodness-of-fitresulgsforthelognormalmodel.
The critical values of X for the test are:

1, X = 35.72.= 27.59, X =
X .

05 01 005

2
XSample Beta

Size Population a b

10 1 14.64 27.28

50 1 22.32 14.08

100 1 12.40 15.52

10 2 35.76* 32.16*

50 2 20.40 13.36

100 2 19.84 24.24

*
Indicates a significant difference at the 0.05 level.

Most of the computed X values indicate adequate fits to the log normal
model and those which show poor fits are, as might be expected, for the

small sample sizes. Thus the log normal appears to fit the data much

better than the gamma models (see Tables 4.20 and 4.21).
Iloweve r , there is an indication that a better model could be found.

Inspection of the frequency of observed data (a or 6 values) in the lower
probability intervals used for the X analysis again showed that these

intervals were populated with fewer than expected observations, and

hence made the largest contribution to the calculated X values. To

increase the population in the lower probability cells, a shifted

log normal distribution,

[- ( ] (4.26)"" -"f(w|a,8,0)= exp ,

/2n S 28

could be used. The shift parameter must be constrained between 0 and

the smallest observed a or 6. For a fixed 0, the parameters a and S can

be found by matching moments to those of the empirical distribution. In

this way one finds

t
!

'

's
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j2 = In[1 + s /(U-0)2] (4.27)2

and
'

a' = In(U-0) - 8 /2 . (4.28)

To fit Eq. (4.26) to the empirical distributions, the shift
parameter was varied to find the value which yielded the lowest X
statistic. It was found that the use of a non-zero value for
0 decreased the goodness-of-fit statistic, X (However, it must be remembered.

that use of a non-zero 0 reduces the degrees of freedom from 17 to 16).

Some results are shown in Table 4.2 2 where it is seen that the fits for
smal] sample sizes have been greatly improved over the non-shif ted log
normal and gamma models. In fact all of the example distributions have an

acceptable X value.

2 goodness-of-fitresultsfortgeshiftedlognormalTable 4.22 x
model. For 0=0 critical value X.05(17) = 27.59, while

for 0>0 the critical value is X 05(16) = ... 30.

Sample Beta X .

Size Population a b

10 1 14.64 (0=0) 27.28 (0=0)

18.88 (0=0.3)

50 1 22.32 (0=0) 14.08 (0=0)

18.24 (0=1)

100 1 12.4 (0=0) 15.52 (0=0)

14.00 (0=1)

10 2 35.76 (0=0)* 32.16 (0=0)*

14.56 (0=0.6) 21.36 (0=1.1)

50 2 20.40 (0=0) 13.36 (0=0)

22.24 (0=1) 13.44 (0=1)

100 2 19.83 (0=0) 24.24 (0=0)

17.44 (0=1)
*
Indicates a significant difference at the 0.05 level or lower.

[1
'
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5. CALCULATION OF CONFIDENCE AND PROBABILITY INTERVALS FOR COMPONENT
FAILURE PROBABILITIES

In the previous chapter, techniques were developed to estimate the nican
failure probability of plant components from tbc observed number of failures
and the sample size. Both the classical and Bayesian estimation techniques
were analyzed and applied to diesel engine failure data.

This chapter represents an extension of this estimation work. In
4

particular, the question of the confidence of the failure probability
estimates is examined. Of prime concern is the determination of a "confi-

dence interval" for the classical description (or a " probability interval"
for the Bayesian description) into which the true failure probability of
a particular component falls with an associated degree of certainty (or
" confidence level"). The question of such interval determination is

reviewed for both the classical and Bayesian descriptions.

5.1 Classical Estimation of Confidence Levels

The classical description of the failure probability distribution

for obtaining k failures in n tries is given by the binomial distribution

f(kin,p) = 'd P (1-p)" , ( 5.'l)!

where p is the failure probability. For an observed k failures in n

attempts the failure probability can be estimated by p = k/n. With

what degree of precision is this estimate made? Equivalently, what is

the maximum (or minimum) reasonable value of p for which we would expect to
obtain the observed k failures in n tries at some confidence level a?

The probability of observing k or fewer failures in n tries is

k

g _gp (1-p)"' (5.2)F(k|n,p)=

1.e., the cumulative distribution of the binomial. For a fixed n and

k (observed values), F will decrease (increase) continuously as p in-
creases (decreases). Thus the maximum reasonable value of p at the

a-level, is that value of the failure probability, p , for which oney

would observe, with a probability of a/2, k or fewer failures in n

tries, i.e.,
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F(k|n,p)=a/2 (5.3).y

Similarly the minimum reasonable value of the failure probability at
the a-level, is that value, p , for which the probability of observing
k or more failures in n tries is a/2, i.e.,

1-F(k-1|n,p)=a/2. (5.4)
g

To find the upper and lower boun s of the component failure prob-d

ability, Eqs. (5.3) and (5.4) must be solved for p and p . Howevery g

such solutions require numerical evaluation, and it is easier to convert
these equations into a form more amenable to numerical analysis. In

particular, the cumulative binomial distribution, Eq. (5.2), can be
written in terms of the incomplete beta function. To find this relation,

differentiate Eq. (4.2) with respect to p and simplify the result te
obtain

3F(k|n,p) , _ p (1-p)"' (5.5)'

3p B(k+1,n-k)

where

f(x)P(v)B(x,y) E (5.6).

7

Integration of Eq. (5.5) over p from 0 to p yields

F(k|n,p)-F(k|n,o)=-[p z (y_z)n-bl
k

_
dz, (5.7)

0

or equivalently

F(k|n,p)=1-I(k+1,n-k) (5.8),

where the incomplete beta function I is defined byp

I (a,b) E ( } ( }
B(a b) 0

With this relation between F and I , the equations which determine the
p

upper and lower bounds on p may be written as

I (k,n-k+1) = a/2 (5.10)'

s c
U
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and

I (k+1,n-k) = 1 - a/2. (5.11)

The advantage of this form, which still must be solved numerically
for p and p , is that the corresponding probability limits for theg y

Bayesian analogue are given by equations of the same functional form,

and the same numerical algorithm used to solve the above equation can
be used in the Bayesian analysis.

It is easily shown that p <pE k/n < p , with the equality de-
_ _ y

fined only if k=0 (p =p=0) or with k=n (p =p=1) .* Of special interest
g y

are situations involving events with low probabilities of failure, for

which one often encounters observed values of k=0 for relatively large

values of n. For this case, the upper bound, p , can be obtained analy-y

tically. From Eq. (5.11) one obtains

,P1

y=1-n (1-z)"~ dz = (1-p )" ,
y

'O
or upon solving for p

1/n
=1-[j] k=0. (5.12)p ,y

Similarly for high probability events for which one often observes k=n

(and for which p=p =1), Eq. (5.10) yicidsy

=1-pf=n z"~ dz g ,

'p
o

or solving for p ,

1/n
=(1-y) (5.13)p .

g

5.2 Bayesian Estimation of Probability Intervals

In the Bayesian description of the failure probability for a com-

ponent, it is assumed tl.at the failure probability comes from a particular

prior distribution which is known f rom previous experience or which is

*
For k=0, the .integrand on the lef t hand side of Eq. (5.10) becomes singu-
lar and the equation has no solution. In this case the entire confidence
level is often associated with the " upper tail" of the distribution. How-
ever to be consistent with the more general case (k/0,n), we will always
associate only half of the total confidence level with ca i og g
tail. A similar. convention is used with the k=n case.

L - ., ,
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assumed. For the present study, we have assumcd that the prior distri-
bution is given by a beta distribution

a-1 b-1
8(p) = (a,b>0) (5.14).,

B(

If we assume, as in the classical case, the failure distribution is given

by a binomial distribution (Eq. (5.1)), then the use of Bayes' theorem
gives for the posterior distribution

a+k-1 b+n-k-1
((p|k,n,a,b)=P (5.15).

B -O

This quanti'y (also a beta distribution), is the Bayesian estimate
of the distribution of the failure probability, p, for a particular

component which has previously experienced k failures in n tries and
which is assumed to belong to a class of components whose failure prob-
abilities are distributed according to Eq. (5.14).

With the posterior distribution, the probability intervals about the
mean of the posterior distribution,

b " (a+k) (b+n-k)
('

are readily formulated for a component which Fas experienced k failures

in n tries. Explicitly the probability that the true failure probability

is greater than some upper bound, p , at the a/2 level is given by

r1

Prob {p>p}= ((p|k,n,a,b)dp. (5.17)=
y

'p y

Similarly the probability that p is less than some lower bound, p , atg

the a/2 level is

p
,g

((p|k,n,a,b)dp. (5.18)Prob {p<p}= =

Upon substitution for C, the confidence limits are readily expressed
in terms of the incomplete beta function as

I (a+k,n+b-k) = a/2 (5.19)

C ;
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and

I (a+k,n+b-k) = 1 - a/2 . (5.20)

Again these equations have the same form as those for the classical

case (Eqs. (5.10) and (5.11)), although with different arguments for

the incomplete beta function.

5.3 Solution for Interval Limits in Terms of the Snedecor F-Distribution

For other than the extreme cases when one of the arguments of the

incomplete beta function equals zero, Eqs. (5.10) and (5.11) or Eqs. (5.19)

and (5.20) cannot be solved analytically for p and p . However, theg

solutiins can be expresced in terms of the inverse values of the Snedecor

F-distribution [13] (also kncvn as the variance-ratio distribution [8]).
Consider the general form of Eqs. (5.9), (5.10), (5.19), or (5.20), namely

'l X-l ( 1_ gy-1z dz = 6 (5.21)B(x,y)
,P y

With the change of variable z=w/(1h), one obtains

*-1(1%)-(*+Y) dw = 6 (5.22)w
B(x,y)

,y
i

where w = p /(1-p ). To solve for w , let w = v F/v with v = 2x and
y y y y 2 y

v =2y. With this substitution, Eq. (5.22) becomes
2

v = v (v -2)/2 v -(v +v )/2
1 7 y

F] [1 + 1 ] dF = 8 (5.23)
y 2

["2 "2
F

v B[ 1 "2
"

'F
I i

2 22

= v w /"1 The quantity on the left hand side of the Eq. (5.23)where F 2i
is the ctimulative distribution of the Snedecon F-distribution between

F and *. The solution of Eq. (5.23) is often denoted by

F = F (v ,v ) (5.24)
1 y 2
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where values of F are tabulated for integral values of v and v
g y 2

[13].
w v ~I

1

[1 + 2 F ("l'"2))
f

= =p
i 14v vy y B

or
-1 -1

pi =(1+f7(2*'7) y_g(2y,2x)] (5.25)+=

I
6

Only for the clarsical results of Eqs. (5.10) and (5.11) do the para-
meters x and y (and hence v and v ) always assume integer values andy 2

therefore standard tables of F can be used. Even most computer pro-
g
require that the " degrees of freedom"grams written to calculate Fg

and v be integer values. Consequently the above re-parameters vy 2
duction is of little practical consequence for the calculation of the
Bayesian estimates of the confidence limits.

5.4 Approximate Solution for the Interval Limits

As an alternative to the above procedure, the exact interval bound

equations (Eqs. (5.10) and (5.11) or Eqs. (5.19) and (5.20)) can be ex-
pressed approximately in terms of the Chi-squared distribution { 8], i.e. ,

"
-l 'X -1

e '! dt ,0<X <=, (5.26)P(X |v)=[2"I f(v/2)1 t
~

_

'O

where v is the degress of freedom. Consider the general form of the exact

interval equation, Eq. (5.21), whis . can be written as

*~ (1-z)I~"
z

I (x,y) E "0* (
B(x,y+1)p

O

Upon change of variables u=yz and the use of Eq. (5.6), this equation can

be written as
,yp y_1

u (1 - ) du (5.28)*~

6=7
-

p )
.

(1 + #)y . and with Stirling's approximation for T(x+y)a
For large y, =cy
and r(y) one has foc 3cige y

) br(x+y)- 1 =1. (5.29)r(y) xy
-o'
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Thus Eq. (4.28) may be approximated for large y by
,up

*~ e " du E P(2yp|v) (5. 30)
~

B= u
)

with v=2x. If the solution X is defined by P(Xg|v)=8,thesolutionofg

Eq. (5.30) for p (and the approximate solution of Eq. (5.27)) can be
written as

2
p = X /(2y) . (5.31)g

As an exat"ple, consider the solution of Eq. (5.11) for p when k=0.
l

For this case x=1, y=n, and 6=1-a/2. Equation (5.30) can be solved

directly when x=1, namely

,npl -np
6= e " du = 1 - e (5.32)

~

1) .

Solving for p , one obtainsy

In(1-6) = - En(f) (5.33)p =-y .

Use of a series expansion for the logarithm reduces this result, in the
limit of large n, to the exact result of Eq. (5.12). For n=69 and
a=0.50, Eq. (5.33) yields p = 0.02009 which is only 1% higher than the1
exact value of p =0.01989.y

The approximate interval equation, Eq. (5.30) or (5.31), cannot be
solved analytically except for the case x=1 (k=0). However the use of
the approximately X -distribution is often preferable to the exact ex-
pression in terms of the Snedecor F-values (Eq. (5.25)) because the values
X are extensively tabulated (albeit for integral degrees of freedom, v).g

However, even for the Bayesian description, for which non-integral values
2of v results, interpolation of X tables is readily effected and approxi-g

mate solution for the interval limits, p , (via Eq. (5.31)) can be obtained.y

In Fig. 5.1, a comparison between the approximate and exact values of py
of the classical description is presented. The agreement is excellent

except for very small values of n.

D
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5.5 Numerical Evaluation of Interval Bounds

A computer program TAILS was developed to solve the general form
of the confidence interval equation (Eqs. (5.10) and (5.11) or Eqs. (5.19)
and (5.20)), i.e.,

I (x,y) = 8 , (5.34)p

for the value of p (given x,y, and 8). The complete program is listed

in Appendix Ill.

The incomplete beta function I
P*(x,y) is calculated from the follow-

ing expression [14]

g g'y) , INFSUM p* F(PS+x) ,p* (1-p7 T(x+y) FINSUM
(5.35)p f(PS) P(x+1) F(x) f(y+1)

where INFSUM and FINSUM represent two series summations defined as

follows:

x(1-PS) j=

INFSUM = [ (5.36),

j=1

where
'l j=0,

(1-PS)d (5.37)=

((1+y-PS)/r(1-PS) , j >0

and
Y(Y- ***(Y~FINSUM = (5.38)

py (x+y-1)(x+y-2)...(x+y-j) g_ )j

where [y] is equal to the largest integer less than y. If [y]=0, the

FINSUM'O. The quantity PS is defined as

'l if y is integer
PS = (5.39)

,y - [ y) , otherwise .

The above algorithm (combined with scaling to avoid numerical inaccuracies

encountered when using the gamma function with large arguments) was in-

corporated into a FORTRAN program MDBETA by Bosten and Battiste [14] .

This program (modified in accordance to remarks made by Pike and Soo Hoo

[ 14]) was used in the present analysis. The program MDBETA is signifi-
cantly more accurate than the widely used program BDTR [13], especially

i
4' , I ,- f
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for large arguments. For example in the case p=0.5, x=y=2000, MDBETA
gives the correct value, 0.5, while BDTR gives 0.497026.

Once the incomplete beta function can be evaluated numerically,
Eq. (5.34) is readily solved by standard numerical root finding tech-
niques. The solution of Eq. (5.34) for p is limited to the left and the
right by 0 < p < 1, and consequently a " bracketing" technique, i.e., one

which successively approaches the solution from opposite sides, is well
suited to this problen. The proced:re RIMI [13], which solves r.on-linear
equations by means of Mue11er's iteration scheme of successive bisection
and inverse parabolic interpolation, was found to be effective.

5.6 Numerical Results

With the progran listed in Appendix III, sample calculations of con-
fidence intervals were obtained for the low failure probability events
characteristic of the diesel generators in nuclear power plants. Of

special concern are those records in which zero failures are observed
in n startups. Classically the upper failure probability for the classi-
cal description is given by Eq. (5.12); however, the Bayesian description
requires the numerical solution of Eq. (5.20). Results are shown in
Figs. 5.1 and 5.2.

For most of the diesel engine failure data studied in this project,
Bayesian estimates of the prior beta distribution parameters of Eq. (5.14)
were approximately given by a=1, b=20. For this case it is found that the
Bayesian estimate of the upper limit of the failure probability, p , wasy
always less than the classical estimate (see Fig. 5.1). For example, for

k=0 and n=69, the upper limit on the classical failure probability at the
a/2 = 25% confidence level is 0.02, while to achieve the same upper limit
with the Bayesian estimates one has only to observe zero failures in 49
startups. In fact for the case a=1, b=20 the Bayesian description requires
about 20 fewer startups to achieve the same upper confidence limit when
k=0 for all confidence levels! This reduction in the number of startups
required to estimate a given upper limit on the failure probability with
the Bayesian description, makes this particular description quite attract-
ive for establishcont of initial acceptance criteria or maintenance

criteria for diesel generators.

1426 332
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llowever, the Bayesian etitimate daes not always require fewer startups
than the classical description to achieve a given confidence level esti-

mate of a failure probablity. For example, with a=3, b=60, (the same

prior mean as a=1, b=20), the Bayesian estimate of p is less than they

classical estimate for 1 < n < 33 with k=0, while for n > 33 the Bayesian

estimate is greater (see Fig. 5.2). This result is not surprising, since

for a=3, b=60 the prior distribution is highly peaked around the mean =
a/(a+b) = 0.048 (i.e., it has a very small variance) and consequently
a great deal of subsequent experimental observation is required to reduce
the estimate of p below this preconceived or biased value. Thus, not

y

only is the mean (or the a/b ratio) of the prior distribution significant
in establishing p , but the variance is also of major concern.y

! 1426 335-.
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6. NON-BETA PRIOR DISTRIBUTIONS

A brief investigation was initiated to examine the effect of

using non-beta prior distributions in the analysis of failure-on-demand
attribute data. While this phase of the study is incomplete, some pro-
gress was made in two areas. First, a mixture of several beta distri-

butions to form a contagious distribution [15] was examined. Then it was
shown that a gamma prior distribution could be used for the Bayesian
analysis of failure-on-demand data if the failure probability for the
components is small. The results of these two investigations are
summarized in this section.

6.1 Mixture Distributions

Contrasted to the familiar case in which two or more r ndom
variables are combined in a linear fashion is the case in which two
or more probability distribution functions are combined in a linear fashion
This is called a mixture (or contagious) distribution (15].

In the first case two variables are added to form a new variable ,
e.g.,

y y + c *2 (6.1)z=cx
2

In this case the x and x values are assumed to be from the same7 2

prooability distribution function (pdf). The expected value, E[z], and
variance, V[z], of z are given by

E[zl = c E(x ] + c E[x ] (6.2)y 2 2

and
2

V[z] = c yI* l * '2 VI*2] + 2c c Cov[x ,x ] . (6.3)y y2 y 2

In the second case, the mixture (or contagious) distribution is
formed as a linear combination of the pdfs, i.e.,

f(x) = a f (x) + a f (x), (6.4)7 y 2 2

wh re a , a are the relative weights (05a 51, 05a 51) andy 2 y 2

y+a2"1*a

1426 336,
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The pdf, f(x), of Eq. (6.4) can be viewed as the pdf which contains
variables from two distinctly different pdfs, f (x) and f (x). Ity 2

is convenient to establish formulas for the mean (p) and variance

(o ) of the mixture population in terms of the means (p ) and variances
f

2
(o ) of the component pdfs. Since

E[x]=[xf(x)dx. (6.5)

substitution for f(x) in Eq. (6.5) from Eq. (6.4) yields

E[x]=a[xf(x)dx+af*f(x)dxy 2 2

or

(6.6)E[x] = a p1 y + a "2 .

2

For the variance, one obtains

Var [x]=E[x]-{E[x]}

y[xf(x)dx+af*f(x)dx- [a py y + a "2] (6.7)=a y 2 2 2

However

=[xf(x)dx-po ,g

and Eq. (6.7) can be simplified to give

Var [x] = a + "2 2 * "1"2(# ~"2) (6.8)#
l1 1

Thus the mean (or expected) value (Eq. 6.6) of the random variable

governed by the mixture distribution has the same form as that for the
case when two or more random variables are combined in a linear fashion,

Eq. (6.2). However, the variance is substantially different for these
two cases (compare Eq. (6.3) to Eq. (6.8)).

The above results can be generalized to a mixture of N probability

density functions, i.e.,

N

f(x) = [o f (x)f f. , ,
i=1

',
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[a=1. For this case the mean andwhere the weights are subject to

variance of the mixture distribution can be expressed in terms of the

means and variances of the component distributions. The mean is given

by
N

[ap (6.9)p=
1y,

i=1

and the variance is given by

N N N N

[ao + [ a (1-a )p - [ap [ap (6.10)o = .y y
i=1 i=1 i=1 j/i

6.1.1 Mixture of Two Beta Distributions

If two beta distributions are mixed according to Eq. (6.4), the

shape of f(x) can vary quite widely, e.g., from bimodal to unimadal to

exponential shaped. Thus f(x) may or may not be adequately expressed
as a beta distribution. The object of this section is to investigate

the problems of estimating the weights (a and a ) and the pacametersy 2
of the beta used to approximate the mixture distribution. "hus one can

write

p(a-1)(1-p)(b-1) ("l- 1 ("2-) (b -1)-} 2p (1-p) 9 (1-p)+ (6.11)B(a,b) 1 B(a ,b ) 2 B(a2,b .Iy y 2

or

be(a,b) ~ a be(a ,b ) + a be(a 'L ) (6.12).y y y 2 2 2

are known, one can use Eqs. (6.6) andIf a , b , a , b ' "1, and a2y y 2 2
(6.8) together with the relationships for a and b as functions of p and

o, the mean and variance of be(a,b), to obtain estimates for a and b

in terms of known quantities. Thus, by matching moments one obtains

a b " "1"1 + "2"2 (6.13)k

2 ab 2+ 2 + "1"2("l p2)2 (6.14)"
o E "''1 22

-
.

(a+b)2(a+b+1)

)hf
,
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In Table 6.1 the valuec of a and b which result from mixing two beta

distributions are listed. The two mixed beta distributions are of the
exponential-type (a ,a <1.0) and the resulting mixture beta distributionsy 2

are also of the exponential-type (a<l.0). The values for the a parameter

increase monotonically with increasing ay, and the values for the b para-
meter decrease, although not monotonically.

