
:

RETRAN - A Program for One-Dimensional Transient
Thermal-Hydraulic Analysis of Complex Fluid Flow Systems

ccM-5
Volume 2: Programmer's Manual
Research Projects 342 and 889

Computer Code Manual, December 1978

Prepared by

ENERGY INCORPORATED
330 Shoup Avenue

Idaho Falis, Idaho 83401

Principal Investigators
C. E. Peterson
M. P. Paulsen
J. A. McClure

D.s.Fjeld
K. D. Richert

-

Prepared for

Electric Power Research Institute C
3412 Hillview Avenue

|Palo Alto, California 94304 b l

EPRI Project Manager
L. J. Agee

*7fS 005Nuclear Power Division

@

"8 006'

O

LEGAL NOTICE

This report was prepared by Energy Incorporated (EI) as an account of work
sponsored by the Electric Power Research Institute, Inc. (EPRI). Neither EPRI,
members of EPRI, EI, or any person acting on behalf of either: (a) makes any
warranty or representation, express or implied, with respect to the accuracy,
completeness, or usefulness of the information contained in this report, or that
the use of any information, apparatus, method, or process disclosed in this
report may not infri 7 orivately owned rights; or (b) assumes any liabilities
with respect to the L. Of, or for damages resulting from the use of, any infor-
mation, apparatus method or process disclosed in this report.

ABSTRACT

RETRAN represents a new computer code approach for analyzing the thermal-hydraulic
response of Nuclear Steam Supply Systems (NSSS) to hypothetical Loss of Coolant
Accidents (LOCA) and Operational Transients. In contrast to the " conservative"
approach, RETRAN provides "best estimate" solutions to hypothetical LOCAs and Oper-
ational Transients. RETRAN is a computer code package developed from the RELAP
series of codes, from reference data, and from extensive analytical and experimental
work previously conducted relative to the thermal-hydraulic behavior of light-water
reactor systems subjected to postulated accidents and operational transient condi-
tions. The RETRAN computer code is constructed in a semimodular and dynamic dimen-
sioned form where additions to the code can be easily carried out as new and im-
proved models are developed. This report (the second of a four volume computer code
manual) describes the programming aspects of the RETRAN code. The three companion

volumes describe the theory and numerical algorithms, the user input and code output,
and the verification and qualification performed with RETRAN.

,'r8 007

iii

CONTENTS

Section Page

I INTRODUCTION I-l

II GENERAL CODING PHILOSUPHY II-1

1.0 Programming Conventions II-2

1.1 RETRAN Code Package Programming Language II-2

1. 2 RETRAN Environmental Library II-3

1.3 Internal Docum...itation II-6

1.4 Machine Flag II-7

1.5 Programming Suggestions 11-10

1. 6 FORTRAN Liorary Intrinsic and External
Functions II-11

2.0 Dynamic Storage Allocation Technique II-16

2.1 Description of File Structures 11-16

2.2 Accessing Files and Variables in Files II-26

2.3 Addition of New Variables to the Files II-32

3.0 Semi-Modular Coding Technicue 11-35

3.1 Dynamic Memory Management 11-35

3.2 Computing System Related Deficiencies II-37

III RETRAN AND RESTRT THERMAL HYDRAULICS MODULE III-1

1.0 Basic RETRAN Code Package Mcdules III-2

2.0 input Pror.essing Segmentation III-8

2.1 Input Processing Segmentation for an Initial
Run III-8

2.2 Segmentation for Restart Input Processing III-8

3.0 Steady-State Initialization Segmentation III-10

4.0 Execution Segmentation III-11

IV REEDIT DATA TAPE EDITING MODULE IV-1
1.0 Input Segmentation IV-3

2.0 Execution Segment IV-5
{ {}

v

/

Section Page

V PLOTER PLOTTING MODULE V-1

1. 0 Input Segmentation V-4

2.0 Execution Segmentation V-5

VI RETRAN DATA TAPE VI-1

1.0 Data Tape Description VI-2
1.1 Header Record Description VI-3

1. 2 Data Record Description VI-3

2.0 Data Tape Generation VI-9

3.0 Data Tape Usage VI-11

4.0 Comp"'ibility with RELAP Data Tapes VI-15

4.1 RETRAN Stranger Tape Format and Structure VI-15

VII ENVIRONMENTAL SUBC0DE PACKAGES VII-1

1.0 FTB VII-2

1.1 File Organization VII-2

1.2 FTB Subroutines Calls and Functions VII-4

1. 3 File Description, Extended Description
and Record Formats VII-9

1.4 Additional Subroutines used by FTB Package VII-11
1. 5 Error Messages VII-16

2.0 INP VII-18
2.1 User Aspects of INP Package VII-18
2.2 Programming Use of the INP Package VII-21
2.3 INP Summary VII-34

3.0 Water Property Table Interpolation Routines VII-41
3.1 CALL STH200 (1,P, ERR) VII-45
3.2 CALL STH201 (A,S, ERR) VII-45
3.3 CALL STH202 (A,5, ERR) VII-46
3.4 CALL STH203 (A,5,IT, ERR) VII-48
3. 5 CALL STH204 (A,5,IT, ERR) "II-49

3.6 CALL STH205 (A,5,IT, ERR) VII-50
4.0 PLOTMC Multiple Curve Plot Package VII-52

4.1 Programming Use of the PLOTMC Package VII-52
5.0 Bit Manipulation Functions VII-62

5.1 Logical Sum VII-62
5.2 Logical Product VII-63

vi

' " 8 009

Section Page

5.3 Logical Left Shift VII-63
5.4 Arithmetic Right Shift VII-64

5.5 Bit Mask Generation VII-65
5.6 Character String Comparison VII-66

6.0 Buffer I/O Subroutine Package VII-67
6.1) Iting Data VII-68
6.2 Reading Data VII-69

6.3 Requesting Devices VII-70
6.4 File Positioning VII-71

7.0 Extended I/O Subroutines VII-73

7.1 Incore Read / Write Subroutines VII-73
7.2 Extended Message Subroutine VII-74

8.0 System Interrogation Subroutines VII-76

8.1 CALL DATE (D) VII-76
8.2 Interval Timer Routine VII-76
8.3 L = NOTIM(ACPU, AIO) VII-77

9.0 Miscellaneous Subroutines VII-78

9.1 I = LOCF(A) VII-78

9.2 X = FLOATR(A) VII-78
9.3 I = FINDEP (ENTRY,NAME) VII-78
9.4 CALL MOVE (A(I),B(J),NUM) VII-79
9.5 CALL ZEROUT (A(I),NUM) VII-80
9.6 CALL FABEND VII-80
9.7 CALL HINV (A,N,D,L,M) VII-80

VIII OTHER CODE DETAIL VIII-1

1.0 Code Maintenance VIII-2

1.1 RETRAN Maintenance on CDC Computing Systems VIII *

1.2 RETRAN Maintenance on IBM Computing Systems VIII-3

2. 0 Overlay Directives VIII-4

2.1 CDC Cyber 70/170 and 6000 Series

Computing Systems VIII-4

2.2 IBM 360/370 Computing Systems With

05 or MVS Operating Systems VIII-12

_

vii

. -
_ _ _ _ _ _ _

Section Page

IX SUBROUTINE AND FUNCTI0d SUBPROGRAM DEFINITIONS IX-1

X SUBROUTINE CALL CHARTS X-1

XI REFERENCES XI-1

APPENDIX A RETRAN FILE DIRECTORY A-1

APPENDIX B UPD PROGRAM DESCRIPTION B-i

9
.-g on

O
viii

_ _ .

ILLUSTRATIONS

Figure Pg
II.3-1 RETRAN Dynamic Memory Management Scheme 11-36

II.3-2 RETRAN Code Package Core Requirements II-38

III.i 'chematic of the Tree RMAIN III-3

III.1-2 RETRAN and RESTRT Program Module Segmentation Tree MOD 1 III- 4
III.1-3 Schematic of the Tree OPTIONS III-5

III.1-4 Schematic of the Tree INMODS III-6

III.1-5 Schematic of Tree INITAL III- 7
III.2-1 Schematic of the Tree INDRIV III-9

IV-1 REEDIT Program Module Segmentaticn Tree M002 IV-2
IV.1-1 Schematic of the Tree INMINE IV-4
V-1 PLOTER Program Module Segmentation Tree MOD 3 V-2

V-2 Schematic of the Tree READ V-3

VII.4-1 Centered Plot Symbols VII-55
X.1-1 Subroutine Calls From RMAIN X-2

X.1-2 Subroutine Calls From REEDIT and PLOTER X-3

X.1-3 Subroutine Calls From INTRAN X-4

X.1-4 Subroutine Calls From STSTAT X-5

X.1-5 Subroutine Calls From TRAN X-6

X.1-6 Subroutina Calls From BAL, DNBM and PREW X-7

,,c8 012

ix

TABLES

Table .Pg

II.1-1 Typical Example of RETRAN Character Manipulation II-8

11.1-2 Basic Intrinsic Functions II-12
11.1-3 Basic External Functions II-14

11.2-1 Typical File Set Structure 11-17

II.2-2 Major File and Subfile Content 11-19

11.2-3 Multiple Subfile Usage 11-22

11.2-4 Illustration of FTB Common Bloc | Definition 11-27

11.2-5 Typical File Equivalence Mask II-3r,

11.2-6 A Comparison af Typical FORTRAN Coding and RETRAN

Coding With Primary Variables 11-31

II.2-7 A Comparison of Typical FORTRAN Coding and RETRAN

Coding With Equivalence Masks 11-33

VI.1-1 Header Record Description VI-4
VI.1-2 A Section of Coding From EDATA3 VI-7
VI.2-1 Typical Coding Used to Write a Data Record VI-10

VI.3-1 Data Tape Processing Subroutine Descriptions VI-12

VI.3-2 RETRAN Data Tape FORTRAN Unit Number Cross Reference VI-14

VI.4-1 Extended Plot Tape Processing Subroutines VI-16

VI.4-2 R2TRAN Stranger Data Tape Format VI-17

VII.1-1 FTB File Description Format VII-10
VII.1-2 FTB Extended File Description Format VII-12
VII.4-1 TOLP Common Block Description VII-53
VIII.2-1 Cyber Loader Segload Directives - Final Form VIII-5

VIII.2-2 Cyber Loader Segload Directives - Interim Form VIII-10

VIII.2-3 0% overlay Directives VIII-13

VIII.2-4 MVS Overlay Directives VIII-15

7c8 013
Xi

'

_ /- . .

.

4

,

9

e

d *

..

h

-

k

O*

.

h'

t

O

t

.

4

e

b

/

- 0

9
6

e

e

e

9

e

O

e
b %

I. INTRODUCTION

RETRAN is a best estimate computer code used to predict the behavior of complex
thermal-hydraulic systems subjected to postulated transient conditions. RETRAN
was developed from the best-estimate portions of RELAP4/003 Update 85[I-1],
which were extensively modified, and complemented with a large number of model
improvements and model additions.

The RELAP4 series of codes and their derivative codes have historically required
a large amount of main memory storage for loading anj executing. The large
amount of often poorly utilized main memory required for execution has resulted
in two significant disadvantages.

First, turnaround t.ime can be slow. Since RELAP type codes can monopolize large
amounts of main memory for lengthy periods of time, many computer facilities are
reluctant to run such codes during peak computer usage hours.

Secondly, billing algorithms are generally weighted such that memory charges are
a significant fraction of the total cost for codes requiring large aniounts of

memory; since algorithms for I/O time charges are based on the amount of main
memory used for execution, the I/O charges can be costly, especially when data
tape manipulation is required.

The RETRAN Code Package contains significant improvements in efficient usage of
main memory storage and data tape manipulation. The Code Package is dynamically
dimensioned, so the main memory required for any given problem depends on the
nodalization used for the problem and the RETRAN modeling options that are used.
Additionally, the RETRAN Code Package is semi-modular, allowing data to be
stored over specific blocks of unused coding and/or the release of unused main
memory, which contains coding for inactive program optioas or excess bulk storage.
The flexibility of the semi-modular feature is somewhat inhibited by deficiencies
or constraiLLs imposed by some operating systems.

,7!~8 015
I-1

The Programmer's Manual discusses the coding conventions utilized in the RETRAN

Code Package as well as the techniques used for dynamic dimensioning, semimod-
ularization, and data tcpe structure and manipulation. Also contained in the
manual is the general program flow from the executive subprogram RMAIN to each
of the program modules, program flow within each module, a description of the
specific purpose of each subroutine and function and their argument lists,
subcode packages utilized and computer dependencies.

.

,-3on

O
I-2

g . . . ,

e

k

^E
+

Ezr- m

. O r-
7 t")
ZO

E
z
C3

s

9

c3 017,,

.

1 '

sO

O

e

/ o

II. GENERAL CODING PHILOSOPHY

Experience from previous code development efforts has shown that as the code
becomes more sophisticated, execution time and machine storage requirements
increase such that the desired level of sophistication cannot be utilized under
any reasonable financial constraints. It has therefore been one of the key
tenets of the RETRAN development to provide a code which it usable and not a
financial liability, thus providing the motive for the dynaa:4c dimensioning and
semi-modularization features in RETRAN.

To improve the efficiency of RETRAN, as compared to other large computer codes,
almost by definition dictates the use of computer dependent extensions to standard
FORTRAN IV compilers in addition to assembly language programs. These non-
standard FORTRAN or non-FORTRAN features make it possible for the programmer to

take advantage of special hardware and software features designed to improve the
efficiency of program execution. Use of such non-standard and assembly language
subarograms can reduce the portability of code. However, judicious programming
can ensure portability of the source code, particularly between IBM and CDC
computers. The approach used in the RETRAN Code Package is to isolate the
required non-standard FORTRAN and assembly language programs into what is

referred to as an environmental library, and to use FORTRAN coding conventions
in the mainline source program which are standard for the various computer
manufacturers. This approach does require the development and maintenance of
environmental libraries for the various computer systems available, but ensures

portability of the RETRAN Code Package source code which is much more vcluminous
than the environmental libraries. The environmental libraries provide the

capability of using FORTRAN programming compatible with compilers supplied by
different computer manufacturers, yet accommodate special hardware and software
which may be available on one computer and not another. Thus, the environmental
library can be viewed as an extension to the standard FORTRAN IV programming

language.

' " B 018
II-l

1.0 PROGRAMMING CONVENTIONS

This saction is not designed to spell out explicit programming conventions which
must be adhered to when modifying the RETRAN source code, but rather to summarize
the gene al guidelines followed during the development of the code. Some of the
guidelinos may or may not seem like normal programming conventions, depending
upon the reader's familiarity with the FORTRAN supported by various computer
vendors. However, the guidlines ham proven to be very useful while maintaining

a single version of RETRAN which was operational on many computers and operating
systems.

1.1 ,RETRAN Code Package Programming Language

The source code for the RETRAN Code Package is written completely in the ANS

FORTRAN IV programming language. All machine or system dependencies which
require the use of computer manufacturers' extensions to ANS FORTRAN or to
assembly language programs are isolated from the RETRAN source code via use of a

machine or system-dependent environmental library which contains the non-standard
coding. By isolating the computer dependencies in the environmental library, it
is possible to generate a source code that may be used to install the RETRAN
Code Package on a variety of machines with a minimal effort, while retaining the
ability to take advantage of system dependent features designed to increase the
overall efficiency of the code. Another advantage to using the scheme described
above is that it it much easier to ensure that the actual coding, when installed
on different machines, is in as close agreement as practicab'e within the limi-
tations of different system architectures and operating philosophies.

1.1.1 CDC FORTRAN Ccmpiler

The FORTRAN Extended 4.4 compiler has beca used to translate the RETRAF Code

Package source code for use on CYBER 70, CYBER 170, and 6000 Series Computer

Systems [II.1-1] No problems have been encountered when using the default
optimization level (0PT=1). Only minor difficulties have been encountered when
using optimization level two (0PT=2). In some instances, the larger subroutines
such as EDATA1, EDATA2, EDATA3, EDATA4, or DNBM will not compile at OPT =2, as

the result of an error in the optimizer logic. Since an approximate five percent

decrease in running time can be achieved through use of the level two optimiza-
tion, the source code is generally compiled at OPT =2, the object decks saved

,' B o\9
II-2

(not using the A option of FTN), and the subroutines which contained compilation
er-ors are then recomnilad at OPT =1 and placed in the presious object deck file
via the COPYL Jtility program. The use of additional options which may be set
on this FTN control card should be determined according to the programmer's
needs. A field length of 15'JK is generally adequate to compile any subroutine
contained in the RETRAN Code Package.

1.1.2 IBM FORTRAN Compiler

Compilation of the RETRAN Code Package source code for use on an IBM 360/3,i

computer is facilitated by use of the FORTRAN I'.' H-Extended Compiler [II.1-2].

Use of the 2.2 level H-Extended compilers (PGM=IFEAAB) on the RETRAN source code

has demonstrated several compiler errors which are catastrophic to compilation
and/or actual execution of RETRAN. Consequently, use of the 2.2 level H-Extended
compiler should be considered only if the following IBM-supplied updates have
been incorporated.

P49288 P54297

P50693 P56626

PS2463 P56633

PS2465 P56650

PS2485 P58582

P54293 P58585

P54295 P60353

The optimization used during compilation is generally specified as OPT (2).

Other options generally specified in the PARM field of the EXEC, statement include
NOALC or no automatic alignment; GOSTMT which includes internal statement numbers

used by the traceback feature; and AUTODBL(12220) which activates the API (Auto-
matic Precision Increase) facility. All other options are set according to the

programmer's needs. A region of 300K is generally adequate to compile any
subroutine in the RETRAN Code Package.

1.2 RETRAN Environmental Library

The environmental library consists of a group of subcodes designed to perform
specific tasks such as:

8 0204 'II-3

Free form input processing - INP

Dynamic dimensioning - FTB

Water state properties - STH2O
* Multiple curve plotting - PLOTMC

Buffer I/O - BUFOUT

in addition to miscellaneous subroutir es which invert matrices, form masks, and

perform Boolean arithmetic. A detailed discussion of the RETRAN environmental
library can be found in Section VII.

Unlike the source code for the RETRAN Code Package, several versions of the
environmental library are required. Each of the libraries is tailored to the

particular computer and operating system for which it is designed.

SincesomefeaturesAesignedtoperformaspecificfunctiononagivencomputer
may not be available on another computer, some trivial subprograms are required.
As an example, dynamic field length or region adjustment is a very useful feature.
However, only CDC computers allow for dynamic field length adjustment during a
given job step. Consequently, the CDC versions of REDUCE and EXPAND used,

respectively, to release main memory or to obtain more main memory contain
coding which exercises the memory macro and edits region and storage information,
while the IBM version only edits storage information based upon a fixed region
size specified at the beginning of the job step.

The environmental libraries are rather small compared with the RETRAN source
co Je. Additionally, once they have been checked out they should require little,
if any, maintenance unless new features are added or existing features modified.

1.2.1 CDC Environmental Library Programming Languages

The environmental library used for the CYBER 70, CYBER 170, and 6000 Series

Computer Systems is written in FORTRAN and COMPASS. All COMPASS subprograms are

coded so that t N 'ay be batched to the FTN 4.4 compiler with FORTRAN subpro-
grams. The FTN 4.4 compiler will direct an intermixed COMPASS input stream to
the COMPASS 3.3 assembler provided an IDENT card is placed as the first card of
a COMPASS deck. An END card must be the last card of a deck, and both the IDENT

and END must begin in column 11 of the card images.

O
'7r8 21II-4

Several of the COMPASS programs require a system text file to provide the assem-
bler with the macro expansions. The required system text library has been named
CPUTEXT at all installations encountered at the time of writing this document,
but it is possible that the required library 12me could be different for some
facilities. In any event, the system text file name should be supplied on the
FTN control card by use of the system text parameter 5, e.g., S=CPUTEXT, for

intermixed FORTRAN and COMPASS decks. The COMPASS 3.3 assembler may be used to

assemble COMPASS decks; however, it is generally much more convenient to use the
FTN 4.4 compiler.

The FORTRAN subprograms are compiled using the OPT =2 optimization feature. No
difficulties have been encountered while using the OPT =2 optimization level for
the environmental library.

The object decks or relocatable binary records generated by the compiler are
processed through the EDITLIB utility to construct a user library [II.1-3].
That library is then made available to the segmented louder by specific direction
in the loader control statements for a job loading the RETRAN Code Package. Use
of the environmental library in the user library format has significant advan-

tages due to the method in which object decks are loaded and external references
are satisfied. For the specifics refer to the LOADER or CYBER LOADER reference
manuals [II.1-4,II.1-5].

1.2.2 IBM Environmental Library Programming Languacas

The environmental library used for the IBM System /36] or System /370 computers is
written in both FORTRAN and assembly language. Capauilities do not exist in the
current IBM Program Product line to intermix FORTRAN and assembly language

source text to a single program containing multiple language translating features.

Consequently, FORTRAN so9rce code must be translated via the FORTRAN compiler

and assembly language source code via the assembler, both of which may be exe-
cuted in the batch mode.

The FORTRAN source code is compiled using the FORTRAN H-Extended compiler and

options described in Section 1I.1.1.2, with the exception of the Automatic

Precision Increase feature, which must be set to AUT0 DBL (NONE). Assembly of the

II-5

,,rg 022

assembly language source code is facilitated via the level F or H assemblers,
PGM=IEV90 or PGM=IEUASM, respectively cnd the SYS1.MACLIB system text data set

(specified on SYSLIB DD card).

Each of the environmental library subprograms is made a member of a partitioned
data set by use of the linkage editor PGM=IEWL[II.1-6]. All entry points are
defined as aliases during the link edit step. The library data set is concate-
nated with the SYS1.FORTXLIB data set on the SYSLIB DD card during the link edit

step used to generate a RETRAN Code Package load module. External references
are then satisfied from the system FORTRAN library and the RETRAN environmental

library.

1.3 Internal Documentation

Documentation for the RETRAN Code Package is included in "RETRAN - A Program for

One-Dimensional Transient Thermal-Hydraulic Analysis of Complex Fluid Flow

Systems, Volume I: Equations and Numerics; Volume II: Programmer's Manual;
Volume III: User's Manual; and Volume IV: Applications Manual." Another level
of documentation is also readily available. This additional documentation
consists of a listing of the FORTRAN source coding, which internally provides
basic code documentation via the liberal use of comment statements. Comments
are inserted at the beg'nning of each subroutine or function defining the role
each subprogram and/or entry point plays in the RETRAN Code Package. Along with
each subprogram definition, the argument list is also defined, noting the speci-
fic definition of the arguments, whether they are input, output, or modified
internally (both input and output). Each of the dynamically allocated storage
arrays (see Section II.2) is also described by means of the RETRAN file directory
which is given in Appendix A, and which is also included ir. the main program
RMAIN.

Each well-defined task required during execution of one of the RETRAN Code
Package program modules has been coded into a single concise subprogram. Within
each subprogram comments have been included to aid in the understanding of the
various blocks of coding. All program modules include a main or primary driver
which in turn calls an input processing driver, an initialization driver if
required, followed by a driver which directs the actual execution of a problem.
As an example, execution from the RETRAN program module is controlled by the

O
.

II-6

' " 8 023

driver subroutine RETRAN. Subroutine RETRAN in turn serially delegates the

responsibility of input processing to '.he input processing driver INRTRN; gener-
ating initial conditions or initial va ues to the driver STSTAT; and finally
execution of the transient thermal hyd aulics via the driver TRAN. Few, if any,
calculations are performed in the driver subroutine 3 over the minimum required
to direct the program flow. The simplicity of the drivers, coupled with comments
describing such redirection in program ficw provides a very useful and necessary

'level of documentation,.very similar to a general flow chart.

An over-use of comments can make the source coding difficult to follow, so one
should be careful of over-using comments. On the other hand, nothing is more
frustrating than trying to understand even the simplest of coding which is void
of comments. A guideline followed during the development of the RETRAN Code
Package is that comments should be added when they can add clarity and aid in
the understanding of a block of coding, particularly for those who may not be
intimately familiar with the code.

1.4 Machine Flag

Several situations were encountered where differences between tha various
computers could not be completely isolated in the environmental library, partic-
ularly Hollerith character manipulation. Consequently, a logical variable
(IBMRUN) was added to the code, which dynamically flags whether the code is

executing on an IBM or CDC computer. This is determined automatically by use of
the environmental library function LOCF, which is described in detail in
Section VII. Briefly, LOCF returns the core address of a variable or subroutine
entry point. If the difference between the core address of two consecutive real
variables is eight, then an IBM computer is b6 ng used since eight bytes are
needed for each double precision variable. If the difference is one, a CDC

computer is being used. This flag is then used to direct the program flow
through the machine dependent coding. The machine dependent coding will be
executed only for the particular machine for which it is designed, but must also
be compatible with the FORTRAN compiler used on the machine for which it is not
designed.

