

Seybold Road. Madison, Wioconsin 53719. Phone 608.273.0350 $7911260 \div 2 \Leftrightarrow$

NOT ICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Nuclear Regulatory Commission nor any of thrir employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for accuracy, cor leteness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Technical Report Documentation Page

| 1. Report No. | R. Recipient © Cotolog No. |
| :--- | :--- | :--- |

ACKNOWLEDGEMENTS

The authors wish to gratefully acknowledge the consulting contributions of Dr. J. Crowley, Dr. A. Tsiatis, and especially Dr. K. Clifton. In addition, the CTM, Dr. M. Parsont, provided welcome encouragement.

Personnel at other institutions who provided helpful background materials include Dr. W. Weyzen, Howard Fore, Dr. B. Breitenstein, and Kenneth Hid. Their assistance is appreciated.

The dedicated and hardworking efforts of our Administrative Assistant, Kathy Reagan, in the administration of this project and preparation of the final manuscript was invaluable and is gratefully appreciated.

LIST OF FIGURES

Page

1. Copy of the documentation provided with the data by NRC.8
2. Reported source summary of exposure data at Hanford from Ref. 13.21
3. Reported preliminary sample record from Oak Ridge for Hanford data as reported in Ref. 13 .22
4. Average yearly dose received by exposed workers while employed based on semi-time averaged doses.24
5. Percent of deaths due to cancer as a function of age for whites in various population.
6. Percent of deaths from respiratory cancer for exposed white males as a function of age at death.
7. $\log [p /(1-p)]$ for exposed white males as a function of age at death, where p is the percent of deaths from respiratory cancer versus non-cancer.
8. Scatterplot of DOS6-10 versus initial year of employment for exposed white males with respiratory cancer or no cancer as cause of death. Cases with DOS6-10 less or equal to 15 have not beer plotted.
9. Scatterplot of DOS11-15 versus initial years of employment for exposed white males with respiratory cancer or no cancer as cause of death. Cases with dose less or equal to 10 have not been plotted.
10. Scatterplot of DOS $16-20$ versus initial years of employment for exposed white males with respiratory cancer or no cancer as cause of death. Cases with dose less or equal to 25 have not been plotted.
11. Scatterplot of DOS6-10 versus year of death for exposed white males with respiratory cancer or no cancer as cause of death. Cases with DOS6-10 less or equal to 15 have not been plotted.
12. Scatterplot of DOS11-15 versus year of death for exposed white males with respiratory cancer or no cancer as cause of death. Cases with dose less or equal to 10 have not been plotted.
13. Scatterplot of DOS16-20 versus year of death for exposed white males with respiratory cancer or no cancer as cause of death. Cases with dose less or equal to 25 have not been plotted.
14. Plot of average DOS6-10 for workers with the specified initial year of employment. Only exposed white males with respiratory cancer or no cancer as cause of death are used.
15. Plot of average DOS11-15 for workers with the specified initial year of employment. Only exposed white males with respiratory cancer or no cancer as cause of death are used.
16. Plot of average DOS16-20 for workers with the specified initial year of employment. Only exposed white males with respiratory cancer or no cancer as cause of death are used.
17. Plot of average DOS6-10 for workers with specified year of death. Only exposed white males with respiratory cancer or no cancer as, cause of death are used.
18. Plot of average DOS11-15 for workers with the specified year of death. Only exposed white males with respiratory cancer or no cancer as cause of death are used.
19. Plot of average DOS16-20 for workers with the specified year of death. Only exposed white males with respiratory cancer or no cancer as cause of death are used.
20. Number of deaths by sex and race. 12
21. Number and percentage of cases characterized as being exposed. 12
22. Cancer groupings used for the purpose of analysis. 13-14
23. Mean doses by cause of death. Comparison between results of Mancuso, et al. (Ref. 1), and results of current analysis.
24. Proportions of death due to cancer by age and dose for male workers. Comparison between results of Mancuso, et al. (Ref. 1), and results of current analysis.
25. An example of a chi-square analysis of dose versus
cause of death.
26. Breakdown of cases for various subgroups considered in the analysis.
27. Summary of stepwise discriminant analyses, showing the order in which the variables were chosen for inclusion in the model.
28. Means of variables used in discriminant analysis of respiratory cancers; no cancers group includes all non-cancer deaths.
29. Standard deviation of variables used in discriminant analysis of respiratory cancers; no cancer group includes all non-cancer deaths.
30. F-ratios at initial step of discriminant analysis on exposed white males using two groups: death from respiratory cancer and death from non-cancer.
31. F-ratios, classification functions and classification matrix at first step of discriminant analysis on exposed white males using two groups: death from respiratory cancer and death from non-cancer.
32. F-ratios, classification functions and classification matrix at second step of discriminant analysis on exposed white males using two groups: death from respiratory cancer and death from non-cancer.
33. F-ratios, classification functions and classification matrix at third step of discriminant analysis on exposed white males using two groups: death from respiratory cancer and death from non-cancer.
34. Numbers of and percent of respiratory cancers as a function of age for exposed white males.
35. Results of fitting eight logistic regression models using respiratory cancer and no cancer as the two response categories. Only exposed white males are included in the model. Variables which have no entry for a particular model were not used in that model. For each model, the first value under the variable is the coefficient of that variable in the logistic regression model, while the second value (below in parentheses) is the chi-square value for a test of statistical significance of that variable. All chi-square values have one degree of freedom. 67

1393075

TABLE OF CONTENTS

APPENDICES		PAGE
Appendix A	Univariate Distributions of All Variables Except Race, Sex, and Exposed-Unexposed For All Cases and For Exposed White Males	A-1 - A-23
Appendix B	Cause of Death Distribution	B-1 - B-14
Appendix C	Program and Output Which Reviews Dose Time Histories and Generates Average Yearly Dose of Workers	C-1 - C-9
Appendix D	Definition of Variable Names	D-1 - D-4
Appendix E	Summary of Logistic Modeling	E-1 - E-6

1. INTRODUCTION

In recent years a considerable amount of attention has come to focus on the biological effects of low levels of ionizing radiation as a possible occupational hazard for workers in the atomic industry. Historically, radiation protection criteria have attempted to provide conse-vative guidelines for avoidance of harm consistent with reasonable practicability in the workplace. In current recommendations permissable levels have been set based in part on data gathered at dose levels and in circumstances quite different from those prevalent in occupational situations (e.g. Japanese atomic bomb victims, radiotherapy patients, and the like). Until recently there have not been extensive and reliable analyses of the effects of chronic, low dose exposures to ionizing radiation in a large human population.

In 1964 a large scale epidemological study of employees in AEC contractor facilities was undertaken in a project funded by AEC and directed by Dr. Thomas F. Mancuso of the University of Pittsburgh. This project, "Study of the Lifetime Health and Mortality Experience of Employees of ERDA (earlier AEC) Contractors" culminated in the publication of a paper by Mancuso, Alice Stewart, and George Kneale in Health Physics (Ref. 1) wherein definite statistical associations were reported between the incidence of various types of cancer and exposure to radiation for workers at the Hanford (Washington) Atomic Facility. The analysis also produced estimates of doubling doses for certain cancers which were much lower than had generally been estimated previously.

Mancuso's findings have resulted in considerable discussion and have motivated further analyses and re-analyses of exposure and mortality data fron Hanford. The work presented in this paper is an analysis of certain data provided by the Nuclear Regulatory Commission purported to contain causes of death, exposure records, and other pertinent information for workers once employed at Hanford and now deceased. This data was to be analyzed for the possible dependence of death due to cancer on exposure to ionizing radiation including derivation of dose response relationships where appropriate.

The statistical methodologies selected were descriptive univariate examinations of the data, discriminant analysis, categorical methods using chi-square and analysis of trend tests, and linear logistic regression. Results of these analysis are presented.

Unfortunately the data provided by NRC was very poorly documented and could not be meaningfully analyzed without further information concerning definitions of terms and units of quantities. In the process of investigating these matters and in attempting to answer other questions which were of concern to us we have discovered a number of problems with the data which cast into doubt any conclusions that might be drawn from the statistical analysis.

Consequently, a large rart of the material presented in this report has to do with examination of the data with regard to its consistency, authenticity, reliability, and usefulness for purposes of analysis. It is our conclusion based on the information which we currently have in hand that the data presented to is cannot be
regarded as a usable representation of the actual experience of workers at Hanford. In pa:ticular, the data does not represent the reported state of the data maintained at its most reliable source. While analysis of the data can be and is presented, one should not and we do not presume that the results of this analysis accurately reflect relationships which exist in the real world.

$$
1393080
$$

In any statistical analysis it is important $-u$ understand the background to the data for two reasons: a) to avoid pitfalls such as confounding effects not represented in the variables under consideration; and, b) to develop meaningful interpretations for the results identified. For these reasons we conducted a background review of the data and have presented the results for the reader in sections 2.1 through 2.5 of this report. More specifically, section 2.1 includes a brief summary of primary conclusions; followed by section 2.2 , a discussion of the historical origins of the data; section 2.3 , a general characterization of the data; section 2.4 , issues relating to the dose variables; and finally, section 2.5 includes issues relating to cause of death and other factors not contained in the data subset.

2.1 Summary of Primary Conclusions From the Background Review

Two primary conclusions have been developed from our background review of the data. The first is that neither all of the available data elements (variables) nor all the available cases have been provided to us for a thorough and complete analysis. This conclusion, in and of itself, is obviously of particular concern since the detail and accuracy with which any analyses can be conducted and subsequent interpretations developed is impeded.

The second primary conclusion is that the authenticity and reliability of the data provided to us for analysis has not been adequately established. Clearly, this conclusion presents problems in making statements about the true "state of nature" based on observations obtained from the data.

It cannot be overemphasized that the above conclusions can significantly influence the understanding and interpretation of the analyses presented in the following sections.

2.2 Historical Background

It has become apparent during the project that the exact background details of the data are not fully known by the Nuclear Regulatory Commission (NRC). The written documentation provided to us at the beginning of the project, shown in its entirety in Figure 1, was inadequate for a thorough understanding of the data and would have provided a serious problem in the interpretation of any analyses conducted. As a result, we have made an effort to identify some of the historical and technical aspects of the data. A brief review of the historical aspects of the data will be provided here.

The study was motivated, at least in part, by a series of events. An understanding of the project can be facilitated by a brief chronological presentation of the events preceding it. Our understanding of this sequence of events is presented below.

In 1964 the Atomic Energy Commission initiated and funded a program entitled, "The study of the lifetime health effects and mortality experience of employees of AEC contractors" under the direction of Dr. Thomas Mancuso at the Universtiy of Pittsburgh's School of Public Health. This program AT(30-1)-3394 was continued under contracts CHAT (11-1)-3428 and E(11-1)-3428 when the Energy Research and Development Administration (ERDA) was established incorporating the AEC. The stated purpose of the study is given in the following quote from the abstract of an early progress report:

[^0]patterns and levels of radiation exposure. The reason for the study is the absence of empirically tested information pertaining to human populations exposed to recorded low levels of radiation over long periods of time. The procedure devised for the test runs is: to establish a series of cohorts of populations at each facility, those continuously employed as well as those separated, for each year, by tracing these individuals ard sibling controls through Social Security records to determine those who have died and their place and date of death; to obtain death certificates to establish age-sex specific death rates; and to analyze causes of death for those with radiation exposure and work-connected health hazards in comparison to appropriate non-exposed controls. The following AEC Contractor facilities have been selected for the test runs: Oak Ridge X10, Oak Ridge Y12, Oak Ridge K25, Hanford and several small feed materials plants. These facilities provide large populations w.th long intervals of operation. Pilot studies of radiation exposure records of persons exposed in atomic energy facilities will be carried out to determine the average occupational exposure of these populations and appropriate confidence limits in exposure estimates for individuals and various sub-populations.

Format of Tape

Cols.	Content
1-4	age at death (to nearest tenth)
5-6	year of initial employment
7-8	Linal year of employment
9-11	tota.l years of employment (to nearest tenth)
12-14	cause of death (primary cause) ICD 8th revision
15	race $0=$ non-white, $1=$ white
16	sex $0=$ female, $1=$ male
17	exposure code $0=$ non-exp, $1=$ exp.
18-23	cumulative lifetime dose
24-29	cumulative dose 3 years before death
30-35	5
36-41	10
42-47	15
48-53	20
54-59	" " 25
60-61	year of death

Figure 1. Copy of the documentation provided with the data by NRC.

One of the facilities considered by the Mancuso study was the Hanford Atomic Facility in Richland, Washington. Around 1974 Dr. Milham of the Department of Public Health for the State of Washington reported (Ref.2) that his analysis showed an increased incidence of cancer in persons who had worked at Hanford and died in Washington, relative to other persons in the State of Washington. This report spurred analysis of the data which was being collected by Mancuso's study group. Eventually Mancuso, et. al., prepared a paper (Ref.1) which reported a relationship between cancer and low level ionizing radiation. At the same time his contract was terminated by ERDA. In the ensuing furor other persons analyzed the same or similar data including S. Marks of the Battelle Northwest Laboratories (Ref.3) and C. Land of the National Cancer Institute (Ref.4). In addition, Congressional hearings were held (Ref.5). Apparently the NRC was not in a position to address the issue at the hearings and this subsequently led to the current program.

In this program NRC decided to use the data employed by Land, rather than study the nanford aata stored at Hanford. Thus, a brief review of the origin of Land's data is in order.

Land had originally requested dats from the Ozk Ridge Data Processing Facility. Oak Ridge had some version of the data collected in the Mancuso study for the Hanford employees. It is not known to us how or when the data given to Land got from Hanford to Oak Ridge. Land requested, apparently in late 1976, a set of variables for analysis. The rationale for the variables selected is not known to us.

It has been reported to us that the data used by Land is identical with the data used by us. The reported course of events is that a copy of Land's tape was made at Gemmet Corporation, a computing services contractor, and was submitted to NRC. NkJ then utilized the facilities of Harry Diamond Laboratories to prepare copies of that tape for use by the three contractors on this project. One of those tapes was provided to us. As a consequence of the numerous data handling efforts from Hanford to Hanford Environmental Health Foundation, to Oak Ridge, it is extremely difficult to determine pzecisely what the available data represents. In an effort to alleviate this problem we requested additional information regarding the data, as well as additional data elements. Our request was not implemented. As an alternative course of action, we took some characteristics of Land's data reported in his study and compared them with the data ve received. We did the same with Mancuso's study. The key findings of these comparisons are presented below. A more detailed presentation of these results appears in Section 2.6.

The frequency of each cause of death in our file matches Land's data (Ref. 4), except for two cases in our file which have no cause of death. Our cumulative doses can be shown to be significantly different from Mancuso's reported in Ref. 1. Unfortunately, we were unable to compare cumulative dose frequencies with those in Land's data.

With respect to sample size, we have more cases than Mancuso (Ref. 1), the same number of cases as Land (Ref. 4), and fewer than reported by Mancuso in later reports (Ref. 6 and 7). Perhaps most importantly, we have shown that the
data we have received has doses in time intervals which are not possible in the data collection scheme purported to have been followed in the Hanford study (Ref 8, 9, 10). Specifically there are 138 cases which have reported dose subsequent to the final year of employment. The details and ramifications of this finding are discussed more fully in Section 2.4.3.

It should be noted that our impression, based on among other things, conversations with Howard Fore at Oak Ridge, is that Dr. Mancuso never requested nor was ever sent a data set identical with that used here and by Land. Whether the problems that exist in this data would be present in data used by Mancuso is open to question. In any case, it is certain that the actual data analyzed in the Mancuso paper (Ref. 1) is not the same as that used by Land and by us.

1393088

2.3 General Characteristics of the Data

As discussed in section 2.2 the data is an extracted subset, characterised as Hanford employees who have died, of the larger set which includes employees both living and dead. It does not represent a large number of mantenance workers (26500) employed by Jones Maintenance Contractors, who are reported to have received higher doses than the average Hanford worker (Ref. 11); nor does it include AEC employees who worked at Hanford.

The data consists of 3992 cases which primarily represent white males as shown in Table 1.

TABLE 1
Number of Deaths by Sex and Race
SEX

RACE	Male
	Whiter
	Other
	3585

Of the 3585 white male cases, 62.1 percent were characterized as exposed as shown in Table 2.

TABLE 2
Number and Percentage of Cases Characterized as Being Exposed.

SEX

RACE

White
Other
Male
$2226 / 62.1 \%$
$12 / 48.0 \%$

It should be noted that the use of the term "exposed" may be somewhat misleading, since those employees who
are classified as non-exposed may be the result of them not being monitored for radiation rather than not being exposed to radiation. This issue is discussed more fully in section 2.5 .

Histograms of each variable have been made and are contained in Appendix A to facilitate the readers understanding of at least some of the more general features of the data. The histogram presented for each variable is a frequency distribution over the values taken on by the particular variable.

The "cause of death" frequency distribution is included in Appendix B. However, two data omissions in the file must be noted. First, 5 cases had an invalid initial year of employment and the same 5 cases had invalid total years of employment. Secondly, two cases had no cause of death.

For the purposes of relating cancer to radiation various groupings of ICD (revision 8) codes were used. These are indicated below together with the total number of cases and the number of exposed cases for each group.

TABLE 3
Cancer Groupings Used for the Purpose of Analysis
Total Exposed

TABLE 3 (Cont.)
Cancer Groupings Used for the Purpose of Analysis

2.4 Issues Relating to Radiation Dose

An adequate identification of background information for the dose variables contained in the data extract file was not provided. This lack of information was perhaps due in part to the background of the data discussed in section 2.2. In any case thorough documentation of the dosimetry and data collection practices relevant to the dose variables was not provided during the program. In our own review of the Mancuso Study progress reports, it became clear that there were many potential pitfalls which could exist in the data we had received, depending on when, where and how the data extract file was created. In attempting to answer the questions which arose about what the dose data actually represented, it was the case that we time and time again identified inconsistencies between one information source and another (e.g. various persons and written reports) and between information sources and the actual data extract file. It is the prevalence of this inconsistency which perhaps is most troubling in trying to assess just exactly what the data extract file represents. Consequently, we have been able to establish what the data file at Hanford is supposed to represent; we have not been able to determine whether in fact tne data we have is representative of that data.

There are at least three areas of uncertainty with respect to the dose variables in the data extract file and one general area relating to the exclusion of data believed to be relevant to a thorough analysis. These are discussed below.

The dose variable we are supposed to have received is classified by NRC as the "penetrating radiation dose" received by a Hanford employee. Clearly, numerous questions arise as to the definitions and dosimetry used to calculate penetrating dose. These questions are aside from the question of when the dose was received.

It has been reported to us (ref.12) that the penetrating dose variable consists of a summation of various dose sources. Specifically, it is the summation of the gamma, neutron, and Tritium doses plus .35 of the x-ray dose.

It is generally accepted that as a minimum quality factors are necessary in the combination of exposures from various dose sources if such combinations are to be done at all. It has been reported to us that the penetrating dose we have is a simple summation (as described above) of whatever was recorded for each dose source. The next question, then, is what was recorded for each source? To this question we have received two conflicting answers. The first is that quality factors have been applied to the data using 1.0 for gamma rays 10 for fast neutrons, 3 for slow neutrons, 1.0 for x-rays and 1.7 for Tritium, although the value 1.0 may have been used at times for Tritium. To some radio-biologists these quality factors may inadequately reflect the relative efficiencies of each source when interacting with human cells. The other explanation to us was that the data was simply a direct report of various badge readings. It may of course, be the case that both of these reports are correct, but apply to different forms of the Hanford data files. As was stated in section 2.2, which form of the file we have is questionable.