Table 6.1. The mean, variance, and beta parameters of mixed beta
distributions ot the exponential type".

a p o a b
y

0 0.010 0.00160 0.0519 5.1356
0.1 0.019 0.00467 0.0568 2.9352
0.2 0.028 0.00758 0.0726 2.5198
0.3 0.037 0.01032 0.0907 2.3615
0.4 0.046 0.01290 0.1104 2.2904
0.5 0.055 0.01532 0.1315 2.2600
0.6 0.064 0.01758 0.1540 2.2527
0.7 0.073 0.01968 0.1780 2.2604
0.8 0.082 0.02162 0.2036 2.2789
0.9 0.091 0.02339 0.2308 2.3058
1.0 0.100 0.02500 0.2600 2.3400

"The two beta distributions used for mixing have the following means and
v ances:

= 0.1 p = 0.01, 2

o = 0.025, = 0.0016y 2
Thus the relationships for the mean and variance of the mixed beta
distribution in terns of weighting value a (a2 " 1-"l) are given as

p = 0.1x + 0.01 (1-a )

o = 0.025ay + 0.0016(1-u ) + 0.0081ay(1-a )y

As further examples of mixing two beta distributions, several
pairs of beta distributions used to describe diesel engine failure
data were mixed in varying proportions. The mean and variance (calcu-

lated by the prior matching moments method) of several diesel engine
grouping were reported in Section 3.5. The results of the mixture of

b h
, .

1
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two groupings for two different manufacturers are shown in Table 6.2
for "13 GM diesel engines" with "Four ALLO engines". Table 6.3 shows

the results from grouping "13 GM diesel engines" with "Four Fairbanks
diesel engines". Similarly, Table 6.4 shows the results of mixing
"0-25 starts" with "more than 100 starts" and, Table 6.5 "0-25 starts

with "26-50 starts".

6.1.2 Estimates el the Weights from Test Samples

To form the contagious distribution, one must first determine
values for the weights, a , for each subgroup or component distribution.

f

Since a can be interpreted as the probability of a failure data sample
being chosen from subgroup 1, the probability of obtaining s samplesf

from the 1 +h subgroup is

f(s ,a)=a i = 1,2,...,N . (6.15),

The likelihood function, L, which is the probability of obtaining
s ,s2,...,s samples from subgroup 1,2,...,N is thus given by
f

N

L=C H a *1 , (6.16)
f

i=1

where C is simply the number of permutations of s ,a ,...,s I"
2 N

S= [s samples, i.e.,
f

' N

C = S!/( H s.!) (6.17).

*
i=1

The choice of the mixture weights to describe the mixture cistri-

butions is taken as those values of a which maximize the likelfacod
function, or equivalently minimize InL. Since t''e sum of the weights

must be unity, the logarithm of Eq. (6.16) may be written as
N-1N-1 '-

(*InL = hC + [s Ina +s " - "i,f N
i=1i=1 -

To find the values of a which minimize this result, differentiate
f

with respect to a , i=1,...,N-1, set the result to zero, and solve for
f

to obtainat

.
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Table 6.2. The mean and variance and beta parameters of the mixture distri-
bution of 13 GM diesel engines with 4 ALCO engines.

a p o a b

0.0000000E 00 0.2940000E-01 0. 593'9999E-03 0.1368845E 01 0.4519054E 02
0.1000000E 00 0.3238000E-01 0.9509996E-03 0.1034408E 01 0.3091148E 02
0.2000000E 00 0.3536000E-01 0.1284000E-02 0.9039839E 00 0.2466116E 02
0.3000001E 00 0.3833999E-01 0.1599000E-02 0.8457108E 00 0.2121246E 02
0.4000001E 00 0.4132000E-01 0.1896000E-02 0.8219684E 00 0.1907077E 02
0.5000001E 00 0.4430000E-01 0.2175000E-02 0.8180226E 00 0.1764749E 02
0.6000001E 00 0.4728000E-01 0.2436000E-02 0.8269845E 00 0.1666422E 02
0.7000002E 00 0.5026000E-01 0.2679000E-02 0.8452634E 00 0.1597253E 02
0.6000002E 00 0.5324000E-01 0.2904000E-02 0.8708609E 00 0.1548639E 02
0.9000002E 00 0.5622000E-01 0.3111000E-02 0.9026338E 00 0.1515274E 02
0.1000000E 01 0.5920000E-01 0.3300000E-02 0.9399409E 00 0.1493744E 02

Table 6.3 The mean and variance and beta parameters of the mixture distri-
bution of 13 GM diesel engines with 4 ALC0 engines.

a p o a b

0.0000000E 00 0.3220000E-01 0.7000000E-03 0.1401304E 01 0.4211749E 02
0.1000000E 00 0.3490000E-01 0.1023000E-02 0.ll14172E 01 0.3081055E 02
0.2000000E 00 0.3760000E-01 0.1443000E-02 0.9849840E 00 0.2518297E 02
0.3000001E 00 0.4030000E-01 0.1627000E-02 0.9176834E 00 0.7195361E 02
0.4000001E 00 0.4300000E-01 0.1908000E-02 0.8844073E 00 0.1968320E 02
0.5000001E 00 0.4570000E-01 0.2175000E-02 0.8706429E 00 0.1818060E 02
0.6000001E 00 0.4840000E-01 0.2428000E-02 0.8697135E 00 0.1709955E 02
0.7000002E 00 0.5110000E-01 0.2667000E-02 0.8779503E 00 0.1630305E 02
0.8000002E 00 0.5380000E-01 0.2892000E-02 0.8931983E 00 0.1570898E 02
0.9000002E 00 0.5650000E-01 0.3103000E-02 0.9141374E 00 0.1526526E 02
0.1000000E 01 0.5920000E-01 0.3300000E-02 0.9399409E 00 0.1493744E 02
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Table 6.4 The mean and variance and beta parameters of the mixture distri-
bution of "0-25 starts" with "more than 100 starts".

2a p c a b

0.0000000E 00 0.3030000E-01 0.8000000E-03 0.1082539E 01 0.3464482E 02
0.1000000E 00 0.4227000E-01 0.4866000E-02 0.3093279E 00 0.7008579E 01
0.2000000E 00 0.5424000E-01 0.8647997E-02 0.2674996E 00 0.4664279E 01
0.300000.?E 00 0.6620997E-01 0.1214299E-01 0.2708988E 00 0.3820613E 01
0.4000001E 00 0.7817996E-01 0.1535200E-01 0.2888247E 00 0.3405534E 01
0.5000001E 00 0.9014994E-01 0.1827500E-01 0.3144662E 00 0.3173791E 01
0.6000001E 00 0.1021199E 00 0.2091200E-01 0.3456383E 00 0.3038993E 01
0.7000002E 00 0.1140899E 00 0.2326300E-01 0.3816093E 00 0.2963202E 01
0.8000002E 00 0.1260599E 00 0.2532800E-01 0.4222611E 00 0.2927423E 01
0.9000002E 00 0.1380299E 00 0.2710700E-01 0.4678091E 00 0.2921375E 01
0.1000000E 01 0.1500000E 00 0.2860000E-01 0.5187059E 00 0.2939333E 01

Table 6.5 The mean and variance and beta parameters of the mixture distri-
bution of "0-25 starts" with 26-50 starts".

a p o a by

0.0000000E 00 0.4920000E-01 0.7000000E-03 0.3238720E 01 0.6259901E 02
0.1000000E 00 0.5928000E-01 0.4407998E-02 0.6906751E 00 0.1096039E 02
0.2000000E 00 0.6935996E-01 0.7911995E-02 0.4965054E 00 0.6661884E 01
0.3000001E 00 0.7943994E-01 0.1121200E-01 0.4386995E 00 0.5083706E 01
0.4000001E 00 0.8951998E-01 0.1430800E-01 0.4204345E 00 0.4276107E 01
0.5000001E 00 0 9959996E-01 0.1720000E-01 0.4197084E 00 0.3794231E 01
0.6000001E 00 0.1096799E 00 0.1988799E-01 0.4288494E 00 0.3481156E 01
0.7000002E 00 0.1197599E 00 0.2237200E-01 0.4445519E 00 0.3267472E 01
0.8000002E 00 0.1298400E 00 0.2465200E-01 0.4652240E 00 0.3117834E 01
0.9000002E 00 0.1399199E 00 0.2672800E-01 0.4900669E 00 0.3012412E 01
0.1000000E 01 0.1500C00E C0 0.2860000E-01 0.5187059E 00 0.2930333E 01

f ' 'd 9 iu _i
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a =a s /s i=1,...,N-1 . (6.19)
N f N,

Summation of this result over i from 1 to N-1 and use of the
N-1

relation aN"I- "i yields
i=1

(6.20)N " "Na .

Substitution for a into Eq. (6.19) then gives the maximum likeli-
N

hood estimate for the i-th subgroup weighting factor as

& = s /S , i=1,...,N , (6.21)
f

1.e., the weight factor for the i-th subgroup is simply the observed
fraction of the total samples which are taken from the 1-th subgroup.

6.2 Gamma Prior Distribution with the Conjugate Poisson Conditional
Distribution

The beta family is usually chosen to represent the prior distri-
bution in the Bayesian analysis of failure-on-demand data because of
the mathematical convenience of using the conjugate distribution to the

binomial ccnditional distribution. As an alternative to a beta prior

distribution, one could also use a " truncated" gamma distribution as
the prior distribution, namely

'
'

= a a-1 -6xa a-1 -6p
* *

g(p) = 1- dx (6.22)
Ma

I
,

where p is restricted to 0<p<l. If the parameters, a and 6, of this

truncated gamma distribution are such that the normalization factor
in brackets in the above equation is very close to unity, then this
truncated gamma distribution may be approximated by the usual gamma

distribution,

a a-1 -Sp
6 p e (6.23)g(p) ~ - .

1426 343'
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This approximation will be valid whenever the function is highly
skewed towards small failure probabilities. Such skewness of the

prior distribution can be expected for components whose failure prob-
abilities are much less than unity.

The use of either the truncated or regular gamma distribution as a
prior distribution with a binomial conditional distribution does not

lead to closed form results for the marginal and posterior distri-
butions since the gamma and binomial distributions are not natural con-

jugates. However, for the type of failure-on-demand data considered

in this study (i e. , failure data from components with low failure
probabilities), che bionomial conditional distribution may be approxi-
mated by a Poisson distribution, which is the. natural c >ajugate of the
gamma distribution. If the number of demands, n, is large and the

number of failures, k, is much smaller, then [8]

=n (6.24).);

Further, if the failure probability, p, for each component is very
small, (p<<1) then

(e-P)n-k -nP . (6.25)(1-p)" = =e

With these two approximations, the binomial conditional distribution

of Eq. (2.1) can be approximated by a Poisson distribution, i.e.,

p (1-p)" = ("f(k|n,p)= _"
*

(6.26)g .

The marginal distribution can now be evaluated readily using
the above approximations. Recall

1

h(k|n,a,6)= f(k]n,p) g(p) dp , (6.27T
'O

which, if g(p) is highly skewed towards the 1c:wer limit, can be
approximated mathematically by

h(k|n,a,6)= f(k|n,p)g(p)dp. (6.28)
'O

', ~

t
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Substitutingforf(k|n,p)andg(p)fromEqs. (6.26) and (6.23),
respectively, gives

"h(k|n,a,6) = (6.29).

(n+6)

The posterior distribution, 6(p|k,n,a,6),is

" (D)
((p k,n,a,6) = (6.30),

)

and upon substitution of Eqs. (6.15), (6.16), and (6.20) yields

-p(W) paM
((p | k,n,c,6) = (n+6) e (6.31),

)

which is also a gamma distribution. The mean of this posterior distri-

bution is

E(p!k,na,6)= (E pB'

while the classical estimate of the mean of p is

is =f. (6.33)

6.2.1 Estimation of Gamma Parameters

To estimate values for the gamma prior parameters from failure

data, any of the four estimation methods previously discussed for the
beta-binomial model could also be used. The simplest metho<1 is to

match the prior moments to those of the data. The mean and variance

of the gamma prior of Eq. (6.23) are

p = a/6 , (6.34)

and

a = a/6 (6.35).

The data mean and variance are
"

1 i
D =g , (6.36)

ob i=1 i

and N k
(b"N1 ( ~ ob *

g

1426 345- .
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By matching these calculated values to the mean and variance of
the prior distribution, a relation between a and 6 in tenas of

the observed data can be obtained, namely

a = p6 = 0 / (6.38)b
and

6 = p/o =D /0 (6.39)ob

Equations (6.38) and (6.39) can be used to find expressions
for estimates of the variances of a and 6 from the following relations:

s (a) = s (D
ob) ob) + 30 ob)'

s (-g
-

ob'
and

2(6) = ' 36 '
2(D

'36'
2( ob)

2+ s (6 A1)s s
'g ob 2g ,

ob' '30
ob'

where s (Dob) n s (8 b) are estimates for the variances of D and
ob

D Expressions for s (Og) and s (8 b} #* ( * 'I " )ob. *

8

s (Dob) " h, (6.42)

2

2(Cob)
2(Sh) =

,,

(6.43)s .g

The maximum likelihood method can be used to estimate the para-
meters of the prior distribution by using the likelihood function

N
L(k ,k '**** "l'"2'***'"N'"' i "i'"'

"
y 2 ' *

i=1

whichistheprobabilityofobtaining, simultaneously,k,k'***'b2
failures in n ,n ,...,n tries for components 1,2,...,N, respectively,y j N

for components whose probability distribution for failure is given by
the prior distribution of Eq. (6.23) with parameters a and 6.

Substitution of Eq. (6.29) into Eq. (6.44) yields

,

'. "

1426 346
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L(a,6) = L(k ,...,k |"l''***"N'"' }y N

i

"i i + "}6" ' " "
-

",T(a), k!
* *

k

(n +6) f+a
y

f

To find the values of a and 6 which maximizes L, or equivalently,

minimizes inL. The extrema of InL(a,6) are obtained by solving

alnL(a,6) = 0 (6.46)
aa

3ZnL(a,6) = 0 (6.47)
36

The numerical solution of these two simultaneous equations can be ob-

tained by several standard numerical techniques.

6.2.2 Comparison of Beta and Gamma Priors for Diesel Engine Data

To test the ability of the gamma function to serve as a prior

distribution for low probability failure data, the diesel engine

failure data of Table 3.1 were analyzed by both the approximate gamma-

Poisson description and the beta binomial description. As before the

diesel failure data were grouped by manufacturer and by number of starts,

and each group was then separately examined.

The method of matching the prior moments to those of the failure

data were used to obtain values for the prior parameters of each data group

(i.e., Eqs. (6.38) and (6.39) for the gamma distribution, and Eqs. (3.5)
and (3.6) for the beta distribution). The resulting beta and gamma

parameters for the various data groupings are given in Table 6.6.'

One immediate result to be seen from these parameter results, is that

both prior models generally yield unimodal priors (a,b>l or a>1) for most
groupings. However, the estimated beta priors for the "GM engines", and

"other engines" and "0-25 starts" groupings and the gamma priors for
the "Other engines" and "0-25 starts" groupings are all monotonically
decreasing functions which become unbounded as p-4. Moreover, for

the "GM engines" grouping, the estimated beta prior is monotomically de-

creasing while the estimated gamma prior is unimodal and everywhere bounded.

v.
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Table 6.6 Parameter Values for the beta and gamma prior models obtained by the prior matching
moments method for various groupings of the diesel engine failure data of Table 3.1.

Grouping No. Beta Prior Gamma Prior'

', Engines Mean Variance a b a 6

GM 'l 0.05916 0.003328 0.9303 14.795 1.0516 17.777
Fairbanks 4 0.03217 0.000707 1.3846 41.662 1.4639 45.511t

ALCO 4 0.02935 0.000600 1.3644 45.120 1.4359 48.920
Other 4 0.12014 0.038014 0.2139 1.567 0.3797 3.160
0-25 Starts 5 0.15047 0.028592 0.5222 2.949 0.7919 5.263
25-50 Start.a 5 0.04924 0.000691 3.2868 63.462 3.5088 71.258 {
50-100 Starts 9 0.03501 0.000718 1.6123 44.437 1.7071 48.757
>100 Starts 6 0.03033 0.000789 1.1000 35.162 1.1657 38.428

s
P
N
C7' '

W
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As p+0 the difference between these two distributions diverges! Never-

theless both of these estimated prior distributions give approximately

the same values for all but very small values of p (see Fig. 6.1 in which

some of the beta and gamma distributions are shown). From Fig. 6.1 it is

seen that the difference between the beta and prior models for the same

data group is typically very small. This excellent agreement was found
for all the data groupings.

As an additional comparison between the approximate gamma-Poisson
model and the beta-binomial model, the posterior distribution for each
diesel engine in each grouping was calculated. Again the corresponding

beta and gamma posteriors distributions were very similar. In Tables 6.7

and 6.8 the mean and variance of these posterior distributions are shown
together with the classical estimate of the failure probability for each
engine (k /n ). Notice how closely the means and variance of the gammag g
posterior distributions are to those of the corresponding beta posterior
distributions.

,,
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Table 6.7 Mean and variance of component posterior distributions for both the beta and gamma
models of the prior distribution for the diesel engine failure data cf Table 3.1
grouped by manufacturer.

Component Beta Posterior Gamma Posterior Classical

k n Mean Variance Mean Variance Mean

GM Diesel Engines

6 100 0.599E-01 0.482E-03 0.599E-01 0.508E-03 0.600E-01
1 392 0.473E-02 0.115E-04 0.501E-02 0.122E-04 0.255E-02

11 230 0.486E-01 0.187E-03 0.486E-01 0.196E-03 0.478E-01
5 68 0.708E-01 0.777E-03 0.706E-01 0.822E-03 0.735E-01
4 23 0.127 0.280E-02 0.124 0.304E-02 0.174
0 23 0.240E-01 0.590E-03 0.258E-01 0.6;2E-03 0.000
2 12 0.106 0.329E-02 0.102 0.344E-02 0.167
0 99 0.811E-02 0.695E-04 0.901E-02 0.771E-04 0.000
3 33 0.807E-01 0.149E-02 0.798E-01 0.157E-02 0.909E-01
9 126 0.701E-01 0.457E-03 0.699E-01 0.486E-03 0.714E-01
2 47 0.467E-01 0.699E-03 0.471E-01 0.727E-03 0.426E-01
1 87 0.188E-01 0.178E-03 0.196E-01 0.187E-03 0.115E-01
2 71 0.338E-01 0.372E-03 0.344E-01 0.387E-03 0.282E-01

*Fairbanks Diesel Engine

3 656 0.627E-02 0.890E-05 0.636E-02 0.907E-05 0.457E-02
5 73 0.550E-01 0.444E-03 0.545E-01 0.460E-03 0.685E-01
1 35 0.306E-01 0.375E-03 0.306E-01 0.380E-01 0.286E-01

__.

as, 1 37 0.298E-01 0.357E-03 0.299E-01 0.362E-03 0.270E-01

y[ ALCO Diesel Engines

0 13 0.229E-01 0.371E-03 0.232E-01 0.375E-03 0.000
L'd 2 95 0.238E-01 0.163E-03 0.239E-01 0.166E-03 0.211E-01
(JI 2 51 0.345E-01 0.338E-03 0.344E-01 0.344E-03 0.392E-01

2 35 0.413E-01 0.480E-03 0.409E 01 0.488E-03 0.571E-01~~~

Diesels by Other

Manufacturers

7 17 0.384 0.120E-01 0.366 0.182E-01 0.412
4 335 0.125E-01 0.366E-04 0.130E-01 0.383E-04 0.119E-01
9 206 0.443E-01 0.203E-03 0.448E-01 0.214E-03 0.437E-01
1 76 0.156E-01 0.195E-03 0.174E-01 0.220E-03 0.132E-01



Table 6.8 Mean and variance of component posterior distributions for both the beta and gamma
models of the prior distribution for the diesel engine failure data of Table 3.1
grouped by number of starts.

Component Beta Posterior Gamma Posterior Classical
k n Mean Variance Mean Variance Meang

0-25 Starts

4 2; 0.171 0.516E-02 0.170 0.600E-02 0.174
0 23 0.197E-01 0.704E-03 0.280E-01 0.991E-03 0.000__.

, 2 12 0.163 0.828E-02 0.162 0.937E-02 0.167
0 13 0.317E-01 0.176E-02 0.434E-01 0.237E-02 0.000
7 17 0.367 0.108E-01 0.350 0.157E-01 0.412

25-50 Stae,ts
- 3 .3 0.630E-01 0.586E-03 0.624E-01 0.599E-03 0.909E-01

2 47 0.465E-01 0.386E-03 0.466E-01 0.394E-03 0.426E-01
1 35 0.421E-01 0.393-03 0.424E-01 0.399E-03 0.286E-01
1 37 0.413E-01 0.378E-03 0.416E-01 0.385E-03 0.270E-01
2 35 0.520E-01 0.479E-03 0.518E-01 0.488E-03 0.571E-01 -

$
50-100 Starts

6 100 0.521E-01 0.336E-03 0.518E-01 0.348E-03 0.600E-01
5 68 0.580E-01 0.475E-03 0.574E-01 0.492E-03 0.735E-01
0 99 0.111E-01 0.753E-04 0.316E-91 0.782E-04 0.000
1 87 0.196E-01 0.144E-03 0.199E-01 0.147E-03 0.115E-01
2 71 0.309E-01 0.253E-03 0.310E-01 0.258E-03 0.282E-01
5 73 0.555E-01 0.437E-03 0.551E-01 0.452E-03 0.685E-01
2 95 0.256E-01 0.176E-03 0.258E-01 0.179E-03 0.211E-01
2 51 0.372E-01 0.365E-03 0.372E-01 0.373E-03 0.392E-01
1 76 0.214E-01 0.170E-03 0.217E-01 0.174E-03 0.132E-01

>100 Starts

1 392 0.490E-02 0.114E-04 0.503E-02 0.117E-04 0.255E-02
11 230 0.454E-01 0.162E-03 0.453E-01 0.169E-03 0.478E-01

9 126 0.622E-01 0.358E-03 0.618E-01 0.376E-03 0.714E-01''
3 656 0.592E-02 0.849E-05 0.600E-02 0.864E-05 0.457E-02

f[)' 4 335 0.137E-01 0.364E-04 0.138E-01 0.370E-04 0.J'9E-01
;7, 9 206 0.417E-01 0.164E-03 0.416E-01 0.170E-03 0.4. I-01

.n
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KSU-2662-9
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Nov. 30, 1976

A User's Guide to the Program

BETA III

by

J. K. Shultis and W. Buranapan
Dept. of Nuclear Engineering

Kansas State University
Manhattan, Kansas 66506

ABSTRACT

Beta III is a FORTRAN program which evaluates from observed
component failure data the two parameters of a beta distribution
which is assumed to describe the prior distribution of the failure
probability among the components considered. Four methods are
used to evaluate these prior parameters: (1) matching the mean
and variance of the component data to those of the marginal distri-
bution, (2) matching the mean and variance of the observed failure
probabilities to those of the prior distribution, (3) the maximum
likelihood method based on the marginal distribution, and (4) the
maximum likelihood method based on the prior distribution. Beta III
also calculates and plots both the probability density function and
the cumulative distribution function of the beta prior distribution
as calculated by each method.
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1. THEORY

1.1 Summary of Pertinent Probability Functions [1]

The probability of failure, p, is often assun.ed constant for a particular
component. Thus, the probability of ebtaining k failures in n tests is given
by the binomial distribution, a conditional probability with respect to para-
meters n and p,

f(k|n,p)= p (1-p)" (1)"
.