The example in Table II.1-1 is typical of the character manipulations found in
the input subroutines of the RETRAN Code Package. For CDC computers (.NOT.IBMRUN),

II-7

7f~B 024

Table 11.1-1

TYPICAL EXAMPLE OF RETRAN CHARACTER MANIPULATION

DATA BLANK /8H /

DATA IZER / 4H0000 /, ININ / 4H9999 /

C

C

C

C SET UP CHARACTER MANIPULATION MASKS

NBITS = 30

NBYTE = 6

IF (.NOT.IBMRUN) GO TO 2 A

NBITS = 32

NBYTE = 8

2 BMASK = MASKF (NBITS)
B

EMASK = MASKF (-NBITS)

LEN = -NBITS s

IF (.N0T.IBMRUN) LEN = LFN - NBYTE

CMASK = MASKF (LEN)

AMASK = DAND (BLANK,CMASK)

LEN = 4*NBYTE

AMASK = DSL (AMASK,LEN) s

AMASKN = MASKF (-NBYTE) ,

IF (IBMRUN) AMASKN = DSL (AMASKN,NBITS)

iF (.N0T.IBMRUN) IZER = ISL (IZER,NBYTE)

IF (.N0T.IBMRUN) ININ = ISL (ININ,NBYTE) -

IZER = IAND (IZER,AMASKN)

ININ = IAND (ININ,AMASKN) s

'
ALOCAL = DAND (RSTOR(IDXVAR,BMASK)

BLOCAL = RSTOR(IDXVAR+1)

IF (.NOT.ICMRUN) BLOCAL = DSL (BLOCAl,NBITS) E

BLOCAL = DAND (BLOCAL,BMASK)

RSTOR(LOC) = D0R (ALOCAL,DSR(BLOCAL,NBITS))
s

''"8 025
II-8

the word length is 60 bits for real, integer, and logical word types, while on
IBM computers real type variables are 64 bits, and 32 bits 'for logical and
integer type variables. Integers and logical type variables are equivalenced to
real variables (for use by the FTB subcode), such that the integers and logicals
share the first 32 bits of the corresponding real type words for problems run on
IBM computers. Experience has shown that very little additional memory or
execution time overhead is required for this technique. The following descrip-
tions refer to Table II.1-1.

A: The number of bits per Hollerith character and the number of bits per half-
word are defined for either the CDC or IBM computer on which a problem is

being run. For this discussion consider a full word to be 64 bits on IBM
computers, since this is in effect the method used by FTB, i.e., arrays

RSTOR and ISTOR are equivalenced such that RSTOR(K) has the same address as

ISTOR(1,A) as opposed to ISTOR(K) for CDC ccmputers.

B: Turn on all bits in the top half of BMASK and zero all bits in the bottom
half. Do the opposite for EMASK. All masks are constructed by use of the
Environmental Library function MASKF, which is described in detail in
Section VII.

C: Form AMASK such that the bottom 4 Hollerith characters are binary zeros and

the remaining 4 or 6 characters are Hollerith blanks for IBM or CDC, respec-
tively.

D: Form two integer-type mas,s (60 bit CDC, 32 bit on IBM) where the bottom
characters are either a Hollerith zero or nine and the remaining upper

portion of the word is binary zero filled.

E. Take the Hollerith field from the top half of RSTOR(IDXVAR) and merge it
with the integer in RSTOR(IDXVAR+1) (actually ISTOR (1,IDXVAR+1) or
ISTOR(IDXVAR+1)), and merge them into a full word such that the Hollerith
portion resides in the top and the integer in the bottom.

There may be cases encountered in the future where it is required to know whether
the code is being executed on an IBM or CDC computer. If so, the logical flag

IBMRUN, which is set in the main program RMAIN, is readily available to any
subprogram since it resides in the FTB labeled common block.

Q}h7rII-9 $

1.5 Programming Suggestions

During the development of the RETRAN Code Package, several FORTRAN progranuning

guidelines were established to maintain portability of the source code between
CDC and IBM machines. Several of the guidelines are normal elements of good
FORTRAN programming while others tend to eliminate problems resulting from
idiosyncrasies of the various versions of FORTRAN supported by the computer
manufacturers. The guidelines are summarized below.

1) Include all separators between fields in a format statement,

100 FORMAT (I6,A8)

rather than

100 FORMAT (16A8).

2) Avoid use of PRINT and NAMELIST I/O statements. They generally
require system routines not loaded into the programs in order to
minimize core requirements. Use of PRINT and NAMELIST statements is

generally catastrophic. The convention is to use forn.atted WRITE

statements to FORTRAN Unit 6 (file OUTPUT for CDC or SYSOUT=A for

IBM).

3) FORTRAN binary READ-WRITE operations are also avoided for reasons much

the same as given above. Additionally, the environmental library
contains a FORTRAN callable binary read write subroutine which has
been tailor-made for use in the RETRAN Code Package.

4) Avoid use of a function in an I/O list:

IT=IABS(IK)
WRITE (6,100) IT, HOLER

rather than

F@WRITE (6,100) IABS(IK), HOLER +7

O
II-10

5) Variables used to store Hollerith fields greater than 4 characters in
length should be typed REAL (elevated to 8 byte words for IBM).

6) Assume that the output mode of a variable in an I/O Tist is determined
by the variable type, rather than format field.

7) Avoid use of Hollerith replacement such as

NON0=8HN0WORKY?

A more universally accer table approach is to limit use of Hollerith
literals to DATA and FORMAT statements.

8) Limit the magnitude of large literal fla .ing point constants to
exponents of 75 and small literal floating point numbers to exponents
of -75.

This will help prevent unnecessary overflow and underflow problems.

9) Avoid the use of actual numerical values (or literal values) as passed
subroutine or function argumentJ. It is better to pass a variable of
the proper type, which has been initialized using a data statement or
literal replacement.

10) ANS FORTRAN intrinsic functions used to force mode conversion are not
universally acceptable to all FORTRAN IV compilers, and some are
actually remnants of earlier levels of the FORTRAN language. Mode
conversion is automatic during a replacement, or by erely equating
two variables of different type.

1.6 FORTRAN Library Intrinsic ar.d External Functions

A summary of the basic intrir.,ic functions and external functions satisfied from
the FORTRAN library of a given system at load time are given in Tables II.1-2
and 11.1-3, respectively. The tables include only the functions used in the
RETRAN Code Package source program, and do not include extensions such as shif ting,

masking, and Boolean arithmetic which is required by the environmental library.

II-11

} } p,,7r

TABLE II.1-2

1BASIC INTRINSIC FUNCTIONS

Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function

Absolute |A| 1 ABS Real Real

Value IABS Integer Integer
DABS Double Double

Truncation Sign of A 1 AINT Real Real

times largest INT Real Integer
integer <|A| IDINT Double Integer

Remaindering Al-[A1/A2] A2 2 AM00 Real Real

Brackets indicate MOD Integer Integer
2largest integer DM00 Double Double

<A1/A2

Choosing Max (A1, 22 AMAX0 Integer Real

largest A2, . .) AMAX1 Real Real

value MAX 0 Integer Integer
MAX 1 Real Integer
DMAX1 Double Double

Choosing Min (Al, 22 AMINO Integer Real

smallest A2,...) AMIN 1 Real Real

MIN 0 Integer Integer
MIN 1 Real Integer
DMINI Double Double

Float Conversion 1 FLOAT Integer Real
2from integer DFLOAT Integer Double

tr floating

point

8 029 g-'

II-12

TABLE II.1-2 (Cont'd)

Number of Symbolic Type of Type of

Function Definition Arguments Name Argument Function

3
Fix Conversion 1 IFIX Real Integer

from real
to integer

Same as INT
,

Transfer Sign of A2 2 SIGN Real Real

of sign with Al ISIGN Integer Integer

DSIGN Double Double

1. Functions with double precision arguments or results are used for IBM
versions not using the Automatic Precision Increase (API) compiler option.
For CDC versions or IBM versions using API, only single precision functions
are used. For IBM applications, Integer implies INTEGER *4, Real implies

REAL*4, and Double implies REAL*8.

2. Not ANS FORTRAN

3. Not suggested for use since there is not a double precision form. IBM H-

extended with API option turned on may accept. However, with FORTRAN IV, a
function is not required for mode conversion. INTEG = FLOATP is preferable

since mode conversion automatically occurs when FLOATP is typed Real or

Double and INTEG is typed Integer.

,r8 030

II-13

TABLE II.1-?,

BASIC EXTERNAL FUNCTIONS

Number of Symbolic Type of Type of
Function Definition Arguments Name Argument Function

AExponential e 1 EXP Real Real

1 CEXP Double Double

Natural loge (A) 1 ALOG Real Real

Logarithm A>0 1 DLOG Double Double

Common log 10(A) 1 ALOG10 Real Real

Logarithm A>0 DLOG10 Double Double

Trigonometric sin (A) 1 SIN Real Real

Sine 1 DSIN Double Double

Trigonometric cos(A) 1 C05 Real Real

Cosine 1 DC05 Double Double

Trigonometric tan (A) 1 TAN Real Real

Tangent 1 DTAN Double Double

Square (A)I 2 1 SQRT Real Real
Root A>0 1 DSQRT Double Double

Arctangent arctan (A) 1 ATAN Real Real

1 DATAN Double Double

arctan (A1/A2) 2 ATAN2 Real Real
2 2A1 +A2 /0 2 DATAN2 Double Double

2Arccosine arccos (A) 1 AC05 Real Real

A 11 1 DARC05 Double Double

Arcsine arcsin (A) 1 ASIN Real Real

A $1 1 DARSIN Double Double

1. Functions with double precision arguments or results are used for IBM
versions not using the Automatic Precision Increase (API) compiler option.
For CDC versions or IBM versions using the API option, single precision
functions are used. For IBM applications, Integer implies INTEGER *4, Real

implies REAL*4, and Double implies REAL*8.
2 Alias for ARCOS on IBM when using H-extended compiler.
3 Alias for ARSIN on IBM when using H-extended compiler.

~h*7'

II-14

In general, only the INTEGER and REAL type functions are of interest since the
CDC code operates as single precision and the AUTODBL feature of the IBM
H-extended compiler will elevate the single precision REAL*4 coding (default) to
REAL*8 and also convert single precision functions to their double precision
equivalent. If the AUTODBL feature is not used on IBM versions, a text editor
must be used to convert single precision functions to their double precision
equivalents.

- 8 c32

II-15

2. 0 DYNAMIC STORAGE ALLOCATION TECHNIQUE

RETRAN, from a dynamic dimensioning viewpoint, is a code in which the core

storage requirements depend strictly on the size of the problem and the options
that are used. The concept of dynamic dimensioning is such that the storage for
variables describing the problem is allocated as the input data is read. The
amount of storage allocated for data depends strictly on the size of the problem
and the options that are used.

Several techniques were examined which afforded dynamic dimensioning capabilities,
with varying degrees of flexibility. The FTB Dynamic Core Allocation and Scratch
I/O Package was selected as a means of implementing dynamic dimensioning because

of the flexibility and control of system resources the package allows the pro-
grammer to exercise. The FTB package allows execution time allocation of main
mccery, bulk memory and mass storage as files which may be used for the duration
of the program, and expanded or reduced as required. Temporary storage can be
deleted at will, thus freeing resources which may be re-assigned as needed.
With the FTB package and the input data a user normally supplies to describe
system nodalization, storage requirements may be computed and assigned dynam-
ically, thus minimizing resource requirements (main memory in particular).
Additionally, any data file may be easily accessed by any subprogram in the
RETRAN code package. A description of the FTB package is included in Section VII
of this manual.

2.1 Description of File Structures

Basic to RETRAN is what will be designated from this point on as " files". A
file i4 defined as a characteristic set of varir,a M describing one particular
feature of the problem such as volumes, junctions, pumps, heat conductors, etc.

As an example of the file structure, the file (abbreviated) containing variables
describing a RETRAN control volume is shown in Table II.2-1. In this example,
there are twenty-five variables used for the description of one volume.

The data required to completely describe a control volume is referred to as a
set, where the control volume file is comprised of an individual set for each
volume. A fixed amount of data is often required to describe a particulat-

O
" 8 033

II-16

TABLE II.2-1

TYPICAL FILE SET STRUCTURE

WORD VARIABLE

(01) = IBUB = BUDBLE DATA INDEX

(02) = IREAD = VOLUME DATA RETRIEVAL INDEX

(03) = P = VOLUME PRESSURE

(04) = TEMP = VOLUME TEMPERATURE

(05) = HORX = VOLUME QUALITY

(06) = V = VOLUME (FT3)

(07) = ZVOL = VOLUME HEIGHT

(08) = ZM ' MIXTURE LEVEL

(09) = JTPMV = TWO PHASE FRICTION INDEX

(10) = FLOWA = VOLUME FLOW AREA

(11) = DIAMV = EQUIVALENT DIAMETER OF FLCW AREA

(12) = ELEV = ELEVATION AT THE BOTTOM 0F THE VOLUME

(13) = SATP = SATURATION PRESSURE

(14) = EATT = SATURATION TEMPERATURE

(15) = SATVF = SATURATION SPECIFIC VOLUME OF LIQUID

(16) = SATVG = SATURATION SPECIFIC VOLUME OF GAS

(17) = SATUF = SATURATION LIQUID SPECIFIC INTERNAL ENERGY

(18) = SATUG = SATURATED GAS SPECIFIC INTERNAL ENERGY

(19) = SATHF = SPECIFIC ENTHALPY OF SATURATED LIQUID

(20) = SATHG = SPECIFIC ENTHALPY OF SATURATED GAS

(21) = VL = SPECIFIC LIQUID VOLUME

(22) = VS = SPECIFIC GAS VOLUME

(23) = UW = INTERNAL SPECIFIC ENERGY

(24) = HW = VOLUME SPECIFIC ENTHALPY

(25) = GASH = GAS SPECIFIC ENTHALPY

''r8 034
II-17

O
feature or component such as a volume; consequently, the set is fixed length.
Files vary in length from one set to many sets, depending on the nodalization
specified by the user.

For a single volume problem, storage is allocated for one set of volume variables.
For a multi-volume problem, storage is allocated for NVOL sets of volume vari-
ables where NVOL is the number of volumes. Some files may have many sets of
variables in a file such as the volume file, the junction file, or the heat
conductor file, while others always contain only one set of data. An example
which always has a single set is the data fi'.e describing the overall system
parameters for the problem being modeled, or the system file.

Another variation to the file structure is "subfiles". As an example of sub-
files, consider the fill option in RETRAN. The major file for the fill option
is similar to the files described above, and contains a fixed length set of data
describing each fill. Hcwever, each fill his a fill table of flow, enthalpy,
and pressure versus time or adjacent volume pressure. These tables can vary in
length. The major file and subfile are shown in Table II.2-2. In this examole,
word 6 (IDXFLT) of file 14 gives the index of the first word of the array con-
taining fill table data. The fill table consists of pairs of values of time (or
pressure) and flow. All file and subfile indices denote the locations of the
files and subfiles in the array RSTOR in the FTB common block. Let IDX14 be the

thindex of the fill data set (file 14). Then the N pair of vCues fu the (or

pressure) and flow can be written as TIME = RSTOR (IDXFLT (IDX14) + 2*(N-1)) and

FLOW = RSTOR (IDXFST (IDX14) + 2*N - 1).

The idea of maintaining a fixed length for each set of variables residing
within a major file allows easy access to the various sets of data and will be
illustrated in the following sections. However, information that can be variable
in length, such as data tables, are not well suited for the fixed length, set
oriented file structure discussed above. Consequently, files for variable
length arrays are assigned as subfiles, which are indirectly addressed via the
subfile index or pointer. The irdex is generally saved as an element of the
mcjor file set, such as IDXFLT, IDYENT and IDXPRS in the previous example.
Subfiles are used for all information that is variable length as it cpplies to a
particular code option.

O
,n B 035

II-18

Table II.2-2
i'

MAJOR FILE AND SUBFILE CONTENT

*** FILID(14) = FILLER - CONTAINS FILL DATA

*** FILE FILLER HAS NFLL DATA STES. A DATA SET IS SHOWN BELOW

WORD

(01) = NFILL = NUMBER OF PAIRS IN FILL TABLE

(02) = ITFILL = TRIP NUMBER CONTROLLING FILL

(03) = JX = INDEPENDENT VARIABLE TYPE (-1=DIFF PRES,0= TIME,1=V0L PRESSURE)

(04) = JY = DEPENDENT VARIABLE TYPE (0=LB/SEC,1= GAL / MIN)

(05) = IFILL = CURRENT TABLE POSITION

(06) = IDXFLT = INDEX OF FILE CONTAINING FILL TABLE

(07) = PFILLO = PREVIOUS T'ME STEP FILL PRESSURE.

(08) = STHIDX = MEMORY INDEX FOR FILL STATE PROPERTIES

(09) = IDXENT = INDEX OF ENTHALPY SUBFILE

(10) = IDXPRS = INDEX OF PRESSURE SUBFILE - DEFINED ONLY IF JX .GE. 0

*** FILID FILTBL IS A SUBFILE OF FILLER, CONTAINS FILL TABLE

WORD

(01) = FILTBL(1) = TIME OR PRESSURE

(02) = FILTBL(1) = FLOW

.

.

.

(2*NFILL-1) = FILTBL(NFILL) = TIME OR PRESSURE

(2*NFILL) = FILTBL(NFILL) = FLOW

*** ENTHALPY CORRESPONDENCE SUBFILE

(EACH ITEM CORRESPONDS TO W VS T OR P PAIR IN FILTBL)

WORD

(01) = FILENT(1) = FILL ENTHALPY

(02) = FILENT(2) =
.

.

.

(NFILL) = FILENT(NFILL) = FILL ENTHALPY

, , c 8 03 f)

II-19

Table II.2-2 (Cont'd)

*** PRESSURE CORRESPONDENCE SUBFILL

(EACH ITEM CORRESPONDS TO W VS T OR P PAIR IN FILTBL)

WORD

(01) = FILPRS(1) = FILL PRESSURE

(02) = FILPRS(2) =

(NFILL) = FILPRS(NFILL) = FILL PRESSURE

O

' " 8 037

9
II-20

The file describing the heat conductors is another example of the use of subfiles.
Each heat conductor can be divided into as many temperature nodes and material
regions as desired by the user. Consequently, the number of variables describing
the nadalization in each heat conductor may vary. Quantities identified with
heat cons ictor nodes s''' conductor regions are kept in subfiles of the
major heat conduc sr 's.e a, c en in the file description illustrated.

T ole II.2-3.

~'"B 038

II-21

TABLE II.2-3

MULTIPLE SUBFILE USAGE

*** FILID(20) = SLABHT - HEAT CONDUCTOR DESCRIPTIONS AND DATA

*** FILE SLABHT HAS NSLB DATA SETS. A DATA SET IS SHOWN BELOW

WORD

(01) = IVSL = INDEX NO. OF VOLUME AT LEFT SURFACE OF COND. (NEW)

(02) = IVSR = INDEX NO. OF VOLUME AT RIGHT SURFACE OF COND. (NEW)

(03) = IG0M = GEOMETRY INDEX

(04) = ISB = STACK INDICATOR

(05) = IMCL = LEFT SURFACE INDICATOR FOR HEAT TRANS. CORRELATION

(06) = IMCR = RIGHT SURFACE INDICATOR FOR HEAT TRANS. CORRELATION

(07) = AHTL = HEAT TRANS. AREA AT LEFT CONDUCTOR SURFACE

(08) = AHTR = HEAT TRANS. AREA AT RIGHT CONDUCTOR SURFACE

(09) = VOLS = VOLUME OF HEAT CONDUCTOR

(10) = HDML = HYDRAULIC DIAMETER OF VOLUME ON LEFT OF COND.

(11) = HDMR = HYDRAULIC DIAMETER OF VOLUME ON RIGHT OF COND.

(12) = DHEL = HEATED EQUIVALENT DIAMETER ON LEFT OF COND.

(13) = DHER = HEATED EQUIVALENT DIAMETER ON RIGHT OF COND.

(14) = CHNL = CHANNEL LENGTH ON LEFT OF COND.

(15) = CHNR = CHANNEL LENGTH ON RIGHT OF COND.

(16) = SE = STORED ENERGY IN CONDUCTOR

(17) =
(18) = FCHL = CRITICAL HEAT FLUX AT LEFT COND. SURFACE

(19) = FCHR = CRITICAL HEAT FLUX AT RIGHT COND. SURFACE

(20) = HTCL = HEAT TRANSFER COEFFICIEN1 AT LEFT COND. SURFACE

(21) = HTCR = HEAT TRANSFER C0 EFFICIENT AT RIGHT COND. SURFACE

(22) = PHIL = HEAT FLUX AT LEFT COND. SURFACE

(23) = PHIR = HEAT FLUX AT RICHT COND. SURFACE

(24) = SLEN = EQUIVALENT LENGTH TO HEAT COND.

(25) = WQCL = HEAT TRANS. RATE TO FLUID AT LEFT COND. SURFACE

(26) = WQCR = HEAT TRANS. RATE TO FLUID AT RIGHT COND. SURFACE

(27) = IBCL = LEFT B0UNDARY CONDITION INDICATOR

,7rg }}9
II-22

TABLE II.2-3 (Cont'd)

(28) = IBCR = RIGHT BOUNDARY CONDITION INDICATOR

(29) = IHTL = HEAT TRANS. MODE AT LEFT COND. SURFACE

(30) = IHTR = HEAT TRANS. MODE AT RIGHT COND. SURFACE

(31) = ISCO = CORE NUMBER

(32) = TL = LEFT SINK TEMPERATURE, F

(33) = TR = RIGHT SINK TEMPERATURE, F

(34) = AZL = AZL THROUGHT HZR ARE COEFFICIENTS FOR CHF

(35) = AX1L = CORRELATIONS FOR LEFT SIDE

(36) = BZL =

(37) = CZL =

(38; = EZL =

(39) = EZ1L =

(40) = FZL =

(41) = HZL =

(42) = WED = WETTED EQUIVALENT DIAMETER, IN.

(43) = IDXTP = INDEX OF FILE CONTAINING TP FOR EACH NODE

(44) = IDXAP = INDEX OF FILE CONTAINING AP FOR EACH NODE

(45) = IDXTPC = INDEX OF FILE CONTAINING ITPC FOR EACH REGION

(46) = IDXTPK = INDEX OF FILE CONTAINING ITPK FOR EACH REGION

(47) = IDXTPX = INDEX OF FILE CONTAINING ITPX FOR EACH REGION

(48) = OLSLBN = OLD CONDUCTOR NUMBER

(49) = IVSLOL = OLD VOLUME NUMBER (LEFT SIDE)

(50) = IVSROL = OLD VOLUME NUMBER (RIGHT SIDE)

(51) = AZR = AZR THROUGH HZR COEFFICIENTS FOR CHF CORRELATIONS

(52) = AZ1R = FOR RIGHT SIDE

(53) = BZR =

(54) = EZR =

(55) = EZ1R =

(56) = FZR =

(57) = FZR =
,

(58) = HZR =

(59) =
(60) =
(61) = PHOL = HEAT FLUX AT LEFT COND. SURFACE (0LD TIME STEP)

II-23

TABLE II.2-3 (Cont'd)

(62) = PHOR = HEAT FLUX AT RIGHT COND. SURFACE (0LD TIME STEP)

(63) = GL = LEFT COOLANT FLOW RATE

(64) = GR = RIGHT COOLANT FLOW RATE

*** FILE SLBTP IS A SUBFILE OF SLABHT. SLBIP CONTAINS VARIABLE TP FOR

EACH N0DE IN A HEAT CONDUCTOR. INDEX OF FILE SL8TP IS WORD (43) 0F FILID(20)

WORD

(01) = NN0DE = NUMBER OF TEMPERATURE N0 DES IN THE HEAT CONDUCTOR

(02) = TP = N0DE 1 TEMPERATURE

(03) = TP = N0DE 2 TEMPERATURE

.

.

.

(XX-1) = TP = N0DE XX-1 TEMPERATURE

(XX) = TP = N0DE XX TEMPERATURE

*** FILE SLABAP IS A SUBFILE OF SLABHT. SLABP CONTAINS VARIABLE AP FOR

EACH N0DE IN A HEAT CCNDUCTOR. INDEX OF FILE SLBAP IS WORD (44) 0F

FILID(20)

WORD

(01) = AP = -2*SURFME WEIGHT * THERMAL CONDUCTIVITY (FOR N0DE 1)

(02) = AP = -2* SURFACE WEIGHT * THERMAL CONDUCTIVITY (FOR N0DE 2)

.

(XX) = AP = -2* SURFACE WEIGHT * THERMAL CONDUCTIVITY (FOR N0DE XX

*** FILE SLITPC IS A SUBFILE OF SLABHT. SLBAP CONTAINS VARIABLE ITPC

FOR EACH REGION OF A HEAT CONDUCTOR. INDEX OF FILE SLITPC IS

WORD (45) 0F FILID(20)

''r8 041
II-24

TABLE II.2-3 (Cont'd)

WORD

(01) = ITPX = CURRENT POSITION IN TPX TABLE FOR REGION 1

(02) = ITPX = CURRENT POSITION IN TPX TABLE FOR REGION 2

.

.

.

(XX) = ITPX = CURRENT POSITION IN TPX TABLE FOR REGION XX

WORD

(01) = ITPC = CURRENT POSITION IN TPC TABLE FOR REGION 1

(02) = ITPC = C'JRRENT POSITION IN TPC TABLE FOR REGION 2

.

.

.