An issue related to quality factors is the combination of the exposure and dose units, namely Roentgens and rads. This concern is applicable to the understanding of what manipulations were applied to data from pocket ionization chambers

Further, the use of Tritium is particularly puzzling since Tritium becomes involved with the body through inhalation or other means and represents a contribution to the body burden as opposed to a "penetrating dose". At the same time other internal sources have not been included with the penetrating dose. The issue of whether internal burden should be combined with penetrating dose is open to considerable debate.

1393094

How the reported doses were obtained in the first place is an important issue quite independent of the possible manipulations discussed in the previous section. Most notably the general prtte n for the dosimetry j i that procedures changed or r time, as might be expected. For some procedure changes the consequences may be significant or at best not be clear; in others it is not clear as to whether certain procedures have actually been implemented in the data set we were provided with. Some of the more notable areas of concern are discussed below.

One notable change through time appears to have been improvements in badge quality. These improvements have come both in the expansion of dose sources considered (e.g. neutrons, various X-ray sources, etc.) as well as improvements in the badge sensitivity to low level exposures In particular there were at least three different badg': types used successively prior to 1964 (ref. 8), each representing an improvement to the previous version. In particular, the ability to accurately assess neutron dose may have been totally inadequate orior to 1950. Further, there have been reports that soi.e doses for workers may have been estimated from work area measurements rather than from actual employee badge readings.

Interpretation of any analysis results would require full consideration of the effects induced by changes in both the sensitivicy and quality of the dose data if these effects exist in our data extract file.

To further complicate matters, procedures in recording the badge data have changed over time. Two changes are notable here. First, the frequency of badge readings has changed dramatically over the years. In the early years badges were read weekly, followed by a change to bi-weekly readings. Subsequently the badges were read monthly and most recently badge readings were taken yearly. Keep in mind that up until approximately 1963 or 1964 , the badge threshold was approximately 30 mr and that the reporting procedure for the data collection process may have been to record zero dose if the threshold was not exceeded. When there was no badge reading threshold a zero may still have been recorded if the dose were below 20 mr .

The consequence of the procedure used to record the doses in the data collection procedure in conjunction with changes in the badge reading frequencies may be severe. One might expect that for monitored workers the average yearly dose recorded would be lower in the early years and higher in later years, since in the early years it would be hard for the dose to accumulate over the threshold due to frequent badge readings. This could be the case even though the true average dose might be approximately constant over time. One further complicating feature when the badge threshold was not exceeded may be that for the very early data the threshold value may have been reported as the dose and then at a later time a zero may have been reported. If this were the case we would see somewhat higher yearly doses in the early years, a subsequent reduction when zeros were reported, and finally an increase as badge readings intervals were increased. In any case, this type of variation may have severe consequences on the interpretation of the analysis results and a full
explanation of the procedures used in the data collection process must be available for responsible conclusions to be produced.

Another aspect of the data collection process of concern is the years for which doses from various sources were incorporated invo the data. We have conflicting information with regard to this point which may or may not be related to differing forms of the data file. Hanford personnel indicate that the data for each source is complete, back to the initiation of operations. A report in Mancuso's progress reports, at a time when worker exposure records were reported to have been complete, indicates that data for each source is complete back to varying times, at least for the file at Oak Ridge as shown in Figure 2. A preliminary sample output (Figure 3) contained in the san.e report shows no radiation records for each source prior to the year in which the relevant data is reported on tape in Figure 2.

Certainly things may have changed subsequent to the time of the report but we were unable to locate any mention of these changes in subsequent progress reports. This does not mean changes did not occur, however, because others working on the project began submitting their own progress reports at about this time. However, if the doses at the Oak Ridge Facility were not updated to include doses received prior to those reported in Figure 2, one might expect to see an increase in the average yearly dose over time. Again the consequences of this would be important in the development of conclusions.

Scurecs of lixnonure Dntrs

Year	Bet. - Cilamm	\underline{X}-Ray	Neutron	Tritium	Extremity
1944	Tape				Photometry Records
1945	-				"
2946	"				"
1947	n				"
1948	"				"
2949	"			Bioassay Result	"
1950	"		Hisq. File	- Caras	"
2951	n		.	"	"
1952	*		"	"	"
1953	n		"	"	"
1954	n		"	"	"
1955	"		"		"
1956	"		."	.	"
1957	"	Tape	"		" .
1958	"	"	"		"
1959	"	"	Tape		"
1960	"	"	"		"
1961	"	\cdots		Front of 1962 Year End Report	"
1962	"	"	"	'Tape	Tape
1963	"	"	"	"	"
1964	"	"	"	"	"

Table 13 - Summary of Sources of Exposure Data at Hanford

Fiqure 2. Reported Source Summary of Expresure Data at Hanford from Ref. 13.
-21-

$$
\frac{20}{2}=0
$$

． $0 n$

\square

$$
\begin{aligned}
& \text { Figure 3. Reported Preliminary Sample } \\
& \text { For Hanford Data as Report }
\end{aligned}
$$

Thole 16 －
Content of

$$
\begin{aligned}
& \text { コーロー }
\end{aligned}
$$

There is yet another conflicting report with regard to the exact nature of the dose data collection procedure. The data for x-rays prior to 1957 may have been combined with the Beta and Gamma doses (Ref.12). The consequences of this effect would depend on exactly how the doses were combined to form the penetrating dose. However, one might suspect that the x-ray data before 1957 (if it's contained in the Beta-Gamma dose) would have a different factor applied (1.0) than the x-ray data after 1957 (.35) .

One might expect that the effect of this error if it exists in the data we have, would be to cause a decrease as a function of calendar years in the average yearly doses received by exposed workers while working, assuming a constant true x-ray exposure. The decrease would be caused by an inclusion at fuil dose in early years up to 1957, but a consideration of only . 35 of the full dose after 1957.

In an attempt to resolve the above concerns we attempted within the constraints of the variables presented to assess just what the average yearly dose was for those Hanford deaths who are classified as "exposed" in the data extract file. This plot is shown in Figure 4.

Figure 4. Average Vearly Jose noccived hy Zxnoscd Workers While Employed Based on Semi-time Averaged Doses.

The exact causes for the shape of the curve (Figure 4) may be related to a combination of one or more of the possible effects which may be present in the data as discussed above or perhaps others which will be discussed in the following section. It should also be
recalled that the data provided to us in regard to dose-time histories was in reasonably broad time increments and as such the above plot will reflect a semitime averaged view of the true average yearly dose which would be present if we had more detailed data.

Nevertheless, the implications of the graph are that serious time related effects are present in the data. It emphasizes the need for a detailed description of the exact background for this particular data extract file. Further, the plot suggests that extreme care be used in the interpretation of any analysis results using this data until a full and satisfactory explanation and understanding of this plot is available.

2.4.3 Pre- and Post- Employment Doses

According to several sources (ref. 8, 9, 10), the preemployment doses for workers at Hanford were obtained by first asking the new employee whether there had been any previous employment where exposure might have been experienced. If the answer was affirmative the health records from previous facilities were requested. When and if they were received, they were apparently installed in an off-site radiation record, although the date assigned to the radiation was apparently the date of the receipt of the material at Hanford rather than the time period over which the dose was received. It is not known to us whether these pre-employment off-site radiation exposures have been included in the data we have, since we have seen conflicting reports with regard to its presence or absence from various data sets. If the data extract file did include this pre-employment exposure recorded on the dates received this might contribute in conjunction with other factors to the explanation of the early peak seen in Figure 4. However, it has been pointed out to us that the safety procedures at Hanford may have been very poor in the early years which in conjunction with the badge reading effects discussed earlier may be sufficient to explain this early peak.

With regard to post-employment exposures, it has been consistently reported that these doses were not collected and cannot be present in the data. This facet of the reported data collection procedure has been the most consistently reported feature of the data. We can definitely show that this feature (i.e. the
non-existence of dose after the final year of employment) is not displayed in the data extract file we have. It is perhaps this contradiction which more strongly than anything else suggests that extreme caution be exercised in any consideration of the analysis results.

We have examined our data file and have found that there are 138 cases for which post-employment doses exist in the dose history. Of these, 130 are white males representing approximately 5.8\% of the total 2226 exposed white males in the file. An examination of these cases shows that generally the doses recorded after the final year of employment are likely to be two to three times the total dose recorded during the reported initial and final years of employment at Hanford. The computer program to assess whether post-employment doses exist in the data is contained in Appendix C in conjunction with its output.

The effects of such data problems are, of course, considerable. If the data indicating that doses are received after the end of employment are simply erroneous, then it reflects on the quality of the remaining data. If the data is correct, but was inadvertently included for some cases in the file, then it implies that doses received after employment at Hanford are not negligible, thus affecting quantitative values of possible dose relationships to cancer. Thus, in either case the effect of this finding is to cast serious concern on the reliability of any results based on this data extract file.

We pointed out this significant finding to the CTM and requested new data. The request for nev data was denied, although the CTM did request verification of
the findings from other research groups working with this data. We see no reason, however, that these findings would not be substantiated by others.

1393105

2.5 Other Concerns

There are many other concerns with regard to data we did not receive, in addition to the concern for the meaning of the data which we did receive. These additional concerns will be discussed briefly below.

2.5.1 Other Exposures

We have not received data which is available with regard to other exposures. Other exposure information which does exist includes internal and accidental depositions. The lack of information with regard to the several hundred accidental depositions known to exist, not to mention the large amount of internal dose information available, is a serious constraint on the development of a responsible analysis.

If the pre-employment exposures are not included in the data they certainly are available and should be considered, although they should be provided as a separate data element.

Medical x-rays were shown in Mancuso's study to be on the average a significant fraction of the radiation received by a worker. Individual records for various procedures show that some workers could easily have received very large exposure from medical x-rays. This data is available for all workers, and the results of the medical x-ray study seem to point out that this is a source not to be neglected if possible.

Other uscupational exposures to such things as carcinogenic materials like asbestos through involvement with specific industries at times other than when at Hanford are not included. They may, however, be available since work histories maintained by the Social Security Administration were used in the data collection effort. The inclusion of this information would be a desirable addition.

2.5.2 Cause of Death

Abstract

The fact that a worker had died was established using the Social Security Administration (SSA) data file in conjunction with the worker's Social Security number, using the information provided by the SSA death certificates were obtained. The causes of death on the death certificate were recoded by a trained nosologist (ref. 8). The accuracy to which these assessments were made, not to mention potential errors on the death certificates which may be present due to lack of recognition of certain types of cancer in earlier years, is unaddressed. It is the case that up to 6 causes of death were recorded in an order reported to be primary, secondary, and tertiary. The consideration of only the primary cause of death raises serious questions in the sense of the actual cause of death (e.g. heart failure) which may have been brought on by stresses induced by cancer or treatment for cancer. The extent to which this phenomena may be present in the data cannot be assessed since only the primary cause of death is provided.

2.5.3 Initial and Final Year of Employment and Total Years of Employment

When considered in conjunction with the other data elements provided to us it s important to at least be aware that these variables do not allow recognition of the situation in which a worker leaves Hanford to work elsewhere and then returns to Hanford after some time interval. A check of all the cases in our data file shows that the variable total years of employment is (to within ± 1 year) simply the difference between initial and final years of employment. (The discrepancy
of ± 1 year comes about because total years of employment is recorded to one-tenth year while initial and final years are recorded to one year.) Thus we do not know what the true employment time periods were in this data set.
2.5.4 Monitored versus Exposed

Unfortunately the data we have indicates whether a worker was exposed or not exposed at some time during employment at Hanford. An exposed worker is one for which a dose was recorded. There is another variable available which we did not receive indicating whether the subject was monitored for radiation. One can see that if a worker was not monitored there could be no dose recorded. Thus a "non-exposed" worker did not necessarily receive zero dose. Further, the fact that a worker was monitored would not imply that they were monitored continuously at Hanford nor would an "exposed" worker have been monitored for the entire work period at Hanford. These effects might at least have been addressed if the yearly dose readings and the "monitored" variable had been provided to us.

$$
1393108
$$

2.6 Comparison to Data of T. Mancuso

Since the data analyzed in this report is from the same source as that analyzed by Mancuso, Stewart, and Kneale in 1977 (Ref. 1) it seems appropriate to compare the data provided to us with that used in the above paper. Table 4 is a comparison of our data to the data appearing in Table 3 of the Mancuso paper while Table 5 is a similar comparison with Table 11 in that same paper. Both tables are for male workers only.

It can be seen that the actual numbers of cases differ slightly between the two data sets. There are more total cases in our data but there are some causes of death where we have fewer cases either totally or for exposed workers only.

There are also differences in the mean doses which in some cases are not insignificant, most notably for lung and brain cancers. It can also be seen from the mean doses for non-cancers, RES neoplasms, and solid tumors that if there is an effect arising from these differences it is in the direction of reducing the doses received by persons dying of cancer and to increase those received by persons dying of causes other than cancer.

It is curious to note in Table 4 that of five diseases (multiple myeloma, pancreas, brain, lung, and kidney) which in our findings might be suspected to show dependencies of cancer incidence on dose received, three (brain, lung, kidney) show significant reductions in the mean dose relative to Mancuso's data while two (multiple myeloma and pancreas) show no significant
change. These last two are the same ones for which other researchers (notably Land) have also found significant relationships to radiation. One of these, pancreas, is a disease whose dose distribution is severely affected by increments of data after the final year of employment (see section 2.4.3). Multiple myeloma is characterized in this data by having only 8 exposed cases of which 3 are at anrmalously bligh dose levels. The additional case (the sixth) in which we found suggestions of dose dependence was unspecified secondaries (ICD 199) which is not represented separately in Table 4.

Table 11 in the Mancuso paper is an examination of the trend in proportions of death by cancer as a function of dose controlled for age at death in 10 year intervals. Table 5 compares the proportions found by Mancuso, et. al., with similar proportions derived from the present data. It will be noticed that again the data is generally similar but that there is a tendency for the proportion of cancers at high doses to be reduced and those at low doses to be increased. In fact, if one ranks the differences in order by algebraic magnitude from most positive to most negative, one arrives at the rankings given in Table 3 to which can be applied a Spearman Rank Correlation Test. The rank correlation coefficients are shown in the last column of Table 3 . For 5 pairs significance at the .10 level is reached when p exceeds .7 and significance at the .05 level is reached when p exceeds .8 . In three age categories the coefficient of rank correlation is .7 or more and it is negative in only one of the five categories.

Mancuso, et. al., use a test of the same type to examine their data for a correlation of increase in proportion of death by cancer with increasing dose. They find coefficients of rank correlation of $0.1,0.0,0.8,0.5$, and 0.9 respectively for the various aqe qroups. The significance of these correlations is tested by comparing the average value of these coefficients to the mean of 0.0 expected from a set of random rankings. In their case, the average is 0.46 , which is differzat irom the test mean of 0.0 by more than two standard deviations. We notice that in our data the results are almost the same except in the age group 60-69 where the rankings are changed and the coefficient is reduced from 0.5 to -0.1 thus reducing the average to 0.34 which is not more than two standard deviations away from the null result of 0.0 .

The point of examining the comparison between the present data and the Manct \Rightarrow lata is not to suggest tha* results derived by Mancuso, et. al., wo'ila no longer be substantiated by the new data besause the new data is different but rather to see nether or not the two sets of data should be considəred to be compatible. While it seems that there are systematic differences between the two sets of data, it is more noteworthy that the differences are in fact quite small in magnitude. It is true that the outcome of one certain test cited in the Mancuso paper is altered, but one should recognize thet this is more a consequence of the marcinal nature of this test than of drastic changes in the data.

What is more bothersome is to understand why two separate extractions from the same data should produce different information, given that the difference is not
merely the consequence of the accumulations of additional cases as time has gone on.

In a normal sequence of events one would want to investigate the procedures used to prepare both sets of data in order to discover any sources of discrepancy. Since this alternative is not open, one can only note the difference and recognize that there are some uncertainties in the accumulation of the data which may have to be recognized in any evaluation of the results.

MEAN DOSES BY CAUSE OF DEATH Column A - Results of Mancuso, et. al. Column B - Results of Current Analysis

Cause of Death by ICD Codes

Total Cases Cases Exposed Mean Dose-Total

Mean Dose-Exposec
$\begin{array}{lllllll}\text { A B A B A A } & \text { B B }\end{array}$
Non-Cancers

$0-136$ Infective	29	32^{2}	16	18^{2}	43	50	79	90
210-239 Benign Neoplasms	10	10	4	4	15	15	39	39
244-289 Endocr.	54	65	34	40	96	150	153	243
290-389 CNS	36	37	20	21	94	92	169	162
390-458 CVS	1837	1885	1149	1184	105	106	167	168
$460-519$ Respiratory	194	194	108	107	74	74	133	134
520-577 Digestive	139	140	83	86	114	136	190	221
800-999 Accidents	450	459	271	274	94	98	156	164
580-796 Residue	101	100	57	55	85	43	151	79
RES Neoplasms								
200-202 Lymphomas	34	35	28	28	110	117	145	146
203 Myelomas	11	11	8	8	775	775	1066	1066
204 Lymphatic Leukemia	3	3	2	2	19	9	29	28
205 Myeloid Leukemia	11	12	6	6	122	1	223	223
206-209 Residue	5	5	3	3	12	12	19	19

Solid Tumors

140-149 Mouth \& Phirynx	24	23	14	1.4	89	79	152	129
151 Stanach	38	38	26	26	60	58	86	85
153 Large Intestine	61	63	48	50	135	133	171	167
154 Rectum Intestinal	19	19	16	16	99	99	118	118
150,152 Other In	20	10	10	32	28	58	57	
155-156 Liver, Gall Bladder	18	19	10	10	31	29	56	56
157 Pancreas	49	51	31	32	253	253	399	404
162-163 Lung	192	195	130	129	169	142	249	214
185 Prostate	43	43	21	21	42	42	87	87
189 Kidney	21	23	14	15	187	171	281	263
186-188 Other G.U.	15	15	10	10	82	82	123	122
191 Brain	18	21	11	14	220	194	361	291
Residue	90	92	54	55	81	76	135	127

Totals:

Ion-Cancers	2850	2922	1742	1789	99	102	162	166
IES Neoplasms	64	66	47	47	219	213	299	299
SOlid Tumors	606	622	395	402	130	119	199	184
								172

${ }^{1}$ Mancuso, T. F., Alice Stewart, and George Kneale, Radiation Exposures of Hanford Workers Dying from Cancer and Other Causes, Health Physics, Vol. 33 (November 1977) p. 376.

2 Including 2 with no cause of death (1 exposed).

Proportion of Deaths Due to Cancer by Age, and Dose for Male Workers Comparison Between Results of Mancuso, eL. al. ${ }^{1}$, and Results of Current Analysis DOSE

Mancuso, T.F., Alice Stewart, and George Kneale, Radiation Exposures of Hanford Workers Dying from Cancer and Other Causes, Health Physics, Vol. 33 (November 1977) p. 376 .

KEY: of cancer deaths/total cases - Current Results of cancer deaths/total cases - Mancuso Results Difference in percents/rank

The general data analysis methodology employed together with a summary of the data survey analyses are contained in Section 3.1. The discussion is, however, limited to a brief overview. A more detailed analysis of respiratory cancers is contained in Section 3.2.

3.1 Methodology and Data Survey Results

The analysis methodology employed was comprehensive in that it applied a number of differing analytical tools to the data. The approach relied, however, not only on the use of differing statistical procedures but also on the consideration of a wide variety of subject groupings.