In sampling many similar components, it is often assumed that the distribution
of f ailure probabilities among the components, called the prior distribution,
can be described by a beta distribution,

a-1 b-1
g(P) " #' (

B( b

where

1 a)W (3)B(a,b) E [0 x"~ (1-x)b-1 dx = ,

F(a+b)

and T is the gamma function. The program described in this report estimates
values of the parameters a and b from observed component failure data.

Theprobabilityofkfailuresinntries,h(k|n,a,b), independent of the
particular component, i.e. averaged over all component failure probabilities,
is obtained by integrating Eq. (1) over all p weighted with the probability
function g(p). This result is known as the marginal distribution, and is given
by

" ( -

(4)h(k|n,a,b)= f(k|n,p)g(p)dp= .

,o ,

From Bayes' theorem one can determine the posterior distribution, ((p|k,n,a,b),
which is the distribution of the failure probability, p, for a particular com-

ponent which previously has experienced k failures in n tries and which belongs
to a class of components whose failure probabilities are distributed according
to the prior distribution of Eq. (2) with parameters a and b. Explicity Bayes'
theorem says

C(p|k,n,a,b)=f(k|n,p)g(pla,b)
h(k n,a,b)

/_ ,
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which upon substitution of Eqs. (1), (2), and (4) yields

a+k-1 ( b+n-k-1
C(P|k,n,a,b)=P (5)

.

1.2 Summary of Techniques For Calculation of Prior Distribution

In this section a summary of the methods used to estimate the parameters of
the prior beta distribution from observed component failure data is presented.

Matching Data to Moments of the Prior Distribution [1]

If there are k failures out of n tries for the 1-th component, an

estimate of the failure probability, p , is k /n , and thus the observed meang g
and variance are

"
1 i

Dob " N (6)n
i=1 i

and

2
( _ g )2 (7)6 ,

.

i=1 i

where N is the total number of components in the same class and for which
failure data are available. By matching these calculated values (which use
only the observed data), to the mean and variance of the assumed prior distrib-
ution, the parameters a and b of the beta prior distribution are obtained as

2
O

ob (1~00b) ~ Oob ()a=
2

Oob

and

b= (1-Dob) +O ~1* (9)ob
8

ob

1426 358t
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Matching Data to Monents of the Marginal Distribution [2]

An alternativo to the preceeding technique is to match the experimental
data to the moments of the marginal or mixture distribution of Eq. (4). In

general, the sample sizes will be unequal (i.e. different n ), and thus, a
4

weighting scheme should be used to calculate the mean and variance of the
observed failure proportions, i.e.

N k N
O=1[w 1, where w = [wW id i

i=1 i 1-1

k'
'

N *

S = N-1 k i

N i ,n ng

By setting the above statistics equal to their expected values (of the marginal
distribution) and solving the resulting equations for the prior mean and
variance one obtains the following estimates.

0=p (10)

"
S - $4[ (1 - ))

I"I
8 = 0(1-0) (11)N w N w w

pQ[ [ w (1 - )- [ (1 - 1

i=1 i=1 i

where f; = l-p. The parameters a and b of the beta prior are then given by

2
0a = 5 (1-0) - 0, (12)
6

and

b= (1-0) + 0 - 1. (13)
8

The choice of weights is made such that the estimate of p is the linear
unbiased estimate with minimum variance, i.e. weight each k /n with the in-
verse of its variance, nar21y

"i
(14)"i " l + r(n - 1)1

rE o /(p(1-u)). (15)

1426 359
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Equations (10),(11) and (14) can bc viewed as three equations for the
quantitites w , p and [ which can be solved by the following iteration scheme.

g (binontial weighting) and solve for the resultingChoose r = 0 so that w =n

0 and 8 . With this value of 8 and 0, calculate r and new values of w from
bEqs. (14) and (15) (empirical weighting). Continue iterating until 0,8 and w

1
2- no longer change (convergcd ucighting). Finally it should be noted that 8 may

be negative from Eq. (11). For this case r is set to zero (i.e. only binomial

weighting is used). For each estimate of 8 and 0, the corresponding values of

a and b of the beta prior are calculated from Eqs. (12) and (13).

The Maximum. Likelihood Method Based on the Marginal Distribution [1]

The maxit...im likelihood method chooses the parameters a and b as those values

| ut'ich maximize the likelihood function

N N F(a+k )P(b+n -k )T(a+b) g g gL(k...g|n***"N'"' (L(a,b) I ~
g l f(a)P(b) i T(a+b+n )

.

where

'n[ f(n +1)
( }i k " P(k +1)T(n -k +1) *

g f

Equivalently, one seeks values of a and b which minimize the logarithm of L,
In[L], since L in always less than unit. This latter form is preferrable for
numerical purposes since the lnr function varies more slowly than does the r
function. The extrema of InL(a,b) are obtained from solutions to

(a,b) = 0

(a,b) = 0

or explicitly

N

N{$(a+b) - $(a)) + [ { $ (a+k ) - $ (a+b+n ) ) = 0 (18)g g
i=1

U. .
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and

N

N { $ (a+b) - $ (b) } + [{$(b+n-k)-$(a+b+n)}=0, (19)
g 1 g

i=1

d The numerical solution of thesewhere $(z) = g- [lnr(z)], the digamma function.
two simultaneous equations can be obtained by pattern search techniques [3]. How-

ever, since the first and second derivatives of InL are readily evaluated with
the polygamma functions *, BETA III uses a Newton-Raphson numerical solution. Care

must be taken since a,b+= is also a solution of Eqs. (18) and (19) . Also, if the

sample data consist soley of one component (N=1), the only solution of the
equation is for a,b== but with a/b finite. Also for some data for n>1, it has

been found that Eqs. (13) and (19) may have no finite positive solutions.

The Maximum Likelihood Method Based on the Prior Distribution [6]

The maximum likelihood method can also be applied to che prior distribution
[Eq. (2)] by defining the likelihood function as

a-1 (1-p )b-1N p
f f

H (L(p ,p2****pN| ,b) = B(a,b)L(a,b) E
i=1

i
where p = --.

1
i

The estimates of pa;ameters a and b are chosen to be the values which
minimize the logarithm of R, and consequently are solutions to

N ,

[ Inp + N[$(a+b)-$(a)] = 0
i=1

(21)

N

[ Zn(1-p ) + N[$(a+b) -$(b)] = 0 ,

i=1

where $(z) is the digamma function. The program BETA III uses a Newton-Raphson
method to evaluate numerically the solutions of Eqs. (21).

1.3 Classical and Bayesian Estimates of Mean Failure Probability. [1]

For a given component the classical estimate of the failure probability
is simply

p ,k (22)
,

c n

A Bayesian estimate is obtained by using the expected value of p from the
posterior distribution of Eq. (5), namely

a+k
p , (a+k) + (b+n-k) ,

B

rheprocedureforevaluationofthepolyg.mmafunctionsisoutlinedinAddendumA.fIf

.
~
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1.4 Variance of Estimators from the Maximum Likelihood Method Based
on the Marginal Distribution. [7]

The information natrix [A] is defined as

'#
11 12'

[A] = (24)
wher

2 -
"a = -E11 , g,2 ,

a = -Eg
ab '

'a InL
"12 " 21 ,3a3b ,

~~

In the limit of a large number of failure data, the covariance matrix [o]
can be obtained from the inversion of the information matrix [6], i.e.,

'va r (S) cov(s,B)'
-

(25)[o] E (A]=

,cov(a,6) var (6)
,

The elements of the information matrix may be evaluated directly from their
definitions as

N "i2e *
N

E = N[$' (a+B)-$' (S) ] + [ [ $' (S+k )h(k |n ,3,$) - [$'(a+B+n)
Ba-

i=1 k =0 i=1
e

f

E -- =N[$' (a+6)-S' (b) ] + $' ($+n -k )h(k |n ,a,b)- $ ' ($+6h , ) (26)ab i=1 k =0 i=1
~

'-

2r

N$'(n+6) - [$'(a+6+n)E =
gg

i=1. 2

where$'(z)=dbn z) = trigamma function.
dz

In some cases, if there is some evidence showing that the distribution
of the likelihood function L is symmetric about the maximum, the expectatitns,
in Eq. (26) may be approximated by the relations

ff b'

,

.c
,

.
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E .' = N[$'(a+b)-$'(a)]+ [$'(a+k )-$'(a+b+n )]
' Ba 3a i=1'

3,3

6=6

E - = N[$'(a+6)-$'(6)] + [$' ($+n -k )-$' ($+b+n ) ] (27)
ab i=1* Bb '

.a=a
b=b

"
2 2

= N$' (a+$) - $'(a+b+n ):E - g g g .

a=a
b=b

Asymptotic properties of the likelihood function guarantees that Eqs. (27)
is true when N is sufficiently large.

1.5 Evaluation of the Cumulative Prior Distribution Function

The cumulative distribution function of the beta prior distribution is
computed numerically from

G(p) = B(a,b) * (~* * ( }
'O

which is the incomplete beta function. In Addendum B the numerical evaluation
of this function is discussed.

*
, .

Sm.
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2. DESCRIPTION OF BETA III

The FORTRAN program BETA III computes estimates of the a and b parameters of
the beta prior distribution by each of the four methods outlined in Section 1.2.
As an option, the classical and Bayesian estimates of the failure probability of
each component are calculated (see Section 1.3) and plots of the prior distri-
butions as calculated by each method may be specified. A complete listing of
BETA III and all its subroutines is given in Addendum C.

2.1 Input Data

The data required by BETA III consists of the observed failure data (ki and
ni) for each component in the class to be analyzed as well as several program
and option parameters. Sequential analyses may be performed for multiple
classes (sets of components) by simply adding a set of input data cards for
each class to be analyzed.

For each set of components, a complete data set is required. Each data
set consists of the four card types described below.

CARD 1 (20A4)

TITLE = any 80 character title to identify the component set.

CARD 2 (3I5, SG10.3) (NITER, IOUT, IPROB, Yl, Y2, EPS, Zl, Z2)

NITER = maximum number of iterations to be used in the numerical solutions
of the maximum likelihood result and in the iterative solution of the
marginal matching moments method (default = 30). If this parameter is
set to zero, only the two matching moments methods are used.

IOUT = intermediate calculation output parameter. If IOUT = 0, only
the final results of all four estimation methods are printed.
If IOUT = 1, the results of each iteration in the marginal
matching moments method are printed, as well as the results of
each Newton-Raphson iteration in the maximum likelihood method.

IPROB = component probability calculation parameter. If IPROB = 1, the
classical and Bayesian estimates of the failure probability are
computed for each component. Bayesian estimates are given for the
prior distribution as determined by the maximum likelihood method
and by the prior matching moments method. If IPROB = 0, none of
the component failure probabilities is calculated.

Yl,Y2 = initial guess for parameters a and b which are used as the starting
values in the Newton-Raphson procedure used in the maximum likeli-
hood method based on the marginal distribution. If Yl=Y2=0.0,
the results of the prior matching moments method are used.

EPS = convergence parameter used to terminate the maximum likelihood
method iterative colution, and the marginal matching moments

., iterative solution. For the maximum likelihood solution,
, iterations end when differences between successive estimates ofi_ i

i427 004
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a and b are less than EPS. For the marginal matching moments method,

iterations end when the difference between successive estimates of
the prior mean [=a/(a+b)] is less than EPS.

Z ,Z = initial guess for parameters a and b which are used as the
y 2 starting values in tue Newton-Raphson procedure used in the maximum

likelihood method based on the prior distribution. If Z1,Z2=0.0, the

results of the prior matching moments method are used.

Card 3 (4G10.3,615) (PI,PJ,PK,PF1,NI,NJ,NL,IXOUT,IVAL,IPL)

The parameters ;n this card control the line printer plots of the density
and cummulative distributions of the estimated prior beta functions. The
distributions as a function of the failure probability, p, are in general per-
formed for two ranges of the failure probability: First Range PI j[ p j[ PJ,

and Second Range PJ < p ;E PK. This flexibility allows the use of a fine grid
for a range of the independent variable p over which the distributions vary
rapidly, and a coarser grid for a range over which the distributions are more
slowly varying. The parameter IPL determines whether only one or both ranges
of p are to be used.

PI = the lower limit of the failure probability for the First Range
over which the estimated prior density function is to be plotted.

PJ = the upper limit of the First Range and the lower limit of the
Second Range over which the estimated prior density and cumulative
distributions are to be plotted.

PK = the upper limit of the Second Range over which the estimated
prior density and cumulative distributions are to be plotted.

PF1 = the lower limit of the First Range over which the estimated prior
cumulative distribution is to be plotted. Often PF1 = PI, although
when the density distribution becomes unbounded (typically at p = 0),
the lower limits of the First Range should be different for the
density and cummulative distributions.

NI = the number of points or values to be plotted in the First Range
(between PI and PJ for the estimated density functions or between
PF1 and PJ for the estimated cumulative distributions). If NI = 0

then NI is set to 51.

NJ = the number of points or values to be plotted in the Second Range
(between PJ and PK) for both ;he density and cumulative distri-

butions. If NJ = 0 then the program sets NJ = 2.

UL = the number of lines used for printing the independent variable

axis. If NL = 0 thca 51 lines are used.

IXOUT = controls printing of tic marks and values of the independent
variable on the independent variable axis (failure probability
axis) every IXOUT lines; if IXOUT = 0, tic marks and values are
printed every five lines.

1427 005oi . . :
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IVAL = parameter to control which distributions are tabulated and plotted.
If IVAL = -1 the prior density and cumulative distributions are
tabulated for each of the four estimation results. If IVAL = 0
results from the four estimation methods are plotted on the same
figure (comparism alot). If IVAL = 1 gives both separate and
comparison plots well as tabulations of the density and
cumulative dis'.rt Lions.

IPL = parameter to control over which ranges the prior distributions are
to be plotted. If IPL = 0, First Range only is plotted. If IPL = 1,
Second Range only is plotted. If IPL = 2, plots for both ranges
are produced.

Card 4 (use multiple cards if necessary) (1615) (NN, N(1), K(1), N(2), K(2),...)

NN = number components in class (maximum number 50)

N(I),K(I) = ni (nr.mber of demands) and ki (number of failures-on-demand) for
the i-th component in class being considered. NN pairs of data
are required.

2.2 Sample Input

I . , , . . . . . .. .. , n - is ., , , r n n :. . . , v ,. n ic u i.n,.v,..........T........v .. .s..e...,.....s,....u.,,,.7,,..r. . -- Q
FAIRBANKS DIESEL ENGINE DATA -- FOUR PL ANTS

,, ,.......,,....,..,m.,,,,,3o,a,.r.,,.,,,,,,,,n..s,c..,,s,.,,,,,,,,s...,...,s,.,.,,s,.,,,, , , , , , , , , , , , , , , , , , . , , , , , , , , , , , , , . , , , , ,

30 0 1 0.0D00 0. 0D 0 0 1.0D-12 0.0D00 0.0D00

I,,,.s. ,,i.,,,,u....,,..,,t, .:,,,.,.,.,,,,,.,,,,,.;,,.,,,...,.....,...,,,,,,,r.,ys,s,,.,,,.,,,,,,,,,,,,,,,,,,,,,,; , , , , , , , , ..
,

0.0D00 2. 0B- 01 1.0D00 0.0D00 0 0 0 0 1 0

23... , , . . . , , , , . , , , . . . , , , , , . . , , , ,,,,,,,ui,,,,,,..,,,,,,,,,..,,,..........s,.,ss,,,,.,s,,,s,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,.,,..,,,y

4 656 3 73 5 35 1 37 1

2.3 Sample output

The output from BETA III can be quite voluminous if all the program options
are elected by the user. On the next few pages, portions of example output are
given.

3. ACKNOWLEDGMENT
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Sample Output for 25 Diesel Plants

ALL DIESEL ENGINES - 25 PLANTS
TRIES: 100 392 230 68 23 23 12 99 33 126 47 87 71 656 73 35 37 13 95 51 3r 17 335

206 76
FAILUPES: 6 1 11 5 4 0 2 0 3 9 2 1 2 3 5 1 1 0 2 2 2 7 4

9 1

MATCHING MOMENTS OF DATA TO THOSE CF MARGINAL CIST RIBUTICN:
NO W E IGHT ING MEAN= 0.59826741D-01 SIGMA = 0.79307C34D-01; PRIOR PARAMFTERS: A= 0.47412184 B= 7.4507932

BINOMIAL WEIGHTI NG : ME AN= 0.2 82 312 930-01 SIGMA = 0.391443760-01; PRIOR PAR AME TERS: A= 0.46208133 B= 15.505619

EMPIRICAL hEIGHTING: ME AN= 0. 5116t3960-01 SIGMA = 0.657186440-01; PRIOR DARAMETERS: A= 0.!''98545 B= 9.7168269

CCNVEPGED RESULT MEAN= 0.53729114D-01 SIGMA = 0.693838560-C1; PRIOR PARAME TERS: *=8' .137C766 B= 9.0473594

M A TL HI NG MOMENTS OF THE DATA TO THOSE OF THE PRICR DISTRIBUTICN:
PRIOR MOMENTS: MEAN= 0.598267410-01 SIGMA = 0.864161180-01; PRIOR PARAMETERS : A= 0.39079123 B= 6.1412676

: VAR (A)= 0.72C476C-01 VAR (8)= 7.42852
VARIANCE AND STANDARD DEVI AT ICN ESTIMATES (ASSUMING NORMAL DISTRIBUTION) SIG(Al= 0,266417 SIG(E)= 2.72553

VARI ANCE AND STANDARD DEVI ATION ESTIMATES (DISTRIBUTION INCEPEhDENT) :
VARIAl= 0.139273 %AR(Bl= 24.0305
SIG(A)= 0.373194 SIG(2)= 4.9C210

MAXIMUM LIKELIHOCD METHOD WITH BETA-BINOMIAL DISTRIBUTICN:
INITIAL ST ART ING POINTS CALCUL ATED BY MATCHING MOMENTS TO PRIOR 0.39075163

6.1412676

ACCURACY PARAMETER = 0.1000D-11
MAv! MUM NLMBER OF ITERATIONS = 30
SOLUTICN CCNVERGED TO: Am 1.0521510 AND B= 19.901503 AFTER 8 I TE RATICNS.

PRIOR MOMENTS : MEAN= 0.50213245D-01 SIGMA = 0.466088930-01; PRIOR PARAMETERS: A= 1.0521510 B= 19.901503

EXACT SOLUTICN
INFORM ATICN MATRIX : 22.1501 -0.887711

-0.887711 0.4782170-01
VAR (A)= 0.176316 VJF(E)= 81.6664

COVAR(A,B)= 3.27295
-*

J2= APPRO)IM ATE SOLUT ICN
INFORMATICN MATRIX : 25.3432 -0.887711pyy

-0.887711 0.4176360-01
s4 V AR ( Al = 0.1544 54 VAR (B)= 93.7267

CO VAR ( A e B) = 3.283C1

O
O
N

MAXIMUM LIKELIHOOD METHOD WITH BETA DISTRIBUTICN
INITIAL STARTING POINTS CALCULATED BY MATCHING MOMENTS TO PRIOR 0.39075183 6.1412676

THIS D AT A SET 15 REJECTED BECAUSE CF 0 NO.CF FAILURE

_ . . . . _ . _
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MATCHING CATA MOMEhis TO PRICA CISTaleUTICN MCMEh15

"" FROB ABILITY DENSITY FLhCTION
r rF BET A CISTR IBUTICN

hlTH PARAMETEPS A = 1.384647
41.et2018 =

flAe83 = 0.50444957180-C2
[ GIP) IS MAXIMUM AT P ECUAL 0.0093710

.. P G(p)
-- _ - . . -

0.0 0.0
0.4000000C-02 20.12125 0.1480C00 0.56374380-01
C.8CC0CCOC-02 22.315C3 0.1120000 0.46743!40-C10.12003C00-01 22.12951 0.1760C00 0. 36 7 4 t !2 C- 01
0.16 C 00000-01 2C.56027 0.1800000 0.320te471-Cl
0.2CC000LO-01 19.35267 0.1840000 0. 2 4 507 ! 2 D- C10.24000000-01 17.518C9 0.1890000 0.218 86 87 C- 010.28000000-01 15.78337 0.1920030 0. le C 5 C 70C-C10.32000000-01 14.C5025 0.4560C00 C .14 8 49 t C D- 01
0.36C300CC-01 12.42328 0.20000C0 0.12234E2C-01C.40000100-01 10.42470
0.44 C 01100-01 S.543010 0.2000000 0.12234 42 D-C10.4e100000-01 E.338519 1.000C00 0.0 ($0.5200000C-01 7.246112 as0. 5 6 04 00 3C-01 6.277915

__

C.6000C00C-01 5.424431
0.64C00C00-01 4.675512
0.68000000-01 4.02CS41
0.72000000-01 3.45C818
0.7600C00C-G1 2.155718
0.0C00C00C-01 2.521120
0.8400C0CC-01 2.1569C4
0.88030 cot-01 1.e37eE5 Sample Output
C.92CCCC00-01 1.56?5(2
0.96C00000-01 1.328202 Tabulation of Estlanated0.10000000 00 1.12ftC5
0.1C40cCO 0.5542515 Prior Density Function
0.10830C0 0.EC11510
0.11200C0 0.tetECE3
0.11600C0 0.5751727
0.1200100 0.4E45854
C.1241CCO 0.4077547
0.1280000 0.3426746
0.1320C00 C.2874213~~~'
C.1340000 0.2411252

J= 0.1400003 0.2C15047
ps) 0.1440000 0.148E551

C.1480000 0.141C549''d 0.1523000 0.117tSC2
C.1560C00 C.580E0199-C1

c;) 0.1600000 0. 816 43 39 C-01
0.1640000 0.418E118D-C1C

CO

-



CHART 1 MATCHING C AT A MOMEhT5 TO PRICR CISTRIBUTICh MCMEN15

- , _.. .15020.0835 22.3
0.0 2.2315 4.4430 6.6545 8.9260 11.1515 13.3850 15.6205 17.8520

ggp3-

. . _ - . _ . . , _ - _ - - _ . . . . . . _ . . +. .. .. .... _ _

* 0.0 +1
1

1 1
1 1
1 1
1 1

0.0200 +
1

1
1

- |
1

- I
1

1
10.0400 +

1 1

1 1

1 1

1 1

0.0600 + 1

I 1

1 1

1 1

1 1

0.0800 + 1

1 1

1 1

1 1

1 1 [
0.1000 + 1 N

I 1

1 1

1 1 Sample Output
i 1

0.1200 + 1

|* Plot of Beta Density Function

i1
- | 1

0.1400 +1p
N ||
N 11

11
0.1600 +1

C 11

O 11
11w 11

0.1800 +1
11
11
11
11

0.2000 +1

P

A= 1.38445 8= 41. 6 6 J C
C(P) 15 PAXIMUM AT P ECUAL 0.C05311C



CHART 4 F AIRE ANKS CIESEL thGINE CAT A -- FCUR PLANTS

0.0 0.1000 0.2CCC C.3COC C.4000 0.5CCC 0.6000 0.7000 C.8000 0.9000 1.0C00
+- +- =+ - + . - - = . . . _ , _ . . , ,. _ +. = - - + - + p(p3

0 .0 +2
1 312
1 31 2
1 31 2
| 31 2.-' C.0200 + 31 2
1 3 2
1 3 2
1 3 2
1 3 2

0.0400 +
3 2

l 3. 2
'

. | 3 2
-

1 3 2
| 13 2

0.0600 + 3 2
1 32
1 32
1 32
| 132

0.0800 + 132
| 132
1 32 [l 32 mi 13

0 1000 + 32
| 13
1 3
| 1 - MATCHIhG C AT A MCMENTS TC PR ICR DISTRIBUTICN PCMENTS 3
i A = 1.38465 8= 41.6623 32

0 1200 + 2 - MAXIMUM L IKELINCCC METHCD W ITH BETA-8I ACMI AL CIST. 12
i A = 1.342C9 8= 44.8078 3
| 3 - MAXIMUM LINELINCCD METHED WITH EETA CIST. 2
| A = 1.45045 8= 43.9558 2
1 30.1400 +

2
1 3
1 2
I a
i 2Sample Output~ 0.1600 + a
84 2
| Comparison of Prior Cumulative aN l ay i Distributions Estimated by Different

a
0 1800 + Techniques. 2

I aO 1 3
1 3

-

O 0.2000

P



CMART 4 FAIRBAhKS DIESEL EhGINE C ATA - prsA PLAkTS

- C.0 2.5002 5 0003 7.5005 10 0007 12.50C8 15.0010 17.5012 20.0C13 22.5C11 25.0C16n

, y _ _ , _ y --,_-- _ , ,. ,=== - ,---------, ggp3
*

0.0 +3
,; _ | 3 1 2

| 31 2
| 3 2
| 13 2

0.0200 , 1 32
| 123

- - - -
1 213
| 2 13
1 213

0.0400 + 2 13
1 2 13
| 2 13
1 2 13
1 2 3

0.0600 + 2 3
1 2 3
1 2 3
1 23
| 23

0.0800 + .' 3 '
l 23
1 23 [l 231 ei 23

0.1000 + 23
1 23 1 - MATCHIhG CATA MOMENTS TC FRICR CISTRIBUTICh PCNEhis
1 23 A* 1.364t5 8= 41.6420
1 23 GtP) 15 MAXIMUM AT P ECUAL 0.00$3710
1 23 2 ..AX IMUM L IKELIMC00 METHC0 WITH BE TA-B IhCMI AL CI ST.