(XX) = ITPC = CURRENT POSITION IN TPC TABLE FOR REGION XX

*** FILE SLITPK IS A SUBFILE OF SLABHT. SLITPK CONTAINS VARIABLE ITPK

FOR EACH REGION OF A HEAT CONDUCTOR. INDEX OF FILE CLITPK IS

WORD (46) 0F FILID(20)

WORD

(01) = ITPK = CURRENT POSITION IN TPK TABLE FOR REGION 1

(02) = ITPK = CURRENT POSITION IN TPK TABLE FOR REGION 2

.

.

.

(XX) = ITPK = CURRENT POSITION IN TPK TABLE FOR REGION XX

*** FILE SLITPX IS A SUBFILE OF SLABHT. SLIPTX CONTAINS VARIABLE ITPX

FOR EACH REGION OF A HEAT CONDUCTOR. INDEX OF FILE SLITPX IS

WORD (47) 0F FILID(20)

, -7 r g h

II-25

There are approximately 56 major files and many subfiles available for use in
RETRAN. The files that are used and the amount of storage required is determined
at execution time as the inf.ut data is processed. The philosophy of every file
structure corresponds with one of t5e examples given previously. All of the
files and their descriptions are listed in Appendix A and in subroutine RMAIN.

2.2 Accessing Files and Variables in Files

There are four variables kept to describe and access each major file and the
variable sets in the file. These variables are the SETSIZ, FILSIZ, FILIDX, and
FILID and reside in the FTB 1abeled common block. The SETSIZ is the number of
variables in each set of data in a file. The FILSIZ is the total number of
words in the file, i.e. the SETSIZ times the number of sets. The FILIDX is the

"index" of the first word in the file. The FILIDX is the offs 9t from the base
address of the icbeled common array to the first word in the file. The FILID is

a floating point number, assigned as a unique identifier for ?he file at the
time of storage allocation.

The storage allocateJ for files is reserved through a subroutine named RESERV
from the FTB packcge. A call to RESERV is made for every file that is created
for any particular run. The F1LSIZ, SETSIZ and FILID are defined before the

call to RESERV. RESERV allocates the requested amount storage and returns the
FILIDX.

All major files are g nen an integer number or relocatable file ID for reference.
For instance, the volume file is file 5 and the junction file is file 6. These

numbers are shown on the file description listing in Appendix A.

2.2.1 Multiple Type Variable Common Storay

Storage assigned by the FTB subroutines resides in a common area that is defined
by the FTB labeled common bloc k. The size of the common storage area is defined
by the difference between the field length or region size and the relative
address corresponding to the first word of the FTB common block. Upon examina-
tion of the FTB common block definition illustrated in Table II.2-4, it should

be noted very little space appears to be set up. In actuality, the FTB

O
7C} }(}1

II-26

.

Table II.2-4

ILLUSTRATION OF FTB COMMON BLOCK DEFINITION

THE FIRST 100 WORDS ARE USED AS A COMMUNICATIONS BLOCK BY THE FTB ROUTINES. THE

ADDITIONAL SPACE IS USED TO STORE PROGRAM RELOCATABLE FILE LOCATION AND DESCRIP-

TION. ARRAY BSTOR IS USED TO HOLD THE FIRST LINK FOR THE DYNAMIC STORAGE

ALLOCATION.

COMMON / FTB / RSTCR(340), BSTOR(200), LASTAD

REAL FILID(60), RSTOR(340), FSTOR(340)
*

INTEGER FILIDX(60),FILSIZ(60), SETSIZ(60)

INTEGER ISTOR(340)

LOGICAL LSTOR(340)

LOGICAL IBMRUN

EQUIVALENCE (LSTOR(97),IBMRUN)

EQUIVALENCE (RSTOR(1),ISTOR(1),LSTOR(1),FSTOR(1))

EQUIVALENCE (RSTOR(101),FILID(1)), (RSTOR(161),FILIDX(1)),

(RSTOR(221),SETSIZ(1)), (RSTOR 281),FILSIZ(1))t

s 7 r g ()k k

II-27 i

common block provides the space required for communication between the FTB
subroutines, the FILID, FILIDX, SETSIZ and FILSIZ array described above, and 200
words to hold the first FTB link (refer to Section VII for description). All

space assigned by FTB actually resides after the common block. In other words,
all storage is spilled across the common block boundary, whicn provides a refer-
ence address.

Implicit in the storage philosphy used in the RETRAN Code Package is the requir-
ement that different type variables, i.e. REAL, INTEGER and LOGICAL, can reside
anyv5ere in the common storage area. Further, an array index must reference the
same physical core location whether the array is REAL, LOGICAL, or INTEGER.

This requirement poses no difficulty for computers where the word length for the
various variable types is the same, such as encountered for both IBM and CDC
single precision. While single precision arithmetic is adequate for CDC applica-
tions (60 bit words), it is not adequate for IBM applications. The approach
used for IBM applicatons is to use double precision REAL*8 words (64 bit words).
This would cause misalignment when INTECER*4 numbers are equivalenced to REAL*8

numbers. For example, consider the following IBM FORTRAN coding:

REAL*8 RSTOR(2)

INTEGER *4 ISTOR(2)

EQUIVALENCE (RSTOR(1), ISTOR(1)

RSTOR(1) = 1.

ISTOR(2) - 1

The desired result is to store a real (64 bit) number in the first word of the
array and an integer (32 bit) number in the second word of the array. The
FORTRAN Compiler, however, assumes that the location of ISTOR(2) is 4 bytes (32

bits) after ISTOR(1). This would cause ISTOR(2) to be stored in the second half
of RSTOR(1), thus destroying the contents of RSTOR(1). To avoid this problem,
the IBM H-Extended compiler has an Automatic Precision Increase facility that
can be used to elevate the single precision REAL variables to REAL*8 variables,
and also pad LOGICAL and INTEGER variables equivalenced to the promoted variables

'

to achieve the desired alignment. Use of the Automatic Precision Increase
facility allows the physical coding to be the same for both IBM and CDC machines,
since it forces consecutively addressed LOGICAL and INTEGER elements of an array
to be offset by 64 bits rather than the normal 32 bits.

O
' " 8 045II-28

2.2.2 Fetching Variables in the Input Segments

Variables in the files throughout the input segments are referenced or defined
using three mnemonics for the variable storage array. These mnemonics are RSTOR
for real numbers, ISTOR for integers, and LSTOR for logicals. These three
variables are dimensioned and equivalenced to the first word of labeled common.
Fetching a variable is a matter of computing the proper subscript combined with
the appropriate mnemonic, RSTOR, ISTOR, or LSTOR.

To demonstrate how indices are computed in the input segment refer to the volume
file description, Table II.2-5. To obtain the thermodynamic pressure for volume 1,

the inoex of the first word in the file would have to be obtained. This index
is FILIDX(5), where the subscript 5 refers to relocatable File Number 5. This

index is also the index of the first word of the first set of variables.
Pressure P is the third word in this set of variables. Consequently, P(l) would

be represented by RSTOR (FILIDX(5)+2). To fetch P for the fourth volume requires
accessing the fourth set of variables in the volume file. P(4) is represented
by RSTOR(FILIDX(5) +3*SETSIZ(5)+2).

To illustrate this concept in further detail, an example of a DO ! cop as typi-
cally coded in most FORTRAN applications and the same D0 loop as it will appear
in RETRAN, is shown in Table II.2-6.

2.2.3 Fetching Variables in the Execution Segment

A different technique is used for the indexing scheme in the execution segment.
This technique is based on equivalencing a group of words having meaningful
mnemonics with the variable storage array according to the position dependence
defined by the file directory.

To illustrate this method, recall that the data storage array is named RSTOR.
The equivalencing shown in Table II.2-5 would be performed for the volume file.

This technique serves several functions. First, it sets up a set of offsets
relative to the first word in a set of variables, which the compiler uses to

modify the base address . This offset or address " mask" allows all words within
one set to be fetched with a single index relative to the first word of 1,abp}e h

II-29

TABLE II.2-5

TYPICAL FILE EQUIVALENCE MASK

FILID(05) - VOLUME QUANTITIES

REAL LIQH, MIXQ, LIQM, MIXV, LIQV

INTERGER PHASE, OLVLN

LOGICAL GFLAG

DIMENSION IBUB(1), IREAD(1), P(1), TEMP (1), HORX(1),
* V(1), ZVOL(1), ZM(1), JTPMV(1), FLOWA(1), DIAMV(1),
* ELEV(1), SATP(1), SATT(1), SATVF(1), SATVG(1), SATUF(1),

* SATUG(1), SATHF(l), SATHG(1), VL(1), VS(1), UW(1),
* HW(1), GASH (1)

EQUIVALENCE

*(ISTOR(01),IBUB(1)) , (ISTOR(02),IREAD(1)) , (RSTOR(03),P(1)) ,

*(RSTOR(04), TEMP (1)) , (RSTOR(05),HORX(1)) , (RSTOR(06),V(1)) ,

*(RSTOR(07),ZV0L(1)) , (RSTOR(08),ZM(1)) ,(RSTOR(09),JTPMV(1)) ,

*(RSTOR(10),FLOWA(1)) ,(RSTOR(11),DIAMV(1)) , (RSTOR(12),ELEV(1)) ,

*(RSTOR(13),SATP(1)) , (RSTOR(14),SATT(1)) , (RSTOR(15),SATVF(1)) ,

*(RSTOR(16),SATVG(1)) , (RSTOR(17),SATUF(1)) , (RSTOR(18),SATUG(1)) ,

*(RSTOR(19),SATHF(1)) ,(RSTOR(20),SATHG(1)) , (RSTOR(21),VL(1)) ,

*(RSTOR(22),VS(1)) , (RSTOR(23),UW(1)) , (RSTOR(24),HW(1)) ,

*(RSTOR(25), GASH (1))

'"B 047

O
II-30

.

TABLE II.2-6
T

,

A COMPARISON OF TYPICAL FORTRAN CODING AND RETRAN

CODING WITH PRIMARY VARIABLES

Typical Form RETWAN Form

00 10 I = 1, NVOL ISIZ = SETSIZ(05)

TPMV (I) = 1.0E0 . IDXVOL = FILIDX(05)

1 00 10 I = 1,NVOLIFAN(I) =

10 JVISC(I) = 1 RSTOR (IDXV0L+51) = 1.0E0

ISTOR (IDXV0L+53) = 1

ISTOR (IDXVOL+54) = 1

10 IDXVOL = IDXVOL + iSIZ

' 7 r~ 8 0 4 fl

II-31

)

common. The " mask" eliminates the need to compute indices for each word in a
set, thus realizing a net savings in computing time. The equivalencing technique
also allows the use of meaningful mnemonics which make the code more readable
for debugging purposes and later model changes.

An example of a typical FORTRAN D0 loop and the correspondl.1g RETRA'8 D0 loop is

shown in Table II.2-7 to illustrate the indexing scheme used in the execution
segment.

The subscript I in the RETRAN D0 loop represents the index relative to the first
word of labeled common for each set of variables as it loops over NVOL sets of
volume data, incremented by the SETSIZ for each loop. The " mask" supplies the
offset for variables within a set.

There is one equivalencing " mask" for each major file. The " mask" for a file is
in each subroutine in which variables from the file are referenced.

2.3 Addition of New Variables to the Files

Addition of new variables to the file structure is a fairly simple procedure.
There are two options open to the programmer for variable additions.

First, the new variables can be added to existing files. For instance, if the
new variable describes a volume and there is one of these variables for each
volume, the set can be lengthened to include the new variable. This involves

changing the SETSIZ in the subroutine that reserves the storage for the volume
file to the new length. Then the " mask" for the volume file has to be changed
so the new variable mnemonic is dimensioned and equivalenced to the next higher
address in the common storage array RSTOR, so as to reflect its proper positional
dependence.

The second option involves creating a new file to contain the added variables.
To accomplish this task requires determining the appropriate input subroutine in

-which storage should be defined for the new file and allocating storage space
'w'ith a call to RESERV. The file structure has to be defined so it is compatible
with the dynamic dimensioning scheme. An equivalencing " mask" should then be
added to subroutines in the execution segment in which the new variables are

O
,r8 0494

II-32

TABLE II.2-7

A COMPARISON OF TYPICAL FORTRAN CODING AND RETRAN

CODING WITH EQUIVALENCE MASKS

RETRAN Form With

Typical Form Equivalence Masking

DO 290 I = 1, NVOL IDX5 = FILIDX(5)

AVED(I) = 1.0E0/SPVZ(I) ISIZ5 = SETSIZ(5)

FMASS(I) = V(I)*AVED(I) IEND5 = IDX5 + ISIZS*(NVOL-1)

GASM(I) = FMASS(I) D0 290 I = IDX5,IENDS, ISIZ5

290 CONTINUE AVED(I) = 1.0E0/SPVZ(I)

FMASS(I) = V(I)*AVED(I)

GASM(I) = FMASS(I)
290 CONTINUE

,,eB 050

II-33

used. Any modification made to the file structure system should be reflected in
the file directory found in subroutine RMAIN which is also listed' Appendix A of
this manual.

''"8 051

O
II-34

3.0 SEMI-MODULAR CODING TEC"NIQUE

The motive for developing the semi-modular programming technique used in the
RETRAN Code Package was the desire to minimize the memory required to execute

any given problem. Semi-modularization, as defined for use in the RETRAN Code
Package, invloves splitting the coding into concise and well-defined blocks of
coding designed to perform a specific task, where each block consists of one or
several subroutines. These blocks are interfaced to the mainline code via
conditional calls (called only if the option is used) and the FTB common storage
area. Logic required to direct the overall program flow is relatively simple,
especially compared to that involved when coding for multiple tasks is lumped
into a single subroutine as is done in some large codes. Splitting the optional
program models into blocks makes it a simple task to omit options from the load
modules which are not used.

3.1 Dynamic Memory Management

It was originally envisioned that a pre processor or executive code could be
used to generate problem-oriented loader directives by scanning the users input
data and determining the optional program blocks used. The unused options could
then be omitted from the load module at execution time (link edit required at

execution time), by leaving the unused options unsatisfied. This scheme was
abandoned due to the additional cost incurred by requiring a link edit step for
each job and the added complexity of the job.

The dynamic dimensioning and semi-modularization schemes utilized in the RETRAN

code package are intimately related through interfacing with the FTB package.
This integrated scheme of dynamic dimensioning and semi-modularization is
referred to as dynamic memory management. Since FTB assigns data files from a
single scratch array according to the attributes of a file reservation request,
proper assignment of the scratch array origin can allow FTB access to the bulk
of the user's area in memory during execution. In RETRAN, the FTB scratch array
includes most of the physical coding as well as the area of memory normally
available for data storage, as illustrated by Figure 11.3-1. The FTB scratch

array is placed in labeled common which is loaded at the end of the root segment
or overlay, in effect making the scratch area length equal to the field length
less the length of the root segment. An FTB file is created which reserves

11-35

O
RA + FIELD LENGTH-

PRIMARY

s" e'
STORAGE ,. -

P0OL
,

RA + PROGRAM LENGTH

BLANK COMMON 3 ,

I
NON-EQUILIBRIUM PRESSURE MODEL

CONTROL SYSTEM MODEL

f.
s / y OPTIONAL

/#m PROGRAF 1f10DULES
u.

E
CENTRIFUGAL PUMP fl0 DELa

VALVE MODEL

6 RA + FIX
E FIXED CODING

Fa i
r INPUT, INITIALIZATION,

I SEGMENT SWAPPINGSTEADY-STATE & TRANSIENT SEGf1ENTS

LABELED C0f1 MON RA + ROOT LENGTH

_
ROOT SEGt1ENT RA + 0

Figure II .3-1 RETRAN Dynamic Memory flanagement Scheme

~7 r B 0 9 O
i

II-36

memory extending from the end of labeled common through address RA + FIX. This
area in memory is not used to store data, but the file prevents actual data
files from being over-stored on required coding residing between labeled common
and address RA + FIX. The optional program modules reside in memory between

addresses RA + FIX and RA + PROGRAM LENGTH. An FTB file is reserved in the
appropriate area of memory for each block of coding associated with a particular
module whose use is optional. Upon scanning the input data supplied to describe
the RETRAN problem, unused options are isolated and the files used to protect
the corresponding areas of memory deleted, thus freeing otherwise dead code
areas for data storage. The dynamic memory management-schems'in effect allows
generation of efficient problem-oriented load modules at execution time without
the use of a loader and in a manner completely transparent to the user. In
effect, the scheme dynamically maximizes the utilization of memory.

The key to the dynamic memory managment scheme used in the RETRAN Code Package

is that the programmer must be able to determine the order in which the optional
program blocks are loaded. By ordering the optional program blocks it is pos-
sible to minimize the degree to which the core is fractured, thus maximizing the
utilization of the space occupied by unused options for data storage. The
ordering also makes it much easier to ascertain the area of memory occupied by
unused as well as active option program blocks which must be protected.

The discussion of the dynamic memory management technique given above was directed

toward the RETRAN and RESTRT program modules, which contain large blocks of

optionally used coding. Program modules REEDIT and PLOTER contain no optional
programs; consequently, the logic required to reserve FTB files to protect the
required coding is greatly simplified. Only a single area in memory must be
located (the area above the dashed line and below the solid line in Figure II.3-
2) for the PLOTER and REEDIT coding file, while all remaining memory is available
for storage. Figure II.3-2 illustrates the relative core requirements for each
of the program modules in the RETRAN Code Package.

3.2 Computing System Related Deficiencies

The semi-modularization feature just described was originally developed on a
CDC computer and relied he.t.vily on the segmented loader. During the conversion
from CDC to IBM computing systems, an IBM 360/195 with an OS operating system

'
II-37

O

p_-______q ________q ________q p________,
| I

|
| | 1 1 I I

I I | | | | | |

| | '
I i I i l

I RETRAN I | PLOTER I| REEDIT|| ||
RESTRT

|DATA DATA DATA DATA

!| ||I
I I 1

I I I
I i i l |

I I i i
l |

I I I i
! I

I I I I | | 6 |
| | 1 |

| | | |
1 I | g | | |
U i l I

CODING OR DATA I | 1
l | | |- _ _ _ _ _ - - _ - - - _ _ _ - - _

| | 1 i

CODING

I CODING
i -_________- - _

| CODING I

__,I._ - _ _ _ _ _ _ i

COMMON CODING

Figure 11.3-2 RETRAN Code Package Core Requirements

," 8 055

9
II-38

was used. At this time some difficulties ware encountered due to the primative
nature of the IBM overlay loader as compared to the CDC segmented leader. In

particular, subroutines could only reside in one segment or overlay and no way
was available to specify the loading sequence in a given overlay. Also, the
limitation of a maximum of four regions proved to be a liability.

As a matter of expediency, the early IBM versions of the RETRAN code package
were overlayed, but the dynamic memory management feature was not fully activated,
i.e. the areas of memory containing unused code options were not used for data
storage. A scheme was devised whereby the full dynamic memory management capa-

bility could be activated by splitting the subroutines for a given option into
two overlays. The first overlay would contain a single subroutine used to
locate the optional program block, while the second and succeeding overlay would
contain the additional subroutines required for the optional program block. The
subroutine in the second overlay could then be loaded in random order without
affecting the ability to locate the origin of the optional coding block defined
by the first overlay.

Prior to the actual implementation of the dynamic memory management scheme

described above for IBM computing systems, it was discovered that a significant
degradation in the code running time was being observed on MVS operating systems.
It was later discovered that the code was spending an inordinate amount of time
in the overlay entry tables, effectively increasing running time by a factor of
3 to 4. This was perplexing, particularly since no segment swapping was taking
place. Consequently, the overlay structure was reduced to a minimum and running
time improved by a factor of 3 to 4. At this point it was decided to abandon
the dynamic memory management scheme as a result of the difficulties encountered
with the overlay loader on MVS systems, particularly since the largest portion
of prospective RETRAN users with IBM computing systems run under an MVS operating

system.

The lack of any real overlay structure for the IBM /MVS version significantly
increases the amount of virtual storage required (typically increased from 700K
to 1300K), but the effective cost of the increased overhead is trore than compen-
sated for by the decrease in running time that is realized. A significant
portion of the code which is used briefly (input subroutines), or not at all
(unused program options), resides on mass storage and is seldom, if at all,
paged into or out of real memory. ,vr8 056

II-39

O
The original overlay structure, with partial dynamic memory managment, has been
retained for use on IBM computing systems operating under an 05 operating
system. No degradation in performance has been observed using this overlay
structure on 05 where the overlay loader functions as described in the documen-
tation[II .1-6] . Section VIII discusses the various overlay structures used.

- S 057 g

O
II-40

= % 4 g *~ 's * 6 .-.

. # 4 . , -
* 1

{s , ,

- 1 ** , i x ., ,

:r-- :-- ---+a.2- 9. g
... . . ,.__. ___ . ,, ' _ ,

____=,,.m,,--~..a
,..g_ y.,__.__% _, _

'

.

q * 4

_

W -l
$

=, i

e

.s
4

F

4

w
t'

,

.E e I

h
h

dik
.

Ge''

a
B

'

.

A
YI

'e' y,*

I

I: e.
'

t

t
*

. 's -

';..

.,,

'9'.

I

e

,,e'.
e

* *

e

P

. ,

.4 e

h
..

M 6

? @

e H .

k
'

]
,

. P, o

e

n f

4

. 11 ,

M
,

a
,

.

* s <|
||

1)
* -

;i

;I
''

e

W

y

ru
j'

'

'J.*

.:,

il i
.,. ,

l'
I

I T j

:

- Tar''g,,

*
6

m
94..

''a

a

m .g:

.p.'
$#

.s.
- . ___ -- = - . .- . . . _. .., . . . _ . . _ - ._

_ , ______ . .
. .

g

_

_

e

e
. 2 N *

.

-
, e . y'+

.
-

III. RETRAN AND RESTRT THERMAL HYDRAULICS MODULES

The segmentation of the RETRAN and RESTRT modules can best be described by

following a problem through the program structure for input processing and
execution. The program structure for restart and initial runs is very eimilar,
so the segmentation for each will be discussed concurrently.

" The discussion in the following sections is directed to applications on CDC
computing systems, where the segmented loader is used extensively [II.1-4,

II.1-5]. As noted in Section 11.3.2, deficiencies in the IBM overlay loader
[II.1-5], particularly when MVS is used, have precluded use of the overlay
feature. As a result, the content of the following information does not apply
directly to IBM versions of the RETRAN Code Package. However, should the loader
difficulties be isolated and corrected at a later date, the information presented
below may be useful in developing a detailed overlay structure for IBM computing
systems.

' " 8 059

III-l

1.0 BASIC RETRAN CODE PACKAGE MODULES

Segment RMAIN is the root segment of RETRAN (refer to Figure 111.1-1). Segment
RMAIN is a fixed length block of coding containing subroutines that are resident
in core for all phases of the problem. These subroutines are used in restart
runs, initial runs, reediting runs, and plotting runs. RMAIN acts as the driver
for the RETRAN Code Package.

The segment INPUT is loaded first resulting from a call to subroutine INPUT from
subroutine RMAIN. Segment INPUT initializes the FTB package and the variable
data storage array. Subroutine INPUT reads and processes the problem dimensions
data card to determine what type of problem is to be run (restart, initial run,
re-edit, or plot). This information is then returned to subroutine RMAIN which
selects the appropriate tree to overlay Segment INPUT. If the problem is a
plotting run, the segments in the Tree M093 are loaded. If the problem is a re-

edit run, the segments in the Tree M002 are loaded. The segmented program
structures for re-edit and plotting are described in Sections IV and V respec-
tively. If the problem is a restart or initial run, segments in the Tree M001
and Tree OPTIONS are loaded. The segmentation for TREE MOD 1 is shown in Figure
III.1-2 and a schematic of Tree OPTIONS is shown in Figure III.1-3.

The base of the Tree MODI is the Segment RETRAN. Subroutine RETRAN is the

driver for the RETRAN module. Segment TRAN contains subroutines that are required
by the transient portion of the code. Segment CPYPLT is used for restart prob-
lems only. Its function is to copy archived data to the point of restart from
the restart tape to a new data tape. Subroutines in Segment REDUCE reduce the
field length and release any unused contiguous block of main memory. Segment
PRNPLT contains subroutines that are used for printer plots and are loaded after
all calculations are completed. Tree INMODS is the input processing portion of
the code for both restart and initial runs. A schematic of the Tree INMODS is
shown in Figure III.1-4. The Tree INITAL is the steady state initialization
portion of the code. A schematic of the Tree INITAL is shown in Figure III.1-5.

s v8 0A0 g
III-2

TREE OPTIONS

(SEE FIGURE III.1 -3)

LEVEL

TREE MOD 1 TREE MOD 2

(SEE FIGURE III.1-2) (SEE FIGURE II-1)

SEGMENT INPUT TREE MOD 3

INPUT, DOCUMT, GETCOR, INITIAL, (SEE FIGURE X-1)
3 FRECOR, REDUCE, INP, CVI, INP2,
O LINK, MODER, PCKUPK , EOF

SEGMENT RM AIN

RM AIN, BUFOUT, ClO =, CHEK, DELETE, DM PFIL , DMPLST,
ERRMOD, ERROR, FABEND, FAIL, FTBCIO, I A, IDFIND,

LCONTG, W.SQ, LINES, LOCATE, LOCF, MOVE, NEXTID,
RECOVR, RESERV, SHIFT, SHFTLK, TIMINT, TIMSET,
ZEROUT, SYSTEMC, PUT.RM, REW.SQ, SYS.RM

..