The data was first reviewed to identify the univariate distributions present in the data. An example of this procedure for the whole data set is contained in Appendix A. Similar distributions were developed for various case subgroups. These subgroups included cases accepted when filtering for various race-sex groupings, followed by subsequent filters on exposure and various causes of death. At the completion of this procedure it was apparent that if race and sex were to be considered as relevant factors, then only the white male group had an adequate number of cases for the analysis approach anticipated. All remaining statistical analyses considered only cases which were white males.

Following the univariate review various bivariate relationships were examined for the white male subgroup. Cumulative dose comparisons with various causes of death were examined for various groups.

In general, chi-square and t-test analyses were used to evaluate whether notable effects were being observed. An example of such an analysis is shown in Table 6 where the expected and observed dose frequencies for various causes of death are compared using the chi-square method.

ZXFECTEI FRERUEHCIES AKE FRINTEH HELOW OESERUEH FKEQUENCIES
CAUSE OF DEATH

*Excluding ICD 170, 174, 193, 205, 206, 203, 210-239
Table 6. An example of a Chi-square Analysis of Dose Versus Cause of Death.

In addition, rank tests were used in an attempt to approximate results previously obtained by others. These are reported in section 2.6 .

Due to the uncertainty in the validity of cases characterized as unexposed, as discussed in section 2.5.4, it was decided at this point that further survey analysis would consider two general groups. The first group would include both the exposed and unexposed white male (EUWM) workers. The second group would contain simply the exposed white male (EWM) workers.

The varying radio-sensitivity of cancers depending on the particular cells affected was recognized and considered important enough to call for separation of primary causes of death into consistent cancer groups. The ICDA codes used to group various cancers is shown in Table 3 contained in section 2.3. Only those cancer groups which had more than eight cases were considered in subsequent analyses.

In general, subsequent analyses considered the response as the probability of a particular cancer and no-cancer. The cancer group would include those cases which fell within a particular group specified by Table 3 . The no-cancer group would contain cases with a primary cause of death which was not considered to be a cancer. However, we could clearly see the effects accidents had on the percent of cases which died of cancer as a function of ages, as shown in Figure 5. We recognized that accident deaths from external causes are not diseases and may be considered to be a competing risk which might mask the effects of radiation due to the strong dependence of accidental death on age. As a result, our subsequent survey analyses considered two
$\begin{array}{cc}-1 & 1 \\ 1 & 1 \\ 0 & -1\end{array}$

0	n
N	n
1	0
n	m
AGE GROUPS	

$\begin{array}{cc}n & 0 \\ 0 & \infty \\ 1 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$
A-U.S. Life Tables
B-- U.S. Life Tables, excludes accidents
C-Hanford Exposed
D- - Hanford Exposed, excludes accidents
E -Hanford Unexposed
F- - Hanford Unexposed, excl.accidents

Figure 5. Percent of Deaths Due to Cancer As a Function of Age for White Males in Various Populations
additional subgroups of the EUWM and ENM groups mentioned previously. These additional subgroups where characterized by the non-cancer group containing either all non-cancers or all non-accident non-cancers, and denoted by the letters ALL or NA respectively. Thus, actually four general groups were evaluated for each cancer group of interest. These were 1) The exposed and unexposed white male workers with all non-cancers (EUWM-ALL); 2) The exposed and unexposed white male workers with accidental deaths excluded from the non-cancer group (EUWM-NA);
3) The exposed white males with all non-cancers (EWM-ALL); and 4) The exposed white males with no accidental deaths included in the non-cancer group (EWM-NA). The number of cases available in each group is shown below:

	EUWM-ALL	EUWM-NA	EWM-ALL	EWM-NA
Non-Cancers	2895	2446	1776	1508
All Cancers	684	684	449	449
Total	3579	3130	2225	1957

Table 7 Breakdown of Cases for Various Subgroups Considered in the Analysis.

It should be noted that the data provided in the above table excludes some cases in the data set which contained invalid codes for one or more variables.

Having identified the general groups of data to be considered it was desired to scan the data on a detailed basis to identify those variables which exhibited a relationship to the incidence of particular cancers for each data group. An automated procedure to select relevant variables was desirable since an additional 15 variables (shown in Appendix D) had been created from the original data elements given to us. Stepwise discriminant analysis was particularly suited to this task, since the response groups could characterize a particular cancer (e.g. pancreas) and no-cancer.

The program used to do the discriminant analyses was BMDP7M. The procedure is based on the assumption of equal population covariances for the groúps (as well as multivariate normality of the discriminating variables, but this normality assumption is usually not critical). The sample variances of many of the discriminating variables are different enough between the groups that one could question the assumption of equal population covariances. However, since the goal in using discriminant analysis was simply to pick out those variables which bear a strong relationship to the incidence of cancer, it was felt that the above objection would present no serious problem. The cure for unequal population covariances is to use quadratic discrimination, but it was felt that this precedure would not produce a set of discriminating variables different from that obtained from linear discriminant analysis. Furthermore, quadratic discriminant analysis is sensitive to departures from normality. (See Lacherbruch, pg. 20.) At the conclusion of the analysis it did, however, appear that in some cases the analysis did suffer from lack of homogeneity of variance.

At each step of the discriminant analysis the BMDP program computes an F-statistic for each variable to enter which measures the amount of discriminating power which that variable has. As new variables are entered, the F-statistic for variables previously entered can decrease to the point where the old variable is no longer providing significant discrimination. In such a case, the old variable may be removed at some step. This removal did not occur in our discriminant analyses. For the set of discriminating variables determined at each step of the stepwise procedure, the BMDP program coiputes the probability of membership for each case in each group and uses this probability to classify each case into the group for which it has the highest probability of membership. The probability is a posterior probability based on a prior probability distribution of group membership specified by the user. In our discriminant runs we always specified equal priors since we were interested solely in the relationship between the incidence of cancer and the variables characterizing the workers history, and we did not want to make use of information about the relative frequency of occurrence of various causes of death. In our runs the probability of overall correct classification varied roughly from 50% to 90%. When using two groups, the probability of correct classification of a particular cancer occasionally dropped below 50\%. A more complete description of the computational aspects of discriminant analysis appears in Ref. 14.

Table 3 summarizes the discriminant analysis results obtained for each specific cancer considered. The specific cancer groups considered are shown along the top edge of the table. Under each cancer label are four columns.

[^1]

TABLE 8 Summary of stepwise discriminant analyses, showing the order in which the variables were chosen for inclusion in the model.

VARIABLE		$\begin{aligned} & \text { PANCREAS } \\ & 157 \end{aligned}$				LYMPHOCYTIC LEUKEMIA$200-204,204$				$\begin{gathered} \text { PROSTATE } \\ 185 \end{gathered}$			
		$\begin{gathered} 1 \\ \text { EUWM- } \\ \text { ALLL } \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{2}{\text { EUWM- }} \\ \text { NA } \end{gathered}$	$\begin{aligned} & 3^{3}- \\ & \text { EVM- } \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{4}{4} \\ \text { EWM- } \\ \text { NA } \end{gathered}$	$\begin{gathered} 1 \\ \text { EUWM- } \\ \text { ALL } \end{gathered}$	$\begin{aligned} & 2 \\ & \text { EUWM- } \\ & \text { NA } \end{aligned}$	$\begin{gathered} 3 \\ \text { EWM- } \\ \text { ALL } \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \text { EWM- } \\ \text { NA } \end{gathered}$	$\begin{gathered} 1 \\ \text { EUWM- } \\ \text { ALL } \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ \text { EUWM- } \\ \text { NA } \\ \hline \end{gathered}$	$\begin{aligned} & 3 \\ & \text { EWM- } \\ & \text { ALLL } \\ & \hline \end{aligned}$	$\begin{array}{\|c} 4 \\ \text { EWM- } \\ \text { NA } \\ \hline \end{array}$
	1 DEATHAGE 2 INITLYR 3 FINALYR 4 TOTALYR 5 EXPOSURE	**				1 C	1 C	1	1	1 C	1 C	1	1
	$\begin{array}{r} 6 \text { CUMDOSE } \\ 7 \text { CDOS } 3+ \\ 8 \text { CDUS } 5+ \\ 9 \mathrm{CDOS} 10+ \\ 10 \mathrm{CDOS} 15+ \end{array}$												
$\begin{aligned} & 1 \\ & \stackrel{1}{1} \\ & 1 \end{aligned}$	11 CDOS $20+$ 12 CDOS $25+$ 13 YRDEATH 14 DT1 15 DT2			**			**	**	**				
	16 DT3 17 DOS0-3 18 DOS $4-5$ 19 DOS6-10 20 DOS11-15	1	1	1	1	*	*						
	21 DOS16-20 22 DOS21-25 23 DOS25+ 24 MAXDOS 25 TMAXDOS	*		***	*	2	2			2	2	*	*
	26 AGE SQ 27 CAUSE	2	*										
0	No. Cancers	51	51	32	32	38	38	30	30	43	43	21	21
\cdots	No. Non-cancers	2895	2446	1776	1508	2895	2446	1776	1508	2895	2446	1776	1508
	\% c.c. cancer	21.6	13.7	21.9	21.9	68.4	73.7	63.3	66.7	62.8	62.8	66.7	57.1
N	\% c.c. non-cancerf		91.7		90.8	63.7	66.9	58.7	61.8	61.6	61.7	57.5	56.2

VARIABLE	UNSPECIFIED SEOONDARY 199				$\begin{gathered} \text { LIVER } \\ 155-156 \end{gathered}$				$\begin{aligned} & \text { SKIN CANCER } \\ & 172-173 \end{aligned}$			
	$\begin{gathered} 1 \\ \text { EUWM- } \\ \text { ALLL } \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ \text { EUWM- } \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \text { EWM- } \\ \text { ALL } \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \text { EWM- } \\ \text { NA } \end{gathered}$	$\begin{gathered} 1 \\ \text { EUWM- } \\ \text { ALL } \\ \hline \end{gathered}$	$\begin{aligned} & 2^{2} \\ & \text { EUWM- } \\ & \text { NA } \end{aligned}$	$\begin{array}{\|c} 3 \\ \text { EWM- } \\ \text { ALLL } \end{array}$	$\begin{gathered} 4 \\ \text { EWM- } \\ \text { NA } \\ \hline \end{gathered}$	$\begin{array}{\|c} 1 \\ \text { EUWM- } \\ \text { ALL } \\ \hline \end{array}$	$\begin{gathered} 2 \\ \text { EUNM- } \\ \text { NA } \\ \hline \end{gathered}$	3 EWM- ALL	$\begin{gathered} 4 \\ \text { EWM- } \\ \text { NA } \\ \hline \end{gathered}$
$\begin{aligned} & 1 \text { DEATHAGE } \\ & 2 \text { INITLYR } \\ & 3 \text { FINALYR } \\ & 4 \text { TOTALYR } \\ & 5 \text { EXPOSURE } \\ & \hline \end{aligned}$	*	**	2	***			1	*	*	1	$\begin{gathered} 1 \\ \star \star \\ \star \end{gathered}$	1
$\begin{array}{r} 6 \text { CUMDOSE } \\ 7 \text { CDOS } 3+ \\ 8 \text { CDUS } 5+ \\ 9 \text { CDOS } 10+ \\ 10 \text { COOS } 15+ \\ \hline \end{array}$					**							
				**					**			
$\begin{aligned} & 16 \text { DT3 } \\ & 17 \text { DOSO-3 } \\ & 18 \text { DOS 4-5 } \\ & 19 \text { DOS6-10 } \\ & 20 \text { DOSII-15 } \end{aligned}$												
$\begin{aligned} & 21 \text { DoS16-20 } \\ & 22 \text { DOS21-25 } \\ & 23 \text { DOS25t } \\ & 24 \text { MAXDOS } \\ & 25 \text { TMAXDOS } \\ & \hline \end{aligned}$	$\underset{*}{1}$	*	1	1	*							
26 AGE SQ 27 CAUSE					1	*						***
No. Cancers	27	27	13	13	19	19	10	10	13	13	10	10
No. Non-cancers	2895	2446	1776	1508	2895	2446	1776	1508	2446	2446	1776	1508
\% c.c. cancer	11.1		53.8	23.1	73.7		70.0			53.8	60.0	60.0
\% c.c. non-cancer	94.2		74.7	91.9	41.6		57.8			62.5	63.7	65.5

TABLE 8 Summary of Discriminant Analyses (cont.)
1393126

VARIABLE	SECONDARY LUNG CANCER 197				MULTTPLE MYEIOMA203			
	1 EXWM- ALL	$\begin{gathered} 2 \\ \text { EUWM- } \\ \text { NA } \end{gathered}$	$\begin{gathered} 3 \\ \text { EWM- } \\ \text { ALL } \\ \hline \end{gathered}$		1 EXWMALL	$\begin{aligned} & 2 \\ & \text { EUWM- } \\ & \text { NA } \\ & \hline \end{aligned}$		
1 DEATHAGE 2 INTTLYR 3 FINALYR 4 TOTALYR 5 EXPOSURE			*	*				
11 CDOS $20+$ 12 CDOS $25+$ 13 YRDEATH 14 DT1 15 DT2	1	1						
16 DT3 17 DOS0-3 $18 \operatorname{DOS} 4-5$ 19 DOS6-10 20 DOS11-15					2	2	*	*
21. DOS16-20 22 DOS21-25 23 DOS25t 24 MAXDOS 25 TMAXDOS					$\begin{aligned} & 1 \\ & 3 \end{aligned}$	1 3	1 3 **	1 3 3 *
$\begin{aligned} & 26 \text { AGE SQ } \\ & 27 \text { CAUSE } \end{aligned}$								
No. Cancers	16	16	8	8	11	11	8	8
No. Non-cancers	2895	2446	776	1508	2895	2446	1776	1508
\% c.c. cancer	43.8	63.8			27.3	27.3	37.5	37.5
\% c.c. non-cancer	62.6	65.6			97.3	97.3	97.2	97.5

'-hese columns correspond to the four groups which were to be considered as mentioned previously. Specifically, the first column corresponds to the EUWM-ALL group, the second the EUWM-NA group. Column 3 contains the results of the analysis using the EWM-ALL group and column 4 the results of the analysis of the EWM-NA group for the particular cancer group of interest. The rows correspond to the variables considered for selection during the discriminant analysis. The numbers which appear in the columns correspond to the order in which each variable was selected for inclusion in the classification function. Up to five variables were allowed to be selected by the discriminant analysis as long as the F-statistic exceeded 3.0. The maximum number ever selected was 4. At the bottom of each column is presented a number of cases in each of the response groups and the correct classification percentage which resulted from the final classification function. Stars in the table indicate variables which would have been selected after the last variable selected if the F to enter had been set lower.

The letter C by the variable "exposure" indicates that this variable had an F-statistic of more than 2 on the initial step. For the EWM-ALL and EWM-NA "exposure" of course was not considered since all cases in these groups were exposed by definition.

To illustrate the interpretation of the table, consider the respiratory cancer analyses. The first of the four columns under this heading is a summary of the results found when the exposed and unexposed white males were considered. The response groups were, on the one hand, those cases with a cause of death described as respiratory cancer in Table 3, and on the other, those
cases with a non-cancer cause of death including accidental causes of death. We can see at the bottom of the column that there were 2895 non-cancer cases considered which were compared with 202 respiratory cancer cases. The first variable selected was AGESQ, measuring age squared as defined in Appendix D. Note that before any variables had entered the model, the exposure variable was found to be mildly significant as indicated by the C next to exposure. At the second step of the analysis, the variable YRDEATH entered. YRDEATH represents the calendar year of death. The third variable which entered the model was DTI which is the time interval between the initial year of employment and the year of death. The fourth variable to enter was the dose which was recorded as being received in the time interval 16 to 20 years prior to death. We can also see that other dose variables might have entered the model had the F-to-enter been set low enough, as indicated by the stars. One star means it had the highest F -statistic at that point, two stars the second highest, etc.

We can also see that the correct classification function was 67.3% for the respiratory cancers and 57.0% for the no-cancer group. Thus from this column we have an indication of those variables which are likely to provide the best predicative capability for the incidence of respiratory cancer from those variables considered for the EUWM-ALL group.

A number of features present in Table 8 are perhaps worth noting. As a general rule, AGE or AGESQ appear as important factors in modeling the incidence of cancer
for most cancer groups. Pancreas (157) cancer for the EWM-ALL and EWM-NA groups are notable exceptions, as are kidney cancers (189), unspecified secondary cancers (199), and multiple myeloma (203). Various calendar year effects such as the year of death (YRDEATH), initial year (INITLYR), and various length of time indicators such as total years of employment (TOTALYR), time from maximum dose (TMAXDOS) and DT1, DT2 and DT3 all appear as variables of interest for one cancer group or another. However, their significance may be classified in a general way as very marginal except in a few cases.

A very notable feature in the table is that the cumulative dose (CUMDOSE) was never selected as a variable to enter any model. The fact that the doses received in specific time intervals (e.g. DOS 4-5: dose received in the time interval four to five years prior to death) were selected on numerous occasions, explains the fact that the total cimulative dose was not selected. This fact may simply reflect the concept that there is a latency period between dose and cancer incidence, although the time intervals available to us and the manner in which the time intervals are modeled, are likely to be only a simple minded version of the true relationships. Notable by the inclusion of dose variables in their classification functions are: Respiratory Cancer (161-163), Pancreas (157), Brain (190-192), Kidney (189), Unspecified Secondary cancers (199), and Multiple Myeloma (203). In addition, dose variables were remotely sensitive although not selected in a number of other cancer groups.

The interpretation of the inclusion of the dose variables in the classification functions are of course subject to the concerns identified in section 2 .

3.1.2 Logistic Regression Models

In the case of a model with two possible responses, e.g., death from cancer and death from cause other than cancer, the logistic regression model expresses the probability of one response as $p=e^{Y} /\left(1+e^{y}\right)$, or equivalently, as $\log [p /(1-p)]=y$ where $y=\alpha+\sum \beta_{j} x_{j}$ is a linear combination of the covariates x_{j} with unknown parameters α and β_{j} which are to be estimated. The probability of the other response is then $1-p$. The parameters α and B_{j} are estimated by the method of maximum likelihood. The logistic regression model has several features which make it more appealing than a model in which the data is categorized. First, the logistic regression model can handle continuous covariates as continuous variables. There is no need to categorize these variables; and since the choice of cutpoints is somewhat arbitrary and subjective, one would like to avoid splitting a variable into categories, if possible. Also, in the logistic regression model the probability comes out as a continuous function of a continuous covariate such as dose. There are no jumps in probabilility as one crosses a boundary. A second consideration which favors the logistic regression model over a categorical model is that when one is dealing with a number of categorical variables the number of cells increases rapidly and the number of observations per cell goes down rapidly. The categorical analysis does not behave well with sinall cell counts. Finally, the logistic regression model usually results in a simpler model since it contains only one parameter for each independent variable in the model. A possible objection to the logistic model is that it postulates a very specific form for the rasponse probability, i. e., that $\log [p /(1-p)]$ be a linear function of the independent
variables. However, if this relationship is not linear, one can add square terms, etc. to the model to achieve the desired linearity.