0.1200 + 3 A= 1.342C9 e= 44.8078
| 3 C(PI IS MAXIMLM AT P ECUAL 0.0C77485
123 3 - M AXIMUM L IKELIMC00 METMCD WITH 8 ETA DIST.
123 A = 1.45849 8= 43.9958
|3 CEPl IS MAXIMUM AT P ECUAL C.CIC5511

0.1400 +3D 13
N 13

|3 Sample OutputN
0.1600 +3

c-) 13 Comparison of Prior Density Functions
- |8 Estimated by different Techniques.

13-*

0.1800 +3
13 -

II
13
13

0.2000 +3

P
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Addendum A

Evaluation of Polygamma Functions

In the Newton-Raphson evaluation of the numerical solution of the maximum
likelihood estimates by Eqs. (18), (19) or (21) and in evaluation of the
variance bounds (Eqs. (26)), both tr.e digamma tunction and its derivative,
the trigamma function, must be evaluated over a wide range of arguments. The
procedure used in BETA Ill is based on a power series expansion of these
functions for large arguments, and a recursion relation for small agruments
[4,5].

The polygamma function $*(z) is defined as
m mtl

$"(z) = d $(z) , d [lnP(z)].
dz" dz

The digamma function and trigamma functions are special cases of the poly-
gamma function (m=0 and 1 respectively). These functions may be evaluated
accurately by the formulae below:

1. Digamma (m=0):

-2k
z38 $(z) = Znz - - z

k=1
n

z<8 $ (z ) = $ (n+z ) - [ (z+k-1)~
k=1

wherc B are the Bernoulli numbers.

2. Trigamma (m=1):

2k* (_ $(z)=f+2z-
z>8 , , + B

k=1

z<8 $ (z) = $ (n+z) + (z+k-1)~
k=1

3. Polygarmna (m>l):

z18 $*(z) = (-1)" [ *+ 1+
2

(2k+m-1)! * (2k4tn) l
-

2k (2k)!

z<8 $"(z) = $"(2+n) - (-1)" ml (z+k-1) "~
~

k=1
.
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Addendum B

Evaluation of Incomplete Beta Functig

The incomplete beta function IP (x,y) is calculated from the following
expression [8]

INFSUM p* F(PS+x) + p* (1-p)Y P(x+r) FINSUMp(*'7) " f(PS) T(x+1) f(x) P(y+1) (35)

where INFSUM and FINSUM represent two series summations defined as follows:

x(1-PS) j=

INFSUM = [ where (36),

j=1

'l j=0,

( }' ( }"

. T (1+y-PS)/ T (1-PS) j>0,

and

Y(7- ***(Y- + } 1FINSUM = (38)(x+y-1) (x+y-2) . . . (x+y-j ) j3,;

where [y] is equal to the largest integer less than y. If [y]=0, the FINSUM=0.
The quantity PS is defined as

'l if y is integer

PS = (39)
,y - [y] , otherwise

the above algorithm (combined with scaling to avoid numerical inaccuracies
encountered when using the gamma function with large arguments) vas in-
corporated into a FORTRAN program MDBETA by Sosten and Battiste [8]. This
program (modified in accordance to remarks made by Pike and Soo Hoo [8] was
uset in the present analysis. The program MDBETA is significantly more
accurate than the widely used program BDTR [9], especially at large arguments.
For example, in the case p=0.5, x=y=2000, MDBETA gives the correct value,
0.5, while BDTR gives 0.497026.

~ '

1427 0141.. .
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Addendum C

Listing of Program Beta III
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C********************************* BETA III ************************************
C* *

C * THIS PROGRAM *
C* - CALCULATES TbE PARAMETERS A AND B 0F AN ASSUMED BETA MIXING *

C* DISTRIBUTICN BY FOUR TECHNICUES: (1) MATCPING MCMENTS CF THE EXPERIMENTAL *
C* OATA TO THOSE OF THE MARGINAL DI STRI BUTICN, (2) MATCHING MCMENTS OF THE *

C* DATA TO THOSE OF THE PRIOR DISTRIBUTION, (3) THE MAXIMUM LIKELIHC00 *

C * METHCD WITH BETA-BINCMI AL DI STRI BUTICN, AND (4) THE M AXIMUM LIKELIHOOD *

C* METHOD WITH BETA DISTRIBUTION *

C* - ALSO CALCULATES AND PLOTS BET A DISTRIBUTION (BOTH PROB ABILITY DEN SITY *
C* FUNCTION AND CLMULATIVE DISTRIBJTION FUNCTICh) *

C* FOR EACH METbOC AND CCMPARISCN OF FOUR METHCCS. *

C* *

C* INPUT DATA: *
C* *
C* CARD 1 (LCA4) *
C* TITLE = THE TITLE OF THE PROBLEM (80 COLUMh5) *
C* *

C* CARD 2 (315,5G10.3) *

C* NITER = MAXIMUM NUMDER OF ITER AllCNS FOR METHCD 1 AND FOR NUMERIC AL *
C* SOLUTICN IN METHOC 3C4.IF =0 CNLY NCMENTS METbODS *

C* CALCULATICNS ARE PERFCRMED. *

C* ICUT 1 IF INTERMEDI ATE OUTPUT IS DESIRED FCR THE ITERATIONS IN *=

C* METHCD 1 AND FOR THE NUMERICAL SOLUTICN IN METHCD 3C4;I F =0 *

C* CNLY FINAL RE SULTS FOR ALL FCUR METHCDS ARE PRINTED CUT. *
C* IPROB 1 IL A CCMPARISCN OF THE CL ASSICAL AND E AYESI AN FAILURE=

Ce PROBABI LITIES FCR E ACH CCMPChENT IS DESIRED; IF =0 THIS =

C* OPTICN IS EYPASSEC. *
C* Y1 = INITI AL GUESS FCR A IN METH00 3 IF =0 RESULT F RCM M ET FDD 2 *
C* WILL bE USED FOR INITIAL GUESS. *
C* v2 INITIAL GUESS FCR B IN METHOD 3; IF =0 RESULT FRCH METHOD 2 *=

C* WILL EF USED FCR INITIAL GUESS. *
C* EPS CONVERGENCE PARAMETER FOR METb005 1,3 & 4. IN MFTHOD 1 *=

C* ITER ATIC AS CCNTINUE UNTIL PRICR MEAN CHANGES oY LESS THAN *
C* EPS.IN METHOD 3C4 NEWTCN-RAPHSON I TER ATICh5 CCNTINUE UN TIL *

C* DERIVAT IV' S ARE < EPS. *
C* Z1 INITIAL GUESS FCR A IN METHCC 48 IF =0 RESULT F RCM H ET h00 2 *=

C* WILL BE USEC FOR INITIAL GUESS. *

C* 22 INIT!AL GUESS FOR 8 IN METHOD 4; IF =0 RESVLT FROM METHOD 2 *=

C* 6L EE LSED FOR INITI AL GUESS. *'

C* *

C* CARD 3 (4G10.3,715) *
C* PI,PJ,PK,PF1,NI,NJ,NL,IXCUT.IVAL,lPL,IEETA *
C* I BET A = Oi COMPUTED VALUES C PLOTS OF BETA DISTRIBUTIONS ARE *

C* IGNORED. *
C* I B ET A li COMPUTED V ALUE S C PLOTS Of BETA DISTRIBUTICNS ARE *=

C* DISPLAYED ( SE E IV AL & IPL FOR NORE DETAILS) . *

C* SEE MORE EXPLANATICN IN SUBROUTINE BETCIS. *

C* *

C* CARD 4... (1615) *
C* NN = NUMBER OF PAIRS OF DATA PCINTS TO EE READ *

C* NII),K(!) NUMBER OF TRIES, NUMBER OF FAILURE S FOR I-TH PLANT *=

C* NN PA!RS OF N(I) AND K(I) ARE TC BE ENTERED. *

Ce *

C* SUBROUTIhES RECUIRED: *

C* NEWR AL - NE hTON-R APHSON SCLUTION CF Th0 SIMULTANECUS EQUATIONS *

C* FNDATA - RFADS IN STARTS AND FAILURES, N(1) AND Kt!). ALSO C ALCULATES *

C* THE LIKELINCOD FUNCTION AND ITS CERIVATIVES *

. .

J
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*C* (BET A-BINCMI AL DISTR IBUT ICN)
C* FBT - CALCULATES THE LIKELIHOOD FUNCTICN AND I TS CERIVATIVES *

*C* (BET A DIST RIBJTIIN )
*C* POLG AM - C ALCUL AT ES THC PCLYG AMMA FUNCT IC A

C* V ARMLE - CALCUL ATES VARI ANCES AND COVARI ANCE OF MAXIMUM LIKELIHOCD *

C* ESTIMATCRS (EXACT EX PitT AT ICN VALUES ;2ET A-BIh0MI AL DIST.) *

f* APPMLE - C ALCULATES VARI ANCES ANu COVARIANCE OF MAXIMUM LIKELIHOOD *

L* ESTIMATORS (APPRCX. EXPECTATION VALUE 5; BETA-BINCMI AL DIST. ) *

C* BETDIS - CALCULATE AND PLCT BET A DISTRIBUTION (PRCBABILITY DENSITY *

C* FUNCTION AND CUMUL ATIVE DISTRIBLTION FUNCTICN) *

*C* GPA - USED IN SUBRCUTIhE BETDIS *C* PLOT - USED IN SUBROUTIbE BETDIS
*C* MDBET A - USED IN SUBROUTINE BETDIS
*C*
*C* REMARKS:
*C* DIMENSION OF P,PB,W,N,K ARE NN
*C*

C*******************************************************************************
0C01 RE AL* 8 Y1,Y2. A A,B B EPS , F, G, ME AN,S IG, P ,P B ( 50 ) ,DFLO AT
0002 REAL*8 SIG A SIGB,CSQR T,VAFP ,V ARSIG, A(4),T ITLE(20) ,DAES
0003 RE AL*8 RBAR,W (50) , Wh , P SA R , S, QBAR ,5UM1,5LM2, S S S . B A , F P BA R
D004 RE AL* 6 HEMT1(20) hEPT2( 20 ),P5MT3(20),PE ADT( 4,20), CA(4),DB(4)
0C05 R E AL * 8 P I , P J, P K , V11,V22,V 12,W 11, W 2 2,W12, F F1
OC06 REAL*8 Z1,Z2,HENT4(20)
0007 RE AL* 8 VAR A V ARB,V AR AND ,V ARBND,51 GAND S IGEND
0008 R E AL * 8 XPB AR, XCB AP, XS, XPQ ,X SUM, XSIG, XRB AR ,XA A , *BB

0009 CCMMCh/ DATA /NN,N(50) ,KtS0)

0010 CCAMON /Z/ P(50)
0011 EXTERNAL FNCER,FBT
0012 DATA HEMT1/'MATC','HING',' CA T 8 , ' A M0 ' , ' M ENT ' , ' S TO ' , ' MAR ' , ' G IN A '

*,'l DI','STRI','BUTI','ON M',' OMEN','TS ',6*' '/

0013 DATA hEMT2/'MATC',8HING',' C A T ' , ' A M0 ' , ' M EN T ' , ' S T O ' , ' PR18,eCE D'
* , ' I ST R' , ' I B UT ' , ' ICN ',' MOPE','NTS ',7*' '/

0014 DAT A FEMT 3/'M AXI',' MUM ' , ' L IK E ' ,' LI HO ' , ' CD N ' , ' ET HO' ,' D WI' , ' TH B '
*,' ETA *,' BIN 0','MIAL',' DIS *,'T. ',7*' */

0015 DATA HEMT4/' MAXI',' MUM ','LIKE','LIHCs, ECD N','ETE0','D WI','TH B'
*,' ETA 8 , ' D I ST ' , ' . ',9** '/

C
C**** R E AD IN THE PROBLEM TITLE AND DATA

0016 99 READ (5,12,END=98) (TITLE (I),1=1,20)
0017 12 FCRMAT(20A4)
0018 PRINT 13,(TITLE (I),1=1,20)
0019 13 FCRMAT('18,20A41
0020 READ 10, N I T ER , I C UT , I P R O B , Y I ,Y 2, E P S ,71, Z 2
0021 10 FCRMAT(315,5G10.3)
0022 READ 150,PI PJ ,PK,P F1,NI, bJ ,N L,IXCUT. IV AL ,I PL , IEET A
0023 150 r1RMAT(4G10.3,7IS)
0024 CALL FNDATA(Y1,Y2,F,G A)
0025 PRINT 14, (N(I),I=1,NN)
0026 PRINT 17, (Kt!),I=1,NN)
0027 14 FORMAT (5X,'TRIES: ' ,2315 / (15X.23153 )

0028 17 FCRMAT(5X,' FAILURES: ',2315,/(15X,23I51)
0029 NITE =hlTER
0030 NOM =0

C
C*** C ALCUL ATE THE PRIOR PARAMETERS BY MATCHING DATA MOMENTS TC MARGIN AL DISTRI-
C*** BUTIC AS MCMEMTS.

0031 PRINT 610

'

. <
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0032 610 FORMAT ('0 MATCHING MCNENTS OF CATA TO THOSE OF PARGINAL DISTRIBUTIO

*N:')
0033 NMAX= NITER
0034 I F(NM AX.EQ.0) NMAX=20
0035 ITER =0
0036 MCONV=0
0037 CD 51 I=1,NN
0038 51 P( :) =0F LCATIK(II)/N(!)
0039 XPBAR=0.000
0040 00 300 I=lehN
0041 300 XPBAR=XPBAR+P(I)
0042 XPDAR=XPBAR/NN
0043 XQS AR =1.000-X PE AR
0044 XS=0.CD0
0045 00 305 !=I NN
0046 305 XS=X S+( P( I l-XP E AR) * *2
0047 XPC=XPE AR*XCB AR*(NN-1)
0048 XSUM=0.0D0
OC49 DO 310 I=1,NN
0050 310 XSUM=XSUM+1.000/NII)
0051 X SUM = X SUM *.: PC/ AN
0052 XR93R=(XS-YSUM)/(XPC-XSUM)
0053 IF(XPBAR.LE.0.0CO) GO TO 315
0054 XSUM=XRBAR*XPEAR*XQ2AR
0055 XSIG=DSQRT(XSUM)
0056 I F (X P EAR *X QB AR .L E.X SUM) GO TO 316
0057 XPC=1.0D0/XRBAR-1.0D0
0058 X A A= X PB AR *X PQ
OC59 XEB=xCBAR*XFC
0060 PRINT 612,XPBAR,XSIG,XA4 XBB
0061 612 FCRMAT(* NC WEIGHTING : MEAN=',G15.8,8 SIGMA =',G15.8,

**;',7X,'PRICR PARAMETERS: A=',G15.8,' 2=',G15.El
0062 GO TO 320
0063 315 PRINT 613,XPBAR
0064 613 FCRMAT(' NC WEIGHTING MEAN=',G15.8,' R IS NEGATIVE')0065 GO TO 320
0066 316 PRINT 614,XPBAR,XSIG
0067 614 FCRMAT(' NC hEIGHTING : MEAN=',G15.8,' SIGMA ='eG15.8,

**;',7X,'PRICR PARAMETERS: A ES ARE NEGATIVEe 3
0068 320 CCNTINUE
0069 PPBAR=10.000
OC70 REAR =0.000
0071 50 ITER = ITER +1

C*** CALCULATE TFE WEIGHTS
OC72 WW=0.0D0
0073 DO 52 I=1 NN
0074 W(I)=N(II/(1.0CO'/dAR*(N(I)-13)
OC75 52 WW=Wh+W(I)

C*** CALCULATE PBAR AP J S
OC76 PEAR =0.000
0077 DO S3 I=1,NN
0078 53 PBAR=PBAR+WII)*P(I)
0079 PEAR = PEAR /WW
OC80 QBAR=1.0DO-PBAR
0081 S=0.000
0C82 DO 54 I=1,NN
0083 54 S=S + W(I)*(P(I)-PB AR3 **2
0084 S=(NN-1)*S/NN

\. .
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C*** C ALCUL ATE ME AN CF PRICR AND RB AR
0085 $UM1=0.000
0086 SUM 2=C.000
0087 90 55 !=1,NN

0088 iSS=Wil)*(1.000-W(1)/hW)
0089 iUMl=SUML+SSS/N(I)
0090 55 iUM2= SUM 2+5SS

AB AP = (S-PB AR*QB AR* SUM 1) /( PB AR*QB AR*l SUM 2-SUM 11 )0091
C092 IF (REAR.LE.O.0DO) RBAR=0.0C0

C*** ; HECK FCR CCNVERGENCE

0093 SSS= C AB S ( ( PE AR-PP B AR ) /PB A R *-

0094 IF(SSS.LE.EPS) MCONV=1
PPBAR=PBAR0095

C*** CALCUL AT E THE A AND B P ARAMETERS OF THE PRIOR DISTRIBullCN
0096 IF(RBAR) 56,56,57

0097 57 AA=PBAR*(1.000/RBAR-1.000)
0098 BB=QBAR*(1.000/R8AR-1.0CO)
0099 SIG=DSQRT(RPAR*FBAR*Q3AR)
0100 IF (ITER.GT.2) GO TO 59
0101 IF (ITER.EC.1) PRINT 65, PEAR,SIG,AA,BB
0102 IF (ITER.EQ.2) PRINT 66 P9AR,51G,AA,BB
0103 GO TO 81
0104 59 IF(ICLT.EG.1) PRINT 69,PBAR,$IG AA,BB
0105 81 IF (MCONV.EQ.1) PRI NT 67, PB AR ,SIG. AA,BB

IF((ITER.EC.NMAX).AND.(MCCNV.EQ.01) PRINT 64, PEAR.SIG.AA,BB0106
I F ( ( P CONV. E Q.1 ) .OR. ( I T E R. EQ .N M AX) ) GO TC 850107

0108 GL TC 50
0109 56 BA=1.000/PBAR - 1.000
0110 I F ( IT ER .GT .2) GG TO 61
0111 IF (ITER.EC.1) PRINT 75 PBAR,EA
0112 IF (ITER.EQ.2) PRINT 76, PEAR,EA
0113 GO 10 82
0114 61 IF(ICUT.EQ.1) PPINT 79,PBtR,RA
0115 82 IF (MCONV.EC.1) PPINT 77,PBAR,BA

I F ( ( I T E R . E Q .NM AX ) . AND. ( MCCNV . EQ .01 ) PRINT 78, PEAR,BA0116
0117 65 FCRMAT(' OINCMI AL WEIGHTIhG : MEAN=',G15.0,' SIGMA =',

2G15.8.';',7X,'PRICR P AR AMET ER S: A=',G15.8,' E=',G15.8)

0118 66 FOPMAT(' EMPIRIC AL WEIGHT ING: MEAN=',G15.8,' SIGMA =',

1G 15. 8,' 8 ' ,7 X , ' P RI OR P AR AM ET ERS: A=',G?S.8,' B=',G15.8)

0119 67 FORMAT (' CCNVERGED RESULT I MEAN=',b.". 8,' SIGFA=',

1G15.8,8 ;' ,7X,' PRICR P AR AM ET ERS: A=',G15.d,' B=',G15.8)

0120 68 FORMAT (' hC CChVERGENCE : ME Ah = ' ,G 15.8, ' SIGMA =',

1G15.8,';',7X,'PRICR P AR AM ET ERS: A=',G15.2,' B= ' , G 15. 8)

0121 69 FORMAT (23X,'MEAN=',G15.8,' SIGMA =',

lo15.8,';',7X,' PRIOR P AR AM E T ER S: A=',G15.0,' B=',G15.8)

0122 75 FORMAT (' B'NCMI AL WEIGHTING MEAN=',G15.8,8 SIGMA =',

23X,'HEGATIVE',ex,' PRICR PARAMETER B/A=',G15.8)

0123 76 FORMAT (* EMPIRIC AL WElGHT ING: MEAN=',G15.8,' SIGMA =',

13 X , ' N EG AT I VE ' ,8X ,' PRICR PARAMETER B/A='eG15 8)

0124 77 FERMAT(' CCNVERGED RESULT : MEAN=',G15.8,8 SIGHA=8,

13 X , ' N EG AT I V E ' ,8 X , ' PRIOR P AR AMETER B/ A=' ,G15.8)

0125 78 FORMAT ( * NO CthvERGENCE : MEAN=',G15.8,' SIGMA =',

13X,' NEGATIVE',8X,' PRIOR PARAMETER B/Ac',G15.8)