4
7

Figure III.1-1 Schematic of the Tree RTIAIN
CD
F
s

O

SEGMENT TRAN
CSLVOL, EDIT, ETSCON, SEGMENT CPYPLT

FLOATR,FLOSRH, CPY PLT, OVRLYP,
LEAK, NIFTE, NOTIM, POSITN
TRAN, TRIPDT, TSED,

TSTP, CVGEX P

TREE INITI AL SEGMENT REDUCE

(SEE FIGURE III.1-5) REDUCE,FRECOR

O
SEGMENT PRNPLT

TREE INMODS PRNPLT, ROUND, OPEN,

(SEE FIGURE III.1-4) CLOS E , ISFOPN , TRNC AT,

PLOTPR,NFSETS, TRPSUM

W

SEGMENT RETRAN
RETRAN

RESTRT (EP)

Figure 111.1-2 RETRAN and RESTRT Program !!adule Segnentation Tree N001

,,r8 OA2 O
III-4

SEGMENT LOCMD1

BAL,8UBB, ENTRAN, FANG, FRICTN, HEADC, JUN HP, MACH,
POL ATE, POL 2, POSTW, PREW, SFR, STATE, STH 2OO,
ST H 201, STH 203, STH 204, STH205, STPM,TFFM, TRIP,
VAPORI, VISC, WPACK, SSWTCH, SURTEN, LOCMDI ,
RESSEG, CHKV, FILL, PLTAPE, S L ABHT , S ENG, TAVE,
SLABDT, TEMP, COND, HTRC, PCHF,QDOT,THCON,
TKANDC, EDTCND, ENERGY, HTXQ, EDTHTX, CONDHT,
PUMP, PUM PS, EDT PM P, POW RT, CORQ, EDTCOR,
MH20R, M WR, R KEN, RE AC, CCC, R N DO, SCRM,
EDTKIN, LEVCAL, EDTLQL, CARDBC, PRESS, TAPEBC,
MIX FLC, DN BM, QDN B BW, Q DNBMA, Q DN BW3, FCOLDW,
FG R SPM, NON UHF, FITH T, SI MO, TUR BC F, Q DNBB A,
QDN BBO, EDTONB, QDNBJL, PRZR, TRNSPT,
CONTRL, DIFF, DEL AY, INTEG, LDL AG, L AG, VELLIM,
LOC EN D, R ESOPT, FIN DEP, DM PER.

S EGM ENT LOCTBL
LOCTBL

Figure III.1-3 Schenatic of the Trec OPTIO!!S

,,r 8 OG

III-5

O

SEGMENT INDATA TREE INDRIV

INDATA (SEE FIGURE m,2-1)

SEGMENT IN R S T R

INRSTR

O
SEGMENT INRTRN

INRTRN, INP2, LINK,
MODER, PCKUPK, INPIO

Figure III.1-4 Schematic of the Tree Itif10DS

.,r8 064

O
III-6

SEGMENT INITLZ SEGMENT JVEDIT
INITLZ, MASBAL, JVE DI T,

EOSETS, MINV, LOOPS KINITL

SEGMENT STSTAT

STSTAT, DELHP, H AVG,

JHOFF, PRSORK, SINITL,
STATPH, TEMZ, VDUDT,

BU BI N T.

Figure III.1-5 Schealatic of the Tree INITAL

,,r8 OAS

III-7

2.0 INPUT PROCESSING SEGMENTATION

The segments containing the subroutines that process the input data are contained
in the Tree INMODS (see Figure III.1-4).

2.1 Input Processing Segmentation for an Initial Run

For initial runs, segments INRSTR and INDATA are not used. Segment INRTRN con-
tains subroutines from the FTB package and INP package that are used for both
restart and initial run input processing. Subroutine INRLPE reads the label for
a plot tape if one is to be generated, and then calls subroutine INTRAN. Subrou-
tine INTRAN is in segment INTRAN, which is the base for the TREE INDRIV (refer
to Figure III.2-1). Subroutine INTRAN is the driver for the input processing
subroutines. Each of the segments branching from the segment INTRAN are used
only once; therefore, each segment overlays the previously used segment. After
all the input data is processed, control is returned to segment RETRAN (Figure
III.1-2) at which time the Segments in the Tree INITAL overlay the Tree INMODS.

2.2 Segmentation for Restart Input Processing

For a restart run, the original input data is retrieved from the data tape and
combined with the minimal input data supplied with restart. This set of input
data is then processed as if it were an initial run so the dynamic data storage
is set up.

Subroutine INRSTR reads the label on the tape containing the restart data.
INRSTR then reserves a file for the original problem data to be stored. INRSTR

then calls subroutine INDATA in segment INDATA. INDATA retrieves the original
problem input data from tape. The input data is then processed in segments of
the Tree INDRIV as if it were an initial run.

Control is then returned to subroutine RETRAN in segment RETRAN (Figure 111.1-2).
RETRAN calls subroutine CPYPLT which retrieves the problem data at the appropri-
ate restart time from the data tape. Subroutine OVRLYP is than called by RETRAN.
OVRLYP overlays the data storage files with the restart data. The combination
of original initial input data and the restart data provides all the information

necessary to continue the transient calculations.

O,'r8 066

III-8

SEGMENT INCORE SEGMENT INGEOM SEGMENT EDATA1B SEGMENT EDATA2B

INCORE INGEOM EDATA1 EDATA2

SEGMENT REQESTI SEGMENT EDATA3B
SEGMENT INMPRO SEGMENT INSLAB REQEST, POSPLT,

[

INMPRO IN SL A B, INCDHT -

SEGMENT EDINili SEGMENT EDATA4R

h RC
' EDA *14SEGMENT INHEAT 1 2

INHEAT

SEGMENT INJUN
CH AIN, INJUN, SEGMENT INEulT1

SEGMENT INCNT1IMIXCK, INCKV, INEDIT, OPEN,
IN ARE A , I N F I L L, INCNT1 LAVAIL

SEGMENT INRKEN INECCS
IN RE AC, INRKEN,

INSCRM SEGMENT INPM
-

INPM, IN PUM P,-
f.- xENT INCNST7 PMPDTA, IPMCK

*
I N T ST P,' TSTMOD,

'

SEGMENT IN POW R

INPOWR INTRIP

GmT MOL
SEGMENT INHTXQ

INVOL, INBUBL,
INLVC, INTV

SEGMENT INIFTE SEGMENT INDNB

INIFTE INDNB, INSTGN

SEGMENT INTRAN
INTRAN, INP8-

4
' figure 111.2-1 Schematic of the Tree INDRIV

CO

CD
n

N

3.0 STEADY-STATE INITIALIZATION SEGMENTATION

Segments from the Tree INITAL are loaded after the input processing has been
completed. Tree INITAL is needed for initial runs only and not for restarting.
A schematic of the Tree INITAL is shown in Figure III.1-5. The driver for the
steady-state initialization package is subroutine STSTAT in segment STSTAT.
Steady-state initialization and the transient calculations share a common block

of subroutines. These subroutines are located in the Tree OPTIONS (Figure
III.1-3). Subroutines in the Tree INITAL are exclusively used for steady-state
initialization and are overlayed by Segruent TRAN after the steady-state calcula-
tions are complete.

O

,,r8 068

9
JII-10

4.0 EXECUTION SEGMENTATION

The subroutines in the Segment TRAN (Figure III.1-2) are loaded for transient
exer.uti on. Subroutines in the segment TRAN are necessary for execution of all
problems and are .*n core at all times during transient execution.

The Tree OPTIONS (See Figure III.1-3) is present in core through input processing,
steady state initialization, and transient calculations. The 6egment LOCMD1
contains a block of subroutines that are needed for all initial runs and restart
runs. The optional subrcutines are located after subroutine LOCMD1 as part of

the semimodularization scheme. (See Section II.3.0).

''"B 0A9

III-11

9

%

9

+

e

-

O

9

.

%

IV. REEDIT DATA TAPE EDITING MODULE

The REEDIT module is essentially a stand-alone computer program which is included
in the RETRAF Code package to facilitate the generatior. of edits of RETRAN data
tapes. REEDIT is fully dynamically dimensioned and also contains dynamic field
length reduction features. The REEDIT module segmentation is shown in
Figure IV-1. Subroutine REEDIT in segment REEDIT is the driver for this module.

The discussion in the following sections is directed to applications on CDC
computing systems, where the segmented loader is used extensively [II.1-4, II.1-5].
As noted in Section II.3.2, deficiencies in the IBM overlay loader [II.1-5],

particularly when MVS is used, have precluded use of the overlay feature. As a
result, the content of the following inforraation does not apply directly to IBM
versions of the RETRAN Code Package. However, should the loader difficulties be
isolated and corrected at a later date, the information presented below may be

useful in developing a detailed overlay structure for IBM computing systems.

' " 8 071

IV-1

SEGMENT SETUPE TREE INMINE

SETUPE, POSITN, PULLIN (SEE FIGURE M.1-1)

GEGMENT EDITRE

EDITRE, EDIT, FLOATR, POSITN, PULLIN, REDUCE,
SEGMENT INEDTE FRECOR, PRNPLT, PLOTPR, ROUND, ISFOPN, NFSETS,

INEDTE, INP2, LIN K , OPEN, CLOSE, TRNCAT, EDTCND, EDTCOR, EDTDNB,

MODER, PCKUPK, INP8 EDTHTX, EDTKIN, EDTLQL, EDTPMP, EDTSLP

2

SEGMENT REEDIT

REEDIT

r----- ---- 1
1 SEGMENT R M AIN |'

|'
I

L---__----_a

.

A
n

Q Figure IV-1 REEDIT Program flodule Segnentation Tree !!002

CD
N
N

O O O

1.0 INPUT SEGMENTATION

The input segmentation as well as the overall segmentation for the program
module REEDIT is brief, due to the simplicity of REEDIT. The storage allocation
performed by the input segments resides in the region ranging from the end of
the longest load configuration to the end of the field length. Permanent storage
arrays (" files") are assigned the preferred end of core (end nearest the execu-
table coding), while temporary scratch files are assigned to the least preferred
end of core.

Subroutine INEDTE in Segment INEDTE is the driver for the input processing.
INEDIE reads the minimal input data supplied for re-editing. INEDTE calls
subroutines in Segment SETUPE which set up relocatable files to store the data
from tape, read the header record off the tape, position the code at the correct
data record and read the data record. INEDTE then calls INEDIT in the Tree
INMINE (See Figure IV.1-1). The primary function of the segments in the Tree
INMINE is to set up edit headings. Once the input segments have been executed
control is returned to subroutine REEDIT. The field length is reduced so as to

free all unused core that resides above the permanently assigned files.

' 8 073

IV-3

SEGMENT LOCMD2

LOCMD2

SEGMENT EDATA3C SEGMENT EDATA4C

EDATA3 EDATA 4

SEGMENT EDATA2C SEGMENT REQEST2
REQEST, POSPLT,

EDATA22 PULLIN
A

SEGMENT EDATA1C SEGMENT EDINIT2
'''EDATA1 '

SEARCH, INCNT2

, SEGMENT INEDIT2
4 INEDIT, OPEN, LAVAll
7

00

Figure IV.1-1 Schematic of the Tree If1MIt!E

.P=

0 0 0

2.0 EXECUTION SEGMENTATION

The execution segment EDITRE (see Figure IV-1) controls the data tape editing
process. Subroutine EDITRE selects the appropriate data records to be edited,
controls data tape positioning and checking performed by subroutine POSITN, and

calls the data retrieval subroutine PULLIN. EDITRE is the driver subroutine for
the data tape editing function performed by REEDIT.

" 8 075

IV-5

9

0

0

V. PLOTER PLOTTING MODULE

The PLOTER module is the portion of the RETRAN Code package to facilitate

generation of plots from RETRAN data tapes, RELAP4 data tapes, and stranger data
tapes.

The PLOTER module shares a common pool of subroutines with the RETRAN code

package in the root segment RMAIN. The PLOTER module contains subroutines that
are unique to this module and some subroutines that are present in other modules.
A schematic of the segmentation of the PLOTER module is shown in Figures V-1

and V-2. Subroutine PLOTER is the driver for the plotting package and is called
from subroutine RMAIN.

The discussion in the following section is directed to applications on CDC
computing systems, where the segmented loader is used extensively [II.1-4,

II.1-5]. As noted in Section 11.3.2, deficiencies in the IBM overlay loader

[II.1-5), particularly when MVS is used, have precluded use of the overlay
feature. As a result, the content of the following information does not apply
directly to IBM versions of the RETRAN Code Package. However, should the loader
difficulties be isolated and corrected at a later date, the information presented

below may be useful in developing a detailed overlay structure for IBM coraputing
systems.

,,r8 077

V-1

SEGMENT LOCMD3

LOCMD3

SEGMENT PLOT

PLOT, AXIS, L AXIS, PLOTMC, PLOTR, XPLOT,

XPLOTA, CONCT, PLOTS, NUMBER, NORM AL, TREE READ
PSCALE, SYMBOL, LABLCK, FLOATR. (SEE FIGURE Y-2)

SEGMENT CLOSE
< SEGMENT IN PLOT CLOSE, ISFDES, ISFOPN, LAVAIL, NFSETS, OPEN,

INPLOT, INP2, INP8 TRNCAT, CPYFIL, GET, ISFPRC, LIFOPN, MOVEl,
LINK, MODER, PCKUPK NFSETS, NFUNIT.

SEGMENT PLOTER

PLOTER

r
RM AIN 'ISEGMENT

I'

I Ia u-------- >
n

CC
Figure V-1 PLOTER Progran flodule Segnentation Tree f10D3g

N
CO

O O O

SEGMENT EDATA3D SEGMENT EDATA4D

EDATA3 EDATA4

SEGMENT EDINIT3SEGMENT EDitTA2D
EDINIT, IN P2, LINK,

EDATA2 MODER,PCKUPK,
MXSETS, SEARCH,1NCNT2

SEGMENT EDATAID SEGMENT REQEST3

EDATA1 REQEST, POSPLT<
O

SEGMENT PULLIN SEGMENT INEDIT3
SETUPE, POSITN, PULLIN,

INEDITSETUPO, POSPLT, PULTRN

.

SEGMENT REDTAP

REDTAP, FRECOR, REDUCE-.

a
7

CO
Figure V-2 Schematic of the Tree READ

N
@

1.0 INPUT SEGMENTATION

Subroutine PLOTER calls subroutine INPLOT in segment INPLOT. Subroutine INPLOT

reads, checks and edits the input card data. INPLOT also sets up the permanent
storage arrays and some temporary scratch files. Control is then returned to
subroutine PLOTER.

O
,- a oso

O
V-4

2.0 EXECUTION SEGMENTATION

After the input is processed, subroutine REDTAP is call'.u. REDTAP (See Figure

V-2) is the driver for reading data records from a data set or multiple data
sets. The subroutine selects the requested plot variables from each data record
and stores the plot variables for the plotting subroutines.

The function of subroutine INEDIT in Segment INEDIT and the subroutines it calls
is basically to set up plotting variable headings and units.

Subroutines in Segment PULLIN set up abbreviated permanent storage arrays to
store information from each data record, position the code at the appropriate

data record and then read the data records.

Subroutines in Segment PLOT perform the actual plotting after the requested plot

variables have been re,trieved from the data tape.

' " 8 081

V-5

&

h

.

4

T

R

9

e

9

e

e

VI. RETRAN DATA TAPE

The RELAP series of codes have historically contained features for archiving
problem solution data on magnetic tape. RETRAN, not unlike its predecessors,
also contains the capability of generating data tapes for use with companion
program modules RESTRT, REEDIT, and PLOTER. RETRAN data tape generation and

usage is based upon a new and more efficient technique (with respect to I/O
time consumption and usable data density) than employed in versions of the RELAP

program.

' " 8 083

VI-1

1.0 DATA TAPE DESCRIPTION

RETRAN data tapes are standard labeled magnetic tapes and are composed of three

types of records; a header record which is the first record on all data tape
volumes, data records containing problem solution results and a trailer record

written as the terminal record for a RETRAN data set. A data set is defined as
a continuum of solution results from time zero to problem end time. A RETRAN
data set may consist of a single volume (reel of magnetic tape), or it may
consist of multiple volumes. Each volume of a multiple volume data set will
have a header record as the first record, followed by a series of data records.
Only the last volume of a data set will be terminated by a trailer record. If

an end of volume is encountered while writing a data record, the volume is
unloaded, a new volume mounted, a header label written and the full data record
written on the new volume.

The feature whereby each volume is initiated with a hearier record, followed by
complete data records (excluding any partial record at tne end of a volume),
negates the dependency of a given volume of a multiple volume set on any prede-
cessor volumes for RESTRT problems and possibly some REEDIT and PLOTER problems.
For example, a RESTRT problem which is to continue a RETRAN solution at a time

corresponding to a data record in the fourth volume of a RETRAN data set, requires
that only the fourth volume be mounted. This volume independent feature thus
negates the need for reading volumes one through four merely to be able to
position the data tape as required by RELAP. Additionally, RELAP performs a
reel to reel copy as the positioning operation is performed, doubling the
number of magnetic tapes the user must account for. RESTRT performs a reel to
reel copy only for the volume needed to continue the problem (volume four in the
example), thus minimizing I/O time and the number of tapes for which the user is
accountable. A continuous data set is preserved by use of the volumes preceding
the volume containing the restart data record (volumes one through three) from
the previous problem solution, plus any additional volumes generated by RESTRT
(volume four at a minimum). At least one data tape is generated for any RESTRT
problem.

,r8 084

O
VI-2

1.1 Header Rece"d Description

RETRAN data tape header records consist of problem identification and description
data, dimension specifications and the original problem input data. Header
records contain blocks of specified information, where each block of information
must be present, but the actual length of each block varies according to problem
requirements such as dimensions and models used. Table VI.1-1 describec the
contents of a data tape header record.

The information contained in the header record is used to verify that the desired
data set has been requested, in addition i.o providing original problem detail
for the program modules using the data set, and to ensure that the archived data
is consistent with the requested usage. Header information is also used to set
up buffers used in retrieving data from a data tape and ta provide RESTRT with a
physical description of the system being modeled through the original input
data.

1.2 Data Record Description

RETRAN data records contain all of the time dependent data necessary to continue

a problem solution through use of program module RESTRT and all information
required to obtain edits and plots of archived data through use of program
modules REEDIT and PLOTER. The use of a single data record for restarting,

editing and plotting is a departure from the philosophy utilized in all versions
of the RELAP code, where both plot and restart records were saved. Use of a
single data record in the RETRAN Code Package was facilitated by expanding the
list of edit variables (major and minor edit parameters) to meet user requests
and by adding a minimal number of additional parameters required for restart
only. No time invariant parameters such as geometry and material properties,
except component node numbers used for editing, are saved in the data records.

These constants are obtained at restart time in the same manner as is done for
a normal RETRAN problem.

RETRAN data records are composed of a three-word prefix header followed by the
actual solution data. The prefix header is an integral part of the data record
consisting of

' " 8 085
VI-3

TABLE VI.1-1

HEADER RECORD DESCRIPTION

Word Description of Contents

1 to 4 Header Label - This information specifiec that tape is
a RETRAN DATA TAPE.

5 to 19 Documentation Header - Information for documenting the
version of RETRAN from which the data tape was created.

20 Date - Calendar creation date of the data tape.

21 to 29 Problem Title - User supplied title for the archived
data.

30 LEN1 - Length of the problem dimension file.

O31 to 30+LEN1 Problem Dimension Specification - Problem dimension

file (Relocatable file 2) from original problem.

31 + LEN1 LEN2 - Length of the Data Record Description information.

32 + LEN1 to Data Record Description - Relocatable file 43.
31 + LEN1 + LEN2 This file is described later in this section.

32 + LEN1 + LEN2 LEN3 - Length of the original problem input data.

33 + LEN1 + L N2 to Original Problem Input Data - This card data is

32 + LEN1 + LEN2 + LEN3 in INP tati; format.

' " 8 086 $
VI-4

(1) Hollerith word, DATA REC
(2) Integer data record number greater than or equal to one
(3) Integer data record length not including the prefix header.

The content of a data record is specified by the Data Record Description (DRD)
file (relocatable file 43 in Appendix A). The DRD file is generated after the
input data is processed. The DRD file specifies a set of relocatable files to
be included in the data record, selected from a set of predetermined relocatable
files. The predetermined list consists of optional as well as required files.
While required files are always included in a data record, optional files are
either included or excluded from data records depending upon whether or not the

specific option is used by the problem.

Files specified in the DRD file are not included in a data record in their
entu ety, but rather in abbreviated form. The abbreviated form of each file is
given in a subfile of the DRD file called the Abbreviated File Description
(AFD). The AFD contains a set of data groups consisting of one word specifying
the number of words from the corresponding file in the DRD list which are to be
included in a data record, followed by a list of FTB addresses (relative to the
first word of labeled common) for parameters to be included in the data record.
Such an abbreviated description is required for each file specified in the DRD
file and redefines a file's set structure for data record storage purposes. The

abbreviated description for an optional file is not included in the data record
if the option is not used. Files composed of multiple sets (refer to Section II)
require an AFD for only the first set, since a given parameter for sets other
than the first may be fetched by using the first set offset and adding the
product of the set number minus one and the set size. The resultant is then
summed with the index of the first word in the file to obtain the index of the
desired parameter.

The DRD is the key to reading and writing data records for restarting, plotting,
and re-editing. A thorough understanding of this file and how it is set up is
necessary if any new variables are added that require archiving on a data tape.

There is a set of four variables, NFIL, LFIL, KFIL, and MFIL kept in the DRD
file to describe each relocatable file that is archived on a data tape. (Refer

to relocatable file 43 description). NFIL is the relocatable file number for

QVI-5 7r

major files. For subfiles, NFIL is the relocatable file number associated with

the subfile and is negative to indicate it is a subfile. LFIL is the number of

variables in a set for the abbreviated relocatable file. KFIL is the number of
sets in the relocatable file (refer to Section II). MFIL is a flag to indicate

if the relocatable file is a major file (MFIL=0), a major file that has a subfile
archived (MFIL=1), or a subfile. In the case of a subfile, MFIL is defined such

that the top half of the word is the offset in the abbreviated major file to the

index of the subfile and the bottom half of the word contains the offset to the
index of the subfile for fully described major files. The set of four variables
for each relocatable file is defined in subroutines EDATA1, EDATA2, EDATA3, and
EDATA4.

fhe set of four EDATA subroutines are intimately tied in with the DRD file, the
AFD, minor editing, and major editing. The functian of these subroutines is to
set up information for the DRD file, obtain offsets for the AFD, determine which
optional relocatable files are to be included in a data record, set up edit
headings, define minor edit request mnemonics, and define units for each variable
available for editing. A section of coding from EDATA3 with variable definitions
is shown in Table VI.1-2.

Modification of data record contents is facilitated by changing the appropriate
EDATA subroutine. Changes may include addirg files to a data record or merely
expanding an existing abbreviated file description.

Any modifications to the DRD file or AFD subfile will be propagated throughout
the RETRAN Code Package since RETRAN data tape usage is facilitated through the
DRD and AFD files.

' " 8 088

O
VI-6

TABLE VI.1-2

A SECTION OF C0 DING FROM EDATA3

C

C

C LIQUID LEVEL VARIABLE (RELOCATABLE FILE 32)

60 II = II + 1

IF (NLVC(I2).LE.0) GO T0 70 Check to see if this file is to be
I=1 included in a data record.
10LD = IX

Y(1,IX) = FLAG 32(I) Information needed for each variable.

LOC = LOCF(ZLVC (1)) - IAD
Y(2,1X) = ALOC

Y(3,IX) = HDA32(I)
Y(4,IX) = HDB32(I)
Y(5,1X) = IUNIT(5)

I=1+1 Counter for the number of variables
in the file.

IX = IX + 1 Counter for the number of variables
in a plot record.

Y(1,IX) = FLAG 32(I) Minor edit mnemonic.

LOC = LOCF(LVCVOL(1)) - IAD

Y(2,iX) = ALOC Offset of the variable in the file.

Y(3,IX) = HDA32(I) Heading for the variable for editin
Y(4,IX) = HDB32(I) purposes.

Y(5,1X) = IUNIT(1) Units of the variable for editing

IX = IX + 1 purposes.

Information Needed for Each File

IDXF = FILIDX(32) FTB index for the file.
Y(INDEX1,1) = AIDXF

. 7 r El 0 E1 9INDEX1 = INDEX1 + 1

IFIL = 0

VI-7

.

TABLE VI.1-2 (Cont'd)

Y(INDEX2,1) = AIFIL Region deck indicator, 0 = Only one
INDEX2 = INDEX2 + 1 set in the file, -1 multiple sets

sequential ordering > 0 = offset for
region check for files with multiple
sets that can have non-sequential region
numbers.