The stepwise discriminant analyses have identified a number of specific cancers in which some dose variable was selected. The next step in our approach at this point is to r.odel the probability of death from cancer as a function of the variables suggested by the discriminant analyses. However, in view of the serious questions raised in section 2 concerning the data, most notably, 1) The marked increase in average dose over the years which the workers received, 2) The failure to distinguish between monitored and not-monitored cases, 3) The failure to distinguish internal depositions, and 4) The occurrence of 138 cases which have relatively large doses recorded after the final year of employment, we feel that no reliable interpretation can be placed on such models. Nevertheless, if one is willing to accept the data at face value, such models may be of interest. We have presented selected models for respiratory cancer, cancer of the pancreas and cancer of the brain in Appendix E. Also, the modeling of respiratory cancer, using exposed workers only, is subjected to a detailed analysis in section 3.2.

In Appendix E for each model the coefficients α and β_{j} are given, the chi-square value for testing statistical significance of the β_{j}. (This chi-scruare value has 1 degree of freedom), the value of $-2 \cdot \operatorname{lug} L$, and finally, the decrease in $-2 \cdot \log L$ for the given model relative to the model with a constant alone. The size of $-2 \cdot \log \mathrm{~L}$ for a given model as compared to that for the constant model may be used as a measure of goodness of fit of the model to the data.

For the logistic modeling four subsets of the file of exposed white males were used, 1) all cases, 2) all cases less accidents, 3) exposed cases only, and 4) exposed cases less accidents. The main features of these models are the following. For respiratory cancer, statistical significance of the dose variables is borderline, at best. There seems to be a definite relation between cancer of the pancreas and dose. However, this conclusion is based on approximately 30 pancreas cases, of which 5 had relatively large post-employment doses (generally twice as large as the dose received during employment) recorded in the data file. Because of the uncertainty of the meaning of these doses, we would be hesitant to draw any conclusions until this question is cleared up. For cancer of the brain, the dose received 25 or more years before death is selected by discriminant analysis as being important. When this variable is put in the logistic model it also tests highly significant. However, when age at death and time from initial employment to death are controlled for, the dose variable becomes totally non-significant. We believe that further modeling work is desirable, but must wait until more basic questions concerning the data are answered.

3.2 Further Detailed Analysis of Respiratory Cancer

This group was chosen for further analysis because it had a large number of cases of cancer and because of the relationship of cancer to dose suggested by the discriminant analysis. Since the argument can be made that workers who have zero cumulative lifetime dose are in essentially different occupations from those who have dose, we have chosen here to work with "exposed" workers only, i.e., those whose cumulative lifetime dose is positive. There were a total of 2225 such cases in the file. When the non-respiratory cancers were removed we were left with 1912 cases, of which 136 or 7.1% were deaths from respiratory cancer. A stepwise discriminant analysis was done on this data using two groups, those dying from respiratory cancer (ICD 161-163) and those dying from causes other than cancer (ICD 1-139, 210-999). Twenty-six variables were used, 13 of the variables appearing in the data set originally sent to us, and 13 variables calculated from those, such variables as time from initial employment to death (DT1), dose received 0-3 years before death, etc. The complete list is described in Appendix D. The means of each of these variables are given in Table 9 and their standard deviations in Table 10 The F-ratios for four steps of the discriminant analysis are given in Tables 11 thru 14. For step O (Table 11) it can be seen that the most important variable is AGESQ which is defined as $[(D E A T H A G E-60) / 5]^{2}$. This expression defines AGESQ as a parabola with its vertex at age 60. This particular functional form was suggested by a plot of the percent of cancer deaths vs. categories of age as seen in Figure 6. The data for this plot is in Table 15 below.

| | GROUP $=$ | RESPCANC | NOCANCER |
| :---: | :---: | :---: | :---: | ALL GPS.

Table 9. Means of variables used in discriminant analysis of respiratory cancers; no cancer group includes all non-cancer deaths.

| | GROUP $=$ | RESPCANC | NOCANCER |
| :---: | ---: | ---: | ---: | ALL GPS.

Table 10. Standard deviation of variables used in discriminant analysis of respiratory cancers; no cancer group includes all non-cancer deaths.

Table 11. F-ratios at initial step of discriminant analysis on exposed white males using two groups: death from respire tory cancer and death from non-cancer.

CLASSIFICATION FUNCTIONS

VARIABLE ZOAGESO	.04322	.08381
CONSTANT	-.77053	-.98414

CLASSITILATIOK MATRIX
GROUP PERCENT NUMEER OF CASES CLASSIFIED INTO GROUP -

	RESPCANC	NOC	
RESPCANC	76.5	104	32
NOLANLER	40.4	1058	$7 T 2$
TOTAL	43.0	1162	750

Table 12. F-ratios, classification functions and classification matrix at first step of discriminant analysis on exposed white males using two groups: death from respiratory cancer and death from non-cancer.

LLKSSIFILATIUN FUNLTIONS		
GROUP $=$	RESPCANC	NOCANCER
VAKIAELE		
2 INITLYR	3.19907	3.14564
21 DOS16-20	.01443	.01187
2O NGE SQ	$=.21925$	0.17563
CONSTANT	-75.71145	-73.36654

CLASSIFICATION MATRIX
GKUUP PERLENT TUMOER OF CRSES LLASSIFIED INTO GROUP: CORRECT

RESPCANG FOCANCER

RESPLANC	58.0	80	50	1003
NOCANCER	56.5	773	139	

TOTनL 50.0 <ठ53 105?
Table 14. F-ratios, classification functions and classification matrix at third step of discriminant analysis on exposed white males using two groups: death from respiratory cancer and death from non-cancer.

Figure 6 Percent of deaths from respiratory cancer for exposed white males as a function of age at death.

	$20-$ 29.9	$30-$									
34.9	$35-$	39.9	44.9	$45-$	59.9	54.9	$55-$	$60-$	$65-$		
64.9	69.9	$70+$	Total								
No. Cancers	0	0	4	5	8	13	24	32	28	22	136
Total	37	29	71	114	156	226	260	289	279	451	1912
or Cancer	0.0	0.0	5.6	4.4	5.1	5.8	9.2	11.1	10.0	4.9	7.1

Table 15 Numbers of and percent of Respiratory Cancers as a function of age for exposed white males.

The left portion of this graph for ages less than 50 departs from a parabolic shape, but this part involves only 407 cases out of a total of 1912 cases. Thus, nearly 80% of the cases are in the age group from 50-70 and the quadratic form which we used ought to provide a good fit. In fitting a logistic model one fits $\log [p /(1-p)]$ to the independent variables, where p is the probability of death from cancer. A plot of this expression vs. age is shown in Figure 7, where the percents in Figure 6 were used for p. Again the
parabolic shape stands out in the range $50-70$ years where the largest portion of the data is located.

Figure 7 log $[p /(1-p)]$ for exposed white males as a function of age at death, where p is the percent of deaths from respiratory cancer vs. non-cancer.

As seen in Table 11, other important variables at the initial step of the discriminant analysis are final year of employment (FINALYR), year of death (YRDEATH), total years of employment (TOTAL YR), dose received 16 to 20 years before death (DOS16-20) and dose received 11 to 15 years before death (DOS11-15).

After the variable AGESQ is entered in the first step of the discriminant analysis, a curious thing happens. The variable initial year of employme:ic (INITLYR) becomes the next candidate to enter with an F-ratio of 4.9. Other variables that are close are FINALYR, YRDEATH, and DOS16-20. We are at a loss to explain the meaning of this. The coefficients on INITLYR in the classifications functions
are such that the larger the value of INITLYR, the greater the chance of death from respiratory cancer. One might argue that INITLYR is acting as a surrogate for dose, particularly in view of Figure 4 which shows that the average dose which Hanford workers have been receiving has been going up over the years. However, if this is the case, cme would expect the dose variables to show up with F-ratios comparable to that of INITLYR, but aside from DOS16-20, they don't. Furthermore, after INITLYR is entered, the F-ratio for DOS16-20 increases a little. If INITLYR were acting as a surrogate for DOS16-20, this F-ratio should decrease considerably. Thus it seems that INITLYR is not acting as a surrogate for any of the dose variables. This question is considered later in more detail and this conclusion is contradicted. One might feel that INITLYR is acting as a surrogate for YRDEATH and that since the incidence of respiratory cancer has been increasing over the years, this produces a positive relation between death from respiratory cancer and INITLYR. Perhaps this is so, but then one would expect the F-ratio for YRDEATH at step 1 of the discriminant analysis to be somewhat higher than that of INITLYR, and this is not the case.

After AGESQ and INITLYR are entered in the stepwise discriminant procedure, DOS16-20 is chosen next with an F-ratio of $3.9(\alpha=.048)$. The coefficients on DOS $16-20$ in the classification functions are such that higher dose gives higher chance of cancer.

The stepwise discriminant analysis procedure was used to suggest a set of variables to be used in developing a model to give the probability of death from respiratory cancer. The variables chosen were:

AGESQ, INITLYR, YRDEATH, DOS6-10 and DOS16-20.

At all of the steps of the discriminant analysis, correct classification was not impressive, being typically around 50%. One interesting fact which stands out is that cumulative lifetime dose (CUMDOS) does not show up at all (F-ratios all less than 1.5). The stepwise discriminant analysis was also run on the above data set, leaving out accidental deaths, and the results were essentially the same. Finally, the analysis was done including cases with zero cumulative lifetime dose. The biggest difference here was that YRDEATH showed up quite a bit more significant than INITLYR.

A logistic regression model was developed for exposed white males. Two response categories were used: respiratory cancer death (136 cases) and non-cancer deaths (1776 cases). The form of the model is:

$$
\log [P /(1-p)]=\alpha+\sum_{j=1}^{k} B_{j} x_{j}
$$

where p is the probability of respiratory cancer being the cause of death, as opposed to a noncancer cause of death, x_{j} is the value of the $j-t h$ predictor variable in the model and α and β_{j} are coefficients to be estimated from the data. Table 16 summarizes the results of 8 different logistic regression models which were fit to the data. First, based on the discriminant analysis results, we would certainly want to include AGESQ in the model. Then discriminant analysis would suggest that INITLYR be included, while the fact that the incidence of respiratory cancer is increasing over time would say that YRDEATH should be in the model. Each of these variables was tried separately (with AGESQ, of course) and together. See models 3, 4 and 5 of Table 16 . With both INITLYR and YRDEATH in the model the chi-square values for these variables are about $3.0 \quad(\alpha=.09)$,

Table 16. Results of fitting eight logistic regression models using respiratory cancer and no cancer as the two response categories. Only exposed white males are included in the model. Variables which have no entry for a particular model were not used in that model. For each model, the first value under the variable is the coefficient of that variable in the logistic regression model, while the second value (below in parentheses) is the chi-square value for a test of statistical significance of that variable. All chi-square values have one degree of freedom.
but either one alone has a chi-square of 4.7 or 4.4 . This suggests that either one, but not both, of these variables belongs in the model. Since YRDEATH has an obvious interpretation while INITLYR does not, it would seem that a reasonable model at this point would consist of AGESQ and YRDEATH. Next, DOS 16-20 was added to some of the above models. See models 6,7 and 8 of Table 16 for the results. When DOS 16-20 is added to the model consisting of $A G E S Q$ and IMITLYR, it has a chi-square value of 3.497 with 1 degree of freedom $(\alpha=.06)$. When DOS16-20 is added to the model consisting of AGESQ and YRDEATH, it has a chi-square value of only 1.6 . Also, the chi-square value of YRDEATH drops from 4.4 to 3.3 . Finally, when DOS 16-20 is added to the model consisting of AGESQ, INITLYR and YRDEATH, both YRDEATH and DOS16-20 drop in significance. This suggests that YRDEATH and DOS 16-20 are correlated. This is substantiated further on. This shows that YRDEATH contains information about DOS16-20 and vice-versa; and that we cannot separate the effects of each (except, for example, by having an independent estimate of the effect of YRDEATH on respiratory cancer deaths among Hanford workers). In any case, from the point of view of statistical significance, DOS16-20 is border line at best $(\alpha=.06$ when we include in DOS 16-20 any effect of YRDEATH). The coefficients on AGESQ in all of the models are nearly the same (all between -. 301 and -.286) which is reassuring. The coefficients on DOS16-20, on the other hand, vary between . 0012 and .0018; which is not a very large magnitude, but percentagewise the change is 33% or 50% depending on one's point of view. This is quite large and can have a considerable effect if one attempts to estimate the effect of dose on the probability of death from respiratory cancer. In view of the relation between YRDEATH and DOS 16-20 in the data file, we are reluctant to attempt such an estimate.

$$
-68-
$$

Another curious point about the logistic modeling is the fact that when INITLYR is added to the model consisting of AGESQ, YRDEATH and DOS $16-20$, it is on the border line of testing significant (chi-square $=3.366$ with 1 def., $\alpha=.07)$. As stated before, we are unable to find an interpretation for this.

Based on the above discussion, it is difficult to recommend a single model. Our inability to find an interpretation for INITLYR makes us want to leave it out of the model. On the other hand, the statistical analysis is hinting (mildly, at least) that it belongs in the model. Also, the statistical analysis is hinting that YRDEATH and DOS $16-20$ belong in the model. However, these variables are correlated, so that when both are put in the model their significance drops, as do the values of their coefficients. Thus it is not possible to estimate the effect of each variable separately on the response.

An attempt to get at the meaning of INITLYR in the model and to see the relation between YRDEATH and dose prompted a more detailed look at the data. Scatterplots were made of three dose variables, DOS 6-10, DOS11-15 and DOS 16-20 against both INITLYR and YRDEATH. In these plots the extremely low doses were omitted. The plots are shown in Figures 8 thru 13 on the following pages. A number, such as 3 , indicates 3 or more points on top of one another on the graph while a plus sign indicates 10 or more points on top of one another. The scatterplots show little or no relationship between INITLYR and the dose variables. However, YRDEATH bears a definite positive relationship with each of the dose variables.

Figure 8. Scatterplot of DOS6-10 vs. Initial Year of Employment for Exposed White Males With Respiratory Cancer or no Cancer as Cause of Death. Cases with DOE 6-10 Less or Equal to 15 have not been plotted.

Figure 9. Scatterplot of DOS11-15 vs. Initial Year of Employment for Exposed White Males With Respiratory Cancer or no Cancer as Cause of Death. Cases with Dose Less or Equal to 10 have not been plotted.

Figure 10. Scatterplot of DOS 16-20 vs. Initial Years of Employment for Exposed White Males with Respiratory Cancer or no Cancer as Cause of Death. Cases with Dose Less or Equal to 25 have not been plotted.

Figure 11. Scatterplot of DOS6-10 vs. Year of Death for Exposed White Males with Respiratory Cancer or no Cancer as Cause of Death. Cases with DOS6-10 Less or Equal to 15 have not been plotted.

Figure 12. Scatterplot of DOSII-15 vs. Year of Death for Exposed White Males with Respiratory Cancer or no Cancer as Cause of Death. Cases with Dose Less or Equal to 10 have not been plotted.

Figure 13. Scatterplot of DOS16-20 vs. Year of Death for Exposed White Males with Respiratory Cancer or no Cancer as Cause of Death. Cases with Dose Less or Equal to 25 have not been plotted.

A close look at the scatterplot of DOS6-10 vs. YRDEATH in Figure 11 shows that the envelope of the dose levels is flat up to about ' 57 where it begins to rise linearly. The doses plotted for ' 57 were received $6-10$ years earlier, i.e., in ' 47 to '51. This suggests that the doses (recorded in our file) which Hanford workers received began to rise sometime between 1947 and 1951. Similar considerations for DOS11-15 in Figure 12 would put the beginning of the rise between 1946 and 1950 , while consideration of DOS16-20 in Figure 13 would put it between 1945 and 1949. These observations are consistant with Figure 4 which shows that the average dose which Hanford workers received increased over time and that the increase began around 1949. Furthermore, the flat parts of the envelopes of the dose levels in Figures 11, 12, and 13 suggest that the dose which Hanford workers received decrease linearly from 1944 to around 1948 or so; a look at the graph in Figure 4 shows that this is approximately true. Thus, we have established a very definite positive relationship between the dose variables and year of death in our data file.

Next, for each of the dose variables, the average dose was determined for each initial year and each year of death. Plots of these averages appear in Figures 14 thru 19. The plot of average DOS6-10 vs. INITLYR in Figure 14 shows a linear rise up to ' 55 after which the plot becomes erratic. We don't have an explanation for this erratic behavior. However, the vast majority of cases, 1857 out of 1910 (two cases with initial year of ' 72 are not included), are on or before '55, so this plot would suggest a positive relationship between DOS6-10 and INITLYR. Such a relationship didn't show up in Figure 8, but a look at the vertical scales of the two graphs shows that the rise detected in Figure 14 is

Figure 14. Plot of average DOS6-10 for workers with the specified initial year of employment. Only exposed white males with respiratory cancer or no cancer as cause of death are used.

Figure 15. Plot of average DOS11-15 for workers with the specified initial year of employment. Only exposed white males with respiratory cancer or no cancer as cause of death are used.

Figure 16. Plot of average DOS16-20 for workers with the specified initial year of employment. Only exposed white males with respiratory cancer or no cancer as cause of death are used.

Figure 17. Plot of average DOS6-10 for workers with the specified year of death. Only exposed white males with respiratory cancer or no cancer as cause of death are used.

Figure 18. Plot of average DOS11-15 for worker, with the specified year of death. Only exposed white male with respiratory cancer or no cancer as cause of death are used.

Figure 19. Plot of average DOS16-20 for workers with the specified year of death. Only exposed white males with respiratory cancer or no cancer as cause of death are used.
rather slight compared to the vertical scale of Figure 8 so one would not expect to see that rise in Figure 8 Similar comments apply to Figure 15. The doses from '63 up must be zero in this figure, since all of the cases are deathsthat occurred on or before '72. There is no relation between DOS 16-20 and INITLYR other than the logical requirement that average DOS 16-20 be zero from '57 up. Thus there is some indication of a positive relationship between dose and initial year of employment. With regard to year of death, Figures 17,18 , and 19 show a very definite positive relationship between the dose variables and year of death, reinforcing that observed in Ficures 11 , 12, and 13. The implications of these relationships ir the logistic modelling have been discussed above.

4.0 PRINCIPAL CONCLUSIONS

A number of conclusions have been reached pertaining to the quality of the data analyzed in this project and the results that can be obtained. These may be listed as follows:

1. We are not convinced that the data is in fact the same data as that collected for Hanford workers and maintained by Battelle Pacific Northwest Laboratories. This concern is due in part to inconsistencies among various sources concerning the data and in part to lack of clear documentation of the chain of events leading to the preparation of the data.
2. The data is not consistent with the purported data collection procedures as evidenced for example by the existence of reported doses after the final year of employment.
3. The data does not correspond with that presented in the Mancuso paper.
4. The data contains a systematic trend of increasing average yearly dose over calendar years, which suggests a possible bias in the data collection procedure applicable to the file from which the current data was extracted.
5. We have not been able to receive or discover an authoritative definition of the meaning of the dose variables, including the units, types of radiation included, and quality factors.
6. The absence of data pertaining to other information that is available but which was not provided was a hindrance to a proper completion of analysis. This includes among other items, data on radiation 1393155
(Cont.) 6. monitoring, secondary causes of death, internal exposures, accidental deposition, yearly dose records broken down by radiation sources, and inclusion of additional fatalities occurring after 1972.
7. The lack of adequate documentation from NRC forced us to spend considerable time and effort identifying and researching the supporting material required for the preparation of a responsible analysis.
8. In view of the above conclusions concerning the data, it does not seem appropriate to attempt to draw conclusions from the statistical analysis.
9. It is a useful corollary of the evidence presented in this paper that future efforts must carefully consider the reliability of the data studied. This would include careful documentation of the sources of the data and of the procedures used in compiling it.
10. It is our recommendation that this contract should be modified in such a way that the work can be repeated with data which is adequate for the purpose intended.