0126 79 FORMA 1(20X,' MEAN=',G15.8,' SIGMA =',

13 X , ' N EG AT I V E ' ,8 X ,' PRI CR PsR AMETER B/ A=' ,G15.8 )

0127 85 (F(MCCNV.NE.1.OR.RBAR.LE.O.0003) GO TO 86
0128 NCN=hCM+1
0129 DA(NCM)=AA
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0130 DB(NOM)=BB
0131 00 110 I=1,20
0132 110 HEADT(NOME!)=HEMT1(I)

C

C**** CAI 'E A AND B BY MATCHING THE DATA MOMENTS TO THOSE OF THE PRIOR.0133 86 ME~.. ... 30
0134 SIG4=0.0000
0135 SIG=0.000
0136 DG 34 !=1,NN
0137 P (I)= DFLD AT (K ( I ))/N ( ! )
0138 34 MEAN=FEAN+P(I)
0139 MEAN= PSA''/NN
0140 00 35 I=1,NN
0141 SIG4=SIG4+(P(!)-MEAN)**4
0142 35 SIG=SIG + (P(I)-MEAN)**2
0143 SIG=SIG/(NN-1)
0144 SIG4=SIG4/hN
0145 A A= (M E AN* * 2 /S I G ) * ( 1. 0DO-M EAN) - MEAN
0146 EB=(1.000-MEAN)*AA/MEAN
0147 SSS=DSCRT(SIG)
0148 IF(NN.LE.2) GO TO 40
0149 V ARP= SI G/NN
0150 VARSIG=2.000*SIG**2/(NN-1)
0151 VAR =(SIG4-(NN-3)*sIG**2/(NN-11)/NN
0152 VARA = ((((2.000-3.000*MEAN)*MEAN/SIG)-1.0CO)**2)*VARP

1 + VAR SIG* (M E AN * *2 *( 1.000-ME AN)/ SIG* *2 ) * *20153 SISA=DSCRT(VARA)
0154

VARB=VARP*((( 1. 00 0- 4. 0D O* PE AN + 3. 0 00* M E AN* *2 3 /S IG ) +1.0 DO ) * *2 +
2 VARSIG*((MEAN*(1.000-MEAh)**23/(SIG**2))**20155 $1Ge=DSCRT(VARB)

0156 V AR AN D= ( ( ( ( 2. 00 00-3. 0D0 0* M E AN) * ME AN /SIG )-1. 0000 ) * *2) *VARP
a + VAR *(MEAN**2*(1.0000-MEAN)/SIG**2)**.0157 SIGAND=DSCRT(VARAND)

0158
V A R B N D= VA R P* ( ( (1.000-4.000*MEAN+3.000*MEAh**23/SIGl+1.000)**2 +

2 VAR *((PEAN *(1.0D0-MEAh)**2)/(SIG**2)1**20159 SIGBND=DSCRT(VARBND)
0160 PR INT 3 7,M E AN ,S SS A A,'EB
0161 PRINT 38, VARA ,VARB, SIGA.S IGB VAR AND,V ARBNE, SIG AND,S IGBND
0162 38 FORMAT (' VARI ANCE AND STAND ARD DEVI ATION ESTIMATES (ASSUMING NORMA

*L DISTRIBUTION) :',T92 ' VAR (Al=8,G13.6,8 VAR (B)=',G13.6/
*T 92 ' SIG( A ) =' , G13.6,' SI GI B) =' ,G13.6/
*' VARIANCE AND STANDARD DEVIATION ESTIMATES (DISTRIBUTION INDEPEND*ENT) s',T92,'VARIA)=',G13.6,' VAR (B)=',G13.6/
* T 92, ' S I G ( A ) = ' , G 13.6, ' SI G ( Bl =' ,G13.6 )

0163 GO TO 39
0164 40 PRINT 37, MEAN,SSS,AA,BB
0165 37 FCRM AT ('O',//'0 MATCHING MCMEN TS OF THE DATA TO THOSE CF THE PRIOR

IDISTRIBUTICN ' ,/' P RI CR MCM EN TS a ' ,8X, 'M E Ah= ' , G 15. 8,5%, ' SIGMA = 8,
2G15.8,'i',7X,' PRIOR PARAMETERS: A=',G15.8s' B=',G15.8)

0166 39 hCM=NCM+1
0167 DA(NOM)=AA
0168 DB(NOM)=BR
0169 DO 120 !=1,20
0170 120 HEADT(NON.I)=HEMT2(I)

C
C*** CALCUL ATE A ANC B BY MAX. LIKELIHOOD METHOD W ITH BETA-S tNOMI AL DISTRIBUTICN0171 IF(NITER.EQ.0) GO TO 41

0172 IF(Y1.EQ.0.000) GO TO 32

- - - !
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0173 PRINT 11, Y1,Y2,EPS. NITER

0174 11 FCRMAT('O',/'0 MAXIMUM LIKELIHCOD METHCD W IT H BET A-BINCMI AL DISTRIB
*UTICN: 8,
1/5X,'INITI AL ST ARTING PCI AT S' ,2G15.8,/5 X,' ACCUP ACY PARAMETER =',
2G12.4,/ 5X,' MAXI MUM NUMBER OF ITER AT10hS=' ,14)

0175 GO TO 33
0176 32 Yl=AA
0177 Y2=BB
0178 PRINT 36,Y1,Y2,EPS, NITER

0179 36 FORMAT ('08,/'0 MAXIMUM LIKELIHCOD METHOD WITH BETA-BINCMI AL DISTRIB
*UTICN:',
1/5X,'INITI AL ST ARTING POINTS CALCULATED BY MATCHlhG MCMENTS TO PRI
20R',2G15.8,/5X,' ACCURACY PARAMETER =',G12.4,/5X,' MAXIMUM NUMBER OF
3 ITERATIONS =',14)

C* SOLVE FOR A AND B EY THE NEWTON-RAPHSON METHOD
0180 33 IOT=IOUT
0181 CALL NEWRAL(Y1,Y2,F,G,FNDER,EPS, NITER 10T)
0182 MEAN=Yl/tY1,Y2)

0183 SI G= D SQ RT ( Y l*Y 2/ ( ( Y l+Y 2 + 1) * (Y l+Y2 ) * *2 3 )
0184 IF (ICT) 15,20.15

0185 15 PRINT 16,YI,Y2,10T
0186 16 FORhAT(5X,'SOLttTICN CONVERGED TO: A=',G15.8,8 AND B=',G15.8

18 AfTER',13,' IT ER AT IONS .' )

0187 PRINT 24, MEAN,SIG,Y1,Y2

0188 24 FORMAT (' PRIOR MOMENTS:',8X,'MEAN=',G15.8,8 SIGMA =',

1G 15. 8,' ; ' ,7 X , ' PR10R F AR AM ET ERS: A=',G15.8,' B= ' , G 15. 8 )

C *** CALCULATC VARIANCES C COVARIANCE OF MAX. LIKELIHOCD ESTIMATORS
0189 CALL V A R M L E (Y 1,Y 2, N N , N, V11, V2 2, V 12 )

0190 CALL APPMLE(Y1,Y2,NN,N,Keh11,h22,W123
0191 ACM=NCM+1
0192 CA(NCM)=Y1
0193 DBINOM)=Y2
0194 DO 130 !=1,20
0195 130 NEADT(NOM,1)=HEMT3(1)
0196 GO TO 241
0197 20 PRINT 21, Y1,Y2
0198 21 FORM AT(SV,'SOLUTICN DID NCT CCNVERGE -- L AST V ALUES OF A AND E 4RE

l',2G15.9)
0199 EA=Y2/Y1
0200 PRINT 25, MEAN, \
0201 25 FORMAT (' PRIOR M.AENTS:',8X,'MEAN=',G15.8,8 SIGMA = ',

l'NOT DEFINED PRIOR PARAMET ER B/ A= ', G15.8)

0202 NITER =0
C
C***C ALCUL ATE A ANC B BY M AX.LIKEllH000 METN00 h!TH EET A DISTRIBUTICN

0203 241 IF(Z1.NE.O.0DO) GO TO 232
0204 Z*=AA
0705 Z 2= B B

0206 PRINT 231 Z1 Z2
0237 231 FORM AT('O',/80 MAXIMUM LIKELlHCOD METHCD WITH BETA DISTRIBUTION:',

1/5X,' INITIAL STARTING POINTS CALCULATED BY MATCH 1hG MCMENTS TC PRI
*0R',2G15.e)

0208 GO TO 233
0209 232 PRINT 211,Z1,Z2

0210 211 FORMAT ('O',/'OMAXIMUM LIKELlHOOD METHOD WITH BETA DISTRIBUTION:',
*/5X,' INITIAL STARTING PCINTS',2G15.8)

C* REJECT THE DATA SET C0hTAINING 0 NO.0F FAILURE
0211 233 DO 210 !=1,NN

1
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0212 IF(K(I).GT.0) GO TO 210
0213 PRINT 615
0214 615 FORMAT (T2,'TFIS DATA SET IS REJECTED BECAUSE OF 0 NO.CF FAILLRE')
0215 GO TO 41
0216 210 CC NT INU E

C* SOLVE FCR A AND B BY THE NEWTCN-RAPHSON METHOD
0217 10 T= l CU T
0218 C'.LL NEWRAL(Z1,Z2,F,G,FBT,EPS, NITE.10T)
0219 IF(10T3215,220,215
0220 215 PRINT 16,Z1,Z2,IOT
0221 MEAN=21/(Z1+Z2)
0222 SIG=D SQRT ( Z1* Z2/( ( Z1+ Z2 +1)* (Z1+ Z2 )**2 3 )
0223 PR INT 24,M E AN ,S IG,Z1, Z2
0224 NCM=NCM+1
0225 CA(N1M)=Z1
0226 CB(NCM)=Z2
0227 00 230 !=1,20
0228 230 HEADT(NOM,1)=HEMT4(1)
0229 GO TO 41
0230 220 PRINT 21,Z1,Z2
0231 BA=Z2/Z1
0232 PRINT 25,ME AN,B A

C
C*** CALCULATICN OF CLASSICAL AND B AYESI AN FAILLRE PRCB ABILITIES FCR E ACH
C COMPCNENT USING RESULT S CF MET FDDS 2 AND 3

0233 41 IF(IPROB.El.0) GO TO 140
0234 PRINT 31
0235 PRINT 42
0236 42 FORMAT ( 'O',///'0 ESTIMATED F AI LURE PROBABILITY FCR EACH CCMPCNENT.

1 8 AY ESI AN EST IMATE BASED CN RESULTS OF MATCHING MCMENTS TO PRIOR')
0237 PRINT 46
0238 46 FORM AT ( 47 X , 'T RI C S F AILURE S P M E A N-CL A S S. FNEAN-BAYS.a)
0239 DO 45 I=1,NN
0240 45 PB(I)=( AA+K(1))/( AA+BB+N(I))
0241 P R INT 4 7, ( N ( I ) , K ( 1 ) , P ( I ), PB (1 ), I= 1, NN )
G242 47 FORMAT (48X,13,7X,13,G16.3 G14.3)
0243 IF (NITER.EQ.0) GO TO 140

C*** CALCULATICN FRCH THE A AND B 0F THE MAX. LIKELIF000 FUNC TICN SOLUTION
0244 PRINT 43
0245 43 FORMAT ('0E STIM ATED FA ILURE PRCB ABILI TY FCR E ACH CCMPCNENT. EAYESI

1 AN ESTIMATE BASED ON RESULT S FROM MAXIMUM LIKELIHCOD CALCULATIONS.
2')

0246 PRINT 46
0247 DO 48 I=1,NN
0248 48 PB (1)=( Yl+K(1)) /(Yl+Y2+N(II )
0249 PRINT 47,(N(I),K(I),P(I),PB(I),I=1,NN)

C*** CALCULATE AND PLOT BETA DISTRIBUTICN
0250 140 IF ( IB ET A.EQ.0 ) GO TO 99
0251 C ALL BETDIS (NCM,HE ADT,C A, CB,NI.NJ NL, IXOUT,IV AL,PI,PJ PK,IPL,

* TITLE,PF1)
0252 GO TC 99

C*
0253 98 PRINT 31
0254 31 FORMAT ('L')
0255 STOP
0256 END

Y ,
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****************
C***************************************************************PM,IPLeCBT,PFil*
C* SUERCUTINE BET DIS (NCC.HE ACT , A e B NI,NJ eNL e lXCUT,IV tL eP I,PJ.

*C* PURPOSES : *C* - COMPUTE BET A DISTRIBUT ION
*C* - FLOT EET A CISTTIEUTION

C* - COMPARE BETA DISTRIBUTION OF DIFFEREbT PARAMETERS *
C* (BCTH PROB AEILITY CENS ITY AND CUMULATIVE DISTRIBUTICN FLhCTICNSI *

*C* DESCRIPTION OF PAR APETE RS :
C* NGC - h0. OF BETA DISTRIBUTICNS TC EE CCMPAREC Ih ChE FIGURE *

*C* hE ADT- DESCRIPTION FOR E ACH CISTRIEUTICN *C* CBT - COMPARISCN CHART HEADING *C* A,8 - EETA DISTRIEUTION PARANETERS
*C* IV AL - CONTROL P AR AMETER FCR DISPL AYING RESULTS *C* IVAL=-1 PRINT COMPUTED VALUES ONLY

C* IV AL= 0 PLOT CCNP ARISON F IGURE ONLYtIF NGC=1,PLCT 1 CLRVE *

C* IV AL=1 PRINT COMPUT ED VALUES FLCT 1hCIVICUAL CURVE *
*C* AND CCMPARISCN CHART
*C* IPL - CCNTBCL P AR AMET FR CCR PLOTT ING

C* IPL=0 PLOT NI CATA POINTS FRCM PI TC PJ (IF NI=0eNI=51 IS USEC) *
C* IPL=1 PLOT NJ CATA POINTS FRCM PJ TC PK (IF NJ=0,NJ=2 IS USED) *
C* IPL=2 PLOT hl+NJ-1 CATA POINTS FROM PI TO PK *

INDEFENDENT VARIABLE (FIRST CATA FOIN'l *C* PI -

C* PJ - INDEPENDEh1 V ARI AEL E (INTERMEDI AT CAT A POINTI *

INDEPENDENT VARIABLE (LAST DATA POINil FCINil *C* PK -

C* IPL,PI,PJ.PK - USED IN COMPUTING C PLOTTIhG DENSITY FLNCTION *

C* IXCUT- PRINT MARK ON B ASE-VARI ABLE AXIS EVEFY IXCUT CATA POIhT *
C* IXOUT=0 PRINT EVERY 5 DATA PCINTS. *
C* hl - hC. CF LINES USED FCR PRINTING EASE-VARIABLE AXIS *

C* IF NL=0. 51 LINES WILL BE USED *
C* PF1 - FIRST DATA POINT (=0 USUALLYI USED IN COMPLTING & PLCTTIhG *
C* CISTRIBUT ION FUNCTION. *
C* SUBROUTINE REQUIRED : GPA PLOT C MDBETA *
C* RENARKS : *

C* NI AND NJ MUST 89 CCD INTEGERS *
C* CIPENSICN CF G,PeGXePX,F,PF ARE NI+NJ-1 *

C* DIPENSICNS CF AA, A AA FF SHCULD BE 5 TIPES CF G,PeGN,PX,F,PF *

C*******************************************************************************
0001 SUBR OUT INE BETDIS(NCC,HE ACT , A ,B NIe NJ NL e lXCUT,IVAL ,PI,PJ,PM,IPL e

*CBTePF11
0002 IMPLICIT REAL*8(A-Hec-Z)
CC03 CIPENSICN FE ADT (4,201, A(4), E(41

0004 DINENSION G(53) ,P(53) ,HEAC(20),GXt53) ,PX(53)
0005 DINEh31CN CBT(20leAA(265).AAA(2658
OCC6 DIMENSICN F(53).PF(531 FF(2658
0007 CATA FAX /'F(Pl'i
OCC8 DATA hS/0/,P/2/
0009 OATA XAX/'P'/,VAX/'GtPI'/
0010 CATA GNIN,GMAX,FMIN,FMAX/3*C.CD00,1.0 DOC /

C
0011 I F ( I X CU T. E C . 01 IXOUT=5
0C12 IF(NI.EC.09 NI=$1
OC13 IF(NJ.EC.0) NJ=?
0014 00 900 N0=l ENOC
0015 00 100 I=1,20
0016 100 NEAD(Il=HEADT(htell
0017 BAB=DEXP(DLGAMA(A(N0ll+DLGAPA(B(NDil-DLGAPA(AlbCl+B(NCill
CC18 IF(IVAL.EG.03 GC TO 200
0019 PRINT 600

.
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0020 600 FORMAT ('1'l
CC21 PR INT 602,FEAD
OC22 602 FCPPAT(//T15.20A41
0023 PRINT 605,A(N01,B(NO)
0C24 605 FCRN AT(//T15,'PROE A21LITY DENSITY FUNCTION's

*/T15e'0F BETA DISTRIBUT10h'//
*T15e'blTH PARAMETERS A = ' ,G15.7 /133 e' B = ',G15 7)

OC25 PRIhT 610,2AB
0026 610 FORMAT (T33 'B(A.Bl = 8,Gle.101
0C27 CALL GPAllA(NGI,EIN0ll
CC28 FRINT 612
0029 612 FCRMAT(/T15.40(' 'l/T22,'P'eT45,'G(PI'/115,40(8 'l/l

C *** C ALCUL ATE CENSITY FUhCTIch
C030 200 C ALL GPA(PI ,PJ,NI, AthCl eB (NCI .ARE A1 P G IVAL,B AB)
0031 PRINT 622
OC32 622 FCFPAT(' 'l

0033 C ALL GPA( PJ ePK NJ A(N0l eB (NC) , ARE A2,PX,GX elVAL ,EAE)
0034 CC 150 !=2 NJ
OC35 hC=hl+1-1
0036 P(NCl=PX(1)
003T 150 Gthcl=GXtli
OC38 IF(IVAL.EQ.03 GC TO 250
0C39 AREA = AREA 1+ AREA 2
OC40 PRIhT 444

C *** PLOT INDIVICUAL CURVE OF CEhSITY FUNCTICN
0041 250 IF(IPL-13 253,252,251
OC42 251 NT=hl+NJ-1
0043 IP=0
0C44 GO TC 255
0045 252 NT=NJ
0046 GO TO 254
OC47 253 NT=hl
OC48 254 IP=IPL
0049 255 IF(IVAL.EQ.-18 GO TO 399
OC50 00 300 !=1,NT
OC51 !D=N!*1P-IF+1
0052 AA(Il=P(IDI
0053 AAthT+Il=G(IDI
0054 AAAtll=P(IDI
OC55 300 AAAthi*N0+Il=GIIDI
0056 IF(IVAL.EC.0. AhD.NOC.GT.13 GO TO 399
0057 C ALL PLOT (NO, AA,NT M NL .NS.ME AD,XAX,YAX,1300T eGMAX eGMINI
OC58 PRihT 660,AthCl,0(hC)
0C59 CALL GPAI(A(NuleB(N0ll

C *** C ALCULATE DISTRIBUTION FUNCTICN
OC60 399 NF=NT
0061 NI1=NI-1
0062 CPF=(PJ-PF11/NI1
OCf3 PF(ll=PF1
006% PFIN!)=PJ
0C65 DC 400 I=2, nil
0066 400 P F ( I l = P F ( I- 11 + 0P F
OC67 00 401 !=2eNJ
OC68 hC=N!+1-1
0069 401 PF(NCl=P(NCI
0070 N1=hl+hJ-1
0071 CO 410 !=1,N1
0271 410 C ALL MDBETA(PF(II . A(h05,B (NCl eF (l) ,1ERI

.
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0073 IF(IV AL.EQ.01 GO TO 450
OC74 PRIhT 600
0075 PRINT 602, HEAD
0076 PRINT 606,AthC),B(NO)
OC77 606 FCRMAT(//T15,'CUPUL AT IVE CISTRIBUTION FUNCT ICh 'e

*/T15. 80F BETA CISTRIBLT10h' //
8,G15.7/T23,'B = 'eG15.75*T15, 'WI f H P AR AN ET ERS * A =

00TC PRINT 670
0079 670 FORM AT( /115,40( ' ' l /122 e ' P' ,T 45,'F ( PI ' / T15. 40 g e_ e 3 f 3
CC80 DC 420 I=l ehl
OC81 420 PRINT 415,PF(I) ,F(Il
0082 415 FCRMAT(T14 G15.7 T39eG15.11
OCE3 PRIhT 622
0084 DC 421 !=NI,N1
CC85 421 PRIhT 415,PFIII F(Il
OC86 PRINT 444
0087 444 FORMAT (/T15.40(' 'll

C *** FLOT Ih0!VICUAL CURVE OF CISTRIBUTICN FUNCTION
0088 450 CCNTIhUE
0089 IF(IV AL.EQ.-11 GO TO 900
CC90 00 455 !=1 hF
0091 ID=NI*IP-IP+1
0C92 AA(Il=PF(10)
OC93 AAthF+Il=F(101
0094 F F ( Il =P F( 101
0095 455 FF(hF*hC+Il=F(ICI
O C96 IF(IVAL.E0.0.ANO.NCC.GT.11 CO TO 900
0097 C ALL PLOT (h0, A A,NF Ne hl ENS,HE AD,XAX, FAX,I XOUT FMAX eFMINI
OC98 PRINT 660,A(NCI E(NCI
0099 900 CONTIhUE

C
C *** FLOT CCMPARISCh CURVES

0100 IF(IVAL.EQ.-1) RETURN
0101 IF(hCC.EQ.11 RETURN
0102 hC=NGC+1
0103 C ALL PLOT (N0e A A A,NT,NO NL NSe CBT e XAX eYAX e !XCUT ,GM AX eGMI NI
0104 CO 350 !=1,NCC
0105 PRINT 650,Ie(HEADT(IeJ).J=1,201
0106 650 FCRMAT(T20,I2,' ',2CA4)
0107 PRINT 660eA(IleE(Il
010 B 660 FORMAT (T26,8A = ' , G 13. 6,2 X e 'B = 'eG13.61
0109 CALL GPAI(A(II,E(Ill
0110 350 CONTINUE
0111 C ALL PLOT (NO,FFe NF e NO.NLe NS CBT,X AX eFAX e IXOUT F KAX eFMINI
0112 CD 360 I=1,hCC
0113 PRINT 650,I e(HE A0T(1,J) .J =1,2 01

0114 PRINT 660eA(IleB(Il
0115 360 CCNTIh0E
0116 RETURN
0117 END

\h -
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0001 SUBRCUT !hE GPA (P 1 P 2 N. A B. ARE A.P ,G ,I % AL ,EAB)
C***********************************************s*******************************
C* PURPOSE THIS PROGRAF IS U$iD IN CONJUhCTIO. WITH BETDIS ONLY *
C***********************************************6*******************************