Y(INDEX3,1) = JFIL(II) Hollerith defining which feature of
INDEX3 = INDEX3 + 1 the code variable is associated with.
LFIL = IX - 10LD
Y(INDEX4,1) = ALFIL Length of a set of variables in the
INDELX4 = INDEX4 + 1 abbreviated file.

KFIL = FILSIZ(32)/SETSIZ(32)
Y(INDEX5,1) = AKFIL Number of sets of variables in the file.
INDEX5 = INDEX5 + 1

NFIL = 32

Y(INDEX6,1) = ANFIL Relocatable file number (>0), subfile

INDEX6 = INDEX6 + 1 if (<0), where major file is given by
MFIL = 0 absolute value.
Y(INDEX7,1) = AMFIL Variable indicating if this is a major
INDEX7 = INDEX7 + 1 file (=0) with no subfiles written
ANOVAR = Y(2,1) to the data tape, if it is a major

NOVAR = NOVAR - 1 file with a subfile (=1) written to a
Y(2,1) = ANDVAR data tape, or if it is a subfile (/0).

If a subfile, the top half of word

contains the offset from beginning of
the fully described major file to

the index pointing to the subfile.
The bottom half word contains
the offset to the index for

abbreviated major file.

,7r8 090 O
VI-8

2.0 DATA TAPE GENERATION

RETRAN data tapes are generated by subroutine PLTAPE in program module RETRAN

and by subroutines CPYPLT and PLTAPE in program module RESTRT. Subroutine
PLTAPE writes header records at the beginning of each new tape volume, subsequent
data records and a trailer record upon problem termination. PLTAPE also pro-
cesses all tape mount, unload and return requests.

Subroutine CPYPLT is used in RETRAN problems to perform a reel to reel copy of
all information on the data tape used for restart to a new data tape. The new
data tape contains a header record and all data records to the point at which
the original problem is restarted. All subsequent data records are written by
subroutine PLTAPE. The first call to PLTAPE for a RESTRT problem bypasses the

tape mount request and header record processing and immediately writes the data
record for the restart time. All subsequent data record processing is identical
to that performed for a RETRAN problem.

Table VI.2-1 illustrates the use of the DRD file and AFD subfile to generate a

data record.

The outermost loop is over all files which may be included in a data record, the
next loop is over all sets of a file, and the innermost loop is over all members
of the AFD.

,r8 091

VI-9

TABLE VI.2-1

TYPICAL CODING USED TO WRITE A DATA RECORD

IDXPRC = FILIDX(43)

LPRC = FILSIZ(43)

N0FILS = ISTOR(IDXPRC)

IDXADD = ISTOR(IDXPRC+01)

NSET = ISTOR(IDXPRC+2)

MAX = NSET*N0FILS

IDXSCR = ISTOR(FILIDX(38))

LSCRAT = FILSIZ(38)
C

C WRITE ABREVIATED DATA RECORD FILES

IDADR1 = IDXADD

INDEX = IDXSCR - 1

DO 80 I = 3, MAX,NSET

ID = ISTOR(IDXPRC+I)

ISETSZ = ISTOR(IDXPRC+I+1)

IF (ID.GT.0) ISETSZ = SETSIZ(ID)
NS = ISTOR(IDXPRC+I+2)

IS = ISTOR(IDADRI)
L=0

K=0

DO 70 J = 1,NS

DO 60 M = 1,IS

K=K+1

60 RSTOR(INDEX+K) = RSTOR(ISTOR(IDADR1+M)+L)

ITEST = K+IS

IF (J.LT.NS .AND. ITEST.LE.LSCRAT) GO TO 70
ITEST = IS

IS = K

CALL BUF00T (IUNIT,ISTOR(IDXSCR),IS,IOK,LAST,IPRU)

IF (IOK.EQ.3) GO TO 30

IF (IOK.NE.1 .0R. IS.NE.LAST) GO TO 440
IS = ITEST

K=0

70 L = L + ISETSZ ,,r g y2
80 IDADR1 = ISTOR(IDADRI) + IDADR1 + 1

VI-10

3. 0 DATA TAPE USAGE

RETRAN data tapes provide the data interface between program module RETRAN and

the RESTRT, REEDIT and PLOTER program modules. Use of a RETRAN data tape by all

program modules is facilitated through use of a common pool of data tape proces-
sing subroutines. A summary of these data tape processing subroutines and their
function is given in Table VI.3-1. Each of the subroutines listed in Table VI.3-1
utilizes the binary I/O environmental subcode BUFOUT (discussed in Section VII)
to perform the required I/O operations.

The four program modules use RETRAN data tapes for various purposes. Conse-
auently, several different FORTRAN unit numbers are used by the program modules.
A summary of the FORTRAN unit numbers and the corresponding data set requirements

is given for the four program modules in Table VI.3-2.

,r8 093

VI-11

TABLE VI.3-1

DATA TAPE PROCESSING SUBROUTINE DESCRIPTIONS

Subroutine Description

CHEK Usec by all program modules to mount a tape and to ensure that
the requested data tape is a RETRAN data tape and that the first
sixteen characters of the original and current problem titles
match (title check not made for PLOTER problems).

CPYPLT Used to generate a duplicate copy of the RETRAN data tape used to
restart a problem. The copy operation is terminated at the last

data record prior to the restart data record. The duplicite copy

is then used to store new problem solution data and ensures a
continuous RETRAN data set for each individual problem. This
feature is used by program module RESTRT only.

INDATA Used by program module RESTRT to retrieve the original problem
input data from the header record of a RETRAN data set.

OVRLYP Used to overlay abbreviated file data contained in a data record
onto corresponding fully described files. This feature is used

by program module RESTRT only.

PLTAPE Used by program modules AETRAN and RESTRT to generate a RETRAN

data set.

POSITN Used by all program modules to position a RETRAN data set at a
specified data record. The data set is positioned after the

three word header prefix which is used to ensure proper
positioning.

PULLIN Used by program modules REEDIT and PLOTER to move a data record

into the appropriate abbreviated files reserved by subroutine
SETUPE. Subroutines EDITRE and REDTAP then retrieve specified

information from these abbreviated files by use of the AFD subfile
created by INEDIT.

VI-12

" 8 094

TABLE VI.3-1 (Cont'd)

SETUPE Used by neogram modules REEDIT and PLOTER to reserve space for
the abbreviated files contained in a given data record structure.
Subroutine SETUPE defines the space (main memory) into which

subroutine PULLIN moves a data record.

TADEBC Used by program >dules RETRAN and RESTRT to retrieve time depen-
dent boundary cor.ditions and power histories from a RETRAN data

set.

'B 095

VI-13

TABLE VI.3-2

1
RETRAN DATA TAPE FORTRAN UNIT NUMBER CROSS REFERENCE

Program Unit
Module Number Description

RFTRAN 12 Read a previously generated RETRAN data tape which

is used to supply time dependent thermodynamic

boundary conditions for a volume (s) in the current
problem and/or to supply the power history for the
current problem. (READ Only)

14 Unit upon which a RETRAN data tape is written if
requested by input data. (WRITE Only)

RESTRT 12 Same as for RETRAN program module above.

13 Read a previously generated RETRAN data tape. The

data tape contains the information required to

restart a RETRAN problem. (READ Only)

14 Tape mounted on Unit 13 is copied onto Unit 14 out
to (but not including) the data record containing
the reouested restart information. From the
restart point on, data records are written as

requested thru input data. (WRITE Only)

REEDIT 13 A RETRAN data set containing information for which
printed edits and/or printer plots are desired is
read on this Unit. (READ Only)

PLOTER 13 A RETRAN data set (or multiple data sets) con-
taining information to be plotted is read on this
unit. (READ Only)

1) CDC logical file names are TAPEXX and IBM DD names are FTXXF001, where XX

corresponds to the Unit Number given above.

8 096VI-14

4.0 COMPATIBILITY WITH RELAP DATA TAPES

Due to the improved data format and storage philosophy adopted in the RETRAN
Code Package, only RETRAN data tapes provide valid input to program modules
RETRAN, RESTRT, and REEDIT. In other words, RELAP3 and RELAP4 plot-restart

tapes are not compatible with the data format and content required by the three
program modules noted above. However, an option has been added to the PLOTER

program module whhh allows PLOTER to be used to plot RELAP3, RELAP4 and spe-

cially formulated " Stranger" data tapes, as well as RETRAN data tapes. Use of
PLOTER program module for plotting RELAP and Stranger data tapes is possible
only if:

(1) The RELAP3 or RELAP4 plot record structure has not been modified from
the released version;

(2) The record structure for Stranger tapes (given in following Sections)
is adhered to;

(3) The recording technique is consistent with that discussed for subpro-
gram BUFOUT in Section VII.

The subroutines written to extend the capability of the PLOTER program module
and allow use of RELAP and Stranger data tapes are summarized in Table VI.4-1.

All I/O for the extensions to PLOTER is performed as a R_E"O only operation on
FORTRAN Unit number 13.

4.1 RETRAN Stranger Data Tape Format and Structure

RETRAN Stranger data tapes are binary data tapes generated by any program,

subject to the format specifications given in Table VI.4-2. The data tape may

be written using any FORTRAN BUFFER I/O program used consistently with the

record and blocking structure discussed for subprogram BUF0UT in Section VII.

' " 8 097

VI-15

TABLE VI.4-1

EXTENDED PLOT TAPE PROCESSING SUBROUTINES

Subroutine Description

CHEK Used by PLOTER to determine the data tape type to set the
tape type flag as follows:

Typg

1 RETRAN Data Tapes

2 RELAP4/003 Plot-restart Tapes

3 RELAP4/002 Plot-restart Tapes

4 RELAP3 Plot-restart Tapes

5 Stranger Data Tapes

POSPLT Used by Pl0TER to position Type 2, 3 and 4 tapes at a speci-
fled plot .-ecord. The data set is positioned after the

single header word (4HPLOT).

PULLIN Used by PLOTER to move a stranger tape record into the
appropriate abbreviated files reserved by subroutine SETUPE.
Note: Stranger tape formatting is set-oriented, as is

RETRAN data tape format.

PULTRN Used by PLOTER to read Type 2, 3 and 4 records which are

array oriented, i.e., A(1) immediately precedes A(2), and
transposes the data into a set oriented form as it is moved

into the files reserved by subroutine SETUP 0.

SETUP 0 Used by PLOTER to reserve the abbreviateo files required to
store Type 2, 3 and 4 records.

, 7 r g]'3
%I-16

TABLE VI.4-2

RETRAN STRANGER DATA TAPE FORMAT

RECORD 1: Must be at least 8 but not more than 16 (A8) HOLLERITH WORDS in
length

First three words must be

WORD (1) 8HRETRANb5=

8HTRANGERb b = blankWORD (2) =

WORD (3) 8HDATAbTAP=

WORD (4) 8H= ,

.

> Available for tape documentation.

.

8H >WORD (8) =

WORD (9) 8H ,=

.

p Optionally available for tape documentation

WORD (16) = 8H s

' '~ 8 0 9 9

VI-17

TABLE VI.4-2 (Cont'd)

RECCRD 2: WORD (1) Number of data files per plot record=

WORD (2) Set size of file number 1=

WORP(3) Number of sets in file number 1=

.

.

.

.

WORD (N*N0FILS) Set size of file number NOFILS=

WORD (N*NOF;LS+1) Number of sets in file number N0FILS=

Example of a File:

M(1) V(1) P(1) T(1) X(1) . Set 1..

M(2) V(2) P(2) T(2) X(2)

M(3) V(3) P(3) T(3) X(3)

M(4) V(4) P(4) T(4) X(4) . . . Set 4

Set size = 5

A file may consist of 1 set of n parameters

O
,c s \co

VI-18

TABLE VI.4-2 (Cont'd)

RECORD 3: Data file heading (A8)

(First word of axis label)

8HXXXXXXXX Heading for file Number 1WORD (1) =

(or 4HXXXX)

.

.

WORD (N0FILS) = 8HXXXXXXXX Heading for file Number NOFILS

(or 4HXXXX)

The data file heading is a single Hollerith word generally des-
cribing the data file. A file of one set should have an 8 charac-
ter heading, while multiple set files should use a 4 character
heading. The remaining 4 characters will be added to the heading
word automatically. For example, consider the previous example,
where the file contains control volume data. A heading word of

bV0L will be expanded to bV0Lbbb4 for plot requests for volume 4

(set 4).

O
'

VI-19

TABLE VI.4-2 (Cont'd)

RECORD 4: WORD (1) 4HXXXX Plot request flag=

WORD (2) Position in set minus 1=

WORD (3) 8HXXXXXXXX 1st word of description=

WORD (4) 4HXXXX 2nd word of description=

WORD (5) 8HXXXXXXXX parameter units=

.

.

.

O
.

and so on where each member of a set is desc-ibed by a 5 word
alphanumeric field as shown above.

NOTE: Plot request must be set to 4HTIMX for problem time
(words 2, 7, 12, etc.)

,,rg 102
O

VI-20

TABLE VI.4-2 (Cont'd)

RECORDS 5 AND UP:

WORD (1) 4HPLOT=

File 1 set 1WORD (2) =

.

. .

set N.

File 2 set 1WORD (NSETS(1)*SETSIZ(1) +1) =

. .

. .

. .

. .

set N.

for all files in record

,"8 103-

VI-21

&

f-
.

9

.

/

<

9

VII. ENVIRONMENTAL SUBCODE PACKAGES

The environmental subcode packages used in RETRAN are a collection of subroutines

designed to facilitate data management, storage, and retrieval in an efficient
manner.

Five subcode packages will be described in tnk section: the FTB package; the
INP package; water property table interpolation roetines; the plotting routines;
and the BUFFER I/O routines. In addition, the Boolean algebra, shift and mask

functions are described.

,,eg 105

VII-l

1.0 GB

The FTB package is a set of subroutines for co.itrolling dynamic storage alloca-
tion in certral memory, bulk core, and disk data sets. The concepts utilized in
the FTB code package are based on the INEL environmental code package [VII.1-1].

1.1 File Organization

The basic entity used by FTB in organizing data is a file whose entries normally
have some internal relationship. Files may be further subdivided into sets
which are generally that portion of a file which must be available to the program
at any one time. The two types of files that may be defined are reserve files
and process files. The principle difference between the two is the method of
accessing the data in them. Reserve files may be accessed randomly and thus are
required to reside in random access memory (RAM). Random access to disk is not

permitted because of the high I/O overhead. A process file is processed one set
at a time by calls on FTB and the program has access only to the current set.
Process files can be processed sequentially or randomly. The sequential mode
processes files sequentially starting with the first set. Process files can be
stored in main memory or as disk data sets but only main memory files can be
processed randomly.

Each file is identified by a unique number (ID) which must be positive or nega-
tive but not zero. All communication with FTB concerning the file is through
this 10. FTB locates and assigns the requested space (if available) on the
designated unit when the file is created. If the file is later deleted, the

space is returned to the pool and becomes available for allocation to other
files. Storage obtained for a reserve file is similar to a singly subscripted
array in a DIMENSION statement except that the length can be sized for the
particular problem being run. A set size must be defined for process files and
storage is obtained as a multiple of the set size.

The main meaory available for a problem is defined at execution time through an
RrL card for CDC or the REGION parameter for IBM. Excess storage on CDC is
automatically released. The location of scratch memory begins at the end of the
root segment and extends to the end of the requested region. Overlay segments
reside within the scratch memory and active segments are protected from
overwriting.

Qh7

VII-2

All remaining region space is available for data files on CDC systems. Character-
istics of the linkage editor on IBM systems do not permit unused space within
the overlay to be recovered. Thus data files on IBM systems are located at the
end of the overlay.

The FTB routines use reserve creas in main memory for their internal bookkeeping.
These reserve areas, called links, are 200 words long and contain the file
descriptions for 50 files with each file description using four words. The
first link is established during FTB initialization and the first description in
the first link describes the link itself. Whenever a new file description would
ise the last (50th) description in a link, another link is established which
uses the last description in the previous link for its description. The new
file is described in the first description of the new link. The links are
chained together through their descriptions and links are created and deleted as
needed. Links use a file identification of 0.0 and user files cannot use 0.0
for a file ID.

A call to the RESERV subroutine describes a reserve file and obtains the required

main memory storage. A call to DSCRIB describes a process file, but no storage
for the file is obtained. The first call to OPEN in the write mode for a des-
cribed file obtains dorage space on the requested unit. Once the file has been
written, the file may be opened for reading or rewriting using the same storage
space. Process files use an extended description in addition to the standard
description. For main memory, the extended description is two words long and
precedes the file. The extended description is kept until the file is deleted.
For disk files, the extended description is three words long and precedes the
buffers used in reading or writing disk files. A contiguous region of main
memory is used for the extended description and the buffers. This space is
acquired when the file is opened and released when the file is closed. The sets
in process files are processed by calls to PROC 1, PROC 2, PROC 3, and PROC 4. When

all the sets have been processed, the file must be closed by a call to CLOSE.
If not all the sets are processed, the file can be closed by a call to TRNCAT.

Storage in main memory is allocated in contiguous space as near as possible to
one end of the space. For disks, space is always allocated toward the beginning
of the available space. For core space, a parameter in the initialization call

~7<g 107VII-3 *

Oindicates whether the beginning or the end of core is the preferred end of
storage. Links, process files in main memory, extended descriptions and buffers
are always positioned as near as possible toward the preferred end of main
memory. Reserve files can be positioned toward either end of main memory. When
using the FTB package, some foresight should be used to prevent excessive
storage fragmentation especially in main memory. The SHIFT subroutine can be
used to change the size of a reserve file and to reposition the file toward
either end of main memory. Whenever a request for main memory storage is made,
an attempt is first made to reposition links toward the preferred end of main
memory and thus links can never fragment the main memory.

1.2 FTB Subroutines Calls and Functions

All subroutine and function arguments are of the integer type except for the
file identification (ID) which is real. The array A used in the following
descriptions is defined by

COMMON /FTB/A

O
REAL A(1)

and is positioned at the end of the root segment as described above.

The FTB package contains tests for I/O errors, invalid subroutine usage, and
incorrect specification of subroutine call parameters. The list of possible
error messages is given in Section VII.l.5. All errors cause abnormal termina-
tion of the load trodule.

1.2.1 CALL INITAL (LOWHI)

This call initializes the FTB package and must be the first call to the package.
The INITAL subroutine performs the initialization discussed above. Checks are
made as described and there must be at least 200 words of memory available to

establish the first link. If an FTB subroutine is called before the call of
INITis' , the program is abnormally terminated.

Cf \h.7

VII-4

If LOWHI equals 1, the beginning of core storage is the preferred end, and if
LOWHI equals 2, the high end of core storage is the preferred end.

1.2.2 CALL RESERV (ID, FILSIZ, LOHI, INDEX)

This call is used to define a reserve file with file identification ID and to
reserve the storage space in fast core. The ID must be unique, that is, no file
with that ID can already be described. The size of the reserve file is given by
FILSIZ. If LOHI is 1, the reserved area is as near to the preferred end as

possible, and if LOHI is 2, the reserved area is as near to the opposite end as
possible. INDEX is returned such that A(INDEX) is the first location of the

reserved area. The first argument, ID, is real, the rest integer.

1.2.3 CALL SHIFT (ID, FILSIZ, LOHI, INDEX)

This subroutine is used to move and/or change the length of a reserve file.
FILSIZ may be larger than, smaller than, or equal to the original size and LOHI
need not be the same as the original value. If LOHI is 1, the file is shifted

as near as possible to the preferred end of main memory, and if LOHI is 2, the
file is shifted as near as possible to the opposite end. If LOHI is 3, the

origin of the file is not changed and only the size of the file is changed.

INDEX is set such that A(INDEX) is the origin of the new storage area. When
searching for an area large enough to hold the file, the space currently occupied
by the file is considered available. Shifting a file does not destroy the

contents of the file.

1.2.4 CALL DELETE (ID)

This call is used to delete all bookkeeping in the links and all storage associ-

ated with the reserve or process file with identification ID.

1.2.5 CALL DMPFIL (ID, FORMAT)

This subroutine is used to dump or print on Fortran Unit 6 the reserve file or a

closed process file named 10. FORMAT is 0 for an octal (CDC) or hexadecimal
(IBM) printout and 1 for floating point printout.

VII-5

1.2.6 CALL DMPLST

This subroutine is used to dump bookkeeping information stored in the links.
Once the INITAL subroutine has been successfully called, all erro, s in FTB usage
call this routine before calling the abnormal termination routine.

1.2.7 LAVAIL (UNIT)

This function returns the number of locations available in UNIT if UNIT is main
memory and the number of blocks available in UNIT if UNIT is a disk data set.

1.2.8 LCONTG (UNIT)

This function returns the length of the largest contiguous space currently
available in UNIT. For disk data sets, the length is the product of the largest
number of contiguous blocks available and the maximum number of words that can
be stored in a block.

1.2.9 NEXTID (0)

This function returns the absolute value of the largest ID currently described
or reserved plus 1 in floating point format. This function can be used to

guarantee that unique file ID's are being used. The argument 0 is a dummy
argument. NEXTID must appear in a REAL specification statement.

1.2.10 NFUNIT (ID)

This function returns the unit number of the file ID.

1.2.11 ISFDES (ID)

This function returns 1 if file ID has been descriaed, 0 otherwise.

1.2.12 ISF0PN (ID)

This function returns 1 if file ID is open, 0 if closed.

<9'f k\0
.

VII-6

1.2.13 CALL DSCRIB (ID, SETSIZ, N0 SETS, UNIT)

This subroutine describes a process file which must be the first operation on a
new process file. ID is the file identification which must be unique. SETSIZ is
the set size and NOSETS is the number of sets. UNIT is 1 for fast core, 2 for

bulk core and 3 through 7 for disk data sets (DDNAMEs FTB15F01 to FTB19F01 for
IBM computers and FILE 1 to FILES for CDC computers). The units 3 through 6 can
aave only one file open at a time while unit 7 has no such restriction.

1.2.14 CALL OPEN (ID, MODE)

This subroutine is used to open a process file. ID is the file identification
and the file to be opened must be described. MODE is I for read, 2 for write, 3
for read-write, and 4 for random access. If MODE is 1, 2, or 3, the sets of the

file must be processed sequentially by PROC calls. If MODE is 4, the unit
specified in 95 CRIB must have been 1 or 2 and the sets are processed randomly by
GET and PUT calls described below. Storage is allocated to this file in UNIT if
MODE is 2 or 4 and the file has not been opened before. It is an error if the

first OPEN for a file is with MODE equal to 1 or 3. Rewriting a file is not an

error and no additional storage is allocated. Random processing may be preceded
or followed by sequential processing. When MODE is 1 or 3, OPEN initiates the
first read if the file is a disk file.

1.2.15 CALL PROC 1 (IDI, INDEX1)

CALL PROC 2 (ID1, INDEX1, 102, INDEX2)

CALL PROC 3 (101, INDEX1, 102, INDEX2, 103, INDEX3)

CALL PROC 4 (101, INDEX1, 102, INDEX2, ID3, INDEX3, ID4, INDEX4)

These calls are used to process the next set of one, two, three, or four files
which have been opened in read, write, or read-write mode. IDI, ID2, 103, and
ID4 are the file identifications. For the read mode, INDEX is set such that

A(INDEX) is the location of the first word of the set. For the write mode,
A(INDEX) is the first word of the location into which the program should place
the next set. For read-write mode, A(INDEX) is the location of the first word of
the set to be altered. The PROC routines handle the blocking and deblocking of
sets into blocks, buffer switching, and the initiation and checking of read and

7IQ }k\VII-7

write operations. Overlapped I/O operations are used so that CPU processing can
proceed concurrently with I/O operations. PROCI, PROC 2, and PROC 3 are entry
points to the PROC 4 subroutine.

1.2.16 CALL GET (ID, SETNO, LOC)

This subroutine is used to obtain set numbered SETN0 from a file which has been
opened in random mode. The set is moved from the file to location LOC.

1.2.17 CALL PUT (ID, SETNO, LOC)

This subroutine is used to store set numbered SETN0 by moving information from
location LOC into file ID which has been opened in random mode. The set must be
in location LOC when the call is given. PUT is an entry point in the GET sub-
routine.

1.2.18 CALL CLOSE (ID)

This call is esed to close file ID. A file opened in random mode may be closed
at any time. A file opened in read, write, or read-write mode may not be closed

by the CLOSE subroutine until all sets have been processed. When writing disk
files, a flag is set such that the next request for fast core space forces the

last write to completion.

1.2.19 CALL TRNCAT (ID)

This call also closes file ID, but not all sets need to be processed at the time

of call. If the exact number of sets of a file to be writto is not known at
the time it is described, the file may be described with N0 SETS equal to an
upper bound and processed normally. When TRNCAT is called in the write mode,
NOSETS is decreased to the number of sets actually processed and any extra
storage is released as the file is closed. The deletion of storage for the

unprocessed sets occurs during init;41 write or rewrite operations. If the file

is open for reading, TRNCAT may be called to close the file before all the sets

have been processed, but the remaining sets are not lost. TRNCAT may not be
called for files being processed in read-write or random mode.

O
'

VII-8
jj27r

1.2.20 CALL CPYFIL (IDI, 102)

This subroutine copies process file 101 to process file 102. 102 must be des-
cribed, the set size and number of sets of the two files must be the same, and
101 cannot equal 102. Both files cannot reside on the same disk unit and both
files must be closed when CPYFIL is called.