REFERENCES

1. Mancuso, T. F.; Stewart, A.; Kneale, G., "Radiation Exposures of Hanford Workers Dying From Cancer and Other Causes", HEALTH PHYSICS, Pergamon Press, 1977 Vol. 33, p. 369-385.
2. Milham, S., Jr., 1975, "Occupational Mortality in Washington State, 1950-1971", Contract CDC-99-74-26.
3. Marks, S.; Gilbert, E.S.; and Breitenstein, B.D., "Cancer Mortality in Hanford Workers", March 1978, Symposium on the Late Biological Effects of Ionizing Radiation, IAEA, Vienna, Austria.
4. Land, C. "Review of Mancuso, Stewart, and Kneale: Radiation Exposures of Hanford Workers Dying from Cancer and Other Causes", unpublished.
5. Hearings held by the Subcommittee on Health and the Environment of the Committee of Interstate and Foreign Commerce of the U. S. House of Representatives, January-February, 1978.
6. Kneale, G.W.; Stewart, A.M.; Mancuso, T.F., "Re-analysis of Data Relating to The Hanford Study of the Cancer Risks of Radiation Workers", Symposium on Late Biological Effects of Ionizing Radiation, Vol. 1, IAEA, Vienna 1978.
7. Kneale, G.W.; Stewart, A.M.; Mancuso, T.F., "A Study of the Carcinogenic Effects of Low-Level Ionizing Radiation in Hanford Wurkers by a Regression-Type Model Using Life Tables", Presentation to the American Association for the Advancement of Science, January 6, 1979.
8. Progress Reports for Contracts AT (30-1)-3394, CHAT (11-1) -3428 and $E(11-1)-3428$ prepared by Mancuso, T. F.; Sanders, B. S.; and Brodsky, A., Department of Occupational Health, Graduate School of Public Health, University of Pittsburgh, 1964-1977.
9. Kirklin, C. W.; Fritz, H. W., Heid, K. R., Preliminary report on Hanford Operations AEC feasibility Study, 1969.
10. Sanders, B. S., "Low-Level Radiation and Cancer Deaths", unpublished.
11. Progress Report \#9, Contract CHAT (11-1)-3428, 1973, "Study of the Lifetime Health and Mortality Experience of Employees of AEC Contractors".
12. Input Data to the AEC Health and Morality Study, Radiation Exposure Experience of E ployees 1977 through 1974, revised December 31, 1974.
13. Progress Report \#4, Contract AT (30-1)-3394, Feasibility Study of the Correlation of Lifetime Health and Mortality Experiences of AEC and AEC Contractor Employees with Occupational Radiation Exposure, Mancuso, T. F.; Sanders B. S.; and Brodsky, A., 1968.
14. Biomedical Computer Programs, Dixon, W. J., Editor, University of California Press, 1975.

APPENDIX A

Univariate Distributions of All Variables
Except Race, Sex, and Exposed-Unexposed
For All Cases and For Exposed White Males

1393159

21.5	T0	22．5－
22.5	10	23．5－
23.5	10	$24.5-$
24.5	10	25．5－
25.5	T0	26．5－
26.5	10	27，5－
27.5	10	28．5－
29.5	T0	$29.5-$
29.5	10	30，5－
30.5	T0	31．5－
31.5	10	32．5－
32.5	T0	33．5－
33.5	T0	34，5－
34.5	10	35．5－
35.5	T0	36．5－
36.5	T0	37．5－
37.5	T0	38．5－
38.5	10	39．5－
39.5	T0	40．5－
40.5	10	41．5－
41.5	T0	$42.5-$
42.5	10	43．5－
43,5	T0	44．5－
44.5	T0	45．5－
45.5	T0	$46.5-$
46.5	T0	47．5－
47.5	T0	48．5－
48.5	10	49．5－
49.5	T0	50．5－
50.5	T0	51．5－
51.5	T0	52．5－
52.5	T0	53．5－
53.5	10	54．5－
54.5	T0	55．5－
55.5	T0	56．5－
56.5	T0	57．5－
57．5	T0	58．5－
58.5	T0	59．5－
59.5	T0	60．5－
60.5	T0	61．5－
61.5	T0	62．5－
62.5	T0	63．5－
63.5	T0	64．5－
64.5	T0	65．5－
65.5	T0	66．5－
66.5	T0	67．5－
67.5	T0	68．5－
68.5	T0	69．5－
69.5	T0	70．5－
70，5	10	71．5－
71.5	T0	72．5－
72.5	T0	73．5－
73.5	T0	74．5－
74.5	10	75．5－
75.5	T0	76．5－
76.5	T0	77．5－
77.5	T0	78．5－
78.5	T0	79，5－
79.5	T0	30．5－
80.5	T0	81．5－
81.5	T0	82．5－
32.5	T0	83．5－
83.5	T0	84．5－
84.5	T0	$85.5-$
85.5	T0	86．5－
86． 5	T0	87，5－
87.5	\％0	$88.5-$
88.5	10	89．5－
89.5	T0	$90.5-$
90.5	10	$91.5-$
91.5	T0	92.50
92.5	T0	$93.5-$
93.5	10	94．5－
94.5	T0	$95.5-$
95.5	10	$96.5-$
96.5	T0－	97．5－
97.5	T0	$98.5-$
98.5	T0	$99.5-$
99.5	T0	100，5－
00.5	10	101.5

11＊＊
7＊＊
1与＊＊＊教
9＊＊
11＊＊

15＊＊幺幺
20＊＊＊もをさま

10：3
6＊：
$5:$
4
3
2
0
1
1
0
0
0
42.5 T0 43.5- 9

45.5 T0 46.5- 1078:

48.5 $1049.5-588$
49.5 T0 50.5- 66 ± 4

51.5 T0 52.5- 75*:
52.5 T0 53.5~ 44:
53.5 TO $54.5-\quad 43$ t
54.5 TO 55.5- 62土x
55.5 TO 56.5- 16
56.5 10 57.3- 7
57.5 10 5日.5-
58.5 T0 59.5-
59.5 10 60.5-
$60.51061 .5-$
$\$ 1.510$ \$2.5-

$62.5 T 0$
$63,5-$
63.5
10
$64.5-$

63.5 T0 64.5-
65.5 T0 66.5-
65.5
60.5 T0 $67.5-$
66.5 T0 $67.5-$
67.5 TO $88.5-$
68.5 T0 69.5-
69.5 TO 70.5-

THIS HISTOGRAM DOES NOT INCLUDE 5.00 QBS .LT. 40.5 AND .000 QBS .GE. 79.5

All Cases Initial Year of Employment

	T0	
45.5	T0	
46.5	T0	
47.5	T0	
48.5	T0	49
49.5	T0	
50	T0	
	T0	
52.	T0	
53	T0	
54	T0	
55	T0	
56	T	
57	T0	
58.	T0	
59,5	T0	
60.5	T0	
61.5	T0	
62.5	T0	
63.5	T0	
64.5	T0	
65.5	T0	
66.5	T0	67
67.5	T0	6 6
68 , 5	T0	
69.5	T0	
70.5	T0	
1	T0	

Tb4*

92**********

32**
25:*
24*
39***
41***
了4**:
43***

All Cases Final Year of Employment

All Cases Total Years Employed

All Cases Cause of Death

All Cases Cause of Death
A-6
1393165
$\begin{array}{rrr}-.5 & 10 & 49.5- \\ 49.5 & 10 & 99.5- \\ 99.5 & 10 & 149.5-\end{array}$ 149.5 T0 199.5199.5 T0 249.5= 249.5 TO 299.5$\begin{array}{ll}249,5 \text { T0 } & 299,5- \\ 299,5 \text { T0 } & 349,5-\end{array}$ 349,5 T0 399,5399.510 449.5449.5 T0 499,5$499,510549,5=$ 549,5
599,50
$599,5-$ $\begin{array}{lll}599,5 & 10 & 649,5- \\ 649,5 & 10 & 699,5-\end{array}$
 749.5 T0 799.5799.5 T0 049.5$\begin{array}{ll}799.5 & 10 \\ 849.5 & 10 \\ 899,5-\end{array}$ 899.5 T0 949.5949.5 T0 $994.5-$ 999.5 T0 1049.5$1049.5101099 .5-$ 1069,5 10 $1099,5-$
$1097.51149,5-$ 1149,5 T0 1199.51199,5 T0 $1249,5-$ 1299.5 T0 1349.5-$1347,3101399,5-$ 1399,5 T0 1449 , 21449,5 T0 $1499,5-$ 1499,5 T0 1549,51549,5 T0 1599,51599.5 T0 1649.5-$1599,5101649,5-$
1649,5 T0 $1699,5-$ $1699.5101749,5-$ 1749,5 TO 1799.51799.5 TO $1849.5-$ 1849.5 TO 1899.51899,5 TO $1949.5-$ $1949,5101999,5-$ 1999.5 T0 2049.5$2049,5 \mathrm{TO} 2099,5-$ 2099.5 T0 $2149.5-$ 2149,5 T0 2199,52199.5 TO $2249,5-$ 2249,5 T0 2299, 52299.5 T0 2349.52349,5 T0 2399.5-$2399.5102449,5-$ $2449,5102499,5-$ 2499.5 TO $2549,5-$ $2549.5102599 .5-$ 2599.5 10 2649.52649.5 T0 $2699,5-$ 2699.5 TO $2749.5-$ 2749.510 2799.52799,5 T0 2849,52849.5 T0 2899.52899.5 T0 2949.52949.5 TO 2999.52999.5 50 3049.53049,5 TO $3099,5-$ 3097 . 5 TO $3149.5-$ 3149,5 70 3199. 53199.5 TO $3249.5-$ $3249,5103299,5-$ 3299.5 - $10-3349.5 \ldots-0$ $3349,5103399,5-$ 3399.5 T0 3449.53449.5 $103499.5-$ 3499, 503549,5 3499.5103549 .5 3549,5
3599 3599.5-$3599,5103649,5-$ 3649,5 TO 3699.53699.5 TO 3749.53749.5 TO 3799.53790.5103849 .5 3799.5103849 .5 $3849.5103899,5-$ $3899,5103949.5-$ 3449,5 TO 3999.53999,5 TO 4049.54049.5 TO 4099.5$4099.5704149 .5-$ 4149.5 TO $4199.5-$ 4199.5 T0 4249.54249.5 TO $4299.5-$ 4299,5 T0 4349.54349,5 T0 4399,54399.5 TO 4449,5-

120**
63
45
30
20
20
13
10
16 19 9
9
7 7
5 $\infty \circ$ 3 5 3 wn

226:*) \#8:

1199,5 T0 $1249,5-$
1249,5 TO $1299,5-$
1249,5 TU $1299,5-$
1299,5 TO $1349,5-$
1349.5 T0 $1399.5-$
1399,5 TO $1449,5-$
1399,5 TO $1449,5-$
1449.5 TO $1499,5-$
1449.5 TO $1499.5-$
1499.5 TO $1549.5-$
1499.5 10 $1549.5-$
1549.5 10 $1599.5-$
1599.5 T0 $1649.5-$
$1549.5101599 .5-$
$1599.5101649 .5-$
1599.5 T0 $1649.5-$
1649.5 T0 $1699.5-$
1699.5 10 1749.5-
$1699,5101749,5-$
$1749,5101799,5-$
1799.5 T0 1849.5-
1799.5 T0 $1849.5-$
1849.5 T0 $1899.5-$
1849,5 T0 $1899,5-$
1899,5 T0 $1949,5-$
1949,5 T0 $1999,5-$
1999,5 T0 $2049,5-$
1999.5 T0 2049,5-
2049,5 TO 2099,5-
2099.5 T0 $2149.5-$
2149,5 T0 $2199,5-$
$2149,5 \quad 102199,5-$
$2199,5102249,5-$
2199,5 T0 $2249,5-$
2249,5 TO $2299,5-$
2299,5 T0 $2349,5-$
2299,5 TO $2349,5-$
$2349,5102399,5-$
$2399,5102449,5-$
2449.5 $702499.5-$
2499,5 T0 $2549,5-$
$499,5102549.5$
2549,5 T0 $2599,5-$
2590,5 10 $2649,5-$
2599,5 T0 $2649,5-$
2649,5 T0 $2699,5-$
2699.5 T0 $2749.5-$
2749.5 10 $2799.5-$
2699,5 T0 $2749,5-$
2749.5 10 $2799,5-$
2799,5 T0 2849,5-
2849,5 T0 2899.5-
2849.5 10 2899.5-
2899,5 10 $2949,5-$
2949,5 10 $2999,5-$
$2899,5102949,5-$
$2949,5102999,5-$
2999,5 10 $3049,5-$
2999,5 TO $3049.5-$
3049,5 T0 $3099,5-$
2999,5 TO $3049,5-$
3049,5 TO $3099,5-$
3099.5 TO $3149,5-$
3149,5 T0 $3199,5-$
3199.5 T0 3249.5-
3249,5 TO 3299.5-
3299,5 TO $3349,5-$
$\begin{array}{ll}3349,5 & 10 \\ 3399,5- \\ 3399.5 & 10 \\ 3449,5-\end{array}$
3399.5 TO $3449,5-$
3449.5 T0 $3499,5-\quad 0$
3499.5 10 $3549.5-$
3499,5 10 $3549,5-$
3549,5 T0 $3599,5-$
3549,5 T0 $3599,5-$
$3599.5103649,5-$
3649.510
$3699,5-$
$3599,5103649,5-$
$3649,5103699,5-$

178を***
120*
59
36
29
$\begin{array}{ll}249.5 \\ 299.5 & 10 \\ 349.5-\end{array}$
$\begin{array}{ll}299,5 & 10 \\ 349,5= \\ 349,5 & 10 \\ 399.5-\end{array}$
399.5 T0 $449.5-$
$\begin{array}{ll}449,5 \text { TO } & 499.5- \\ 499,5 & \text { TO } \\ 549.5-\end{array}$
549.5 T0 599.5-
599.5 T0 $649.5-$
599.5 T0 $699.5-$
649,5 T0 $699.5-$
699,5 T0 $749.5-$
$697,510749,5-$
749,50
$749.510899 .5-$
$799.510849 .5-$
849,5 T0 899.5-
899.5 TO $949.5-$
949.5 T0 $999.5-$
1049.5 T0 $1099.5-$
1049,5 T0 $1099.5-$
1099,5 T0 $1149,5-$
1149,5 T0 $1199,5-$
2499.5 TO 2549.5-
3699,5 TO $3749,5-$
$3749,5 ~ 10$
$3799,5-$
3799,5
3799,5 T0 $3849,5-$
3849,5 TO $3899.5-$
3849,5
3899,5
3940
$3949.5-$
$3899,5703949,5$
$3949.5103999 .5-$
$3999.5104049 .5-$

-.5	10	$49,5-$	39
49.5	10	$99,5-$	47
99.5	10	$149,5-$	13
149.5	10	$199,5-$	5
199.5	10	$249,5-$	3
249,5	10	$290,5-$	1

COO\&

-
2


```
21.5 10 22.5-
22.5 10 23.5-
23.5 TO 24.5- 3
24.5 TO 25.5-
25.5 T0 26.5- 4*
27.5 10 28.5- 80
28.5 T0 29.5- 0
29,5 T0 30.5-
30.5 T0 31.5- b*####
31.5 T0 32,5- 8####zt%
32.5 T0 33.5- 11z##zazazz
33.5 10 34.5- b&####
34.5 TO 35.5- 11*&z&ztz% 
```



```
36.5 T0 37.5- 13*&#####&&##
37.5 T0 38.5- 19%###############
30.5 TO 39.5- 22****&###############
39.5 T0 40.5- 14*###########
M0.5 TO 41.5- 22*###################
```



```
43.5 T0 44.5- उO&###########################
```



```
M,
```



```
53.5 T0 54,5-
54.5 T0 55.5-
56.5 10 57.5-
57.5 T0 58.5-
58.5 T0 59.5-
59.5 T0 60.5-
60.5 T0 61.5-
61,5 T0 62,5
62.5 T0 63,5-
63.5 T0 64.5-
64.5 T0 65.5-
65.5 T0 66.5-
66.5 10 67.5-
67.5 TO 68,5-
68.5 T0 69.5-
69.5 T0 70.5-
69.5 T0 70.5-
70.5 T0 71.5-
71.5 10 72.5-
72.5 10 73.5-
73.5 10 74.5-
74.5 10 75.5-
76.5 10 77.5-
**
क*#***
4***
2*
8%******
O
```



```
    S
```



```
    11*%%###%%
```



```
    14####**######
    1こ%*########
    5%**%
    5****
    5**&2
    28
20
1
1
0
0
0
0
77.5-
78.5-
78.5-
79.5-
80.5-
81.5-
91,5-
92.5-
    83.5-
    84.5-
    84.5-
    88.5-
    88.5-
    87.5-
    88.5-
    89.5-
    90.5-
    90.5-
    71.5-
    92.5
    93.5-
    93.5-
    94.5-
    95.5-
    96.5-
    96.5-
    97.5-
    99.5-
    99.5-
    T0 100.5-
    100.5 T0 101.5
0
0
```

Exposed White Males Age At Death

45.5 T0 46.5- 74zizazk

48.5 T0 49.5- 33*:
49.5 TO 50.5- 33 Fz
50.5 T0 51.5-132************
51.5 TO 52.5- 45***
52.5 T0 53.5- 30*
53.5 T0 54.5- 35**
54.5 T0 55.5- 41**
55.510 56.5-
56.5 T0 57.5
56.5 T0 57.5-
57.5 T0 58.5-
58.5 T0 59.5-
59.5 10 60.5-
$60.510 \mathrm{~B} .5-$
61.5 T0 62.3-
62.510 \$3.5-

63,5 TO $64,5-$
63.5 10 $64.5=$
$64.51065 .5=$
$64,51065,5=$
$65,51066.5-$
66.5 T0 $67.5-$
67.5 10 68.5-
38.5 TO $69.5-$
69.5 TO $70.5-$

Exposed White Males Initial Year of Employment

Exposed White Males Final Year of Employment

n.b. One case with no cause of death is excluded.