0002 IMPLICIT REAL*8(A-H C-ZI
0003 DIMCNSION G(533 .P(531
OLC4 DP=(P2-P11/(N-11

C *** CALCULATE DENSITY AND DIS 1RIBLTION FUhCTICNS
OC05 P(ll=F1
CCC6 P(NI=P2
0007 hl=N-1
OC08 DC 105 !=2,h1
GC09 105 P(Il=P(I-11+0P
0010 CO 110 !=leN
0C11 I F (P( II .LT .1.0000. AND.P(I I. CT .O.0000 3 GO 10 1Cd
0C12 GO TO 107
0013 106 G I= ( A-1.00 l *DLOG (P ( 13 ) + (B-1.D Cl *0 LOG ( 1.0 0-P (I l l-D LCG ( B A SI
0014 IFIGI.GT.-168.0001 GC TC 10T
3015 G(Il=0.0000
0016 G C T C 110
CC17 107 Gill =P(II**(A-1.00l*(1.00-P(Ille*(E-1.001/BAB
0018 110 CONTINUE
0019 AREA =0.0000
0020 IF(IVAL.EQ.01 RETURN
0021 CO 120 I=1,N
0022 120 PRIkT 620,PEII . Gill
0023 620 FORPAT(T14,G15.7 T39,G15.7)

C *** CFECK VALUES CF DENSITY FUNCTION BY CCMPUTIhG AREA ChCER CURVE
C *** (USthG SIMPSON'S RULEl

0024 GE=0.00
0025 GC=0.00
0026 00 125 !=2,N1,2
0027 GE=GE4 Gill
CC28 125 G0 =GC 4 G t ! + 18
0029 AREA =0P/3.00*(G(11+4.00*GE+2.00*GO-G(Nil
0030 RETURh

C

0031 ENTRY GPAI(A,BI
C
C *** PRINT REMARK CN EACH EET A DISTRIBUT ION

0032 IFIA-1.0D001 400,410,420
0C33 400 IF(E-1.00001 401,402,402
OC34 401 FAihi 501
0035 501 FORMAT (T26,8G(P) GOES TO INFINITY AT P ECLAL 0 AND 18)
CC36 RETURh
OC37 402 PRINT 502
0038 502 FCRMAT(T26,'GtPI GOES TO INFINITY AT P ECLAL C'l
CC39 RETLRh
0040 4'O I F ( 2- 1. 00 0 01 411. 412,413
OC41 411 PRINT 511
0042 511 FORMAT (126,'G(P) GOES TC INFINITY AT P ECUAL l'8
0043 RETURN
OC44 412 PRINT 512
0045 512 FORMAT (T26,'G(P) IS UNIFORMLY DISTRIBUTEC'l
0046 RETURN
OC41 413 PRIhT 513
0048 513 FORMAT (T26,'G(P) IS MAXIMUM AT P ECUAL 08)
0049 RETURh

,

8
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OC50 420 IF(E-1.0000) 411,422,423
0051 422 PRINT 522
0052 522 FORPAT(T26,'GtP) IS MAXIMUM AT P EQUAL l'8
OC53 RETURh
0054 423 PMAX=(A-1 00001/(A+E-2.C0001
0055 PPINT 523,FNAX

OC56 523 FORPAT(T26,'GtPI IS MAXIMUM AT P EQUAL ', F 10.7 3
0C51 RETURN
OC58 EhD

0 '
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OC01 SUBPOUT!bE NEWRAL(Y1 Y2,F,G FA.EPS, NITER e lCCNV I
C*******************************************************************************
Ce *

C* THIS SUBROUTINE SOLVES TWO GIMLLTANEOUS EQUATIONS CF THE FORM T-(YI,Y21=0 *
C* AND G(Y1,Y21=0 BY THE NEWTON-RAPHSCN METh00. *

C* hRITTEN BY J.K. SFULTIS, SEPTEMBER, 1976. *

C4 *
C* INPUT PARAMETERS: *

STARTING ESTIMATE CF V1. *C* Y1 =

C* Y2 = STARTING ESTIPATE OF Y2. *
C* F = FINAL VALUE OF THE FUNCTICN F(Y1,Y21. *

C* G = FINAL VALUE OF THE FUhCTICH GtY1,Y23. *
C* FN = NAME CF THE FLNCTION SUBRDUTIbE kHICH C ALCUL ATES VALUES *
C* CF F AND G ANC ITS DERIVATIVES. *

C* EPS = CCNVERGENCE CRITERIGN -- ACCUPACY CF SOLUTION *
C* NITER = MAXIMUM NUMBER OF ITERATICNS CE SIRED. *

C* ICChV =1 IF OUTPUT FOR EACH ITER AT ION IS CESIREO, =0 OTHERWISE. *

C* THis PARAPETER IS SET TO C IF CChVERGENCE IS NOT ACHIEVED *

C* CR TO THE ITERATICN NUMBER FOR WHICH CCNVERGENCE CCCUPRED. *

Ce *
C*******************************************************************************

OCO2 REAL*8 Y1,Y2,F,G EPS A(41,X1,X2 DET CABS C0hvA.CONVB
0003 IPRINT=IC0hv
OC04 IF (IFRIhT.EQ.1) PRINT 40
0005 40 FORMAT ('01TERATICH ' ,7X , ' Y18,13X , 'Y 2 8 ,9 X , ' r i' t e Y2 3 8,6 X, ' G tY 1,Y2 3 ' l
0006 ICCNV=0
CC07 CO 30 !=1.hlTER
0008 ICCNV=ICCNV+1

C THE NEXT TWO CARDS ARE TO BE INCLUDED ONLY IF Y1 AhD Y2 MUST BOTH EE >0
CC09 IF (Y1.LT.0.0001 Yl=CAES(Yli
0010 IF (Y2.LT.O.0001 Y2= CABS (Y28
0011 CALL FhtY1,Y2,F,G.Al
0012 CET=A(1)*A(4) - A(Ii'A(31
0013 IF (DET ) 10,20,10
CC14 10 X1=(F*A(4) - G*A(331/CET
OC15 X2=(G*A(1) - F*A(211/DET
0016 IF (IPRIhT.EQ.ll PRINT 41, ICCNV e Y1,Y2,F G
0017 41 FCRPAT(15,5X.4G15.8 )
0018 CCNVA= CABS (X1/Yli
OC19 CChVB= DABS (X2/Y21
0020 IF (CCNVA.LT.EPSI GC TO 1
0021 GOTO2
OC22 1 IF (CChvB.LT.EPSI GO TO 3
6123 2 Y1=Y1-X1
OC24 30 Y 2=Y2-X2
OC25 ICCNV=0
0026 3 RETURN
0027 20 PRIhT 11
OC28 ICChv=0
0029 11 FORMAT (' DETERMINANT IS ZERO -- NO SOLUTION'l
0030 RETURh
OC31 END

1427 028
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C
0001 SUEPOUTINE FNDATA(YleV2,F,G,Al
0002 RE AL* 8 Y1,Y2 X1,X2,X3 e F eG e A(4 8,5UMl eSUM2,5UM3 e FCLC AM

0003 CCMMCh/ DATA /hheN(50) .Kt5C)
C
C** RE AD lh THE PL AAT F AILURE C AT A

0004 READ 10,NN,(N(lleK(IletaleNhl
OC05 10 FCPMAT(16151
0C06 RETURN

C
C*** EEGIh THE CALCULATICN CF TFE DERIVATIVES

OC07 ENTRY Ft:0ER(Yl eV2,F G Al
0008 50M1=0.t00
CCCS SUM 2=0.000
0010 SUM 3=0.0bC
OC11 CC 20 !=1.h2
OCl2 X!=Yl+Mll)
0013 X2=Y2+N(ll-K(l)
0014 X3=Yl+Y2+N(Il
0015 SUM 1= SUM 1 + PCLGAMIX1,1)
0016 SUM 2= SUM 2 + PCLGAM(X2,1)
CC17 20 SUM 3= SUM 3 + FCLGAM(X3,13
0018 X1=PCLGAM(Yl+Y2 ell
OC19 Attl=hN*(X1-PCLGAM(Ylelli + SLM1 - SUM 3
0020 A(41=hN*(X1-POLGAM(Y2elli + SUM 2 - SUM 3
0021 A(2)=NN*X1 - SUM 3
OC22 A(31=A(2)

C
Co** CALCULATE CNLY THE VALUE CF TPE F AND G FUNCTICh5

OC23 ENTRY FNChtYtY1,Y2,F,GI
0024 $UM1=0.000
OC25 SUM 2=0.000
0C26 $UP3=0.000
0027 CD 30 IsleNN
OC28 X1=Y1+K(Il
0029 X2=Y2+N(Il-k(l)
0030 X3=Y1+Y2+N(I!
0031 SUM 1= SUM 1 + PCLGAM(X1.01
0032 SUM 2= SUM 2 + PCLGAM(X2,0)
0033 30 SUM 3= SUM 3 + POLGAM(X3 08
OC34 X1=PCLGAM(Yl+Y2.0)
0035 F=NN*(X1 - POLGAM(Yleoll + SUM 1 - SUM 3
0036 G=hh*(X1 - PCLG AM(Y2,0ll + SUM 2 - SUM 3
0C37 RETURN
0038 END
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C***FBT***
0001 SUBROUTINE FBT(XA,XB F.G.As
CCO2 IMPLICIT REAL*8(A-H,0-2)
0003 DIMENSION A(4)
OC04 CCPPCh /0ATA/ hh,N(5CI N(50)
OC05 COMMCN /2/ P(501

Co** CALCULATE OERibATI%ES
CCC6 DUP =PCLGAP(XA+XB,1)
0007 Atll=hN*(00M-PCLGAM(XA 13)
OCOB A(21=bh*00M
OCC9 A(31=A(21
0010 A(41=hN*f.*UM-PCLGAM(XBelli

C***C ALCUL AT E Va'.UES OF T HE FUNCT 10h5
0C11 SUMl=C.0000
0012 SUM 2=r.0000
CC13 CO 103 1=1,hh
0014 SUM 2=fCM2+0 LOG (1.0000-Pill)
0C15 100 SU M1= SU M1 + 0LCG I P ( l l i
OCle CUPaPCLGAP(XA+32,03
0017 F= SUM 1+NN*(OUM-POLGAM(XA.Cil
0C18 G=SUP2+hh*(CUM-POLGAM(XE,0ll
OC19 R E TUR N
0020 END

:-
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0C01 RE AL FUhCT ICN FCLG AM*8(le PI

C********************************************************************************
C*
C* THIS FUhCTICN C ALCUL AT ES THE POLYGAMMA FUNCit0N FOR RE AL POSITIVE ARCUMENT S *
C* USING AN ASYMPTOTIC SERIES E)PANSICN FCR L ARGE AOCUMEh15 AhD THEN A RECUR- *
C* SION Rt L AT ION FCR SM ALL ARCUMENTS. THIS MElr0C ;$ DESCRIBE 0 BY A. fADEU DE *
C* MEDEIROS AND G. SCbWACHHEIM, CCMM. ACNE 12 (196'e l 213. CODE PREPARED BY *

*C* J.K. SFUL(ISe JULY 1976. *C* *C* INPUT PARAMETERSt *C* Z = RC AL POSITIVE ARGUPEhr FOR PCLiG AMMA FUNCTION *
C* M= INDEX OR DERIVATIVE CRDER OF THE PCLYGAMNA FUNCTION *
C* **********************
C*********************************************************AAREAl*8 B(101,ZeX,CLCG,0CAPMA FSt,TRI,hFAC ARG1,ARG2.0002
C
C*** INITI ALIZE THE VECTOR E TO TFE EVEN EERNOULLI hlMBERS

0003 NBERN=10
OC04 IF ( Z.GT .100.00Cl NBERh=lCINT( 10.C00/DLCG t Zi l + 1
OC05 B(11=0.106t66666606667C0
0036 B ( 2) =-0.3 3 3 33 3 3 3 33333 3 30- C1
0CC7 B(31=0.2380952380952380-01
0C08 B(41=-0.333333333333333C-C1
0009 E(51=0.7575751'15751*8
OCIC B(61=-0.253113553113553
0011 B(71=1.1666666666(6(67
0012 B(81=-7.092156Et274510
0013 2(9)= 54.91117754486215
0014 B(10l=-529.124242424242
OC15 IF (P-11 12,13,20

C
C*** C ALCUL AT E TFE DIC AMM A OR P SI FLNCitCN (M=C)
C*** CALCLL ATE WHETHER Z > 8

0016 12 NN=Z
OC17 h=8-hh
OC18 h= MAX 0(0.hl
0019 X=Z+N

C*** CALCUL ATE PSI FCR X > 8
0020 P Sl =0.000
0021 00 10 K=1.hBERN
OC22 !=2*N
0023 10 P SI=P SI + B(Kl /(K*X** !)
0024 PSt=0LOGtX) - C.50C*(1.00/X + PSI)

C*** CALCUATE FOR Z< 8 IF hECESSARY
OC25 IF (N) 15,15.14
OC26 14 OC 16 hh=leN
OC27 16 PSI = P SI - 1.00/( Z*hh-11
0028 15 POLCAM= PSI
0029 RETLRN

C
C*** C ALCULAT ICN OF THE TRIGAMM A FUNCTION (N=1l

OC3C 13 hh=Z
DC31 N=8-NN
OC32 h= PAX 0(0,N)

OC33 X=Z+N
C*** CALCULATE FOR Z >8

OC34 T R I=0.000
OC35 DC 17 k=1,NBEPN

v i 1427 031.m
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FCRTRAN IV G LEVEL 21 POLCAM DATE = 7E3C5 16/03/17

0C36 ! = 2* K +1
0037 17 TRI=TRI+ B(Kl/X**I
0C38 TRI=1.00/X + 0.500/X**2 + TRI

C*** C ALCUL ATE FCR 2 < 8
0039 I F IN I 18,18 15
0C40 19 DC 11 hh=1.h
0C41 11 TR I=TRI + 1.000/ t Z+ hh-1)* *2
0042 18 PCLCAP=TRI
C C4 3 RETURN

C
C*** C ALCUL ATICN CF TFE CEhER AL PCLYG AMMA FUNCTION (M > ll

OC44 20 NN=Z
0045 N=8-NN
OC46 h=MAXOt0.hl
0C47 X=Z+N
0048 POLCAM=0.000
CC49 MP=P+1
0050 ARGl=MM
0C51 NFAC=CGAMMA(ARG11
0C52 I SIGH =4* ( M /21 - 2 *M + 1

C*** CALCULATE FOR Z > 8
0053 OC 27 k=1,hBERN
0054 !=2*k+M
0055 ARG1= 1
CC56 ARG2=2*K+1
0057 27 POLGAP=POLGAM + 8tKl*0GAMPA(ARG11/(DGAMMA(APG21*X**Il
0058 PCLGAM=-ISIGN*(NF AC/(M*X**HI + 0.500*hF AC/X**MP + PCLGAMI

C*** CALCULATE FOR Z<8
0059 IF (N) 28.28,29
CCec 29 AA=0.000
0061 00 21 NN=1,N
OC62 21 AA=AA + 1.000/(2+NN-1)**MM
0C63 PCLGAP=PCLGAM - ISIGN*hFAC*AA
OC64 28 RETURN
0065 EhD

'x 1427 032., ,
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FORTRAN IV G LEVEL 21 APPMLE CATE = 7E3CS 16/03/17

0001 SUBROUTINE APPPLE(A, Behn,N M,011,U22,0121

C********************************************************************************
C* *
C* PURPOSE : CALCULATE %ARI ANCES AhD CCVARI ANCES *
C* CF MAXIMUM LIKEL1H000 ESTIMATORS *
C* CF PARAMETERS A A>0 B *
C* CF BETA PRIOR DISTRIBUTION

*re PARAMETER CESCRIPTION 8 *
C* A ESTIMATOR CF A *
C* B ESTIMATCR OF B *
C* hN huPBER CF 085ER%EC CATA *
C* N(Il NUMBER CF TRIES *
C* Ull VARIANCE (Al *
C* U22 VARIANCE (BI *
C* U12 CCVARIAhCE(A Bl *
C* SUBRCUTINE RECUIREC *
C* POLGAM CALCULATE POLYGAMMA FUNCTICNS *
C* REMARM *
C* APFRCX. EXPECT AT ICN VALUES BY 2-ND DER IV ATIVES OF *
C4 LIKELIHCCD FUNCTION

*
C*
C*******************************************************************************

0002 IMPLICIT REAL*8(A-H C-Z)
OC03 CIMEh5ICN h(50),K(501

C *** C ALCULATE INFCRMATich MATRIX
OC04 W11=Nb*( PCLG AM( A*B,15-PCLG AP( A,11 )
OC05 W 22=Nh* ( PCLG AM( A*B,11-PCLG AM( 6,111
0016 W12=NN*POLGAMIA* Bet'
OC07 DC 100 !=1,NN

CCCB AG1=A+K(Il
0009 AG2= A +B+N( I l
OCIC AG3=B+h(Il-N(Il
0011 W11=W11+POLGAM(AG1,15-PCLGAPEAG2,1)
OCl? W22=M22 +PCLGAMI AG3,15-PCLC AMI AG2,13
0C13 W12=W12-PCLGAM(AG2,1)
0014 100 CCNTINUE
OC15 W11=-W11
0016 k';2=-k22

0017 W12=-W12
OC18 PRINT 605
0019 605 FORM AT(T10,8 APFROXI M AT E SCLUT ICN' l
0020 PRIhT 620,W11,W12,W12,W22
0021 620 FCRMAT(TIO,'INFCRMATICN MATFIX : ,,(T35,2(2XeG13.6833

C *** CALCULATE VARIfNCES AhD CCVARIANCE
0022 CET=W11*W22-W12*W12
0C23 U11= h22/DET
0024 U22= Wil/DET
OC25 U12=-h12/05T
0026 PRINT 630,011.022eU12
0C27 630 FCRM AT (91X, 'V AR ( Al= ' ,G13.6,8V AR(B l= ' ,G13.6/

*87X,'COVAR(A,Bl=8,G13.6)
0028 RETURN
0029 ENG

1427 033
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FORTRAN IV G LEVEL 21 VARNLE DALE = 7E301 16/03/17
0C01 SUBROUTIhE VARPLE(Y1,Y2

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * *, N h e h , V 1 1, V 2 2 , V 12 1**************************************************C*
*

C* PURPOSE : C ALCULATE VARI ANCES AND CCV ARI A NC ES *
C* OF MAXIPUM LIKELINOCD ESTIMATCRE *
C* CF PARAMETERS A AhC B *C* CF BETA PRICR DISTRIBUTICN *
C* PARAMETER CE5CRIPTICN * *
C* V1 ESTIMATOR CF A *
C* Y2 ESTINATCR OF B *
C* hh NUMBER CF OBSERVED CATA *
C* N(!) NUMBER CF TRIES *
C* V11 V AR I ANCE( A l *
C* V22 VARIANCE (el *
C* V12 COVARI ANCE( A,B) *
C* SUEROUTINE RECUIRED *
C* PCLGAM CALCLL ATE FCLYGAPM A FUNCTICNS *
C* REMARK *
C* USING EXACT EXPECT AT Ich VALUES *
C*
C********************************************************************************

OCO2 INFLICIT REAL*8(A H.C-2)
OCO3 DIMENSICN N(501

C *** CALCULATE INFCRMATICh MATRIX
OC04 H L 1 = D LG A MA ( Yl + Y21-DLG AM A (Y13-CL G AM A (Y 2 3
0015 PC1=PCLGAM(Yl+T2 ell
0006 E11=Nh*(PG1-POLGAM(Y1,1))
CC07 E22=hh*(PG1-PCLGAM(Y2,1))
0008 E12=NN*PG1
OC09 CC 200 !=lehN
OC10 AG1=N(II+1
0011 AG2=T1+Y2+N(Il
0012 HL2=DLGAMA( AGil-OLG AMA( AG2|
0013 PG2=PCLGAM( AG2,1)
0C14 E11=E11-PG2
OC15 E22=E22-PG2
0016 E12=E12-PG2
OC17 hl=htil+1
0018 00 2C0 Kk=leNI
0019 kl=NN-1
0C20 AG3=Yl+K!
0021 AG4=V2+N(Il-KI
0C22 AG5= K I+ 1
0023 AG6=N(Il-Kl+1
0024 HL 3=CLG AM A( AG3)+0LG AMA( AG41 -DLG AM A( AG53 -OLG AN A ( AG63
OC25 F =DEXFI NL 1 +HL2+ HL3 )
0026 E 11=E 11+PCLGAMI AG3,1)*H
002T E22=E22+PCLGAM(AG4,1)*H
OC28 200 C C NT I hu E
0029 E 11=- E 11
0030 E22=-E22
0031 E12=-E12
0032 PRINT 606
OC33 606 FCRMAT(T10,82 XACT SCLUTICh')
0034 PRINT 620,E11,E12,E12,E22
0035 620 FCRMAT(TIO,'INFORMATICN MATRIX ',(135,2(IX,G13 4338

C *** CALCULATE VARIANCES AhC CCVARIANCE
0036 D E T= E ll * F 2 2-E 12 * E 12

iV .'
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FORTRAN IV G LEVEL 21 VARMLE CATE = 78305 16/03/17

0037 V11= E22/DET
OC38 V22= Ell /DET
OC39 V12=-E12/DET
0040 PR INT 630,V11,V22,V12
0041 630 FCRPAft91X,'VARIAl=',G13.6,8 VAR (Bl=',G13 6/

*BT X , 'COV ARI A, Bl= ' ,G13.6 3
0042 RETUph

OC43 END

:.
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FORTRAN IV G LEVEL 21 MCBETA DATE = 7230S 16/C3/1T
0001 SUBROLTINE MCBETA(X, F C, FRC8, IERI

C*******************************************************************************
C* *
C* FUNCTION: EVALUATE TFE IhCOMPLETE EET A DISTRIBUTION FUNCTICN *
C* *
C* PARAMETERS: *
C* X - VALUE TO WHICH FUNCTION IS TO BE IhTERCRATED. X PUST BE IN ThE *
C* RANGE (0,1) INCLUSIVE. *
C* P - INPUT (ISTI PARANETEF (MUST EE GREATER THAN 0) *
C* Q INPUT (2NDI PARAMETER (MUST BE GREATER THAN Cl *-

C* PROB - CUTPUT PROB ABILITY TFAT A RANDCM VAPI ABLE FROM A BETA DISTRIEUTICN *
C* HAVIhG P ARAMETERS P AND Q WILL BE LESS THAN OR ECUAL TO X. *
C* IER - ERROR PARAMETER. *
C* IER = 0 IhCICATES A h0RMAL EXIT *
C* IER = 1 INDICATES THAT X IS NOT Ih TbE RANCE (0,11 IhCLUSIVE *
C* IER = 2 INCICATES THAT P AND/0R C IS LE SS THAN OR EGUAL 10 0. *
Ce *
C* CODE BASED ON SIMILAR CODE BV h. BOSTEh ANC E.EATTISTE AS MCDIFIEC BY *
C* M. PINE AhC J. FCC. *
C* *
C*******************************=***********************************************