1.2.21 NFSETS (ID)

This function returns the number of sets in file ID.

1.2.22 MXSETS (SETSIZ, UNIT)

This function returns the maximum number of sets of size SETSIZ which will fit
into the space remaining on UNIT.

1.2.23 ISFPRC (ID)

This function returns 0 if file ID is a reserve fi7 1 if file ID is a'-

process file.

1.3 File Description, Extended Description, and Record Formats

1.3.1 File Description Format

Files are described using four REAL words stored in special 200-word reserve
files named " links" with ID's of 0.0. The file description format is given in

Table VII.1-1. Link descriptions are chained together in forward and backward
directions. Of the four words for a file description, on a CDC computer the

first is treated as REAL and the other three are packed with two 30-bit integers.
The IBM format is similar with the first word REAL*8 and the remaining words 32
bit integers. In the format description, A(I) is the first word of the descrip-

tion. For IBM Computers, the variable IA(N,K) accesses the upper half of A(K)
if N is 1 and the lower half if N is 2. For CDC computers, IA is a function
which returns the integer packed in the high order 30 bits of A(K) if N is 1,
and the integer packed in the low order 30 bits if N is 2. The function IA is
described in detail in Section VII.1.4.6.

*7F} }})VII-9

TABLE VII.1-1

FTB FILE DESCRIPTION FORMAT

A(I) File identification, 0.0 if file description for a link.

IA(1,I+1) The length of a reserve file, the setsize of a process file, or
the index of the last file in previous link if a link description of

other than first link.

IA(2,I+1) Zero if a reserve file and the number of sets if a process file.

IA(1,1+2) Zero if reserve file or closed process file, the index of the

extended description as a positive quantity if the file is open,
or the index of the extended description as a negative quantity
if the file is open for copying.

IA(2,I+2) Unit of the file,1 for main core, 2 for ECS or bulk core, and

3-7 for disk data sets.

IA(1,I+3) Zero if no storage assigned; index of first storage location if

reserve file or main core or bulk core process file; first block

number if disk file. If a link description, this index is also

the location of the next link.

IA(2,I+3) Amount of storage used by file in words if in memory and in
blocks if a disk data set.

vg \\4

O
VII-10

1.3.2 Extended Description Format

The extended description is two REAL words long for fast core or bulk core
process files with storage assigned and is three REAL words long for disk process
files that are open. The extended array is pointed to by the index in IA(1,I+2)
for the file description when the file is open. The extended description of a
fast or bulk core file with storage assigned is also pointed to by IA(1,I+3) of
the file description. In Table VII.1-2, A(J) is the first word of the extended
descripticn. All words of the extended description are treated as integers.

1. 3. 3 Block Formats

The first word of each block contains the file ID and the low order half of the
second word contains the block number. Sets are blocked into the remainder of
the block until the next set would exceed the blocksize. A full block is always

written to or read from disk. The high order half of the second word and the
last part of the block not used for sets are undefined and contain whatever was

left from the previous use of those core locations.

1.4 Additional Subroutines Used by FTB Package

The following subroutines are part of the FTB package, but not directly called
by the user: ERROR, IDFIND, LOCATE, SHFTLK, GETCOR, FTBIO, DMPER, FRECOR, and

IA. A COMMON storage area named FTB is used for communication between FTB

subroutines. The subroutines are coded in Fortran except for GETCOR, FTBIO,
FRECOR, and IA which are coded in assembly language.

The FTB common block must be in the root segment of the load module.

1.4.1 CALL DMPER (M, B)

This subroutine, which is only used on CDC computers, interprets and edits the
status information on direct access units. If M is nonzero, the devic,e tis-

ttics are passed from GETDSK (entry point in GETCOR), via the B array and vec.

If M = 0, the device statistics are edited.

VII-11

TABLE VII.1-2

FTB EXTENDED FILE DESCRIPTION FORMAT

IA(1,J) Mode of processing, 1 for read, 2 for write, 3 for read-write,

and 4 for random processing.

IA(2,J) Current set number.

IA(1,J+1) Index of set.

IA(2,J+1) Length of storage used for extended description and buffers.
This and the following two integer words are not used for fast
core or bulk core files.

IA(1,J+2) Number of sets per block.

IA(2,J+2) Block number.

O

. ., , a u 6

O
VII-12

1.4.2 CALL ERROR (ERR)

This subroutine is :alled if an FTB error is detected. The error number ERR is
printed with a message.

1.4.3 CALL FRECOR

This subroutine reduces the job field length to the minimum required amount for
CDC processors. It is inactive on IBM processors.

1.4.4 CALL FTBIO (UNIT, A, NREC)

This subroutine does the random I/O on direct access devices for FTB process

files. The unit number must be between one and five for CDC and between fifteen
and nineteen for IBM, A is the buffer address, and NREC is the record number to

be moved.

1.4.5 CALL GETCOR

This subroutine requests the maximum field length available at the beginning of
a job and initializes part of the FTB parameters. On CDC processors, the avail-
able field length is defined by the region size (if any) on the job card and by
an RFL control card. An RFL control card is required to prevent automatic field

length adjustment.

On IBM processors, memory can be allocated in both fast and bulk core if the
latter is available. The length of fast core and the length and position of bulk
core depends on the XREG and PARM fields on the EXEC card and the configuration

of the operating system. The XREG specification has the form XREG=(aK,bK) and
the PARM field required for FTB has the form PARM='c,d', where a, b, c, and d
are integer decimal numbers. If HIARCHY support is generated into the operating
system aK bytes of HIARCHY 0 storage and bK bytes of HIARCHY l storage are
allocated to the job step. If b is zero or bK is missing, or if HIARCHY support
is not present, no HIARCHY l storage is allocated to the step. If a nonzero bK

is specified and HIARCHY support is not present, aK + bK bytes of fast storage
are allocated. Conditional GETMAIN requests (for subpool 0) are issued for as
muct, ice as available in HIARCHYS 0 and 1. If HIARCHY storage 1 is obtained

by GEi,AIN, that storage becomes the bulk core. Of the HIARCHY 0 space obtained

VII-13 ,n g \\1

by GETMAIN, c*1024 or cK bytes at the end of the space are returned by a FREEMAIN

request to provide storage for other possible GETMAIN requests issued during
execution of the load module such as LOAD and LINK macros and Fortran I/O buffers.
If HIARCHY l storage is available, the remaining HIARCHY 0 storage becomes the
fast core. If HIARCHY storage 1 is not available, the amount of HIARCHY 0
storage remaining is compared to dK; if the amount remaining is less than dK,
that amount becomes fast core and the length of bulk core is zero. If the
amount of HIARCHY storage 0 remaining is greater tnan dK, the length of fast
core is dK and the amount greater than dK is used for bulk core. If a PARM
field is not supplied, a default field of '8,400' is used. The FTB initializa-
tion subroutine edits on unit 6 the length of fast core and bulk core in units
of eight byte words and the quantity INDEX, where A(INDEX) is the origin of bulk
core. The fast core and bulk core storage areas are set to zero.

Disk units are also located and requested in this subroutine. On CDC systems,
the status of the available disks is examined and the units having the most
space are selected. The status in'ormation is saved for later editing. Logical

file names used on CDC are FILEx where 1 1 x $ 5. Logical records are fixed at

512 words each. Either N05/BE or SCOPE 3.4 operating systems may be used provided
a conditional assembly flag is properly set. Its value is 1 for SCOPE 3.4 and 3
for N05/BE. The five disk data sets on IBM systems are designated FTB15F01
through FTB19F01. The minimum DD statement specifications for data sets used

for FTB are the UNIT, SPACE, and DISP. UNIT must specify a direct access unit
and the VOL. Channel and device separation specifications can be used. The
SPACE parameter must be defined in terms of tracks or cylinders and only the
primary specification is used. The SPACE parameter must be specified even ir
DISP =0LD since internal tables of FTB are based on SPACE information. A data
set can be kept or preallocated data sets can be used, but files within FTB are
scratch files and files cannot be saved on data sets past load module t ination.
The SPACE parameter can be varied to suit the requirements of each a , . ation.

Files are stored in data sets and transferred to and from fast core in blocks
which contain an integral number of sets. If no blocksize information is entered
in the DD statement, a default blocksize of one track of the assigned device
truncated to an integral number of REAL*8 words is used. A blocksize of up to
two tracks or the limit of 32760 bytes permitted by BSAM can be specified on the

O
,7r{kVII-14

DD statement. The specified blocksize is truncated to an integra! number of
REAL*8 words and if the blocksize is greater than one track, the track overflow
indicator is set. Disk space is utilized in full tracks and each block starts
at the beginning of a track. Even if the blocksize is specified as less than
half a track, only one block is written in each track. It is recommended that
the user either default to one track or specify two tracks.

Data sets on the first four units have the restriction that only one FTB file
can be processed or open at any one time in order to minimize seek time. This
restriction does not apply to the fifth unit.

1.4.6 Integer Function IA (J, N, ITEM)

This function, which is only used on CDC Computers, facilitates the conversion
of environmental routines between IBM and CDC systems where mixed double pre-

cision and integer arrays are used. Four byte words are used in the IBM version
for many variables and defined as follows:

REAL*8 A(1)
INTEGER IA (2,1)

EQUIVALANCE (A(1), IA(1,1)).

This coding on an IBM computer permits the packing of two four byte integer
words into one eight byte real word by use of the array IA. To accomplish the

same results on a CDC computer, IA is defined to be a FORTRAN Function instead

of an array.

This function stores integer items as 30-bit words. J is an integer with a
value of 1 if the item is in the high order 30 bits and 2 if in the low order 30
bits. N is the index (A(N)) where the item is located, and ITEM is a value to
be stored. The argument, ITEM, is present only when storing an item.

1.4.7 CALL IDFIND (ID, II)

This subroutine finds the location in the link tables of the FTB file ID. Il is

the index of the file description if one exists, otherwise Il is zero.

}}}, -r r

VII-15

1. 4. 8 CALL LOCATE (UNIT, SIZE, IDX)

This subroutine finds a contiguous space of length SIZE on device UNIT. Pointers
are moved to preserve the space. The starting location is returned as IDX.

1.4.9 CALL REDUCE (LEN, LEM, IEDIT)

This subroutine, which is only used on CDC c,mputers, releases unused core or
(as an entry) expands the field length without destroying the FTB links. LEN is
the new SCM field length if greater than 0. IEDIT is an edit flag, if 0, no

edit of field length is given. LEM is the new LCM field length.

1.4.10 CALL SHFTLK

This subroutine attempts to shift the FTB links to the preferred end of core.

1.5 Error Messages

Most, but not all, FTB errors print an error message on Fortran Unit 6. All

errors cause an abnormal termination.

The following messages can be issued during FTB initialization:

ARGUMENT ERROR TO FTB INITIALIZATION.

All other FTB error messages are given by

ERROR NUMBER xx FROM FTB PACKAGE.

followed by a list of the information in the links and then an abnormal termina-
tion. The error number given in the error message refers to the following error
comments:

1 Another file is already open on disk unit.
2 INITIAL must be first call to FTB
4 Reserve file cannot be closed or truncated.

,nrg {
.

VII-16

5 Files in read-write or random modes cannot be truncated.
6 File ID wrong on block just read, probably disk seek error or program error

destroyed buffer.
7 Block number wrong on block just read, probably disk seek error or program

error destroyed buffer.

8 File is a reserve file and shouldn't be.
9 File is already open.
11 File is not described.
12 File is not open.

13 File has not been written and has no storage assigned.

14 File already described.
15 Files in copy request on same disk unit.
16 File size is less than or equal to zero or is too large.

17 Incorrect format for DMPFIL.
19 File ID is zero.

20 File ID's for copy not unique.

22 Subroutine parameter for setting preferred end of fast core is incorrect.
23 Processing mode is random and unit is disk or PROC has been called.

24 Incorrect processing mode specified in subroutine argument.

25 Processing is not random and should be.

27 No space available for buffers in fast core.
29 No space available for file {n disk data sets.
30 No space available for file in fast core.
31 Number of sets less than or equal to zero.

32 Not all sets processed on call to CLOSE.
34 Not enough space in fast core for links.
36 Set number out of range in call to GET or PUT.

37 Set size greater than that allowed by blocksize of disk data set.
38 Set size less than or equal to zero.

39 The number of sets in the files specified for a copy are different.
40 The set sizes for files specified for a copy are different.
41 Calls to PROC exceeds number of sets in file.
42 Unit number not between 1 and 7.

43 File is not a reserve file and should be.
47 Enough space is available in fast core, bulk core, or disk, but it is not

contiguous space.

48 File size cannot be increased without moving file.

bg,g

2. 0 INP

The INP set of subroutines constitutes a convenient data input package for use
with Fortran programs. The INP package is based on a similar Subroutine Package
in the INEL Environmental library. To the user, the package offers: free form

input; card numbers to identify data caras; automatic removal of cards containing
duplicate card numbers; arbitrary ordering of input cards except for duplicate,
continuation, and terminator cards; arbitrary use of comment cards and comments
on data cards; ease of preparing cases in which only moderate changes are made
from case to case; and a listing of the card data. For the programmer, the
package is a convenient method for implementing a highly user-oriented data
input scheme and includes: extensive checking of the amount and mode (integer,
floating point, or alphanumeric) of data; automatic expansion of sequential and
overlay type of input data; deletion of superfluous cards; checking whether
extraneous input has been entered; and the ability to detect several errors
during input checking.

2.1 User Aspects of INP Package

O
This section describes the INP package as seen by the program user.

2.1.1 Data Deck Organization

The data deck contains input for one or more problem sets. No relationship is
assumed between problem sets. Each problem set consists of one or more cases in
which the input data for cases other than the first consist of the data from the
previous case plus modification cards entered for the present case. Input data
for cases are separated by slash cards; the final case is terminated by a period
card instead of a slash card. The period card also serves as the separator
between problem sets. A slash card has a (/) as the first non-bank character on

a card; a period card has a (.) as the first non-blank character. Comments may
follow the slash and period on slash and peric :a rds.

A list containing a card sequence number and the card image of each card is
printed at the beginning of printed output for each case. The card sequence
number starts at one for each case. The first line of the list contains " LISTING
OF INPUT DATA FOR CASE n", where n is the case number.

O
,,rg}[VII-18

2.1.2 Title Card

A title card is designated by an equal sign (=) as the first non-blank character
on a card. The remainder of the card can have any alphanumeric characters. The
information on the title card and the current date are printed at the top of
every page following the input data listing. One title card should be entered
for each case. If more than one title card is entered in a case, the contents
of the last title card are used for the page heading. The heading contains only

the date if no title card is entered for a case.

2.1.3 Comments Cards

An asterisk (*) or a dollar sign ($) appearing as the first non-blank character
identifies the card as a comment card. Any information may be entered on the

remainder of the card. Blank cards are treated as comment cards. There is no
processing of comment cards other than listing them in the card list.

2.1.4 Data Cards

All cards other than title cards, comment cards, slash cards or period cards are
considered data cards. The data cards contain a varying number of fields which

may be decimal integer, decimal floating point, alphanumeric, octal, or hex.
The rules for specifying fields are as follows.

Blanks preceding and following fields are ignored. A decimal field is started
by either a digit (0 through 9), a sign (+ or -), or a decimal point (.). A
comma or a blank (with one exception noted below) terminates the decimal field.
The decimal field has a number part, and optionally an exponent part. A decim9
field without a decimal point or an exponent is a decimal integer field. A
field with either a decimal point or an exponent or both is a decimal floating
point field. A decimal floating point field without a decimal point is assumed
to have a decimal point immediately in front of the first digit. The exponent
denotes the power of ten to be applied to the number part of the field. The
exponent part is a sign, an E or D, or an E or D and a sign followed by a number
giving the power of ten. Rules for decimal floating point numbers are identical

to those for entering data in Fortran E or F formatted fields except that no
blanks (one exception) are allowed between characters. Floating point data

VII-19

'' ' f \

punched by Fortran programs can be read. To permit this, a blank following an E
or D denoting an exponent is treated as a plus sign. Acceptable ways of entering
floating point numbers are illustrated by the following six fields all containing
the quantity 12.45,

12.45, +12.45 1245+2 1.245+1, 1.245El 1.245E+1

When entering a decimal zero for either an integer or floating point quantity, a
zero can be written in either form. Thus, a floating point zero can be entered
simply as 0 without a decimal point. A field starting with a non-blank character
other than a digit, sign, comma, period or decimal point, asterisk, dollar sign,
slash, or apostrophe is considered a default alphanumeric field. The field is
terminated by a comma or the end of the card. All characters except commas are
allowed and imbedded blanks are considered part of the alphanumeric field and do
not terminate the field. Blanks extending from the last non-blank character of
an alphanumeric field to the end of the card are not considered part of the
field. An alphanumeric field can also be specified by enclosing the field within
apostrophes (') for IBM and quotes ("' for CDC. A blank or comma must follow
the terminating apostrophe. The apostrophe field can be used to specify an
alphanumeric field beginning with one of the special characters, e.g., '6%
ENRICHED FUEL'. (Hex and octal fields permitted by CVI are treated as alphanu-
meric fields by INP. CVI is the environmental subroutine used by the INP package
to process free format data on cards as discussed in Section VII.2.2.11.)

Data on a card may be continued on a continuation card by entering a plus sign
as the first non-blank character on the conti'auation card. A field starting on
a card must be completed on that card and may not continue to the next card.
The plus sign indicating the continuation card is not considered part of the
first data field on the continuation card and may be placed alone or adjacent to
the first data field. Continuation cards themselves may be continued. In
subsequent processing, data on continuation cards are treated as if the data
were all entered on one card.

Comment information may follow the data fields on any data card (including cards
that are continued) by preceding the comments with an asterisk or dollar sign.
A default alphanumeric field preceding a comment must be terminated by a comma
or the comment information is considered part of the alphanumeric field.

O
VII-20 g,, .

When card format errors are detected, lines containing a $ located under the
character causing the error and a comment giving the card column of the error
are printed. A field containing an error is converted as an alphanumeric field
of $$$$$$$. An error flag is set and input processing continues, but the job
can be aborted at the end of input processing. Usually another error is produced
by a routine attempting to process the erroneous data.

The first field on a data card is treated as a card number which must be a
positive decimal integer number. If the first field has an error or is not a

positive decimal integer, the card number is replaced by the current card sequence
number, an error statement is printed, and the error flag is set. Data on the
card is not used and the card will be identified by the card sequence number if
the list of unused data cards is prir.ted. Continuation cards do not have card

numbers since they are considered an extension of the first card. After each
card number and the accompanying data are converted, the card number is compared

to previously entered card numbers. If a matching card number is found, the
data entered on the previous card is replaced by the data of the current card.

If the card being processed contains only a card number, the card number and the
data entered on the previous card are deleted. If a card causes replacement or
deletion of data, a statement is printed indicating that the card is a replace-

ment card.

The list of card numbers and associated data used in a case can be passed to the

next case. Cards entered for the next case are added to the passed list or act

as replacement cards depending on the card number. The resulting input to cases
following the first case is the same as if all previous slash cards were removed

from the input to the problem set.

2.2 Programming Use of the INP Package

The INP package contains fifteen subroutines or entry points which can be called
by the programmer using the package. One call is issued to INP for each case in
order to read and convert the data for the case, to replace or remove duplicate

cards, and to form a sorted table of card numbers cross-referenced to a list.

The list contains data words obtained from the cards and mode words generated
during input conversion. Because of the sorted table, the order of cards in the

data deck is not important. The subroutine LINK accesses the table and can

1"g 125VII-21

located one card at a time. The subroutine MODER is used to check the appro-
priate mode of the data against a specified list, also one card at a time. The

INP2 subroutine is used to check data and to move data from the list to a speci-
fled array by using calls to LINK and MODER. It can be used to process data

from a single card or from a set of cards numbered within a specified range and
to check for minimum and maximum numbers of items and appropriate mode. The
subroutine INP4 executes repeated calls to INP2 and modifies the call parameters
to INP2 by specified amounts. Function INP8 can be used to determine whether
there are cards in the list that have not been referenced by LINK and thus also
INP2. The function INP9 deletes cards from the table and list which have been
referenced by LINK and IhP2. The function INP10 deletes selected cards from the
table and list.

The following sections describe programming requirements for using the INP
package. In the following descriptions, calling parameters are named for their

integer or floating point format; that is, integer quantities have I, J, K, L,

M, or N as their first character and names beginning with any other character
are floating point quantities. Symbols appearing in the calling sequences are
unique and when the same symbol appears in two or more calling sequences, the
symbol has the same definition in each appearance. The symbol is usually com-
pletely described only in its first appearance, but the definitions are summa-

rized in the Array and Variable Summaries (Section VII.2.3.2 and VII.2.3.3).
Calling parameters that are marked with an asterisk both convey information to
the subroutine and return information from the subroutine and thus the parameter
can have a different value on exit than it had on entry. The error messages
referenced in the descriptions are listed in the Error Message Summary Section
VII.2.3.4. Programming errors such as improper calling parameters cause an
abnormal termination by calling the FABEND[VII.1-1] routine.

Input data cards can have a mixture of integer, floating point, and alphanumeric
data and the INP subroutine converts and stores all data into the list as words,

which are defined to be sixty bit quantities for CDC and sixty-four bit quan-

tities for IBM. The INP2 subroutine, after checking the data against a specified

list for the correct mode, moves the data to a specified array if the move flag
is set. The accessing of data from an array containing mixed integer and floating
point data is easily accomplished by equivalencing integer and floating point
names to the array containing the mixed data.

O
'

VII-22

2.2 1 CALL INP (XL1, NL1, TITLE *, NCASE*, NDATA*. ISW*)

One call to INP reads all the input cards for the next case. That is, each call
to INP reads cards from Fortran Unit 5 from its current position until either a

slash card or a period car <i is read, or the end of the data set is encountered.

The quantity NCASE is incremented b;' one. NCASE should be set to zero before
the first call to INP. If a period card terminates the case, the sign of NCASE
is set to minus. The calling program can test the sign of NCASE to determine
whether this case is the last case of a problem set or another case follows. If

NCASE is negative indicating the end of a problem set, NCASE should be reset to
zero before calling INP for the first case of the next problem set.

As input cards are read, they are printed without modification. Before printing
the first card, the first heading line is printed at the top of a page and

followed by " LISTING 0F INPUT DATA FOR CASE n", where n is NCASE after it has
been incremented by one. Subr-equent pages of the input data listing have only
the first heading line at the top of an output page. As title cards are read,

the title information with the equal sign removed overlays the title storage

array TITLE, which was initialized to blanks. TITLE should be at least 12 words
in length. The editing note above is performed if ISW / 0 upon entry to INP.
If ISW = 0, no printing is performed.

The parameter XL1 is a REAL array of length NL1 and is used to store the list
and table plus a control word. The control word is stored in XLl(1); the list
is stored starting at XLl(2) and extends upward i.. the array; the table is
stored starting at XLl(NL1) and extends downward in the array. The space between
the list and table is used for temporary working space. Data card information
is converted to binary form through calls to the DCVIC entry to the CVI subrou-
tine. Binary information from a data card that is not a continuation card is
stored starting at the beginning of the temporary work space and the mode indi-
cators are stored beginning at the middle of the temporary work space. The
binary information and mode indicators for continuation cards are stored fol-
lowing the information and mode indicators for the preceeding card. As each
individual data card is processed, there must be 40 words between the end of the
list or the last converted binary quantity and the beginning of the mode indi-
cators. This space is necessary to prevent the binary quantities from overstoring
the mode indicators and the mode indicators from overstoring the table; 40 words

. - g 127
VII-23

Oare necessary since that is the largest number of quantities that can be entered
on an 80 colt.mn card. After the data card and any continuation cards have been
converted the binary data and mode indicators are stored as if the data were
entered on one card and subsequent processing can proceed as if only one card
was entered. A table word is then constructed, consisting of the card number or
the card sequence number if the card number is illegal, an indicator specifying
whether a card number or card sequence number is stored, an indicator specifying
whether a card format error was detected, a pointer to where the binary informa-
tion is stored, the number of words on the card other than the card number, and

a use indicator which is set to off. If there are data other than the card
i.;mber on the card, the binary information is moved downward one word eliminating
the card number from the list, and the corresponding mode indicators returned
from CVI are converted to two bit indicators and stored in a packed form, 30
indicators per word, following the binary information. The table words, one for
each card, constitute the table, and the list is made up of the converted binary
information and the mode indicators.

The new card number is then compared against the current card numbers stored in
the table. If a duplication is found, the table word containing the card number
is replaced by the new table word. Space occupied by the replaced list data is
retrieved by shifting list data downward over the replaced data when the number

of words on the replaced card and the new card are different or simply by over-
storing the replaced list data with the new list data when the number of words
is the same. Table pointers are updated when list data are moved. When a

replacement card contains only a card number, the card acts as a deletion card;
the table word is deleted and the list space is retrieved by shifting the list
over the deleted data. A message, " CARD ABOVE IS REPLACEMENT CARD", is printed

below any card that replaces or deletes a data card. A card containing only c
card number that is not a dup' : ate card number has no effect on the table and
list, and no message is printed.