Exposed White Males Cause of Death (ICD codes) A-16

Exposed White Males Cause of Death (ICD codes) A-17

218****ABEA***A****

5	10	49.5-	1206
49.5	10	99.5-	4218
99.5	10	149,5-	174
149.5	T0	199.5-	11
199.5	TO	249, 5-	56.
249.5	T0	299,5-	35:
299.5	T0	349,5-	29*
349.5	10	399.5-	16
399.5	T0	449.5-	21
449.5	10	499.5-	10
499.5	T0	549.5-	,
549.5	T0	599.5-	18
597.5	T0	649,5-	11
649.5	T0	699.5-	5
699.5	T0	$749.5-$	2
749.5	T0	799.5-	9
799.5	TO	849.5-	4
349.5	T0	899.5-	1
899.5	T0	949.5-	;
949.5	T0	999.5-	3
999.5	10	1049,5-	3
1049.5	T0	1099.5-	3
1099.5	ro	1149.5-	5
1149.5	10	1199.5-	2
1199.5	10	1249,5-	2
1249,5	10	1299.5-	2
1299.5	T0	1349.5-	,
1349.5	10	1399.5-	2
1399.5	T0	1449,5-	1
1449.5	10	1499.5-	3
1499,5	T0	1549,5-	5
1549.5	T0	1599,5-	1
1599.5	T0	1649.5-	1
1649.5	TO	1699.5-	3
1699.5	T0	1749.5-	3
1749.5	T0	1799, 5-	0
1799.5	10	1849.5-	0
1349.5	10	1899.5-	0
1099.5	T0	1949.5-	0
1949.5	10	1999.5-	1
1999.5	T0	2049.5-	3
2049.5	T0	2099.5-	0
2099.5	TO	2149,5-	4
2149.5	10	2199.5-	1
2199.5	T0	2249,5-	0
2249.5	T0	2299.5-	1
2299,	T0	2349.5-	1
2349.5	T0	2399,5-	\bigcirc
2399.5	TO	2449,5-	1
2449.5	T0	2499.5-	1
2499.5	T0	2549,5-	0
2549.5	T0	2599.5-	3
2599.5	T0	2649.5-	1
2649.5	T0	2699, $5-$	2
2699.5	T0	2749.5-	2
2749,5	T0	2799,5-	0
2799.5	T0	2849,5-	3
2849.5	is	2899,5-	0
2899.5	10	2949.5-	1
2949.5	T0	2999.5-	0
2999.5	TO	3049.5-	0
3049, 5	T0	3099.5-	1
3099,5	T0	$3149.5-$	2
3149.5	T0	3199.5-	1
3199.5	T0	3249.5-	0
3249,5	T0	3299.5-	0
3299.5	T0	3349.5-	0
3349,5	T0	3399, 5-	0
3399.5	10	3449.5-	3
3449.5	TO	3499,5-	0
3499.5	T0	3549.5-	0
3549, 5	10	3599, 5-	2
3599,5	10	3649.5-	0
3649,5	10	3699.5-	0
3699,5	to	3749, 5-	0
3749.5	T0	3799, 5-	0
3799,5	10	3849.5-	0
3849.5	T0	3899.5-	0
3899, 5	T0	3949.5-	1
3949.5	t0	3999.5-	0
3999.5	ro	4049.5-	1

Exposed White Males
1393179
Cumulative Dose 3 Years Refore neath

Exposed White Males
Cumulative - Jse 5 Years Before Death
.510 49.510 $49.5-$
$99.5-$ 149.5
249.5- 495
299.5-
299. $5-$
$349.5-$
399. 5-
449. 5-
499.5-
549.5-
599.5-
$649.5-$
$699.5-$
$699.5-$
$749.5-$
$749.5-$
799.5-
849.5-
899.5-
949.5-
999.5-
1049.5-
$1049.5-$
$1099.5-$
1149.5-1199.5-1249.5-1299.5-1349.5-1399.5-$1449.5-$ $1499.5-$ 1549.5-1599.5-1649,5-1699,5-1749.5-1799.5-1849.5-1897.5-1949.5-1999.5-2047.5-2099.5-$2099,5-$ 2199.5-$2249.5-$ 2299,52349, 5-2399.5-$2449.5-$ $2449.5=$
2499 . 2499.5-2549.5-

1254*****

428
428
22
22
19
12
12
10
6
10

Exposed White Males
Cumulative Dose 10 Years Before Death
1
0
1

 228*********s```
97****
```

41 :
34
17


Exposed White Males Cumulative Dose 20 Years Before Death

| -.5 | 10 | $49.5-$ | 2159 |
| ---: | ---: | ---: | :--- |
| 49.5 | 10 | $99.5-$ | 46 |
| 99.5 | 10 | $149.5-$ | 13 |
| 149.5 | $T 0$ | $199.5-$ | 4 |
| 199.5 | 10 | $249.5-$ | 3 |
| 249.5 | TO | $299.5-$ | 1 |

Exposed White Males Cumulative Dose 25 Years Before Death

```
43.5 T0 44.5- !
44.5 90 45.5- 5*
lll
47.5 T0 48.5- 6.5%
48.5 TO 49.5- 23****:****
49.5 T0 50.5- 21********
50.5 T0 51.5- 30*************
```



```
52.5 TO 53.5-47*********************
53.5 TO 54.5- 37****************
54.5 TO 55.5- 39%z**************
55.5 T0 S6.5- 52**E*********************
56.5 T0 57.5-
57.5 TO 58,5-
 S゙***********&***************
```
















```
 Exposed White Males Year o{ Death
```

APPENDIX B
CAUSE OF DEATH DISTRIBUTION

## NO. OF

 CASES1

## DESCRIPTION

Enteritis due to other specified organism
Diarrhoeal disease
Pulmonary tuberculosis
Brucellosis
Septicaemia
Other bacterial diseases
Acute paralytic poliomyelitis specified as bulbar

Acute poliomyelitis with other paralysis
Acute poliomyelitis, unspecified
Other enterovirus diseases of central nervous system

Chickenpox
Infectious hepatitis
Cardiovascular syphilis
Other forms of late syphilis, with symptoms Moniliasis

Other and unspecified infective and parasitic diseases

Malignant neoplasm of lip
Malignant neoplasm of tongue
Malignant neoplasm of salivary gland
Malignant neoplasm of floor of mouth
Malignant neoplasm of other and unspecified parts of mouth

Malignant neoplasm of oropharynx
Malignant neoplasm of nasopharynx

| $\begin{aligned} & \text { NO. OF } \\ & \text { CASES } \\ & \hline \end{aligned}$ | CODE | DESCRIPTION |
| :---: | :---: | :---: |
| 2 | 148 | Malignant neoplasm of hypopharynx |
| 2 | 149 | Malignant neoplasm of pharynx, unspecified |
| 18 | 150 | Malignant neoplasm of oesophagus |
| 39 | 151 | Malignant neoplasm of stomach |
| 2 | 152 | Malignant neoplasm of small intestine, including duodenum |
| 79 | 153 | Malignant neoplasm of large intestine, except rectum |
| 23* | 154 | Malignant neoplasm of rectum and rectosigmoid junction |
| 9 | 155 | Malignant neoplasm of liver and intrahepatic bile ducts, specified as primary |
| 11 | 156 | Malignant neoplasm of gallbladder and bile ducts |
| 53 | 157 | Malignant neoplasm of pancreas |
| 3 | 158 | Malignant neopiasm of peritoneum and retroperitoneal tissue |
| 1 | 159 | Malignant neoplasm of unspecified digestive organs |
| 2 | 160 | Malignant neoplasm of nose, nasal cavities, middle ear and accessory sinuses |
| 10 | 161 | Malignant neoplasm of larynx |
| 202 | 162 | Malignant neoplasm of trachea, bronchus and lung |
| 1 | 163 | Malignant neoplasm of other and unspecified respiratory organs |
| 1 | 170 | Malignant neoplasm of bone |
| 6 | 171 | Malignant neoplasm of connective and other soft tissue |
| 13 | 172 | Malignant melanoma of skin |
| 3 | 173 | Other malignant neoplasm of skin |

NO. OF CASES

CODE

174
180
182
183

185
186
188
189

190
191
192

193
194
195
196

197

198
199

200
201
202
203
204

DESCRIPTION

Malignant neoplasm of breast
Malignant neoplasm of cervix uteri
Other malignant neoplasm of uterus
Malignant neoplasm of ovary, fallopian tube and broad ligament

Malignant neoplasm of prostate
Malignant neoplasm of testis
Malignant neoplasm of bladder
Malignant neoplasm of other and unspecified urinary organs

Malignant neoplasm of eye
Malignant neoplasm of brain
Malignant neoplasm of other parts of nervous system

Malignant neoplasm of thyroid gland
Malignant neoplasm of other endocrine glands
Malignant neoplasm of ill-defined sites
Secondary and unspecified malignant neoplasm of lymph nodes

Secondary malignant neoplasm of respiratory and digestive systems

Other secondary malignant neoplasm
Malignant neoplasm without specification of
site
Lymphosarcoma and reticulum-cell sarcoma
Hodgkin's disease
Other neoplasms of lymphoid tissue
Multiple myeloma
Lymphatic leukaemia


NO. OF CASES

CODE

291
299
303
309

320
322
323
330
331

340
342
345
347
348
355

393
394
395
396
397
398
400
401
402

DESCRIPTION
Alcoholic psychosis
Unspecified psychosis
Alcoholism
Mental disorders not specified as psychotic associated with physical conditions

Meningitis
Intracranial and intraspinal abscess
Encephalitis, myelitis, and encephalomyelitis
Hereditary neuromuscular disorders
Hereditary diseases of the striato-pallidal system

Multiple sclerosis
Paralysis agitans
Epilepsy
Other diseases of brain
Motor neuron disease
Other and unspecified forms of neuralgia and neuritis

Disease of pericardium
Disease of mitral valve
Diseases of aortic valve
Diseases of mitral and aortic valves
Diseases of other endocardial structures
Other heart disease, specified as rheumatic
Malignant hypertension
Essential benign hypertension
Hypertensive heart disease

NO. OF CASES

7

8

1109
19

348

1
2

## CODE

403
404
410
411

412

413
421

$$
422
$$

423
424
425
426
427
428
429
430
431
432
433
434
436

437
438

## DESCRIPTION

Hypertensive renal disease
Hypertensive heart and renal disease
Acute myocardial infarction
Other acute and subacute forms of ischaemic heart disease

Chronic ischaemic heart disease

Angina pectoris
Acute and sub-acute endocarditis
Acute myocarditis
Chronic disease of pericardium, non-rheumatic
Chronic disease of endocardium
Cardiomyopathy
Pulmonary heart disease
Symptomatic heart disease
Other myocardial insufficiency
Ill-defined heart disease
Subarachnoic haemorrhage
Cerebral haemorrhage
Occlusion of pre-cerebral arteries
Cerebral thrombosis
Cerebral embolism
Acute but ill-defined cerebrovascular disease

Generalized ischaemic cerebrovascular disease Other and ill-defined cerebrovascular disease

$$
B-6
$$



NO. OF

## CASES

CODE

515
517
518
519
530
531
532
533
534
535
537
540
551

552
553
560

561

562
563
565
569

571

## DESCRIPTION

Pneumoconiosis due to silica and silicates Other chronic interstitial pneumonia

Bronchiectasis
Other diseases of respiratory system
Diseases of oesophagus
Ulcer of stomach
Ulcer of duodenum
Peptic ulcer, site unspecified
Gastrojejunal ulcer
Gastritis and duodenitis
Other diseases of stomach and duodenum
Acute appendicitis
Other hernia of abdominal cavity without mention of obstruction

Inguinal hernia with obstruction Other hernia of abdominal cavity with obstruction

Intestinal obstruction without mention of hernia

Gastro-enteritis and colitis, except ulcerative, of non-infectious origin

Diverticula of intestine
Chronic enteritis and ulcerative colitis
Anal fissure and fistula
Other diseases of intestines and peritoneum
Acute and subacute necrosis of liver
Cirrhosis of liver
B-8


$$
B-9
$$

NO. OF CASES

1

CODE DESCRIPTION

729 Other diseases of joint
733 Other diseases of muscle, tendon, and fascia

Symptoms referable to cardiovascular and lymphatic system

786
792

Diffuse diseases of connective tissue Congenital anomalies of heart

Other congenital anomalies of circulatory system

Congenital anomalies of respiratory system Other congenital anomalies of digestive system Congenital anomalies of urinary system

Certain symptoms referable to nervous system and special senses

Symptoms referable to genito-urinary system
Uraemia
Senility without mention of psychosis
Sudden death (cause unknown)
Other ill-defined and unknown causes of morbidity and mortality

Hit by rolling stock
Railway accident of unspecified nature
Motor vehicle traffic accident involving collision with train

12 Motor vehicle traffic accident involving collision with another motor vehicle

E813 Motor vehicle traffic accident involving collision with other vehicle

Motor vehicle traffic accident involving collision with pedestrian

$$
B-10
$$



| $\begin{aligned} & \text { NO. OF } \\ & \text { CASES } \\ & \hline \end{aligned}$ | CODE | DESCRIPTION |
| :---: | :---: | :---: |
| 13 | E887 | Other and unspecified fall |
| 10 | E890 | Accident caused by conflagration in private dwelling |
| 3 | E891 | Accident caused by conflagration in other building or structure |
| 1 | E894 | Accident caused by ignition of highly inflammable material |
| 1 | E895 | Accident caused by controlled fire in private dwelling |
| 3 | E898 | Accident caused by other specified fires or flames |
| 2 | E899 | Accident caused by unspecified fire |
| 16 | E910 | Accidental drowning and submersion |
| 7 | E911 | Inhalation and ingestion of food causing obstruction or suffocation |
| 2 | E913 | Accidental mechanical suffocation |
| 7 | E916 | Struck accidentally by falling object |
| 1 | E918 | Caught accidentally in or between objects |
| 1 | E921 | Accident caused by explosion of pressure vessel |
| 11 | E922 | Accident caused by firearm missiles |
| 3 | E923 | Accident caused by explusive material |
| 3 | E924 | Accident caused by hot substance, corrosive liquid, and steam |
| 6 | E925 | Accident caused by electric current |
| 1 | E926 | Accident caused by radiation |
| 3 | E927 | Vehicle accidents not elsewhere classifiable |
| 3 | E928 | Machinery accidents not elsewhere classifiable |
| 4 | E929 | Other and unspecified accidents |
| 6 | E930 | Complications and misadventures in operative therapeutic procedures |

$$
B-12
$$



$$
\text { B-13 } 1393
$$

NO. OF CASES

E994

3 E995

DESCRIPTION
Injury due to war operations by destruction of aircraft

Injury due to war operations by other and unspecified forms of conventional warfare

APPENDIX C

Program and Output Which Reviews Dose Time Histories and Generates Average Yearly Dose of Workers

1393198

```
FURFUR-MACC 4.14 RLIP36 12/19-0%:52:103
2873600908#REGREES(1).1RUN(3)
 QRUN K,13015,2873600908, $50,00,1000
 OASO,AX OUTFILE.
 QBRKPT PRINTE/OUTFILE
 gPRT,S REGRESS.1RUN
 QPRT,S REORESS.1
 qASG.AX DATA.
 QUSE 20.,DATA.
 QASG.T TEMP2.
 QUSE 21.,TEMP2.
 QFOR,IXC
 QADD REGRESS.1
 aEQF
 0x0T
 acosT.A
 QPRKPT PRINT*
 CPRKP
QPRT,S REGRESS.1
2873600908*REORESS(1).1(1)
```




```
IChimt
HNTI
hEAD: 20,100 , ENF= \(=300)(\) A 1110\(), 110-1,16)\)
TCHTL \(=\) ICNTI +1
\(11=A(1 s)-A(3)+\)
\(12=A(1 s)-A(2)+1\)
ITOF = ITABLE(II)
IBOT = ITABLE(I2)
IFLAG = 0
00700 1 * 2,7
Dos (i) = \(A(B+1)-A(9+1)\)
IF(I,EQ.7) GOS(I) a A(15)
IF (II,LT, ITOP) , OR, (I,0T,IBO1)) GO T0 701
3010700
```



```
TF(DOS (I).EQ.U.) GO TO 700
IF (IFLAC.Ea.O) ICOUNT = ICOUNT + 1
IFLAG = 1
CONT INUE
FORMAT (F 4.0.2F2.0.2F3.0.3F1.0,7Fb,0,F2.01
IA = A! 1s)
DO \(200 \mathrm{t}=1.35\)
\(t x \mid=t x-1+1\)
If =A(3)
IF(IA!.GT,IF) GO 10200
\(14=A(2)\)
IF (IXI.LT,IN) GO TO 200
IF (I.GT.3) GO TO 190
IFIN \(=A(3)\)
INIT a a(2)
\(t U=A(1 a)=1 .+1\).
\(I L=A(10)-3 .+1\).
IF(IFIN.LT.IU) IU = IFIN
IF(INIT,GT,IL) IL = INIT
xIUT a \(I U=I L+1\).
\(\mathrm{Y} 1,[\mathrm{XI})=(\mathrm{A}(9)-\mathrm{A}(10)) / \mathrm{XINT}\)
Y(C(IXI) = YIC(IX1) +YI(IXI)
\(\mathrm{YC}\left(\pm X_{1}\right)=\mathrm{YC}\left(\pm X_{1}\right)+1\).
6010200
IFiI.GT, S) GO TO 192
\(I F I n=A(3)\)
INIT = a(2)
\(1 u=A(1 b)-4 .+1\),
\(I L=A(1 b)-5 .+1\).
IF (IFIN,LT,IU) IU = IFIN
IF (INTT,GT,IL) IL = INIT
XINT = IU - IL + 1.
\(\mathrm{Y} 1(\mathrm{IX1})=(\mathrm{A}(10)-A(11)) / \times I N T\)
```