0002 CCUB LE PREC ISICN PS ,PX,Y, P1,DPe INFSUM CNT WH,XB ,00,C.EP S,EPSL
0003 DOUBLE PRECISICN ALEFS,FINSLM,PQ,DA,0LGAMA
0004 DOUBLE PRECISICN X,P,Q,PRCB

C DOUBLE PRECISICh FUkCTICN CLGAMA
C MACHINE PRECISICN

0C05 CATA EPS/1.0-6/
C SPALLEST FCSITIVE SUMBER REFRESENTABLE

0006 CATA EP S1/1.0-18/
C htTURAL LCG CF EPS1

000T DATA ALEPS/-179.601600/
C CHECK RANGES OF THE ARGUMENTS

OCC8 Y=X
OC09 IF (tX.LE.1.0) .AND. (X.G E.0.Ol i GO TO 10
0C10 IER = 1
0C:1 GO TC 140
0012 10 IF ((P.GT.O.0) .Ahs. (Q.GT.O.Oll GO TC 20
0013 IER = 2
0014 GO TC 140
0015 20 IER =0
0016 IF (X.GT.O.51 GO TO 30
001T INT =0
0018 CO TO 40

C SWITCH ARGUMENTS FCR HORE EFFICIENT USE OF TFE POWER
C SERIES

0C19 30 INT = 1
CC20 TEMP = ?
0021 P=Q
OC22 C = TEMP
OC23 Y= 1.00 - Y
0024 40 IF (X.NE40. .AhD. X.NE.1.1 GO TO 60

C SPECIAL CASE - X IS 0. OR 1.
0025 50 PROB = 0.0000
0026 GO TO 130
OC2T 60 IB = C
0028 TEMP = IB
0029 PS = Q -DFLOAT(IB)
OC30 IF (C.EQ.TEPPI PS = 1.00

-
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OC31 DP = P
0032 CQ = 0
0033 PX = OP*0LOGtYi
OC34 PC = CLGAMA(CP+0Cl
0035 P1 = CLCANA(OP)
0036 C = OLGAMA(CC)
0037 C4 = CLOG (CPI

C DLGAM A IS A FUNCTICN kHICH CALCLLATES THE DCUELE
C PRECISICh LCG G AMM A FUNCTICh

0038 XB = FX + OLGAMA(PS+ CPI - OLGAMA(PSI - C4 - P1
C SCALING

0039 IB = XB/ALEPS
OC40 INFSOM = 0.00

C FIRST TERM OF A DECREASING SERIES WILL UNDERFLCW
0041 IF (IB.NE.0 3 GC TC 90
0042 INFSUN = DEXP(XBI
0043 CNT = IhFSUN*CP

C CNT WILL ECUAL CEXP(TEMPl*(1.t0-PSII*P*Yo*I/ FACTORIAL (Il
0044 WH = 0.000
0045 B0 WH = WH + 1.00
0046 CNT = CNT* (hH-P Sl*V/bn
0047 X B= CP +W H

0048 IF(Chi.LE.XB*EFSil GC TC SO
0049 XB=CNT/XB
OC50 INFSUM = INFSUM + XE
CC51 IF (AB/EPS.GT.IhFSUNI GC TO 80

C CLGAMA IS A FUNCTICN WHICH CALCLLATES TbE DCUELE
C PRECISICN LOG G AMMA FUhCTICA

0052 90 FINSUM = 0.00
0053 IF (CQ.LE.1.00) GO TO 120
OC54 XB = FX+ 00*0LCG(1.CO-YI + FQ - P1 - CLOG t0GI - C

C SCALING
0C55 IB = XB/ALEPS
OC56 IF (IE.LT.01 12 = 0
0057 C = 1.C0/( 1.00-% )
005B CN! = OEXPIXB-0FLO AT(IBl* ALEPSI
OC59 P S = 00
0060 HH = DQ
0061 100 WH =hF -1.00
0062 IF t hH.LE.O.0001 GC TO 120
0063 PX = (PS*Cl/ (DP+WH)
CC64 IF (FX.GT.1.0 Col GC TO 105
0065 IF (CNT/EPS.LE.FINSUh OR.CNT.LE. CPS 1/PXI CO TO 120
0066 10 5 C hi = C NT * P X
OC67 IF (ChT.LE.1.001 GO TC 110

C RESCALE
006B IE = IB - 1
OC69 CNT = CNT*EPSI
0070 110 PS =WH
0C71 IF (IB.EQ.01 F1hSUM = FINSUM + CNT
CCF2 GO TO 100
0073 120 FRCB =FINSI'M + INFSUM
0074 130 IF (IbT.EC.at GO TO 140
0075 r/0B 5 1.0 - PRCB
0076 TEMP = P
0077 P=Q
0078 Q = TEMP
0C79 140 RETURN
0080 END

1427 037,
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FORTRAN IV G LEVEL 21 CATE = 7E309 16/03/17
C

PLOT 10C ................. . . . . . . . . . . , ,.................................. PLOT 20
C

PLOT 30C SUBROUTINE /LDI PLOT 4CC
PLOT 50

C PURPCSE PLCT 60C PLJT SEv- _ CROSS-VARIABLES VERSUS A BASE VARIABLE PLOT TCC PLCT 80
C USAGE PLCT 90C C ALL PLOT (NO . A.N eM NL e hS . COT eX AX eV AX ,1X 0 Vie AXMX AXMN )
C PLOT 110
C DESCRIPTICN CF PARAMETERS PLOT 120C NO - CHART huMEER (3 CICITS MAXIMLP) PLOT 13CC A - MATRIX OF DATA TO BE PLOTTEO. FIRST COLUMN REPRESENTS PLOT 140C EASE VARI ABLE AND SUCCESSIVE CCLUMNS ARE THE CROSS- PLOT 150
C VARIABLES (MAXIMLM IS 93. PLGT 160
C N - NUMBER 0F RCWS IN MATRIX A PLCT ITCC H - huMBER OF COLUMNS IN MATRIX A (E QU A L T O T H E T OT A L PLOT 180
C huMBER OF V ARI ABLE SI . N4 *I MUM IS 10. PLCT 190C NL - huPP'R OF LINES IN ThE PLOT. IF 0 IS SPECIFIED. 51 PLOT 200
C LINE5 ARE USED. PLOT 210C NS - CCDE FOR 50RTIhG THE B ASE VAPI ABLE DATA IN ASCENDIhG PLOT 220C CRDER PLOT 230C 0 SORTING I S NOT NECSS%#RY (ALREADY th ASCENothG PLOT 24CC CRDERI. PLOT 25CC 1 SCRTING IS hECESSARV. PLOT 260C COT- CHART CESCRIPTION (60 CHARACTERS.DIMENSICN 20)
C XAX- EASE VARI AELE- AXIS DESCRIPTION (6 CHARACTERSI
C YAX- CROSS VARI ABLE-AXI S DE SCRI PT ION (6 CHARACTER $1
C IXCUT - MARKS ON EASE V ARIAELE-AXIS WILL EE PRINTED
C EVERY IXCUT CATA POINTS
C IXOUT=C PRIhT MARK ON EVERY CATA POINT
C AXMX - PAXIMUM VALUE ON THE CROSS VARIAELE AXIS
C AXMN - NINIMLM VALUE ON THE CRCSS VARI AELE AXIS
C IF AXMX C AXMN = 0.0000eMAX.C MIN. VALUES
C IN THE MATRIX A WILL BE USEO
C

PLOT 270C REPARKS PLCT 28CC NCHE PLOT 290C
PLCT 300C SUERCUTINES AND FUNCTION SUBPROGRAMS REQUIREC PLOT 310C NCNE PLOT 320C
PLGT 330C

.................................................................. PLOT 34CC
PLOT 3500001 SUBR CUT INE PLOT (h0, A N,Me hL ,NSe COT, X Ax e VA)e IX0L T, AXPX A XMNI

0002 IMPLICIT REAL*8(A-He0-Z)
0003 DIMEhSICN CUT (1011,VPR(113 ANC(9) A(265)
OC04 DINENSICN CCT(208
0005 DATA BLAhK/s of,gNg/ ego, ego,e3e,e4,,e$e,e6'e'7s,e88 e'9'/

C
PLOT 380OC06 1 FORPAT(1H1337Xe' chapt e,I3,4Xe20A4/l

0007 7 FORMAT (1H 16X,'+',10ge.________, ele $X Att
0C08 8 FCRMAT(IH ,9X,11F10.49 PLOT 4600009 9 FORMAT (IHO,15X,A6/l

C
C PLOT 470

.................................................................. PLOT 48CC
PLOT 490

5
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FCRTRAN IV G LEVEL 21 PLOT CATE = 1E3C9 16/03/17

0010 IF(IXCUT.EC.01 IXCUT=1
0011 htL=NL PLOT 500

C PLOT SIC
0012 IF(NSI 16, 16, 10 PLOT 520

C PLCT 530
C SORT BASE VARIABLE CATA IN ASCEt1DIhG CFDER PLOT 540
C PLCT 550

0013 10 CC 15 !=1,N PLOT 560
OC14 CO 14 J=1,N PLOT 570
0015 IF(A(Il-A(Jil 14, 14, 11 PLOT 580
0016 11 L=I-h PLOT 550
0017 LL=J-N PLCT 600
0018 DC 12 K=1,M PLCT 610
0019 L=L+h PLOT 620
0020 LL=LL+N PLCT 630
OC21 F=A(L) PLOT (4C
0022 A(L1=A(LLI PLOT 650
0023 12 A(LLl=F PLOT 66C
0024 14 CCNT1 hue PLOT 67C
0025 15 CONTINUE PLCT 680

C PLOT 690
C TEST NLL PLOT 100
C PLCT 710

OC26 16 IF(NLLI 20, 18, 20 PLOT 120
0027 18 NLL==1 PLOT 730

C PLOT 140
C PRINT TITLE PLOT 150
C PLOT 760

0028 20 WRITE (6,1thC,CCT
C PLOT E60
C FIND SCALE FCR BASE VARIABLE PLOT 870
C PLOT EEC

0029 XSCAL=(AINI-Atlll/(NLL-11 PLOT 850
C PLCT 900
C FINC SC ALE FCR CECSS-V ARIABLES PLOT SIC
C PLCT 920

0030 IF(AXMX.LE.AXMhl GC TC 22
0031 YMIN=AXMN
0032 YMAX=AXMX
OC33 GC TC 41
0034 22 M1=N+1 PLOT S3C
0C35 YMIN=A(Mll PLOT 940
OC36 YMAX=1 MIN PLOT SSC
0037 M2=M*N PLCT 960
OC38 DC 40 J=M1,P2 PLOT 57C
0C39 IF(A(J)-YMINi 28.26,26 PLOT 580
0040 26 IF(A(Ji-YMAX) 40,40,30 PLCT S90
0C41 28 YMIh=A(J) PLOTIC0C
0042 GO TO 40 PLOT 1010

0C43 30 YMAX=A(J) PLCTIC20
OC44 40 CCNTIhUE PLOT 1030

0045 41 Y SC AL= ( Y M A X-YM IN 1/100. 000 C PLOT 1040
C
C PRINT CROSS-V ARI AELES hUPBERS
C

0046 YPR(ll=YMIN
0047 00 90 KN=1,9
0048 90 YPR(KN+11=YPR(KN)+YSCAL*1C.CDC0

1427 039
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FORTRAN IV G LEVEL 21 FLOT DATE = 78305 16/03/17

0049 YPR(lll=YMAX
OC50 hRITE(6.8)(YPR(IPle!Fal.111
0051 kRITE(6,71YAX

C PLOT 1050
C F!hD BASE VARI ABLE PRIhT PCSITION PLOTIC60
C PLCT107C

0052 X8=A(1) PLCTIC90
0053 L=1 PLOT 10SC
0054 N Y=M- 1 PLOT 1100
OC55 !=1 PLOT 111C
OC56 45 F=I-1 PLOT 1120
0057 XPR=XE+F*XSCAL PLOT 1130
OC58 IF(A(LI-XPRI SC 50,46
0059 46 IFICAESIA(LI-XPRI-XSCAL*0.5COCl 5Ce70,70

C
C FIND CROSS-VARIABLE $ePRINT LIhE AhD CLEApe0R SKIP
C

0060 50 hRITE(6.1001
OC61 100 FORMAT (1H I
0062 CD 60 J=leMY
OC63 00 5 5 I X =1,101
0064 55 0UT(IXI=BLAhK
OC65 LL=L+J*N
OC66 JP=((AILLI-YNIhl/YSCAll*1.0C00
0067 CtlT(JPl=ANGtJ)
OC68 IF((L-11-(L-11/IXCUT*IXDUTl!6,57,56
0069 56 IF(J.GT.11 GD 10 58
0070 W R IT E (6.1101 ( CU T ( I Z i e I Z= 1,101)
OC71 110 FCFPAT(1H+,15Xs'l'e101All
0072 GO TO 60
0C73 58 W RIT:(6.1111 (CUT (IZi e IZ=le 1018
OC74 111 FCRMAT(1H6e16X 101All
0075 00 TO 60
OC76 57 IF(J.GT.13 GC TC 58
OC77 WRITE (6,21 XPRe(CUT (!ZieI2=1,1011
3078 2 FORMAT (1H+,F11.4.4Xe'+'e101All
OC79 60 CCNTibuE
OC80 L=L+1 PLOT 1290
OC81 GO TC 80 PLOT 1300
0C82 70 kRITE(6.33 PLOT 13100083 3 FORMAT (th e15Xe'l'8
OC84 80 !=I+1 PLOT 132G
OC85 IF(I-NLLI 45, 84, 86 PLOT 1330
OC86 84 XPRsAthi PLCT1340
OC87 GO TC 50 PLOT 1350
OC88 86 CONT! HUE
GC89 WRITE (6,91 XAX
OC90 RETURh PLOT 145C
0091 END PLCT1466

:
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TAILS

By

J. Kenneth Shultis
Dept. of Nuclear Engineering

Kansas State University
Manhattan, Kansas 66506

ABSTRACT

The FORTRAN program TAILS calculates coitfidence limits and probability
intervals for the failure probability of a component. In particular, confidence
limits at arbitrary confidence levels, are calculated by a classical description
of the failure probability for a component which has experienced a given number
of failures in a specified number of operations. A Bayesian analysis of the
same component (whose failure probability is assumed to come from a specified
beta prior distribution) is performed to obtain from the posterior distribution
the probability interval for the component failure probability.
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1. TilEORY

In the reliability analysis of a system, the probability of failure of
a particular component is often of great concern. Estimates of the component

failure probability can be obtained by botn classical and Bayesian analyses [1].
In this document, the theory of obtaining confidence intervals or probability
intervals for such estimates is reviewed, and a code to compute these intervals
is described. A more complete description is given in Ref. [2].

1.1 Review of the Classical Analysis

For a component which has experienced k failures in n operations, classical
analysis estimates the compc,nent failure probability to be D = k/n. Further if p

is the true f ailure probability, then the probability of obtaining k failures
in n operations is given by the binomial distribution

f(k|n,p) = .g " k)! p (1-P) (1)-

The probability of observing k or fewer failures in n tries is then

k
F(k|n,p)= [ gg{'_g);pf (1-p)n-f (2)n

.

E=0

To obtain confidence intervals for p, one seeks a lower value, p , g
and an upper value, p , such that the probability of obtaining at most and at
least k failures in n opcrations is a/2 (i.e., half the confidence level).*
Thus, to obtain k or fewer failures in n operations with a probability a/2
p is chosen such that

F(k|n,p)=a/2. (3)y

Similarly the minimum reasonable value of the failure probability at the
a-level, is that value p , for which the probaoility of observing k or more
failures in n tries is a72, i.e.,

1-F(k-1|n,p)=a/2. (4)
g

Although the confidence limits, p and p , could be obtained by numerical
lsolution of Eqs. (3) and (4), the potentially large summations in these equations

can be avoided by recognizing

*The confidence level refers to the total probability in both upper or lower
tails. IIalf of the total confidence level is associated with each tail region.

s -
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F(k|n,p)=1-1 (k+1,n-k), (5)

where the incomplete beta function I i defined by

,p

z"~ (1-z) dz (6)p(a,b) 2 B(a,b)I

'0

with B(a,b) E P(o)T(b)/r(a+b) and r is the gamma function. With this relation
between F and I , the equations which determine the upper and lower confidence

E
limits on p may be written as

I (k,n-k+1) = a/2 (7)

and

(k+1,n-k)=1-f. (8)I

The advantage of this fore, which still must be solved numerically for p
and p , is that the corresponding probability limits for the Bayesiany
analogue are given by equations of the same functional form, and the same
numerical algorithm used to solve the above equation can be used in the
Bayesian analysis.

It is easily shown that p < p = k/n < p , with the equality defined *
g . y

only if k=0 (p =p=0) or k=n (p =p=1) . Of special interest are sitcations in-
3

volving events with low probabilities of failure, for which one often
encounters observed values of k=0 for relatively large values of n. For this
case, the upper bound, p , can be obtained analytically. From Eq. (8) oney
obtains upon solving for p1

p1 1-[f] ", for k=0. (9)=

Similarly for high probability events for which one often observes k=n
(and for which p=p =1), Eq. (7) yieldsy

(1-f) ", for k=n. (10)p =
g

*For k=0, the integrand on the left hand side of Eq. (7) becomes singular and
the equation has no solutien. In this case the entire confidence level is
often associated with the " upper tail" of the distribution. However, to be
consistent with the more general case (k/0,u), we will always associate only
half of the total confidence level with each end of the tail. A similar

convention is used with the k=n case.

1427 044y
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1.2 Review of the Bayesian Analysis

In the Bayesian description of the failure probability for a component,
it is assumed that the failure probability comes from a particular prior
distribution which is known either from previous experience or from the analysis
of similar components [1]. In this document, it is assumed that the prior
distribution is given by a beta distribution

a-1 ,p)b-1g(p) = p ("' }' ( }B(a,b) *

if it is assumed, as was done in the classical case, the failure distribution
is given by a bionomial distribution, then the use of Bayes' theorem gives
for the posterior distribution [1]

a+k-1 b+n-k-1
C(p|k,n,a,b)=P (*B( k +n-k)

This quantity (also a beta distribution), is the Bayesian estimate of the
distribution of the failure probability, p, for a particular component which
has previously experienced k failures in n tries and which is assumed to
belong to a class of components whose failure probabilities are distributed
according to Eq. (11).

With the posterior distribution, the probability lintsts are readily
formulated for'a component which has experienced k failures in n tries.
Explicity the probability that the component failure probability is greater
chan some upper bound p at the a/2 levely

'l

Prob {p>p)=f= ((p|k n,a,b)dp. (13)y
'p

1

Similarly the probability that the component failure probability, p, is less
than some lower bound, p , at the a/2 level is

9

'p

Prob {p<p}=f.0 C(p|k,n,a,b)dp. (14)g

Upon substitution for C, the probability limits are readily expressed in
terms of the incomplete beta function as

I (a+k,n+b-k) ' a/2 (15)

and

I (a+k n+b-k) = 1 - a/2. (16)

1427 045
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Again these equations have the same form as those. defining the confidence
inte. eval in the clasnical case (Eqs. (7) and (8)), although with different
arguments for the incomplete bata function.

1.3 Estimates of Cot..ponent Failure Probabi'.ity

Classical analysic estimates the probability of failure for component
with k failures in n tries as

p=b (17)n

The Bayesian approach uses as its estimate of the component failure
probability the mean of the postericr dirtribution (Eq. (12)), namely

(b " (a+k) + (b+n-k) *

,,
L i' , j.

1427 046
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2. DESCRIPTION OF PROGRAM ' TAILS'

For a given a-level and component history (i.e., values for n and k),
the code TAILS calculates (i) the upper end lower confidence limits on the
component failures probability from Eqs. (7) and (8), and (ii) the upper
and lower probability limits of the Bayesian posterior distribution for
the component from Eqs. (15) and (16) with any specific beta prior distribution
(defined by parameters a and b). The four equations to be solved, Eqs. (7),
(8), (15) and (16), all are of the same form, and are readily solved for
p or p by numerical techniques involving methods of successive bisection
g y

and interpolation in the interval (0,1) [2]. To evaluate the incomplete
beta function, a very accurate subroutine by N. Bosten and E. Battiste is
used (3), and is briefly described in Appendix A.

A complete listing of the program is given in Appendin B.

2.1 Input Data

For each component to be analyzed, input data consists of the component
performance history (n and k), the desired statistical level a, and, if the
Bayesian probability limits are sought, the parameters of the assumed beta
prior distribution (a and b). One input card is required for each component
to be analyzed, and analysis continues until all data cards are processed.

For each component the data card contains the following information:

COMPONENT DATA CARD: Format (215,4G10.4,15)

K = number of observed failures for component (Ek)
N = total number of operations in which K failures were observed (En)

AALPHA = confidence level or fraction of distribution in both the upper and

lower tails (Ea)
AA = parameter "a" of the assume beta prior distribution for the component.

If no Bayesian analysis is desired then AA is set to 0.0.

BB = parameter "b" of the assumed beta prior distribution for the component.
If no Bayesian analysis is desired then BB is set to 0.0.

EPS = accuracy parameter for iterative solution. Iterations stop when

the magnitude of the difference between two successive values of
or p is less than EPSpy g

IPRINT = option variable for intermediate output. If IPRINT = 0 only final
zalues for the confidence interval and probability limits are printed.
If IPRINT = 1, results of the interative solution at each step are also

printed.

2.2 Sample Output

In the numerical solution of the probability or confidence limits,

iterative procedure is used. The output indicates an " error code" for each
limit which indicates whether a successive result was obtained in the iterative
solution procedure. Explicitly,

T ! 1427 047m.
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ERROR CODE = 0 successive solution
= 1 no solution found in 20 iterations
= 2 solution not in interval (0.1) - should never occur.

In Fig. 1 a sample output is shown for a component which has experienced
five failures in 100 operations. The output is self-explanatory.

ACKNOWLEDGMENT
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C ALCUL ATION OF CONFICEN*.E INTERVALS FOR THE TRUE F AILURE PRCBABILITY P AT THE 0.500
LEVEL

PL ANT DAT A: S FAILUkiS IN 100 TRIES
ESTIMATED PARAMETERS CF THE PRICR DISTRIBUTION: A= 1.000 B= 20.00

REQUESTED ACCURACT FCR PC AND Pl= 0.10CE-04

CLASSICAL RESULT: ESTIMATE CF F AILURE PROB ABILITY P= 0.500000E-01

UPPER LIMIT Pl= 0.133268E-01 (ERROR CODE = Of

LOWER LIMIT PO= 0.237948E-01 (ERROR CCOE= O!