A normal return from the INP subroutine is made if a period or slash card is
read or an end of data set is encountered af ter at least one input card was
read. Before a normal return, the teble is sorted by card number and is moved
adjacent to the list'ana the number of words in the list and the number of words
in the table are packed into the control word at XLl(1). Upon normal exit, the
absolute value of NDATA is set equal to the number of words needed in XL1 to

O- 3 as
_

VII-24

hold the control word, list, and table. The number of words needed is one plus
the number of words in the list plus the number of words in the table. The sign
of NDATA is set minus if no data cards (cards other than title, comments, slash
or period cards) are entered for a case, and in normal usage this indicates that
no input data were entered and that a succeeding case may have input identical
to the preceding case.

Or entry to INP, NDATA indicates whether the array XL1 contains data from a
previous case. If NDATA is equal to or less than zero, XL1 contains no data
from a previous case and the table and list are assumed empty. If NDATA is
greater than zero, XL1 is assumed to contain data from a previous problem in the
same format as that upon exit from INP. That is, XL1 contains a control word
containing the number of words in the list and table followed by the list and
table. The table is moved to the end of XL1 with the use indicators in the
table set to off and the input cards for the current case are then processed as
described above.

The parameter ISW controls the list edit and indicates the return status. If

ISW is zero when INP is called, the card list edit is suppressed. The card list

edit is provided if ISW is nonzero. If ISW is zero on return, a normal return

was made and no errors were detected during the processir.g of the input cards.
If ISW is one, the end of data set was encountered when trying to read the first

data card of a case and INP returned immediately. This is the normal exit path
if NCASE is not zero. If ISW is two, a normal return was made, but card format

errors were detected and the list of input cards contains one or more of Error

Messages 3 through 6. The usual practice in this case is to continue checking
the input data for additional errors but execution is terminated after input
checking is completed. If ISW is three, the array XL1 is not large enough to
process the input data as indicated by Error Message 1 or 2, and INP returned
immediately.

2.2.2 CALL INP2 (XL1, XL2, L3)

The array XL1 contains the list and table data. The array XL2 is the array into
which the data specified in the call is to be moved. The array L3 contains

specifications as follows:

[VII-25

-_ -

L3(1) IC1, first card number.

L3(2) IC2, last card number. ICl and IC2 specify the set of card

numbers of the data that are to be moved into XL2. If IC2 is
zero, only the card with card number 101 is specified. If IC2 is

nonzero, cards with card number c, ICl 5 c 5 IC2, are requested.

Not all the cards in the range of c need be present. If IC2 is

positive, the card numbers that are present within the range must
be sequential and are processed in sequential order beginning
with ICl. If card numbers ICl, ICl+1, ICl+2 ..., ICl+a are

present where ICl+a is the last sequential card number, a card

with number c , ICl+a + 2 5 cx 5 IC2, is an error and causesx
Error Message 8 to be printed. If IC2 is negative, the cards

need not be sequential and are processed in increasing order.

L3(3) MIN, the minimum number of items to be processed. Error Message
9 is printed if fewer items are processed.

L3(4) MAX, the maximum number of items to be processed; ignored if
zero. Error Message 10 is printed if more items are processed.

L3(5) NJ, the number of words to skip between items in XL2; usually
zero.

L3(6) id*. J if positive is the starting location in XL2; input item n

is stored in XL2(J+(NJ+1)*(n-1)). If J is negative, no data is

moved, but all checking is performed.
L3(7), L3(8), L3(9), . An array defining the integer, floating

point, or alphanumeric format expected on the cards.
Format information is defined in MODER description. Errors
cause Error Messages 7,11, or 12 to be printed.

LINK is used to locate each card and MODER is used to check the format.

On exit, L3(6) or J is set to NMOVE, the number of items moved, if no errors
were found and J was positive on entry. L3(6) or J can be zero indicating no
cards with the specified card numbers are present if L3(3) er MIN is set to
zero. If any card requested contained a cs.rd format error (as detected by INP)
or if any of the tests specified in the L3 array failed, L3(6) or J is set

to -1 on exit. If J was negative on entry, L3(6) or J is set to -NM0VE on exit
if no errors were found. Only the first error in the specified set of cards is

O
b''

VII-26

found and processing is terminated after the appropriate error message is printed.
Error Message 13 and 14 can be printed by INP2 in addition to those noted in the
definition of L3.

2.2.3 CALL INP4 (ICl, IC2, MIN, MAX, NJ, J*, IC3, NTIMES, NEWJ, XL1, XL2, L5)

Subroutine INP4 makes NTIMES calls cn INP2. An abnormal termination occurs if
NTIMES is zero or negative. For the first call on INP2, ICl, IC2, MIN, MAX, NJ,
and J are as described for INP2 and L5 is the format array for checking the mode
of the data. For the following calls, ICl and IC2 are increased by IC3, and
J, if positive, is increased by NEWJ. J is changed upon exit as in the INP2
description. ICl and IC2 on exit have the same value as on entry. Maximum size
of the LS array is 40.

2.2.4 CALL INPS (ICl, ilC2, IC3, N1, iNMIN, NMAX, 1NSTORE, NTIMES,

NEWJ, J*, XL1, XL2, LS, XL6, NL6)

The subroutine INP5 is similar to INP4 in that it makes NTIMES calls on INP2,

but is more powerful in that it accepts self-expanding data of the sequential or
overlay type. The basic unit of input data is a vector, S, of N1 components
where N1 is defined as an input argument. If N1 is positive, the data is of
sequential form where (S '"k), k = 1, . K means that the vector S is to be

k k

repeated n ' "k-1 times, i.e., expanded into vectors nk-1 + 1 through n . Thek k
variable k is the number of vectors on the data cards with n NMIN , nk>=

g

5 NMAX .n _j, and nk

The vectors, $, form a two-dimensio ul array with elements, s j , where 1 < k <
9

N1 , NMIN $ i i NMAX This array can be stored into XL2 in two oifferent
modes where one mode is the transpose M the other mode. If NSTORE is positive,

s is stored in XL2(J+(k-1) + NSTORE*(i-1)) and NSTORE :hould be greater
k,i

than or equal to N1 . If NSTORE is negative, s is stored in XL2(J+(i-1) +
k,i

NSTORE *(k-1)) and the proper size of NSTORE depends on NMIN and NMAX. This is

equivalent to having a two dimensional array defined as: DIMENSION SS(NSTORE,n)

and EQUIVALENCE (XL2(J),SS(1,1)). If NSTORE is positive, s is stored in
5

SS(K,I), and if NSTORE is negative, s is stored in SS(I,K).
k,i

{b\.1r

VII-27

As an example, let

N1 =2

NMIN =0

NMAX = 10

NSTORE = 10

NTIMES = 1

NEWJ =0

and let the vectors 1 be given by
k

lj = (1.0, 10.0), 1 = (2.0, 20.0), 1 = (3.0, 30.0),2 3

and n be given as nj = 2, n2 * 4' "3 = 10. These data on a card could appear
k

as follows:

xxxxxx 1.0,10.0,2 2.0,20.0,4 3.0,30.0,10

where xxxxxx is the card number. The expanded data would be stored in core as a
two dimensional matrix SS(K,I) and would appear as:

1.0 1.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0

10.0 10.0 20.0 20.0 30.0 30.0 30.0 30.0 30.0 30.0

Now, let

N1 =2

NMIN =0

NMAX = 10

NSTORE = -10

NTIMES = 1

NEWJ =0

and use the same data as above. Since NSTORE is negative the expanded matrix is
stored as the transpose, i.e. , SS(I,K) and would appear in core as

O
VII-28

,-

1.0 10.0

1.0 10.0

2.0 20.0

2.0 20.0

3. 0 30.0
3. 0 30.0
3.0 30.0

3.0 30.0

3.0 30.0

3.0 30.0

If N1 is negative, the data is of the overlay form (m,,jk'"k), k = 1, . . .K where
jk is overlaid on an initial set of vectors beginning et the r.i 'th vector andk

k k I"k ' "I" "k > NMIN , and max n Iextending through the n 'th vector, with m k

NMAX For either type there results a sequence of expanded input data of the

form j , i, i i i NMAX , where certain of the }; may be missing in case ofj
overlay expansion. Here i,= NMIN + 1 or NMIN for sequential and overlay
types respectively. For overlay data, a positive NMIN requires that the lower
limit be included while a negative NMIN can be used for negative indexing. For
both types a positive NMAX is used to require that the upper limit be included
while a negative NMAX only specifies an upper bound. The initial vectors being
overlaid may be pull since the complete matrix can be overlaid initially.

As an example of the overlay feature, let

N1 -2=

1NMIN =

10NMAX =

NSTORE = 2

NTIMES = 1

NEWJ 0=

and let the vectors jk be given by

Sj = (1.0, -1.0), 1 = (2.0, -2.0), 1 = (3.0, -3.0).2 3

VII-29

- S 133

Assume a data card is given by

xxxxxx 1,1.0,-1.0,10 4,2.0,-2.0,8 5,3.0,-3.0,7 .

The first set overlays all ten vectors in SS(K,I) which then appears as

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0

The second set of data on the card overlay vectors four through eight with the
new vector 5 . The matrix SS(K,I) is now given as

2

1.0 1.0 1.0 2.0 2.0 2. 0 2.0 2.0 1.0 1.0

-1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.0 -1.0

The third set of data overlays vectors five through seven in SS(K,I) which then
becomes

1.0 1.0 1.0 2.0 3.0 3.0 3.0 2.0 1.0 1.0
-1.0 -1.0 -1.0 -2.0 -3.0 -3.0 -3.0 -2.0 -1.0 -1.0.

If INP5 was called as in the third example but with NSTORE = -10, the result
would be the transpose of the last matrix above. Note that the value of NSTORE

and N1 must be consistent with the matrix ordering.

IC1, IC2, IC3, NTIMES, J, NEWJ, and L5 are handled as in INP4. J on exit con-
tains not the amount of expanded data, but the amount of data on the cards. The
array XL6 of length NL6 is used for temporary storage and must be large enough

to hold the unexpanded input data for one card set IC1 1 c $ IC2. Additional
error checks are made because of the form of the input, and Error Messages 15
through 20 can be printed. Subroutine INP6 is called for error processing. If

the parameters N1, NSTORE, or NTIMES are less than or equal to zero, an abnormal
termination occurs.

,ag W
O

VII-30

2.2.5 CALL INP6 (ICl, IC2, ICARD, ITEM, XL1)

Subroutine INP6 can be entered when the program using the INP package finds that
the N2'th item on a set of cards ICl < c < IC2 processed by INP2 was in error.
On exit, ICARD is the card number and ITEM is the number of the field on the
card containing the error.

2.2.6 CALL INP7 (ICARD, ITEM)

Subroutine INP7 simply prints Error Message 22 stating that item ITEM on card
ICARD is in error. This subroutine can be used to print error information
obtained from INP6. This subroutine is not called by other INP package routines.

2.2.7 CALL LINK (IC, IX, N3, N4, XL1)

Subroutine LINK searches the table and list array, XL1, for card IC. The subrou-

tine exits with IX equal to the card number in the table next larger than IC
unless such a card does not exist and then IX equals -1. On exit, if N4 equals

0, card IC is not in the table; if N4 < 0, a format error detected by INP is on
Card IC: and if N4>0, there are N4 data fields excluding the card number on card
IC and the data are stored sequentially beginnin: < XLl(N3). A use flag is set
on the table entry for IC if it is found. LIE issues no error messages.

2.2.8 CALL MODER (XL1, L3, N3, N4, N5, N6)

Subroutine MODER checks N4 items of data stored sequentially beginning at XLl(N3)

for appropriate format. The format specification begins at L3(7). The specifi-
cation starting at 7 is consistent with the format specification for INP2. The
format entries are -1 for alphanumeric, 0 for integer, and 1 for floating point.
Cyclic repetition for two or more entries can be condensed by prefixing the
repeated format by iN, where the magnitu e is the number of items repeated, the
sign is positive if the cycle is to be reset for each entry, and the sign is
negative if it is to pick up at the stopping point of the previous entry. To
allow starting within the format specification, N6 is the number of items
previously checked with the current format. On exit, N5 = 0 if no errors were
found; O < N5 < 10000 if item N5 should have been an integer but was not; N5 < 0

if item -N5 should have been a floating point number, but was not; and N5 9 c g i 35

VII-31

O10000 if item N5 - 10000 should have been alphanumeric, but was not. A decimal
zero is considered either integer or floating point as required to satisfy mode
tests. MODER issues no error message. MODER calls INPUPK which is part of the
INP package.

2.2.9 FUNCTION INP8 (NPRINT, XL1)

Function INP8 returns the number of cards that have not been processed by LINK.
This is done by counting the number of table entries in XL1 that do nat have the
use flag set on. If NPRINT is 1, the card numbers of the unprocessed cards are
listed under Error Message 21, while if NPRINT is 0, no output is printed. The
list of unprocessed cards will include any cards that have an invalid card
number; the card sequence number is printed in place of the card number and the
sequence number is preceded by asterisks to distinguish it froa a card number.

2.2.10 FUNCTION INP9 (XL1) and FUNCTION INP10 (XL1, ICl, IC2)

Functions INP9 and INP10 delete table entries and associated data and mode
information from the array XLl. INP9 deletes cards that have been referenced at
least once by LINK; that is, table entries with the use bit set on. INP10

deletes all cards, ICl 1 c $ IC2. When cards are deleted, all holes created by
deletion are squeezed out, the table entries are adjusted accordingly, and the
control word is updated. Both functions return the new length of the table,
list and control word. When all cards have been deleted, the length required in
the XL1 array is one--the length required for the control word.

When a card is deleted, a hole in the table and list is created, and the remaining
tables and data must be moved to regain the storage made available. In order to
move the remaining table and list only once and 4.ot use storage outside the
array XL1, the holes are marked with the bit pattern 37777777777777777777 for
CDC computers and 7FFFFFFFFFFFFFFF for IBM computers as they are formed. After

all cards are deleted, holes are located by testing for the special bit pattern.
Thus, the bit pattern used for marking holes must not be allowed as a data item.
The CDC bit pattern corresponds to a floating point positive infinity. The IBM

75bit pattern corresponds to a floating point number of approximately 7 x 10

O
VII-32

2.2.11 CALL DCVIC (BCD, BIN, ICOND, NUM, NCH)

This subroutine converts a data card from a character format in the appropriate
binary form. DCVIC is an entry point to the CVI subroutine [VII.1-1].

BCD Array containing card to be converted in 10A8 format.

BIN Array containing NUM converted items

ICOND Array containing code for converted items
0 a zero result (+0 and -0 allowed)
1 integer conversion

2 floating conversion

3 hex conversion

4 octal conversion

-(character count) Hollerith conversion (uses more words in BIN
if more than 8 characters)

NUM number of converted items

NCH 0 means no error
>0 column position of error

2.2.12 CALL INPPCK (WORD, NOITMS, ITEMS)

CALL INPUPK (WORD, NOITMS, ITEMS)

These subroutines pack (INPPCK) or unpack (INPUPK) the mode flags from DCVIC as

2-bit integers. These mode flags are compared to the mode flags passed to
subroutine MODER by INP2 and a message is written on the output unit if any have

a mismatch.

WORD packed information

NOITMS number of items to pack (unpack)

ITEMS list of items to pack (unpack).

2.2.13 CALL INPSHF(XL1)

This sobreutine, twed only on IBM systems, checks each data double word (8 bytes)
in the XL1 list and table array. If the double word is found to contain an

,r6 }hVII-33

integer (4 bytes), this integer is copied from the low order 4 bytes into the
high order 4 bytes as well. This double copy of each integer entry in the INP
list and table array is required on IBM systems for compatability between the
INP subroutines and the integer padding performed by the AUT0 DBL option of the
IBM il-Extended Fortran Compiler (see Section 11.1.1.2).

2.3 INP Summary

Following are the INP package calls, summary of parameters, list of error mes-
sages, and structures of control word, table words, and mode words.

2.3.1 Summary of INP Package Calls

CALL INP (XL1, NL1, TITLE *, NCASE*, NDATA*, ISW)

CALL INP2 (XL1, XL2, L3)

with L3(1) = ICl, L3(2) = IC2, L3(3) = MIN, L3(4) = MAX, L3(5) = NJ,
L3(6) = J*, L3(7) and on equivalent to LS(l) and on.

CALL INP4 (IC1, IC2, MIN, MAX, NJ, J*, IC3, NTIMES, NEWJ, XL1,
XL2, LS)

CALL INP5 (ICl, IC2, IC3, N1, 1NMIN, ifMAX, 1NSTORE, NTIMES,
NEWJ, J*,XL1, XL2, L5, XL6, NL6)

CALL LINK (IC, IX, N3, N4, XL1)
CALL MODER (XL1, L3, N3, N4, N5, N6)

CALL INP6 (ICl, IC2, N2, ICARD, ITEM, XL1)
CALL INP7 (ICARD, ITEM)

FUNCTION INP8 (NPRINT, XL1)

FUNCTION INP9 (XL1)

FUNCTION INP10 (XL1, ICl, IC2)

CALL DCVIC (BCD, BIN, ICOND, NUM, NCH)

CALL INPPCK (WORD, NOITMS, ITEMS)

CALL INPUPK (WORD, NOITMS, ITEMS)

CALL INPSHF (XL1)

" 8 138
2.3.2 Array Summary

L3 Array used for specifications to INP2.

O
VII-34

L5 Equivalenced to L3(7). Array used to define appropri./e mode of data
fields on card or set of cards excluding the card numbers. An entry
of -1 is for alphanumeric fields, an entry of 0 is for integer fields,
and an entry of 1 is for floating point fields. If a format repeats

beyond a point, prefix the repeated format in L5 by 1N, N > 2, where N
is the number of items repeated. Use N positive to reset the repeat
cycle at the beginning of each card, or use N negative to allow the
cycle to overlap cards. Within a cycle, all elements must be 0 or 11,
and only one cycle is allowed. Size of L5 array is 40. Array for

INF2 starting at L3(7) is not limited.

XL1 Array containing control word, converted data from cards, mode indica-
tors, and table entries.

XL2 Array into which data is to be moved.

XL6 Array for temporary storage used in INP5.

2.3.3 Variable Summary

BCD Array containing card to be conv-.ted in 10A8 format.

BIN Array containing NUM converted items.

IC Card number desired.

ICOND Array containing code for converted items
0 a zero result (+0 and -0 allowed)
1 integer conversion

2 floating conversion
3 hex conversion

4 octal conversion

-(character count) Hollerith conversion (uses more words in BIN
if more than 8 characters)

ICl, IC2 Define card numbers of a set, ICl $ c 5 IC2 . If IC2 is zero,

only one card, ICl, is requested. If IC2 > 0, card numbers must

\)7 Q
-

VII-35 Ir

be sequential, c = IC1, ICl + 1, . . . , ICl + a 1 IC2, and if ICI +
a is the last card in sequence, the next larger card c must not

x
be in the range ICl + a + 2 5 c 1 IC2. If IC2 is negative, cards
need not be sequential and are taken in increasing order. As
used for INP10, all cards c, IC1 $ c 1 IC2 are deleted.

IC3 Added to ICl and IC2 to define next set for use in INP4 and
INPS.

ICARD Number of card containing error item N2.

INP8 Result of function call is the number of cards in table not
processed by LINK, INP2, INP4, or INP5.

ITEM Item number on CARD of item N2 on set of cards in error.

ITMS List of items to pack (unpack).

IX Card number in table next larger than IC. If no such card is
present IX is returned as -1.

J On entry, if J is positive, store data beginning at XL2(J); if J
is negative, do not move data into XLI but check data. On exit,
J is set to -1 if an error was found; if positive on entry and no
errors were found, it is set to + MOVE; if negative on entry and
no errors were found, it is set to -NMOVE.

MAX Maximum number of data items in a set of cards.

MIN Minimum number of data items in a set of cards.

iN1 N1 = number of elements in the input vector S_; data is sequential
type if N1 is positive and overlay type if N1 is negative.

N2 The number of the data field in error in call to INP6.

N3 On return from LINK, XLl(N3) contains first data word if card is
present.

VII-36
_

\hn*1 ' U,

N4 Number of data words on card IC located by LINK if N4 is positive;
if N4 is zero, card IC is not in table; if N4 is negative, format

error was found on card IC.

N5 On exit from MODER, NS = 0 if format correct; O < N5 < 10000 if
item N5 should have been integer but was not; N5 < 0 if item -N5
should have been floating point, but was not; and N5 > 10000 if
item NS-10000 should have been alphanumeric but was not.

N6 On entry to MODER, the number of previously checked items. This
is used to located proper starting position in LS.

NCASE On entry, previous case number which should be non-
negative and zero if the first case. On exit, is the current

case number, negative if the last case of a problem set.

NCH 0 means no error.
>0 gives column position of error.

NDATA On entry, NDATA > 0 calls for adding data to previous list and
table in XL1, and NDATA < 0 indicates no previous list and table
is present and the new data is complete in itself.

NEWJ Added to J for subsequent set in INP4 and INP5.

NJ Number of words to skip in XL2 between items. INP2 stores data

item n in XL2(J + (NJ + 1)*(n-1)). Usually NJ is zero.

NL1 Size of XL1 on entry to INP.

NL6 Size of XL6; must be large enough to hold data from one set in
call to INP5.

1NMAX Upper limit for sequential and overlay data; if NMAX is positive
limit must be included.

A

~!rf \ \1

VII-37

1NMIN If sequential type, NMIN = n , if overlay type, min mk > NMIN,g

with NMIN positive requiring that the lower limit be included.

NOITHS Number of items to pack (unpack).

NPRINT If 1, list unprocessed card numbers, if zero, do not list them.

1NSTORE Used to control storage of data in INP5. See INP5 description
(2.2.4)

NTIMES Number of sets of cards to process in call to INP4 or INP5.

NUM Number of converted items.

WORD Packed information.

2.3.4 Error Message Summary

All error comments are preceded by eight asterisks to facilitate recognition of
error comments in the midst of regular program output. The lower case letters
represent call parameters or symbols used in the subroutine descriptions and
actual values are substituted in the output.

1. INSUFFICIENT STORAGE ALLOCATION TOR PREVIOUS DATA, PROCESSING TERMINATED.

2. INSUFFICIENT STORAGE FOR DATA, PROCESSING TERMINATED.

3. $ (placed under column in error) $ POINTS TO CARD ERROR AT COL. i

4. END OF FILE ENCOUNTERED BEFORE END(.) CARD.

5. CONTINUATION CARD INDICATED, BUT NO PREVIOUS DATA CARD. TREATED AS

NEW DATA CARD.

6. UNRECOGNIZABLE CARD NUMBER

7. WORD n5 ON CARD ic SHOULD BE IN ALPHANUMERIC FORMAT

8. CARD c+a+1 MISSING IN SEQUENCE

9. T00 FEW NUMBERS ON CARDS ic1 THROUGH ic2

10. T00 MANY NUMBER ON CARDS ici THROUGH ic2

11. WORD n5 ON CARD ic SHOULD BE IN INTEGER FORMAT

12. WORD n5 ON CARD ic SHOULD BE IN FLOATING POINT FORMAT

13. CARDS ici THROUGH ic2 MISSING

O
b''VII-38

14. ILLEGAL FORMAT ON CARD ic

15. m NUMBERS ON CARDS ic1 THROUGH ic2 ARE NOT A MULTIPLE OF nl

16. ITEM m ON CARD ic IS LESS THAN MINIMUM ALLOWED OF nmin

17. ITEM m ON CARD ic EXCEEDS MAXIMUM ALLOWED FOR omax

18. ERROR IN LIMITS OF THE SET BEGINNING AT ITEM m ON CARD ic

19. LOWER LIMIT OF nmin NOT INCLUDED ON CARDS ici THROUGH ic2

20. UPPER LIMIT OF nmax NOT INCLUDED ON CARDS ici THROUGH Ic2

21. THE FOLLOWING CARDS WERE NOT USED

22. ITEM ltem ON CARD card IN ERROR

2.3.5 Word Structure Used in XL1

2.3.5.1 Control Word Structure

The control word stored in XLl(l) consists of two 30 bit (CDC) or 32 bit (IBM)
integer words. Integer word 1 contains the length of the table; integer word 2
contains the length of the list containing the binary data and the mode indicators.

2.3.6 Table Word Structure

Bits are numbered from the right, starting with 0.

(CDC version)
Bit 59 Use flag; O if card not processed, 1 if processed
Bit 58-30 Card number or sequence number

Bit 29 0 if bits 58-30 contain card number, 1 if sequence

number

Bit 28 0 if no format errors on card, 1 if errors

Bit 27-10 Index in XL1 of first data word of card associated
with this table entry.

Bit 10-0 Number of words on card excluding card number.

(IBM Version)
Bit 0 Use flag; 0 if card not processed, 1 if processed.
Bits 1-29 Card number or sequence number.

Bit 30 0 if bits 0-29 contain card number, 1 if sequence

number.

,
O

''

Bit 31 0 if no format errors on card, 1 if errors.

Bits 32-47 Index in XL1 of first data word of card associated
with this table entry.

Bits 48-63 Number of words on card excluding card number.