```
Y(C(Lx]) - YiC({x|) + (1:[x1)
rCt{x!) & rC({XI) + 1.
HO
```



```
IFIN = A(S)
IN!T = A(2)
IU = ल(1s) - b, + 1.
IL}=A(16)-10.+1
IF(IFIH,LT,IU) IU = IFIN
IF(INIT,GT,IL) IL = INIT
xINT = IU - IL + 1.
Y(i{X1) = (A(12) - A(12))/XINNT
YIC(IXI) = YIC(IX1) + YI(IX1)
YC(IX1)= YC(IXI) + 1.
G0 TO 200
IF(I.GT,15) GO TO 196
IFIH = A(3)
INIT = A(2)
IU}=A(1S)-11,+1
It a A(1s)-15.+1.
IF(IFIH.LT,IU) IU = IFIH
IF(INIT,GT,IL) IL = INIT
XINT = IU - TL + 1.
Yi(IX1) = (A(12) - A(13))/XINT
Y!C(IX1)=Y1C(IX1) +YI(IXI)
YC(TXI) = YC(IXI) + I.
GO TO 200
IF(I.GT,20) GO 10 190
IF:N = A(3)
INIT = A(2)
IU = A(ts) - 16. + L.
IL =A(1s) 20. + 1.
IF(IFIH,LT,IU) IU = IFIN
IF(IN!T,OT,IL) IL = INIT
<INT = IU - IL + 1
YI(IXI) = (A(IJ)-A(14))/XINT
YIC(IXI)=Y:C(IXI) + YI(IXI)
rC(IXI)=YC(IX1) + 1.
00 TO 200
IF(I,GT,25) GO TO 199
IFIN = A(3)
|HTT = A(2)
IU =A(1S)-22,+1.
LL}=A(1s)-25+1
IF(IFIN,LT,IU) IU = IFIN
IF(INIT,GT,IL) IL = INIT
XINT = IU - IL + 1.
Y1(IX1) = (A(14) - A(15))/XINT
YIC(IX1) = YIC(IX1) +YI(IXI)
TC(IX1)=YC(IXI) + 1.
f0 T0 200
fONTINIE
0}=A(1s)-A(2
IF(D.LE.25.) 60 T0 200
IFIN = A(J)
INIT = A(2)
IU =A(16)-26.+1
IL}=A(1\sigma)-30.+1
IF(IFIN,LT,IU) IUS=IFIN
TF(INIT,GT.IL) IL = INIT
XINT = IU - IL + I.
YI(IXI) =(A(15))/XXINT
```



| 2562,0000 |
| :---: |
| 645,0000 |
| 388,0000 |
| 565.0000 |
| 353, 0000 |
| 619.0000 |
| 67,0000 |
| 656,0000 |
| 292,0000 |
| 616.0000 |
| 7,0000 |
| 584.0000 |
| 3113.0000 |
| 610.0000 |
| 646.0000 |
| 501.0000 |
| 201.0000 |
| 537.0000 |
| 3447,0000 |
| 567,0000 |
| 173.0000 |
| 633.0000 |
| 156,0000 |
| 598,0000 |
| 958,0000 |
| 380,0000 |
| 207.0000 |
| 495.0000 |
| 134.0000 |
| 635.0000 |
| 198.0000 |
| 587,0000 |
| 111.0000 |
| 555.0000 |
| 24.0000 |
| 624,0000 |
| 58.0000 |
| 635.0000 |
| 132.0000 |
| 636.0000 |
| 17,0000 |
| 666.0000 |
| 313.0000 |
| 49].0000 |
| 161,0000 |
| 586.0000 |
| 3183.0000 |
| 448.0000 |
| 96.0000 |
| 567.0000 |
| 1469.0000 |
| \$10,0000 |
| 169,0000 |
| 361.0000 |
| 101,0000 |
| 387,0000 |
| 384.0000 |
| 572,0000 |
| 210.0000 |
| 459,0000 |
| 324.0000 |
| 656.0000 |
| 54.0000 |
| 578.0000 |
| 1439.0000 |
| *T anan |


| 2562.0000 | 2562.0000 |
| :---: | :---: |
| 4.8. 0000 | 49.0000 |
| 368.0000 | 356.0000 |
| 45.0000 | 56.0000 |
| 335.0000 | 282,0000 |
| 46.0000 | 52.0000 |
| 16.0000 | 0.0 |
| 44.0000 | 54.0000 |
| 292.0000 | 289.0000 |
| 49.0000 | 48.3000 |
| 7.0000 | 7.0000 |
| 47,0000 | 53.0000 |
| 3113.0000 | 2729.0000 |
| 44.0000 | 46.0000 |
| $\begin{array}{r} 644,0000 \\ 47.0000 \end{array}$ | $\begin{array}{r} 485.0000 \\ 49.0000 \end{array}$ |
| 201.0000 | 133.0000 |
| 44.0000 | 57,0000 |
| 3104,0000 | 2727.0000 |
| 44.0000 | 45.0000 |
| 173.0000 | 154.0000 |
| 49,0000 | 51.0000 |
| 156,0000 | 136,0000 |
| 46.0000 | 51.0000 |
| 773.0000 | 651.0000 |
| 64.0000 | 65.0000 |
| 190,0000 | 144.0000 |
| 51,0000 | 51.0000 |
| 59.0000 | 47.0000 |
| 45.0000 | 58,0000 |
| 198.0000 | 198.0000 |
| 49.0000 | 65.0000 |
| 72,0000 | 29.0000 |
| 44,0000 | 44.0000 |
| 24.0000 | 24.0000 |
| 59.0000 | 63.0000 |
| 58.0000 | 48.0000 |
| 45.0000 | 51.0000 |
| 113.0000 | 83.0000 |
| 44,0000 | 50.0000 |
| 17,0000 | 14.0000 |
| 44.0000 | 55.0000 |
| 313.0000 | 295.0000 |
| 48.0000 | 55.0000 |
| 154.0000 | 130.0000 |
| 44.0000 | 47.0000 |
| 3066.0000 | 2913.0000 |
| 48.0000 | 51.0000 |
| 45.9000 | 38.0000 |
| 45.0000 | 48.0000 |
| 1379.0000 | 1151.0000 |
| 51.0000 | 65.0000 |
| 153.0000 | 123.0000 |
| \$6.0000 | \$6.0000 |
| 64.0000 | 53.0000 |
| 52.0000 | 54.0000 |
| 103.0000 | 78.0000 |
| 48.0000 | 56.0000 |
| 194.0000 | 164.0000 |
| 44.0000 | 48.0000 |
| 324,0000 | 324.0000 |
| 51.0000 | \$9.0000 |
| 54.0000 | 54.0000 |
| 44.0000 | 61,0000 |
| 1439,0000 | 1316.0000 |
| * a aman | * 7 aman |


| 1369.0000 | 338.0000 |
| :---: | :---: |
| 6.0000 | 410.0000 |
| 239.0000 | 105.0000 |
| 117.0000 | 410.0000 |
| 171.0000 | 103.0000 |
| $\begin{gathered} 56.0000 \\ 0.0 \end{gathered}$ | $\begin{gathered} 153.0000 \\ 0.0 \end{gathered}$ |
| 100.0000 | 410.0000 |
| 170.0000 | 145.0000 |
| 2.0000 | 202.0000 |
| 7.0000 | 7,0000 |
| 58.0000 | 410.0000 |
| 1393.0000 | 444.0000 |
| 16.0000 | 410.0000 |
| 321,0000 | 217.0000 |
| 15.0000 | 562.0000 |
| 13.0000 | 0.0 |
| 129.0000 | 410.0000 |
| 1570.0000 | 621.0000 |
| 6.0000 | 95.0000 |
| 0.0 | 0.0 |
| 15.0000 | 492.0000 |
| 59.0000 | 43.0000 |
| 49.0000 | 429,0000 |
| 162.0000 | 88.0000 |
| 13.0000 | 965.0000 |
| 0.0 | 0.0 |
| 1.0000 | 812.0000 |
| 47.0000 | 0.0 |
| 134.0000 | 410.0000 |
| 42.0000 | 14.0000 |
| 159.0000 | 112. 0000 |
| 15.0000 | 9. 0000 |
| 1.0000 | 532.0000 |
| 24.0000 | 23.0000 |
| 38.0000 | 410.0000 |
| 0.0 | 0.0 |
| \$8.0000 | 571.0000 |
| 61.0000 | 50.0000 |
| 58.0000 | 162.0000 |
| 0.0 | 0.0 |
| 108.0000 | 412.0000 |
| 196.0000 | 176.0000 |
| 70.0000 | 410,0000 |
| 12.0000 | 0.0 |
| 24.0000 | 410.0000 |
| 1747,0000 | 599:0000 |
| 23.0000 | 183.0000 |
| 38.0000 | 10.0000 |
| 34.0000 | 812.0000 |
| 382.0000 | 215.0000 |
| 135.0000 | 832.0000 |
| 39.0000 | 39.0000 |
| 4.0000 | 238.0000 |
| 5.0000 | 0.0 |
| 17.0000 | 433.0000 |
| 24.0000 | 0.0 |
| 93.0000 | 188:0000 |
| 50.0000 | 35.0000 |
| 43.0000 | 428, 0000 |
| 314.0000 | 281.0000 |
| 81.0000 | 53210000 |
| 48.0000 | 3660000 |
| 169.0000 | 174.0000 |
| 441.0000 | 218.0000 |
| 90 mana | +7a anan |


| 0.0 | 0.0 | 72.0000 |
| :---: | :---: | :---: |
| 1.0000 | 1.0000 | 1.0000 |
| 39.0000 | 0.0 | 72.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 21.0000 | 0.0 | 68.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 67.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 91.0000 | 44.0000 | 71.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 4.0000 | 0.0 | 68.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 22.0000 | 0.0 | 72.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 146.0000 | 28.0000 | 69.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 70.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 100.0000 | 0.0 | 70.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 50.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 11.0000 | 0.0 | 72.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 69.0000 | 0.0 | 69.0000 |
| 0.0 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 71.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 65.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 14.0000 | 14.0000 | 71.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 68.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 60.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 69.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 29.0000 | 0.0 | 69.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 55.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 101.0000 | 64.0000 | 72.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 72.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 23.9000 | 0.0 | 69.0000 |
| 1.0000 | 0.0 | 1.0000 |
| 0.0 | 0.0 | 65.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 68.0000 | 0.0 | 70.0000 |
| 1.0000 | 0.0 | 1.0000 |
| 0.0 | 0.0 | 70.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 66.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 53.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 20.0000 | 0.0 | 72.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 61.0000 |
| 1.0000 | 1.0000 | 1.0000 |
| 0.0 | 0.0 | 69.0000 |
| 1.0000 | 0.0 | 1.0000 |
| 170.0000 | 152.0000 | 71.0000 |
| - anan | - anan | . ana |


| 1701.0000 | 1566.0000 | 1253.0000 | 400.0000 | 21.0000 | 0.0 | 0.0 | 71.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 577,0000 | 56.0000 | 64.0000 | 79.0000 | 348.0000 | 1.0000 | 1.0000 | 1.0000 |
| 115,0000 | 115.0000 | 97.0000 | 13.0000 | 0.0 | 0.0 |  | \% |
| 609.0000 | 54.0000 | 57.0000 | 32.0000 | 441.0000 | 1.0000 | 1.0000 | \%.0000 |
| 2875.0000 | 2656.0000 | 2000.0000 | 591.0000 | 14.0000 | 0.0 | 0.0 | 69.0000 |
| 689.0000 | 48.0000 | 48.0000 | 8.0000 | 428.0000 | 1.0000 | 1.0000 | 1.0000 |
| 24.0000 | 24.0000 | 24.0000 | 3.0000 | 0.0 | 0.0 | 0.0 | 59.0000 |
| 384.0000 | 51.0000 | 57.0000 | 58.0000 | 955.0000 | . 1.0000 | 1.0000 | 1.0000 |
| 385.0000 | 330.0000 | 194.0000 | 65.0000 | 0.0 | 0.0 | 0.0 | 68.0000 |
| 552.0000 | 45.0000 | 55.0000 | 106.0000 | 395.0000 | 1.0000 | 1.0000 | 1.0000 |
| 1691.0000 | 1152.0000 | 770.0000 | 107.0000 | 71.0000 | 27.0000 | 0.0 | 67.0000 |
| 625.0000 | 45.0000 | 48.0000 | 34.0000 | 446.0000 | 1.0000 | 1.0000 | 1.0000 |
| 201,0000 | 192.0000 | 175.0000 | 120.0000 | 117.0000 | 95.0000 | 72,0000 | 71.0000 |
| 570,0000 | 51.0000 | 58.0000 | 65.0000 | 985.0000 | 1.0000 | 1.0000 | 1.0000 |
| 3629,0000 | 3578.0000 | 3111.0000 | 1625.0000 | 463.0000 | 8.0000 | 0.0 | 72.0000 |
| 591.0000 | 45.0000 | 50.0000 | 55.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 328.0000 | 276.0000 | 271.0000 | 268.0000 | 254.0000 | 199.0000 | 0.0 | 66.0000 |
| 631.0000 | 44.0000 | 65.0000 | 206.0000 | 441.0000 | 1.0000 | 1.0000 | 1.0000 |
| 185.0000 | 164.0000 | 145.0000 | 78.0000 | 73.0000 | 34.0000 | 3.0000 | 70.0000 |
| 455.0000 | 45.0000 | 45.0000 | 7.0000 | 157.0000 | 1.0000 | 1.0000 | 1.0000 |
| 149,0000 | 141.0000 | 84.0000 | 59.0000 | 55.0000 | 37.0000 | 0.0 | 69.0000 |
| 670,0000 | 44.0000 | 56.0000 | 120.0000 | 412,0000 | 1.0000 | 1.0000 | 1.0000 |
| 66.0000 | 66.0000 | 62.0000 | 51.0000 | 32.0000 | 0.0 | 0.0 | 62.0000 |
| 532.0000 | 48.0000 | 49,0000 | 10.0000 | 410,0000 | 1.0000 | 1.0000 | 1.0000 |
| 198.0000 | 172.0000 | 141.2000 | 52.0000 | 32.0000 | 3.0000 | 0.0 | 71.0000 |
| 462.0000 | 54.0000 | 64.0000 | 96.0000 | 410.0000 | 1.0000 | 0.0 | 1,0000 |
| 84,0000 | 84.0000 | 62.0000 | 8.0000 | 0.0 | 0.0 | 0.0 | 69.0000 |
| 673.0000 | 44.0000 | 47,0000 | 30.0000 | 276.0000 | 1.0000 | 1.0000 | 1.0000 |
| 3443.0000 | 3443,0000 | 3015.0000 | 1662.0000 | 713.0000 | 154.0000 | 0.0 | 71.0000 |
| 569,0000 | 55.0000 | 58.0000 | 28.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 625.0000 | \$80.0000 | 536.0000 | 59.0000 | 0.0 | 0.0 | 0.0 | 65.0000 |
| 500.0000 | 47.0000 | 53.0000 | 59,0000 | 162.0000 | 1.0000 | 1.0000 | 1.0000 |
| 275.0000 | 275.0000 | 275.0000 | 275.0000 | 247.0000 | 133.0000 | 0.0 | 71.0000 |
| 541,0000 | 52.0000 | 54.0000 | 19.0000 | 412.0000 | 1.0000 | 1.0000 | 1.0000 |
| 228.0000 | 228.0000 | 226.0000 | 165.0000 | 144,0000 | 30.0000 | 0.0 | 72.0000 |
| 651.0000 | 44.0000 | 46.0000 | 26.0000 | 151,0000 | 1.0000 | 1.0000 | 1.0000 |
| 23.0000 | 20.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 49.0000 |
| 580,0000 | 47.0000 | \$6.0000 | 94.0000 | 412.0000 | 1.0000 | 1.0000 | 1.0000 |
| 241.0000 | 214.0000 | 188.0000 | 120.0000 | 29.0000 | 29.0000 | 8.0000 | 72.0000 |
| 538.0000 | 48.0000 | 52.0000 | 41.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 104.0000 | 14.0000 | 8. 0000 | 8.0000 | 8.0000 | 0.0 | 0.0 | 67.0000 |
| 538.0000 | 45.0000 | 60.0000 | 148.0000 | 191.0000 | 1.0000 | 1.0000 | 1.0000 |
| 266,0000 | 240.0000 | 183.0000 | 89.0000 | 80.0000 | 28.0000 | 0.0 | 70.0000 |
| 631.0000 | 44.0000 | 53.0000 | 120.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 166.0000 | 166.0000 | 131.0000 | 71.0000 | 49.0000 | 30.0000 | 10.0000 | 72.0000 |
| 536.0000 | 44.0000 | 60.0000 | 159.0000 | 395.0000 | 1.0000 | 1.0000 | 1.0000 |
| 198.0000 | 351.0000 | 320.0000 | 236.0000 | 219.0000 | 150.0000 | 117.0000 | 72.0000 |
| 504.0000 | 47.0000 | 61.0000 | 138.0000 | 571.0000 | 1.0000 | 1.0000 | 1.0000 |
| 62,0000 | 25.0000 | 5.0000 | 4,0000 | 0.0 | 0.0 | 0.0 | 65.0000 |
| 721.0000 | 47,0000 | 49,0000 | 15.0000 | 162.0000 | 1.0000 | 1.0000 | 1.0000 |
| 754.0000 | 754.0000 | 754.0000 | 664.0000 | 608.0000 | 30.0000 | 0.0 | 69.0000 |
| 491.0000 | 30.0000 | 62.0000 | 116.0000 | 412.0000 | 1.0000 | 1.0000 | 1.0000 |
| 180.0000 | 167.0000 | 139.0000 | 80.0000 | 68.0000 | 10.0000 | 0.0 | 71.0000 |
| 619.0000 | 44.0000 | 53.0000 | 80.0000 | 185.0000 | 1.0000 | 1.0000 | 1.0000 |
| 128.0000 | 110.0000 | 70.0000 | 29.0000 | 25.0000 | 19.0000 | 0.0 | 69.0000 |
| 615.0000 | 44.0000 | 52.0000 | 79.0000 | 410.0000 | 1.0000 | 0.0 | 1.0000 |
| 69.0000 | 69.0000 | 67.0000 | 20.0000 | 19.0000 | 0.0 | 0.0 | 71.0000 |
| 648.0000 | 52.0000 | 52.0000 | 3.0000 | 792.0000 | 1.0000 | 1.0000 | 1.0000 |
| 110.0000 | 110.0000 | 48.0000 | 10.0000 | 0.0 | 0.0 | 0.0 | 68.0000 |
| 652.0000 | \$1,0000 | 59.0000 | 76.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 116.0000 | 96.0000 | 72.0000 | 26.0000 | 20.0000 | 0.0 | 0.0 | 69.0000 |
| 651.0000 | 55.0000 | 65.0000 | 100.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 1626.0000 | 1544.0000 | 1365.0000 | 420.0000 | 0.0 | 0.0 | 0.0 | 70.0000 |
| 666.0000 | 45.0000 | 58.0000 | 130.0000 | 162.0000 | 1.0000 | 1.0000 | 1.0000 |
| 696.0000 | 696.0000 | 675.0000 | 477,0000 | 207,0000 | 142.0000 | 122.0000 | 71.0000 |
| -07 aman | *. a^an | ** aman | - | ...a anan |  |  | - anan |


| 74.0000 | 69.0000 | 40.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 68.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 610.0000 | 4.4.0000 | 46.0000 | 20.0000 | 412.0000 | 1.0000 | 1.0000 | 1.0000 |
| 3.0000 | 3. 0000 | 3.0000 | 3. 9000 | 3.0000 | 0.0 | 0.0 | 70.0000 |
| 424.0000 | \$0.0000 | \$2,0000 | 18.0000 | 812.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2176.0000 | 2113.0000 | 1955.0000 | 1398.0000 | 447.0000 | 9.0000 | 0.0 | 70.0000 |
| 681,0000 | 51.0000 | 59.0000 | 76.0000 | 153.0000 | 1.0000 | 1.0000 | 1.0000 |
| 235,0000 | 235.0000 | 202.0000 | 80.0000 | 55.0000 | 0.0 | 0.0 | 71.0000 |
| 410.0000 | \$4.0000 | 58.0000 | 33.0000 | 531.0000 | 1.0000 | 1.0000 | 1.0000 |
| 1375.0000 | 1039.0000 | 907.0000 | 243.0000 | 0.0 | 0.0 | 0.0 | 67.0000 |
| 613.0000 | 45.0000 | 48.8000 | 34.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 177,0000 | 169.0000 | 143.0000 | 75.0000 | 70.0000 | 11.0000 | 3.0000 | 70.0000 |
| 535.0000 | 44.0000 | 55.0000 | 104.0000 | 410.0000 | 1.0000 | $\therefore .0000$ | 1.0000 |
| 173.0000 | 157.0000 | 123.0000 | 103.0000 | 89,0000 | 32.0000 | 0.0 | 69.0000 |
| 537.0006 | 44.0000 | 56.0000 | 124.0000 | 157,0000 | 1.0000 | 1.0000 | 1.0000 |
| 168.0000 | 168.00r,0 | 124.0000 | 52.0000 | 49,0000 | 45.0000 | 7.0000 | 70.0000 |
| 535.0000 | 45.0000 | 62.0000 | 171.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2882.0000 | 2326.0000 | 1861.0000 | 752.0000 | 175.0000 | 9.0000 | 0.0 | 66.0000 |
| 545,0000 | 44.0000 | 48.0000 | 38.0000 | 154.0000 | 1.0000 | 1.0000 | 1.0000 |
| 142,0000 | 96.0000 | 77.0000 | 53.0000 | 17.0000 | 6.0000 | 0.0 | 67.0000 |
| 572.0000 | 47,0000 | 55.0000 | 78.0000 | 157,0000 | 1.0000 | 1.0000 | 1.0000 |
| 2198,0000 | 1685,0000 | 1170.0000 | 282.0000 | 0.0 | 0.0 | 0.0 | 66.0000 |
| 785.0000 | 64.0000 | 46.0000 | 20.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 67,0000 | \$2.0000 | 52.0000 | 52.0000 | 52.0000 | 52.0000 | 52.0000 | 71.0000 |
| 483.0000 | 45.0000 | 49.0000 | 39.0000 | 173.0000 | 1.0000 | 1.0000 | 1.0000 |
| 1542. ACAE | 1517.2200 | 1749. ASC\% | 722. sçs | 29J. คคcc | 92. 0200 | 2.0000 | P. COCA |
| \$41.0000 | 51.0000 | \%4.0060 | 29.0000 | 348.00C0 | 1.0000 | 1.0000 | 1.0000 |
| 141. CACC | 125. PRA | 122. 2 20c | 21. 0608 | 9.0000 | 4.0000 | 2.0 | 22.0000 |
| 552.0002 | 4*. CCAC | 5: SCCC | 54.0620 | : 62.0 CAC | 1. 2200 | 1.0000 | 1. Sece |
| : ¢\%, ACAS | 97. ECAC | 44.0290 | 16. CACS | - AR2C | 0.6 | 2.2 | 59. A¢CC |
| 495. 5 92\% | \$4.0000 | 54.7229 | 2. cese | 496. 22¢ | 1. ÅAn | :. An20 | -.0ceo |
| 75.0982 | 75. 2002 | 75.89 ¢ | 20.0069 | A.C | C.E | 0.0 | 72.0000 |
| 476.0000 | 51.0000 | 54.0000 | 23.0000 | 433.0006 | 1.0000 | 1.0000 | 1.0000 |
| 1746,0000 | 1225.0000 | 781.0000 | 272.0000 | 0.0 | 0.0 | 0.0 | 66.0000 |
| 436.0000 | 50.0000 | 63.0000 | 127.0000 | 810.0000 | 1.0000 | 1.0000 | 1.0000 |
| 186.0000 | 139.0000 | 90.0000 | 15.0000 | 15,0000 | 0.0 | 0.0 | 71.0000 |
| 599.0000 | 45.0000 | 53.0000 | 83.0000 | 431.0000 | 1.0000 | 1. 0000 | 1.0000 |
| 1102.0000 | 1062.0000 | 977.0000 | 577.0000 | 247,0000 | 88.0000 | 43.0000 | 72.0000 |
| 557,0000 | 54.0000 | 56.0000 | 21.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2374.0000 | 2122.0000 | 1659.0000 | 473.0000 | 0.0 | 0.0 | 0.0 | 68.0000 |
| 538.0000 | 44.0000 | \$6.0000 | 120.0000 | 922.0000 | 1.0000 | 1.0000 | 1.0000 |
| 166.0000 | \$66.0000 | 159,0000 | 68.0000 | 57,0000 | 39.0000 | 0.0 | 70.0000 |
| 550.0000 | 46.0000 | 53.0000 | 62.0000 | 432.0000 | 1.0000 | 1.0000 | 1.0000 |
| 68,0000 | 66.0000 | 23.0000 | 4.0000 | 0.0 | 0.0 | 0.0 | 69.0000 |
| 511.0000 | 51.0000 | 56.0000 | 55.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 154.0000 | 154.0000 | 114.0000 | 52.0000 | 37.0000 | 18.0000 | 0.0 | 72.0000 |
| 656.0000 | 53.0000 | 58.0000 | 54.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 143.0000 | 104.0000 | 79.0000 | 55.0000 | 0.0 | 0.0 | 0.0 | 67,0000 |
| 384.0000 | 60.0000 | 61.0000 | 2.0000 | 400.0000 | 1.0000 | 1.0000 | 1.0000 |
| 168.0000 | 154.0000 | 119.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0000 |
| 296.0000 | 60.0000 | 65.0000 | 43.0000 | 450.0000 | 1.0000 | 1.0000 | 1.0000 |
| 839,0000 | 611.0000 | 368.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 68.0000 |
| 532.0000 | 45.0000 | 46.0000 | 11.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 222.0000 | 222.0000 | 196.0000 | 143.0000 | 118.0000 | 0.0 | 0.0 | 67.0000 |
| 516,0000 | 48,0000 | 49.0000 | 4.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 46.0000 | 30.0000 | 15.0000 | 7.0000 | 3.0000 | 3.0000 | 0.0 | 69.0000 |
| 639.0000 | 48.0000 | 49.0000 | 7.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 298.0000 | 96.0000 | 65.0000 | 49.0000 | 18.0000 | 0.0 | 0.0 | 66.0000 |
| 322,0000 | 63.0000 | 65.0000 | 16.0000 | 812.0000 | 1.0000 | 1.0000 | 1.0000 |
| 325.0000 | 302.0009 | 81.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 69.0000 |
| 560.0000 | 51.0000 | 52.0000 | 12.0000 | 425.0000 | 1.0000 | 1.0000 | 1.0000 |
| 614.0000 | 523.0000 | 448.0000 | 290.0000 | 160.0000 | 3. 0000 | 0.0 | 71.0000 |
| \$55,0000 | 47,0000 | 59.0000 | 119.0000 | 199.0000 | 1.0000 | 1.0000 | 1.0000 |
| 218.0000 | 151.0000 | 120.0000 | 99.0000 | 11.0000 | 0.0 | 0.0 | 67.0000 |
| 373.0000 | 55.0000 | 55.0000 | 5.0000 | 410.0000 | 1.0000 | 1.0000 | 1.0000 |
| 59,0000 | 11.000) | 11.0000 | 11.0000 | 0.0 | 0.0 | 0.0 | 68.0000 |
| 407 Anan | * aman | -a anan | - a mana | -0\% anan | - anam | - aman | - anaa |




| 71 | 632.8 | *77.0 | *. 8.2 |
| :---: | :---: | :---: | :---: |
| 72 | 432.3 | 43.0 | 10.1 |
| 73 | . 0 | . 0 | . 0 |
| 74 | . 0 | . 0 | . 0 |
| 75 | . 0 | .0 | . 0 |
| 76 | . 0 | . 0 | . 0 |
| 77 | . 0 | . 0 | . 0 |
| 78 | . 0 | .0 | . 0 |
| 79 | . 0 | . 0 | . 0 |
| 80 | . 0 | . 0 | . 0 |
| 81 | . 0 | . 0 | . 0 |
| 82 | . 0 | . 0 | . 0 |
| 83 | .0 | .0 | . 0 |
| 84 | . 0 | . 0 | . 0 |
| 85 | . 0 | . 0 | . 0 |
| 86 | . 0 | . 0 | . 0 |
| 87 | . 0 | . 0 | . 0 |
| 88 | . 0 | . 0 | 0 |
| 89 | . 0 | . 0 | 0 |
| 90 | . 0 | . 0 | . 0 |
| 91 | . 0 | . 0 | . 0 |
| 92 | . 0 | . 0 | . 0 |
| 93 | . 0 | . 0 | . 0 |
| 94 | . 0 | . 0 | . |
| 95 | . 0 | .0 | . 0 |
| 96 | . 0 | . 0 | . 0 |
| 97 | . 0 | . 0 | . 0 |
| 98 | . 0 | .0 | .0 |
| 99 | . 0 | . 0 | .0 |
| 100 | . 0 | . 0 | . 0 |

1393207

APPENDIX D

DEFINITION OF VARIABLE NAMES

1393208


| VARIABLE <br> NAME | DEFINITION |
| :---: | :---: |
| DOS4-5 | Represents the difference between cumulative dose 3 years before death and cumulative dose 5 years before death. |
| DOS6-10 | Represents the difference between cumulative dose 5 years before death and 10 years before death. |
| DOS11-15 | Represents the difference between cumulative dose 10 years before death and 15 years before death. |
| DOS16-20 | Represents the difference between cumulative dose 15 years before death and cumulative dose 20 years iefore death. |
| DOS21-25 | Represents the difference betwern cumulative dose 20 years prior to death and cumulative dose 25 years prior to death. |
| DOS25+ | Represents the cumulative dose 25 years prior to death. |
| MAXDOS | Represents the maximum value of DOSO-3, DOS4-5, DOS6-10, DOS11-15, DOS16-30, DOS21-25, and DOS25+ |
| TMAXDOS | Represents the time from the center of the interval in which the maximum dose is found. |
| AGESQ | Represents the age at death minus 60 all divided by 5 and then squared. |