5
u

BAYESIAN RESULT: ESTIMATE OF F AILURE PROB ABILI TY P= 0.495868E-01
,,,

Jh* UPPER LIMIT Pl= 0.612309E-01 (ERRCR CODE = 01

N
~~4 LOWER LIMIT 90= 0.252770E-01 (ERROR CCOE= Of

CD
-C:=
4

Fig. 1. Sample Output from TAILS for component with k=5 and n=100 which is
assumed to come from a class described by a beta prier with a=1 and b=20.
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ADDENDUM A

Evaluation of the Incomplete Beta Functions

The incomplete beta functica I (x,y) la calculated from the following
Pexpression: [3]

p (1-p)Y f(x+y) FINSUM*INFSUM p* T(PS+x)
p(**Y) " f(PS) f(x+1) P(x) r(ytl)

where INFSUM and FINSUM represent two series summations defined as follows:
x(1-PS) j=

INFSUM = [ where,

j=1

P

1,j=0

(1-PS) =
r(1+y-PS)/r(1-PS) , j > 0

and

Il y (y-1) . . . (y-j+1) 1
FINSUM =

7 (x+y-1)(x+y-2)...(x+y-j) (7_p)j

where [y] is equal to the largest integer less than y. If [y]=0, the

FINSUM=0. The quantity PS is defined as

P

1 if y is integer

PS =
y - [y], otherwise .

The above algorithm (combined with scaling to avoid numerical inaccuracies
encountered when using the gamma function with large arguments) was in-
corporated into a FORTRAN program MDBETA by Bosten and Battiste [5]. This

program (modified in accordance to remarks made by Pike and Soo Hoo [5] was
used in the present analysis. The program MDBETA is significantly more
accurate than the widely used program BDTR [3], especially at large arguments.
For example, in the case p=0.5, x=y=2000, MDBETA gives the correct value,
0.5, while BDTR gives 0.497026.

1427 051c -
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ADDENDUM B

Listing of the Program TAILS

I
'

1427 052-
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FORTRAN IV G LEVEL 21 MAIN DATE = 78111 22/27/18

C
Co******************************** TAILS *************************************
C* *

C* THIS PROGRAM CALCULATES (1) THE CONFIDENCE LIMITS ON THE CLASSICAL ESTIMAIE *
C* OF A COMPONENT FAILURE PROB tBILITY, AND (2) THE PROB ABILITY INTERVALS OF *

C* THE BAYESI AN POSTERIOR FAILURE PROBABILITY DISTRIEUTION FOR TPE S AME *
C* CCPPONENT. ARBITRARY CONFIDENCE LEVELS IOR TAIL AREAS) MAY BE SPECIFIED. .

C* *

C* *

C* INPUT DATA: (ONE CARD FOR E ACH COMPONENT ANALYSISI (215,4G10.4,I5: *

C* K = NUMBER OF OBSERVED F AILURES FOR COMPONENT *
TOTAL NUNDER CF TRIES IN WHICH K F AILURES WERC OBSERVED *C* N =

Co AALPHA = CONFIDENCE LEVEL (DI STRIBUTICN FRACTION IN BOTH T AILS ) *
C* AA = 'A' PAR AMETER OF THE ASSUMED BETA PRIOR DISTRIEUTION *
C* I = 0 IF NO SAYESIAN ANALYSIS IS DESIRED) *

'B' P AR AME TE R CF THE ASSUMED BET A PRIOR CISTRIBUTION *C# BB =

Ce t=0 IF NO BAVESI AN ANALYSIS IS DESIREDI *
REOJESTED ACCURACY FOR THE CONFIDENCE LIMITS *C* EPS =

C* IPRINT = 1 IF INTERMEDIATE CUTPUT IS DESIRE 03 = 0 IF ONLY FINAL *
C* RESULT IS TO BE PRINTED *

C* *
C* *

C* hRITTFN BY J. K. SHULTIS, KANSAS STATE UNIVERSITY, MARCH 1977 *

C* *

C*******************************************************************************
C
C

0001 COMMON IPRINT,A,B. ALPHA
0002 EXTERNAL FCT

C
C*** READ IN THE INPUT DATA

0003 99 REACT 5,10,END=1001 K,N AALPHA,AA,BB EPSelPRINT
0004 10 FCR P Af t 215,4G10.4.15 )

0005 PRINT 11,AALPHA.K.N,AA,BB,EPS
0006 11 FORMATI'1C ALCULA TION OF CONFIDENCE INTERVALS FCR THE TRUE FAILURE

1P RO E AB IL IT Y P AT T HE',G10.3. ' LEVEL ',

2/' PLANT D ATA: ' ,13 . ' FAILURES IN ',I4,' TRIES',
3/' ESitMATED PARANETERS OF THE PRICR OISTRIBUTION: A=',G10.4,
4' E = ', G10.4, / ' R EQUESTED ACC URACY FOR PO AND Pl=' ,G 10. 31

C
C*** CL ASSICAL C ALCULATICNS

0007 P=K/FLOATIN)
0008 PRINT 12,P
0009 12 FORP Af t 'O' ,///8 0CL ASSICAL RESULT: ESTIMATE OF FAILURE PROBABIL

II T Y P=' ,G15.6,/)
0010 A=K+1.
0011 BsN-K
0012 ALPHA =1.0 - 0.5*AALPHA
0013 C ALL RTMI t P 1.F,FC T,0.0.1.0.0. 0001,20,I E R)

0014 13 FORM AT I' U PPER L IM IT Pl= ',G15.6,' (ERROR CODE =',12.,3.,f3
0015 PRIhi 13.P1,IER
0016 IER=0
0017 PO=0.0
0018 IF (K.EO.0 3 GO TO 15
0019 A=K
0020 B=N-K+1
0021 ALPHA =0 5*AALPHA
0022 CALL RTMItPO,F.FCT,0.0,1.0.0.0001,20,IER)

1427 053
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FORTRAN IV G LEVEL 21 MAIN DATE = 78171 22/27/18

0023 15 PRINT 16,PO,IER
0024 16 FCRPATge L CWER L IM IT PO=' ,G15.6,8 (ERROR CODE =',12,'I',/l

C
C*** E AYESI AN ES TIMATE S

0025 IFttAA+801.EO.0.03 GO TO 99
0026 P=(AA+Kl/tAA+8B+N)
0027 PRINT 20,P
0028 20 FCRNATI80',///e0 BAYESIAN RESULT E STIMATE CF F AILURE PROBABILI

ITY P=',GIS.6,/)
0029 A=AA+K
0030 E=BB+N-K
0031 A L PH A=1.0-0.t * A AL Psia
0032 C ALL RTMi t P1.F,FCT,0.0,1.0.0.0001,20, IERI
0033 PRINT 13. P1,IER
0034 ALPHA =0.5*AALPHA
0035 C ALL RTHit PO , F,FCT,0.0.1.0,0.0001,20, t ER)
0036 PRINT 16,PO,IER
0037 GO TO 99
0038 100 PRINT 30
0039 30 FCRPATI'1'l
0040 STOP
0041 END

FORTRAN IV G LEVE L 21 FCT D ATE = 78111 22/27/18

0001 FUNCTION FCT(X)
C* TFIS FUNCTION EVALUATES CONFIDENCE LIMIT E00ATION

0002 CCNPCN IPRINT,A,2. ALPHA
0003 IF ( ( X.EO.1.01 0R. t X.E0.0.Ol l GO TO 20
0004 CALL MDBETA(X,A,B,P,IER)
0005 FCT=P-ALPHA
0006 IF(IPRINT.EO.1) PRINT 10,X,FCTetER
0007 10 FORMAT (' X=',G12.5,' I(XIA,81-ALPHA =',G13.5,' IER=',131
0008 RETURN
0009 20 FCT=X-ALPHA
0010 RtTURN
0011 END

.-

I

.
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FORTRAN IV G LEVEL 21 NO2 ETA DATE = 78111 22/27/18

0001 SUBROUftNE MODETAtX, P, Q, PROS, IER)
C
C******************************************************************************* *C*
C* FUNCTION EVALUATE THE INCOMPLETE BETA DISTRIBUTION FUNCTION *

*C* *C* PARAMETER $3
C* X - VALUE TO WHICH FUNCTION IS TO BE INTERGRATED. X MUST BE IN THE *

C* RANGE (0,1) INClustVE. *

C* P - INPUT (IST) P ARAMET ER (MUST BE GREATER THLN 0) *
C* Q - INPUT (2NO3 PARAMETER (MUST EE GREATER THAN 0) *
C* PROB - OUTPUT PROB ABILITY TH AT A RANDCP VAP!ABLE FROM A BETA DISTRIBUTION *
C* HAVING PARAMETERS P AND Q WILL BE LESS THAN OR EQUAL TO 0. *
C* IER - ERRCR PARAMETER. *
C* IER = 0 INDICATES A NORMAL EXIT *
C* IER = 1 INCICATES THAT X 15 NOT IN THE RANGE (0,1) INCLUSIVE *
C* IER = 2 INDICATES THAT P ANC/OR Q 15 LESS THAN OR EQUAL TO 0. *

*
Ce
C* CODE BASED ON SIMIL AR CODE BY N. BOSTEN AND E.BATTISTE AS PCDIFIED BY *

*C* M. PIKE AND J . HCO.
e

C
C*******************************************************************************

0002 ECUELE PRECISION PS, PX, Y, Pl OP, INCSUM, CNT, WH, XB.
* 00, C, EP S, EPS1, ALEPS, FINSUM, PQ, 08, DLGAMA

C DOUBLE PRECISION FUNCTION DLGAMA
C MACHINE PRECIS 10N

0003 CATA EPS/1.0-6/
C SMALLEST POSITIVE NUMBER REPRESENT ABLE

0004 CATA EPSI/1.0-78/
C NATURAL LOG CF EPSI

0005 DATA ALEPS/-179.601600/
C CHECK RANGES OF THE ARGUMENTS

0006 Y =X
0007 IF (tX.LE.1 0) .AND. (X.GE.O.Oll GO TO 10
0008 IER e 1
0009 GO TO 140
0010 10 IF (tP.GT.O.0) .AND. (Q.GT.O.Oll GO TO 20
0011 IER = 2
0012 GO TO 140
0013 20 IER =0
0014 IF (X.GT.O.51 CO TO 30
0015 INT = 0
0016 GO TO 40

C SWITCH ARGUMENTS FOR MCRE EFFICIENT USE OF THE POWER
C SERIES

0017 30 INT = 1
0018 TEMP = P
0019 P =Q
0020 0 = TEMP
0021 Y= 1.00 - Y
0022 40 IF EX.NE.O. .AND. X.NE.1.1 GO TO 60

C SPE".! AL C ASE - X IS 0. OR 1.
0023 50 PROD = 0.
0024 GO TO 130
0025 60 IB = 0

180026 TEMP =
0027 P S = 0 - F LOA f t IB )
0028 IF (Q.EQ.T EMP 3 PS = 1.00

('
1

- -

1427 055
_ _ _ _ _ .



204

FORTRAN IV G LEVEL 21 NOBETA C ATE = 78111 22/27/18

0029 OP=P
0030 CQ = 0
0031 PX = OP80LCGtY)
0032 PQ = OLGAMAf0P+00)
0033 P1 = OLGAMAIDP)
0034 C = CLGAMA(CQ)
0035 04 = OLOC(OP)

C OLGAMA IS A FUNCTION kHICH C ALCUL ATES THE 00UBLE
C PRECISION LOG GAMMA FUNCTION

0036 XB = PX + CLG AM A(PS +0PI - OLG AM A (PS ) 04 - P 1-

C SCALING
0037 IB= XB /AL EP S
0038 INFSUM = 0.00

C FIRST TERM OF A DECRE ASING SERIES WILL UNDERFLOW
0039 IF (IB.NE.0) GO TC 90
0040 INFSUM = DEXP(XB)
0041 CNT INFSUN*0P=

C CNT KILL EQUAL DEXP( TENPl*(1 00-PSII*P*Ve*I/F ACTORI AL (!)
0042 WH= 0.000
0043 80 WH = WH + 1.00
0044 CNT = CNT* (WH-PSl*Y/WH
0045 XO = CNT/(DP+ hill
0046 INFSUM = INFSUM + XB
0047 IF (XB/EPS.GT.INFSUM1 GO TO 80

C OLGA''A IS A FUNCTION WHtCH CALCUL ATES THE COUELE
C PRECISION LOG GAMMA FUNCTION

0048 90 FINSUM a 0 .00
0049 IF (00.LE.1.001 GO TO 120
0050 XB = PX S 00*LLOG(1.00-Y) + PQ - P1 - OLCGt0Q) -C

C SCALING
0051 IB = X8/ALEPS
0052 IF (IB.LT.01 IB = 0
0053 C= 1.00/ I 1.0 0-Y )
0054 CNT = O EXP (XB-FLC AT( IB l *ALEPS )
0055 PS = DQ
0056 WH= DQ
0057 100 W H =WH -1. 00
0058 IF (WH.LE.0.0001 GO TO 120
0059 PX = (PS*C l / (OP+bH)
0060 IF (PX.GT.1.000) GO TO 105
0061 IF (CNT/EPS.LE.FINSUM.OR.CNT.LE.EPS1/PX) GO TO 120
0062 105 CNT =CNT*PX
0063 IF (CNT.LE .1.001 GO TO 110

C RESCALE
0064 IB= IB - 1
0065 CNT = CNT*EPS1
0066 110 PS =WH
0067 IF (IB.EQ.0) FINSUM = FINSUM + CNT
0068 GO TO 100
0069 I20 PROB =FINSUM + INFSUM
0070 130 IF (INT.EO.03 GO TO 140
0071 PRCO = 1.0 - PROB
0072 TEMP = P
0073 P=Q
0074 C = TEMP
0075 140 RETURN
0076 END

1427 056
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FORTRAN IV G LEVEL 21 OATE = 78111 22/27/18

C SUBROUTINE RTMI RTHI 40
RTMt 50C

C PURPOSE RTM! 60
C TO SOLVE GENERAL NONLINEAR ECU AT IONS OF THE FORM FCT( X)=0 R TM I 70
C BY MEANS OF MUELLER-S I TERATION METHOD. RTHI 80

RTMt 90C
C USAGE RTH! 100
C CALL RTMI ( X ,F ,FC T ,XL I, XR I,E PS, LEND e l ER ) RTHI 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATENENT. RTNT 120

RTMI 130C
C DESCRIPTION OF PARAMETERS RTMI 140
C X - RESULTANT ROOT OF ECUA TICN FCT (X)=0. RTMI 15 0
C F - RESULTANT FUNCTIGN VALUE AT ROOT X. RTMI 160
C FCT - N AME OF THE EXTERN AL FUNCTION SUBPROGRAM USED. RTHI 170
C XLI - INPUT VALUE WHICH SPECIFIES THE INITIAL LEFT BOUNO RTHI 180
C OF THE ROOT X. RTMI 190
C XRI - INPUT VALUE WHICP SPECIFIES The INITIAL RIGHT BOUNDRTHI 200
C OF THE ROOT T. RTMI 210
C EPS - INPUT VALUE WHICH SPECIFIE S THE UPPER BOUND OF THE RTMt 220
C ERRCR OF RESULT X. RTMt 230
C IEND - HAXIPUM NUMBER OF ITER AT ION ST EPS SPECIFIED. RTMI 240
C IER - RE SULTANT ERROR P ARAPE TER CODED AS FOLLOWS RTMt 250
C IER=0 - NO ERROR, RTN! 260
C IER=1 - NO CONVERGENCE AFTER IENO ITERATION STEPS RTMI 270
C FOLLOWED BY IENO SUCCESSIVE STEPS OF RTHI 280
C BISEC TION, RTMI 290
C IER=2 - BASIC ASSUMPT ION FCT(XLI)*FCT(XRI) LESS RTM1 300
C THAN CR ECUAL TO ZERO IS NOT SATISFIED. RTMI 310
C RTNI 320
C REMARKS RTNI 330
C THE PROCEDURE ASSUMES TH AT FUNCT ION V ALUES AT INITIAL RTHI 340

C 800NOS XLI AND XRI HAVE NCT THE SAFE SIGN. IF THIS BASIC RTMI 350
C AS SU MPT ION IS NOT SATISFIED BY INPUT VALUES XLI AND XRI, THERTMI 360
C PRCCECURE IS EYP ASSED AMO CIVES THE ERROP MESSAGE IER=2. RTHI 370

C RTMt 380
C SUBROUT INES AND FUNCTION SUBPROGP AMS REQUIRED RTMI 390
C THE EXTERNAL FUNCTION SUBPROGRAM FCT(X) MUST BE FURNISHED RTHI 400
C BY THE USER. RTMI 410
C RTN! 420

C METHOD RTMI 430
C SOLUTION OF EQUATION FCT(X)=0 IS CONE BY MEANS OF MUELLER-S RTMI 440
C I TER ATION ME THOD OF SUCCE SSIVE BISECT 10NS ANC INV E RS E RTMI 450
C PARABOLIC INTERPOLATION, kHICH STAR TS A T THE INITIAL BCCN05 RTMI 460
C XLI AND XRI . CONVERGENCE IS CUADRATIC IF THE DERIVATIVE OF P TMI 470
C FCT(X) AT RCOT X IS NOT ECUAL TO ZERO. ONE ITERATION STEP RTMI 480
C REQU IRES TWO EVALUATION S OF FCT( X). FCR TEST ON S ATISF ACTORYRTHI 490
C ACCUR ACY SEE FORMUL AE ( 3,4) 0F M ATHEM ATICAL DE SCRIPTION. RTNI 500

C FOR REFERENCE, SEE G. K. FRISTIANSEN, ZERO OF ARB ITRARY RTMI 510
C FUNC TION, B I T, VOL. 3 (1963), PP.205-206. RTMt 520
C PTHI 530
C ..................................................................RTHI 540

C RTM! 550
0001 SUBROUTINE RTMit X,F FCT,XLI,XRI EPS IEND,1ER) RTMt 560

C RTHI 570
C RTMt 580
C PREPARE ITERATION RTHI 590

0002 IER=0 RTMI 600
0003 XL=XLI RTMI 610

e-
LC,
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FORTRAN IV G LEVEL 21 RTHI OATE = 78111 22/27/18

0004 XR=XRI RTHI 620
0005 X=XL RTMI 630
0006 TOL=X RTME 640
0007 F=FCT(TOL) RTMI 650
0008 IFIF11,16,1 RTM! 660
0009 1 FL=F RTMI 670
0010 X=XR RTMI 680
0011 TCL=X RTMI 690
0012 F=FCT(TOL) RTMI 700
0013 IF(F12,16,2 RTMI 710
0015 2 FR=F RTMI 720
0015 IF(SIGN (1. FL)+ SIGN (1. FRI)25,3,25 RTMI 730

C RTHI 740
C B ASIC ASSUMPTION FL*FR LESS THAN O IS SATISFIEO. RTHI 750
C GENERATE TCLERANCE FOR FUNCTION VALUES. RTHI 760

0016 3 !=0 RTMI 770
0017 T OL F = 10 G .* EP S RTHI 780

C RTHI 790
C RTHI 800
C START ITERATION LCOP RTMI 810

0018 4 I=I+1 RTHI 820
C RTHI 830
C START BISECTION LCCP RTMI 840

0019 CO 13 K=1,IENO RTMI 850
0020 X = .5 * (X L+X R ) RTMI 860
0021 TOL=X RTMI 870
0022 F=FCT()0L) RTMI 880
0023 IFIFl5,16,5 RTHI 890
0024 5 IF(SIGN (1. F)+ SIGN (1.,FR))7,6,7 RTMI 900

C RTHI 910
C INTERCHANGE XL ANO XR IN ORDER TO GET T.HE SAME SIGN IN F AND FR RTMI 920

0025 6 TOL=XL RTHI 930
0026 XL=XR RTHI 940
0027 XR=TOL RTMI 950
0028 TOL=FL RTHI 960
0029 FL=FR RTMI 970
0030 FR=TOL RTMI 980
0031 7 TCL=F-FL RTMI 990
0032 A=F*TOL RTMIl000
0033 A=A+A RTM!l010
0034 I F( A-FR *(FR-F L 13 8,9,9 RTH!l020
0035 8 IF(I-IENC117,17,9 RTNi1030
0036 S XR=X RTMIl040
0037 FR=F RTMIl050

C RTHIl060
C TEST ON SATISFACTORY #CCURACY IN BISECTION LOOP RTHIl070

0038 TOL=EPS RTM!1080
0039 A= ABS (Xt1 RTM!1090
0040 IF ( A-1.111,11,10 RTMI1100
0041 10 TOL=TOL*A RTMI1110
0042 11 IF(ABS (XR-XL)-TOL 112.12,13 RTHI1120
0043 12 IF(ABS (FR-FL)-TOLF114,14,13 RTHI1130
0044 13 CONTINUE RTHI1140

C END OF BIS ECT ION LOOP RTM'1150
C RTs s1160
C NO CONVERGENCE AF TER IENO ITERATION STEPS FOLLCWED BY IENO RTMI1170
C SUCCESSIVE STEPS OF BISEC(ION OR STEADILY INCREASING FUNCTION RTHI1180
C VALUES AT RIGHT ECUN05. ERROR RETURN. RTHI1190

.

\& '

. . _ _ _ _ _ _ _
-
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FORTRAN IV G LEVEL 21 RTMt CATE = 78111 22/27/18

RTMI1200
0045 IER=1 RTMI1210
0046 14 IF(ABSIFR)-ADStFL)l16,16,15

RTHI1220
0047 15 X=XL RTMI1230
0048 F=FL RTMI1240
0049 16 RETURN RTMI1250

C
C COMPUTATION OF ITERATED X-VALUE BY INVERSE PARABOLIC INTERPOLAT10NRTMI1260RTMil270

0050 17 A=FR-F
0051 D X= t X-tL) * FL* t i.+ F e( A-TOL)/ ( A* t FR-FL ) ) )/TOL RTHI1280

RTHI1290
0052 XM=X RTMI1300
0053 FM=F RTHI1310
0054 X=XL-0X RTHI1320
0055 TOL=X RTN!1330
0056 F=FCTITOL) RTMI1340
0057 IFIF)18,16,18

RTM11350
C
C TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP RTMI1360

RTMt1370
0058 18 TOL=5PS RTHI1380
0059 A=APS(X)

RT M I13900060 IF(A-1.120,20,19
RTNI1400

0061 19 TOL=TOL*A RTMI1410
0062 20 IFtABStDX)-TOL121,21,22

RTMI1420
0063 21 IF(ABS (F1-TOLF116,16.22

RTMI1430
C RTHI1440
C PREPARATION OF NEXT BISECTION LOOP RTHI1450

0064 22 IF(SIGN (1.,F)+SIGNil.,FL))24,23,24
RTHI14600065 23 XR=X RTMI1470

0066 FR=F RTMI14800067 GOTO4 RTMI1490
0068 24 XL=X RTMI15000069 FL=F

RTHI15100070 XR=XM
RTMI15200071 FR=FM
RTMI15300072 GO TO 4

C END OF ITERAT ION LOOP RTMt1540
RTMI1550

C
RTM11560C

C ERROR RETURN IN CASE OF WRONG INPUT DATA RTH115TO
RTHI1580

0073 25 IER=2 RTHI15900074 RFTLRN
RTMI1600

00T5 END
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