```
Program used to generate variables DT1, DT2, DT3, DOS0-3, DOS4-5, DOS \(5-10\), DOS11-15, DOS15-20, DOS21-25, DOS25+,
``` MAXDOS and TMAXDOS. (Continued on next page)
                                    FIHD THE MAXIMLM DOEE SEZIEUED IN ANY QIVEN TIME INTZKJm
                                    NOTE THAT THE T:HE INTLRVALS ARL OF : :FFERZIT LENOTH
                                    AND THAT THIS FUTS SOMS TIME SNTERVRLS AT A I:SAD'ANTAOE SIMCE

                                    THEY HAVE FEWEF YEARS TO ACCUMULATE TOSE. . NIOLEVEF
                                    AT THIS POINT WE'LL SEE WHAT THIS DOES AND IT IF LCONS AT
                                    ALL FROMISINO WE CAH TAKE TH:S EFFECT IHTO ACCOUNT
                                    XMAXT1 = AMAX1(DOS(1), DOS(2), DOS(2), NOS (4), DOE(5), DOS(s), DOS (2)
                                    XHAXD
\(1=0\)
                                    DO:ご : = : ,
                                    IF (XMAXI, EQ, DOS (I) : \(\mathrm{N}=\mathrm{I}\)
                                    IF (XMAXI.EQ.DCS(I)) GO TO 126
12E CONTINUE

126 CONTINUE
    CONTINUE \(=((X 1 D(16)-\times 1 D(2)-2 E)=.)+25.\),

C FIND THE TIME FROM THE HAXIMUM DOSE
    DT(4) = XDATE(A
    XINT: Z) = XID(1) **2.

    IXREC(1), XREC(2), DT(1), DT(2), DT(J), (DOS(I),I=1,7),XMANXD,DT(4),
    ※×!NTに
QO FORMET(16FS.1.15F5.1)
    QO TO 1
    ICNT = \(\stackrel{\text { ICH }}{ }+1\)
    GO TO :
    ICHT: = ICHT: +
    GOTO:
    TCNTZ = IZNTZ + 1
    60 TO 1
    955 ICNT3 = ICHT3 +1
    GOTO :
    CONTTMUK
    ICNTA = ICNT4 + 1
        GOTO
    300 CONTINUE
        WRITE(-,-) ICNT,ICNTI, ICNT2,ICNTJ,ICNT4
        STOE:
        END
Program used to generate variables DT1，DT2，DT3，DOS0－3， DOS4－5，DOS6－10，DOS11－15，DOS16－20，DOS21－25，DOS25＋， MA：TDOS and TMAXDOS．（Continued from previous page）

\title{
APPENDIX E \\ SUMMARY OF LOGISTIC MODELING
}

1393213

\section*{APPENDIX E}

KEY
```

EUWM-ALL Exposed and Unexposed White Males - All cases
included.
EUWM-NA Exposed and Unexposed White Males - No
EWM-ALL Exposed White Males - All cases included.
EWM-NA Exposed White Males - No accident cases
included.
-2LOG(L) Log of the likelihood ratio
A Decrease in -2LOG(L) from the constant model
to the specific moi}=1\mathrm{ .

```

The tables below contain models which specify
\[
\log / \overline{\mathrm{P}} /(1-\mathrm{P}) \overline{/}
\]
where \(P\) is the probability that death was due to the specific cancer.
n.b. Definitions of variables are contained in Appendix D. In particular, note the specific form of AGESQ.
\[
E-1
\]

\section*{RESPIRATORY MODELS*}

\section*{Model}
\[
\begin{aligned}
& -2.6625 \\
& -2.2484-.3440(\text { AGESQ }) \\
& 30.1 \\
& -5.0539-.3470(\text { AGESQ })+.0439(\text { YRDEATH }) \\
& 29.8 \\
& 13.0
\end{aligned}
\]
1445.9
\(1431.9 \quad 61.5\)
\[
\begin{array}{ccc}
-4.9076-.3438(\mathrm{AGESQ})+.0412(\mathrm{YRDEATH})+.0012(\mathrm{DOS} 16-20) & 1430.6 \\
29.3 & 11.1 & 1.5
\end{array}
\]
\[
\underline{-2 \mathrm{LOG}(L)} \triangleq
\]
\[
-6.18-.346(\text { AGESQ })+.037(\text { YRDEATH })+.033(\text { INITYR })+
\]
\[
30.2
\]
\[
.0013(\text { Dos } 16-20)
\]
\[
8.6
\]
\[
2.9
\]
\[
1.8
\]
\(1427.9 \quad 65.5\)
\[
-6.43-.353(\text { AGESQ })+.041 \text { (YRDEATH) }+.0337 \text { (INITYR) }
\]
\[
30.9
\]
\[
-.0003(\text { DOS6-10 })
\]
\[
10.9
\]
\[
2.92
\]
\[
.44
\]
\[
1428.9 \quad 64.5
\]
\[
-6.49-.356(\text { AGESQ })+.0375(\text { YRDEATH })+.0397 \text { (INITYR) }
\]
\[
\begin{array}{rrr}
31.1 & 8.7 & 4.0
\end{array}
\]
\[
+.0026(\text { DOS16-20) }-.001(\operatorname{DOS6}-10)
\]
\[
\begin{array}{lll}
4.7 & 2.6
\end{array}
\]
\(1424.8 \quad 68.6\)
47.7

RESP ALL-ACC EUWM-NA
\(\underline{-2 L O G(L)} \triangle\)
1427.9
\(1394.6 \quad 33.2\) 23.7
1383.544 .3
\(-4.6868-.3240(\mathrm{AGES} \mathrm{P})+.0399\) (YRDEATH)
24.9
10.4
\(-4.1035-.3017(\) AGESQ \()+.0464\) (YRDEATH) -.0167 (AGE)
1379.6
48.2
*NOTE: Numbers below the variable names represent chi square values for the variable after all other terms are entared.
\[
\text { E. } 2
\]

EWM-ALL


Results of fitting eight logistic regression models using respiratory cancer and no cancer as the two response categories. Only exposed white males are included in the model. Variables which have no entry for a particular model were not used in that model. For each model, the first value under the variable is the coefficient of that variable in the logistic regression model, while the second value (below in parentheses) is the chi-square value for a test of statistical significance of that variable. All chi-square values have one degree of freedom.
\[
\mathrm{E}-3
\]
\begin{tabular}{|c|c|c|}
\hline  & EWM-NA
\[
-2 \mathrm{LOG}(\mathrm{~L})
\] & \(\triangle\) \\
\hline -2.406 & 938.3 & \\
\hline \multicolumn{3}{|l|}{-2.109-. 259 (AGESQ)} \\
\hline 12.4 & 921.9 & 16.4 \\
\hline \[
\begin{array}{cc}
-5.0770-.2563(\text { AGESQ })+.0626(\text { INITYR })+.0017(\text { DOS16-20 }) \\
12.3 & 3.3
\end{array}
\] & 912.5 & 25.8 \\
\hline \multicolumn{3}{|l|}{\(-5.4571-.2718(\) AGESQ \()+.0715(\) INITYR \()-.0010(\mathrm{DOS6}-10)\)
13.2} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
\[
+.0030(\text { DOS } 16-20)
\] \\
PANCREAS MODELS
\end{tabular}} & 909.6 & 28.7 \\
\hline & PANCREAS & \\
\hline & EUWM-ALL & \\
\hline -4.0389 & 514.9 & \\
\hline -3.7519-. 2093 (AGESQ) & 508.5 & 6.4 \\
\hline 4.6 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
-3.8432-.1951(\mathrm{AG} . \mathrm{SQ})+.0033(\mathrm{DOS4-5}) \\
4.1
\end{gathered}
\]} & 503.5 & 11.4 \\
\hline & EUWM-NA & \\
\hline \[
-3.8704
\] & \[
497.8
\] & \\
\hline \[
-3.9494+.0037(\operatorname{DOS} 4-5)
\]
\[
9.1
\] & \[
491.7
\] & 6.1 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
-3.6534-.1708(\mathrm{AGESQ}) \\
2.8
\end{array}
\]} & 494.4 & 3.4 \\
\hline & EWM-ALL & \\
\hline -4.0164 & 321.6 & \\
\hline \(-4.1436+.0036\) (DOS4-5) & 315.9 & 5.7 \\
\hline 8.5 & & \\
\hline \(-3.977+.0035(\) DOS 4-5) -. 1107 (AGESQ) & 314.5 & 7.1 \\
\hline 7.7 1.2 & & \\
\hline
\end{tabular}
\[
E-4
\]
```

-3.8528
-3.9827+.0038(DOS4-5)
9.0
-3.9051+.0037(DOS4-5)-.0550(AGESQ)

```

\section*{BRAIN MODELS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{-4.6749} \\
\hline \multicolumn{2}{|l|}{-4.7401+.0121 (DOS25+)} \\
\hline \multicolumn{2}{|l|}{5.8} \\
\hline \multicolumn{2}{|l|}{-3.2417+. 0132 (DOS25+)-. 0260 (AGE)} \\
\hline 7.1 3.4 & \\
\hline \multicolumn{2}{|l|}{\(-3.2660+.0085\) (DOS25+)-.0541 (AGE) +.0937 (DT1)} \\
\hline 2.4 8.6 & 6.6 \\
\hline \multicolumn{2}{|l|}{\(-3.3680+.1054\) (DT1) - 0551 (AGE)} \\
\hline 8.79 .1 & \\
\hline
\end{tabular}
\[
-4.506
\]
\[
-2.0058-.0424(\mathrm{AGE})
\]
\[
7.6
\]
\[
-1.9059-.0453(\text { AGE })+.0125(\text { DOS25+ })
\]
\[
8.4 \quad 6.4
\]
\[
-2.1103-.0713(\mathrm{AGE})+.0993(\mathrm{DT} 1)
\]
\[
13.9 \quad 7.8
\]
\[
\begin{array}{ccc}
-1.9985-.0704(\mathrm{AGE})+.0877(\mathrm{DT} 1)+.0080(\mathrm{DOS} 25+) \\
13.4 & 5.8 & 2.1
\end{array}
\]
\[
-4.5917
\]
\[
-4.6909+.0118(\operatorname{DOS} 25+)
\]
\[
5.3
\]
\[
-3.4725-.0907(\mathrm{AGE})+.2089(\mathrm{D} \Gamma 1)
\]
\[
11.4
\]
\[
14.5
\]
\[
-2.9896+.0130(\mathrm{DOS} 25+)-.0296(\mathrm{AGE})
\]
\[
\begin{array}{ccc}
-3.3311+.0047(\mathrm{DOS} 25+)-.0896(\mathrm{AGE})+.1965(\mathrm{DT1}) \\
.6 & 11.1 & 12.0
\end{array}
\]
-2LOG (L)
311.3
305.1
6.2
304.8
6.5

\section*{BRAIN}

EUWM-ALL
\[
306.7
\]
303.2
299.9 6.8
292.7 14.0
294.4

\section*{EUWM-NA}
297.6
290.1
7.5
286.311 .3
281.5
16.1
279.97

EWM-ALL
201.5
198.2
3.3
181.1
19.4
195.5
6.0
180.5
21.0

\section*{EWM-NA}

\section*{\(\underline{-2 L O G(L)}\)}
195.6
190.35 .3
\(173.4 \quad 22.2\)
186.69 .0
\(173.0 \quad 22.6\)

1393219
\[
E-6
\]```


[^0]:    "The objective of this study is to follow cohort employee populations of selected AEC Contractor installations, to test the feasibility of using personnel, employmenti medical and radiation records in establishing the relationships, if any, between mortality

[^1]:    1393122