29Card numbers are limited to 536,870,911 (2 -1) and card numbers greater than
this cause Error Message 6 to be printed.

2.3.7 Mode Indicator Word Structure

For each card (continuation cards are considered as part of the first card), the
mode indicator words are stored immediately following the last data word. The
pode indicators are 0 for an integer or floating point zero, 1 for a nonzero

integer, 2 for a nonzero floating point quantity, and 3 for an alphanumeric
quantity.

O

, . , w

e
VII-40

3.0 WATER PROPERTY TABLE INTERPOLATION ROUTINES

Tables of steam and water properties were generated using the 1967 International
Formulation Committee (IFC) formulation for industrial use of the properties of
steam [VII.3-1,VII.3-2] as coded in the ASTEM package [VII.3-3] and written on a
data set in the proper format for RETRAN. Properties stored in the tables as
functions of pressure and temperature include specific volume, internal energy,
coefficient of thermal expansion, isothermal compressibility, and the isopiestic
heat capacity. The data spacing in the tables is variable permitting the
density to be greatest where the most accuracy is required, but the tables must
be regenerated to change the data distribution.

State properties in the data tables are in the SI units. The nomenclature used
in this section and the units of the properties are:

T Temperature Kelvin (K)
2 2

p Pressure Pascal (Pa) = Newton / meter (N/m)
= Joule / meter (gf,3)3

3 3v Specific volume meter / kilogram (m /kg)

u Specific internal energy Joule / kilogram (J/kg)

h Enthalpy Joule / kilogram (J/kg)

Coefficient of thermal Kelvin ~I (K~I)p=fhp
expansion

x=fhT Isothermal compressibility Pascal (Pa'I)

c=hp Isopiestic heat capacity Joule / kilogram-Kelvin (J/kg-K)p

f Saturated liquid subscript

g Saturated vapor subscript

sat Saturated pressure subscript

The data file contains five tables packed into a single-dimensioned array. The
first two tables are temperatures and pressures obtained from input data; the
third table contains saturation properties as a function of the saturation
temperatures in the temperature table; the fourth table is a separate saturation
table as a function of the saturation pressures in the pressure table; and the

fifth table is a two-dimensional table containing the single phase properties as

b''
VII-41

a function of the temperatures and pressures in the first two tables. The

tables are generated and stored using full word floating point quantities where
a full word is a 64-bit or 60-bit item for IBM and CDC machines, respectively.

In the description of the tables, A is used for the array symbol, NT is the
number of temperatures entered, and NP is the number of pressures entered into
the table. NS is the number of input temperatures not above the critical temper-
ature, and NS2 is the number of input pressures not above the critical pressure.
The table storage is as follows:

(1) The temperatures in increasing order, as obtained from the input data,
are stored in A(1) through A(NT). The temperature can be considered
to be stored in any array dimensioned T(NT), where T(1) is equivalenced

to A(1).

(2) The pressures in increasing order, as obtained from the input data,

are stored in A(NT + 1) through A(NT + NP). The pressures can be
considered to be stored in any array dimensioned P(NP), where P(1) is
equivalenced to A(NT + 1).

(3) The saturation properties as a function of temperature are stored in
A(NT + NP + 1) through A(NT + NP + NS*ll). The saturation properties
are stored as an array dimensioned B(ll,NS), where B(1,1) is equiva-

lenced to A(NT + NP + 1). The saturation values in B(N,1), 1 i N i
11, are a function of the temperature in T(I). The correspondence

between the B array and the saturation properties are:

B(1,I) P B(7,I) v
g

B(2,1) v B(8,I) u
f g

B(3,1) u B(9,I) p
f g

B(4,I) pf B(10,I) K
g

B(5,I) K B(ll,1) c
f pg

B(6,I) c
pf

(4) The saturation properties as a function of pressure are stored in
A(NT + NP + NS*11 + 1) through A(NT + NP + NS*ll + NS2*ll). The

saturation values in C(N,J), 1 i N i 11, are a function of the pressure

kkbVII-42 ,yr

in P(J). The correspondence between the C array and the saturation properties
is the same as for the B array except that C(1,J) is the saturation temperature
inst (.ad of the saturation pressure.

(5) The single phase properties as a function of temperature and pressure
are stored in A(NT + NP + NS*ll + NS2*ll + 1) through A(NT + NP + NS*ll

+ NS2*ll + NT*NP*5). The single phase properties are stored as an
array dimensioned D(5,NT,NP), where D(1,1,1) is equivalenced to A(NT +

NP + NS*ll + NS2*ll + 1). The values D(N,I,J), 1 < N < 5, are a

function of the temperature in T(I) and the pressure in P(J). The
correspondence between the D values and the properties are:

D(1,I,J) v 0(4,I,J) K

D(2,I,J) u D(5,1,J) c
p

D(3,I,J) p

The data file containing the steam-water property data consists of two binary
records. The first record contains NT, NP, NS, and NS2. The second record
contains the A array which has NTOT elements, where NT0T = NT + NP + NS*ll +
NT*NP*5.

The STH201 subroutine resides on the RETRAN source and is a special purpose

subroutine used to retrieve the tables needed by the other STH2O subroutines.
STH201 uses the first record of the state properties data set to initialize the

STH20C common block. Additionally, STH201 reserves a block of central memory
for the A array, and then moves the table from the state properties data set
into the A array.

The water property file resides on a disk and is brought into RETRAN by calling
subroutine STH201. This call is of the form " CALL STH201" and must preceed any
reference to the other water property subroutines. It need be executed only
once unless the data array is destroyed. On CDC systems, the file has W-type
records with I-type blocking and on IBM systems, the file has a VS record format
with a maximum biccking of 800 bytes. On IBM systems, the water property file
is read from DDNAME FT01F001 for disk data sets or FT11F001 for tape data sets.
The corresponding file names for CDC systems are TAPEl and TAPEll, respectively.

VII-43

' " 8 147

O
The integer variable, IT, is set by the STH2O subroutines that can compute
properties in the liquid, two phase, and vapcr states. IT is set to 1 for the

liquid state, 2 for the two phase state, 3 for the vapor state below the critical

temperature, and 4 for the state above the critical temperature. Water above

the critical pressure, but below the critical temperature, is considered to be

in the liquid state.

S is an array of twenty-three floating point words containing both input to and
output from the subroutines. The assignment of properties to the 5 array is:

S(1) T S(13) u
f

S(2) P S(14) u
9

S(3) v S(15) h
f

S(4) u S(16) h
9

S(5) h S(17) pf
S(6) p S(18) p

9
S(7) x S(19) x

S(8) c 5(20) xp

S(9) X(quality) S(21) cpf
S(10) P S(22) c

sat pg
S(11) v S(23) indices

7

S(12) v
g

S(6) through S(8) are undefined if IT is returned as 2. S(9) contains 0.0 if IT
is returned as 1, contains the quality if IT is returned as 2, and contains 1.0

if IT is returned as 3 or 4. S(10) is the saturation pressure corresponding to
the temperature in 5(1) if IT is returned as 1 through 3 and is undefined if IT

is returned as 4. S(11) through S(22) are undefined if IT is not returned as 2.

The S array is used for working storage and undefined elements may be changed
during subroutine execution. On entry, the indices in S(23) are used to start

the table search, if they are valid. On return, S(23) contains the indices

obtained by the table search. Execution time can be minimized if the table
indices returned are saved and used subsequently to start a table search. The

subroutines do not fail when invalid indices are entered in S(23) because the
table search will then start at the beginning of the table.

7FQ kk
VII-44

An error flag, ERR, is returned FALSE if the input quantities are within the
range of the tables and TRUE otherwise.

The STH201, STH202, STH203, STH204, and STH205 subroutines all use similar table

search and interpolation procedures. Linear interpolation is always used for
liquid properties and linear or reciprocal interpolation is used for vapor
properties based on the perfect gas relations, PV = RT, u = C T, b = C T, py p

~I ~I ~I
=T , and K = P For example, since v = RTP , linear interpolation is used
for the temperature dependence and reciprocal interpolation is used for the
pressure dependence. The linear interpolation is

(Z - Z) (Y - Y))j 2+ (VII.3-1)Y = Y) (Z ~I) ,

2 I

and the reciprocal interpolation is

(Z - Z) Z2 (Y2 - Y))j
+ I ~ ~2)Y = Y) (2 -Z) Z

2 j

The saturation pressure as a function of temperature is always computed using
the K function of the IFC formulation. The STH200 subroutine is just this

evaluation. Enthalpy values are always obtained from h = u + Pv.

3.1 CALL STH200 (T, P, ERR)

Subroutine STH200 computes the saturation pressure, P, given the temperature, T,

as input. The temperature must be in the range 273.16K 5 T 1 647.30K. This
subroutine does not use the A array and can be called before STH201 is called.

3.2 CALL STH201 (A, S, ERR)

Subroutine STH201 computes the saturated water properities given temperature and
quality as input. The temperature is entered in S(1) and must be greater than
or equal to either T(1) or C(1,1) and less than or equal to either T(NS) or
C(1,NS2). The quality, X, is entered in S(9) and must be in the range 0.0 $ X

1 1.0. S(3) through S(5) return values for the two phase mixture and S(11)

VII-45

through S(22) return values for saturated liquid and saturated vapor. S(2) and
S(10) are returned equal. IT would always be 2 for this call and thus is not

included in the argument list.

For the STH201 subroutine, the saturation pressure is obtained from the K func-
tion. Both the saturated table as a function of temperature and the saturated
table as a function of pressure are searched and the nearest bracketing values
are used for interpolation. The saturated liquid properties are obtained by
linear interpolation on temperature. The saturated vapor specific volume is
obtained from

T - T) P Pj 2 T . (VII.3-3)1'** (1 ~ ") T I+rpv2 Pr=I -T V

1 22

Linear interpolation on temperature is used for saturated vapor internal energy.
The saturated vapor thermal expansion is obtained from reciprocal interpolation
on temperature; the saturated vapor compressibility is obtained from reciprocal
interpolation on pressure; and the saturated vapor heat capacity is obtained
from linear interpolation on temperature. The two phase values of specific
volume, internal energy, and enthalpy are obtained from the saturated liquid and
vapor values and the quality, e.g.,

v = (1 - x) vf + xv (VII.3-4)g

3.3 CALL STH202 (A, S, ERR)

Subroutine STH202 computes saturated water properties given pressure and quality
as input. The pressure is entered in S(2) and must be greater than or equal to
the triple point pressure (611.2 Pa). The saturation temperature is returned in

S(l) and the other elements of S are set as in STH201. STH202 is an entry point
in the STH201 subroutine.

For the STH232 subroutine, the saturation temperature is estimated from the
input presstre, using equations given in SHARE Program 1095 converted to SI
units. The equations are given below with the values in parentheses being the

2original values for temperature in deg.F and pressure in Ib /in
f

O
.m #

VII-46

(VII.3-5a,5b)C 1P5C4C) $ P < C2 2

58 .

T ={ 8
. ,

',

in(C P) (VII.3-6a,6b)T= A In(C P)y 3 9 S

i=o - i=o - -

where

A = 274.9043833(35.157890) 8 = 6669.352222(1 8 5.164)
0 0

Aj = 13.66254889(24.592588) B = -4658.899(-8386.0182)j

A = 1.176781611(2.1182069) B = 1376.536722(2477.7661)
2 2

A = .189693(-0.34144740) B3 = -201.9126167(-363.44271)3

A = 8.74535666x10-2(0.15741642) B = 14.82832111(26.690978)4 4

A = -1.7405325x10-2(-3.132958x10-2) 85 = -0.4337434056(-0.78073813)5

A = 2.147682333x10-3(3.8658282x10-3) C) = 1378.951459(0.2)6

A = -1.383432444x10~4(-2.4901784x10-4) C = 3102640.782(450.)7 2

A = 3.800086611x10-6(6.8401559x10-6) C = 1.450377377x10-3(10.)8 3

C = 2.212x10 (3206.2) C = 1.450377377x10~4(1.0)7
4 5

The estimated temperature is then used by STH201 to compute the saturation
~4pressure. If the computed pressure does not converge to within 1.0 x 10 Pa

of the input pressure, the reciprocal of the temperature derivative of the K
function is used to predict the new temperature to be used in the next pass thru
STH201. STH202 is merely an extension of STH201, allowing saturation pressure
calls to use the K function, thus improving the consistency between pressure-
quality and temperature quality steam table entries. STH201 and STH202 use a
common table search and interpolation procedure.

'Ih \
VII-47

3.4 CALL STH203 (A, S, IT, ERR)

Subroutine STH203 computes single phase water properties given temperature and
pressure as input. The temperature, T, is entered in S(1) and must be within
the range T(1) 1 T 1 T(NT). The pressure, P, is entered in S(2) and must be
within the range 0 < P 1 P(NP) for the vapor state and P(1) 1 P 1 P(NP) for the
liquid state. IT is never set to 2 because temperature and pressure cannot
determine a two phase condition. The single phase quantities are returned in
S(3) through S(8), and S(9) is set to either 0.0 or 1.0 corresponding to the
liquid or vapor state, respectively.

For the STH203 subroutine, the temperature and pressure tables are searched to
bracket the input temperature and pressure, and the bracketirig temperature and
pressure values and the corresponding values from the single phase table are
used in a two-dimensional interpolation procedure. The two-dimensional inter-
polation procedure consists of two temperature interpolations, one for each
bracketing pressure, followed by a pressure interpolation. When the temperatures
and pressures bracket the saturation line, not all the single phase values are
in the same phase. When this occurs, the appropriate saturation values are used
in place of the single phase values that are in the wrong phase. Depending on
how the temperatures and pressures bracket the saturation line, saturation
values can be used in one or both temperature interpolations or may entirely
replace one of the temperature interpolations. For determining whether the
state is liquid or vapor, the input pressure is compared to the saturation
pressure; the vapor state is assumed in the indeterminate case when the input
pressure equals the saturation pressure. Linear interpolation on both tempera-
ture and pressure is used for the liquid state. For the vapor state, linear
interpolation on temperature is used for all quantities except thermal expansion
where reciprocal interpolation is used; for pressure interpolation, reciprocal
interpolation is used for specific volume and compressibility and linear inter-
polation is used for the others.

When the input pressure is below the first pressure table entry and the tempera-
ture is such that the state is liquid, ERR is set TRUE. With the same pressure
input, but with temperature such that the state is vapor, the water properties
can be computed if the input temperature is bounded by the temperature table.
For input temperatures above the saturation temperature corresponding to the

O
VII-48 , -7 r- }

first pressure table entry, the internal energy, thermal expansion, and heat
capacity are obtained from temperature interpolation using the first pressure
values and the specific volume and compressibility are given by

v v PTT - T) j p j ,K=P) . (VII.3-7)
.

r=T -T ' V * (1 - ") T * I T P
2 1 1 2

Saturation values are used in place of the lower single phase values if the
lower single phase values are in the liquid phase. For input temperatures below
the saturation temperature corresponding to the first table pressure value, the
saturation values corresponding to the input temperature are used for internal

-I ~I
energy and heat capacity, the perfect gas laws p = T and K = P are used for

thermal expansion and compressibility, and the specif#. volume is computed as
for saturated vapor conditions in STH201 except tha+ the temperature and pressure

are not saturation values.

3.5 CALL STH204 (A, 5, IT, ERR)

Subroutine STH204 computes water properties given temperature and specific

volume as input. The temperature, T, is entered in S(l) and must be within the
range T(1) 1 T $ T(NT). The range of specific volume depends on the state. If

the temperature and specific volume indicate the liquid state, the resultant
pressure, P, must be within the range P(1) 5 P 5 P(NP). If the temperature and
specific volume indicate the superheated state, the resultant pressure must be
less than P(NP). S(6) through S(8) are undefined if IT is returned as 2. S(9)

contains 0.0 if IT is returned as 1, contains the quality if IT is returned as
2, and contains 1.0 if IT is returned as 3 or 4. S(10) is the saturation pressure

corresponding to the temperature in S(1) if IT is returned as 1 through 3 and is
undefined if IT is returned as 4. S(11) through S(22) are undefined if IT is
not returned as 2. The S array is used for working storage and undefined elements

may be changed during subroutine execution.

For STH204, the input specific volume is compared to the saturated liquid and
vapor values corresponding to the input temperature to determine whether the
state is liquid, two phase, or vapor. The interpolation procedure for two phase
is similar to that for STH201 with the quality determined from

VII-49

. " 8 153

O
v - v#x= (VII.3-8)y_ y
g f

For single phase states, the temperature table is searched until the temperature
is bracketed and then the specific volumes for the lower bracketing temperature
are searched until the input specific volume is bracketed. Two temperature
interpolations are made as in STH203, but because specific volume is not one of
the table coordinates, the results of the temperature interpolations may not
bracket the input specific volume. When this occurs, the table search is moved
in the appropriate direction. When the temperature interpolations bracket the
input specific volume, the specific volume interpolation is performed. The
procedures for handling the saturation line, determining the date and type of
interpolation and the handling of states with pressure below the first table
pressure are similar to those in STH203 with specific volume and pressure
exchanging roles.

3.6 CALL STH205 (A, S, IT, ERR)

Subroutine STH295 computes water properities given pressure and enthalpy as

input. The pressure, P, is entered in S(2) and must be within the range P(1) 1
P 1 P(NP). The enthalpy, h, is entered in S(5). The operation range of STH205
is further bounded by the temperature range T(1) 1 T 1 T(NT). On return from an
STH205 call, IT is appropriately set to reflect the phase conditions. S(6)
through S(8) are undefined if IT is returned as 2. S(9) contains 0.0 if IT is
returned as 1, contains the quality if IT is returned as 2, and contains 1.0 if
IT is returned as 3 or 4. S(10) is the saturation pressure corresponding to the
temperature in S(1) if IT is returned as 1 through 3 and is undefined if IT is
returned as 4. S(11) through S(22) are undefined if IT is not returned as 2.

The S array is used for working storage and undefined elements may be changed
during subroutine execution.

For STH205, the input pressure is used with a quality of 0.5 in a call to STH202.
If the input enthalpy lies between h and h g (returned from STH202), the two-7
phase properties are computed, IT is set to 2 and a return made.

4 64
O

VII-50

Single phase properties are computed with a temperature iteration and STH203,
where the appropriate value of IT is determined using the input enthalpy and hf
and h returned from the initial call to STH202. The input pressure, the

g
temperature estimate from the previous temperature iteration, and the phase
index are then used in a call to STH203. If the enthalpy returned from STH203
is not converged to the input enthalpy a new temperature estimate is made and a
new iteration performed. This iterative procedure is continued until

h3hg<g
b

~

y

where

input enthalpyb =
y

enthalpy returned from STH203h =
3

convergence parameter.c =

If a convergent solution is not reached in 20 iterations, an error message is
written and ERR set TRUE.

p_,5.,q

VII-51

4.0 PLOTMC MULTIPLE CURVE PLOT PACKAGE

The PLOTMC subcode package was developed from the PLOTR4M program and is designed

to provide a versatile environment in which graphic representation of problem
solutions (or data) may be generated [VII.4-1]. PLOTMC is generalized to the
extent that the user may select the length of the independent and dependent
axes, choose between linear and logarithmic axes, specify the axes scaling or
allow PLOTMC to perform scaling; overlay multiple curves on a single frame using
one or more dependent variable axes to provide the curve scaling, and allow
curve identifying symbols to be included on multiple curve frames. All axis
labels are user supplied as is the title field which is placed at the top of
each frame. PLOTMC is written in a manner which is consistent with the CalComp
basic software for electromechanical plotters [VII.4-2]. In fact, PLOTMC contains
all of the basic software required to generate graphics, with the exception of
subroutine PLOT (and entry point PLOTS). A description of PLOT and PLOTS can be

found in Reference [VII.4-2]. The PLOTMC subcode may be used on virtually any

host computer to generate on-line or off-line plot data sets for any of the many
electromechanical plotters available, by merely supplying the appropriate PLOT
subroutine and its referenced subroutines at load time.

4.1 Programming Use of the PLOTMC Package

The PLOTMC subcode package consists of both FORTRAN and assembly language subrou-

tines. A single call to the driver subroutine PLOTM is required for each frame
to be generated, which includes the independent axis and label, the first depen-
dent axis and label, the title at the top of the frame and the first curve. Any
additional dependent axes or curves which are to be added (overlayed) to the
basic frame, require a separate call to PLOTMC for each curve or curve and axis
to be added. Communication between the host plot program and PLOTMC is facili-

tated through use of the TOLP labeled common block and the PLOTMC argument list.
Both the TOLP common block and the argument list trust be initialized prior to
each call to PLOTMC. The PLOTMC argument list is discussed in the following
section.

The TOLP common block contains variables which are used to flag the plot function
to be performed and to supply frame dimensions and scaling information. A
description of the TOLP common block is given in Table VII.4-1. As noted in

~f \>

VII-52

TABLE VII.4-1

TOLP COMMON BLOCK DESCRIPTION

Variable M Description

0 FLAG LOGICAL LOGICAL flag used to determine whether a
complete frame including all axis grids,
axis labels, title and curve is to be

generated (.TRUE.), or if only a curve is
to be overlayed on an existing frame,
which may include addition of a new

- dependent axis (. FALSE.).

ISYMB INTEGER Code used to add curve identifying symbols
if ISYMB is greater than unity (see
Figure VII.4-1, ISYMB= FLAG +1).

XPLTBK(1) REAL Ten word array used for communication

between PLOTMC subroutines. Independent

axis origin or starting value which will

appear as the first annotation on the

axis.

XPLTBK(2) Independent axis scaling factor.

XPLTBK(3) Dependent axis origin or starting value
which will appear as the first annotation

on the axis.

XPLTBK(4) Dependent axis scaling factor.

XPLTBK(5) Independent axis length (inches).

XPLTBK(6) Dependent axis length (inches).

VII-53

TABLE VII .-l (Cont-d)

XPLTBK(7) Axes type flag
1.0 = LIN IND AXIS AND LIN DEP AXIS

2.0 = LIN IND AXIS AND LOG DEP AXIS

3.0 = LOG IND AXIS AND LIN DEP AXIS

4.0 = LOG IND AXIS AND LOG DEP AXIS

XPLTBK(8) Reciprocal scale factor if independent
axis is logarithmic.

XPLTBK(9) Reciprocal scale factor if dependent axis
is logarithmic.

XPLTBK(10) Flag used to bypass scaling for multiple
curve overlays using common scaling factors.

< 1.0 DO SCALING

> 1. 0 BYPASS SCALING

LIMS(l) REAL Four word array used te scale curve.
Minimum value of independent variable
(-1.E75 indicates automatic scaling).

LIMS(2) Maximum value of independent variable

(1.E75 indicates automatic scaling).

LIMS(3) Minimum value of dependent variable

(-1.E75 indicates automatic scaling).

LIMS(4) Maximum value of dependent variable

(1.E75 indicates automatic scaling).

rf \, -r
,

O
VII-54

B CD A + X O 9 X 2 Y X X X l
* * 2 3 g g 8 10 33 32 33

Figure VII,4-1 Centered Plot Symbols

'"8 159

VII-55

Table VII.4-1, the variables 0 FLAG, ISYMB, and the LIMS array must be defined in
the host program prior to each call to PLOTMC, while the XPLTBK array is used
for communication between the subroutines in the PLOTMC subcode. Prior to the
first call to PLOTMC, the plot output device must be opened via a call to
PLOTS. The plot origin should also be set before calling PLOTMC.

4.1.1 CALL PLOTMC (NP,XX,YY,SIZ, LOG,NX,LBLX,NY,LBLY,NT,TITL)

A single call to PLOTMC is required to generate the base frame and first curve.
Each additional curve or dependent axis and curve which may be added to the base
frame requires an additional call to PLOTMC.

The integer argument NP is used to specify the number of independent-dependent
variable pairs to be used in generating a curve. Both of the floating point

arrays, XX and YY, contain NP values of the independent and dependant variables,
respectively. The two-word floating point array SIZ is used to specify the
length of the dependent and independent axes in inches. SIZ(1) is use1 to pass
the requested length for the independent axis to the PLOTMC package while SIZ(2)
is similarly used for the dependent axis.

The two-word LOG integer array is a multiple use array which is defined in the
calling subroutine to specify axes types; i.e., linear or logarithmic, and to

control scaling and frame advancement for overlaying curves. Interpretation of

the LOG multiple use array is found below.

LOG (1) < 0 Linear independent axis
0 Error, skip this request=

> 0 Logarithmic independent axis

LOG (2) < 0 Linear dependent axis
> 0 Logarithmic dependent axis

1 Advance frame after this curve request is completeLOG (1) =

> 1 Do not advance frame

FQ k,7

VII-56

1 Calculate new scale factors and draw new dependent axisLOG (2) =

> 1 Allow room for multiple dependent axes (1st curve)
Use previous scale factor and axis aftrr the base frame
is generated (after 1st curve)

The Hollerith character arrays used to supply axis labels and titles to the
PLOTMC subcode consist of ten and eight character words for CDC and IBM computer

applications, respectively. Integer words NX, NY, and NT are used to specify
the respective number of characters in the independent axis label, the dependent
axis label and the problem title. The ar., labels and title Hollerith strings
are passed to PLOTMC via the independent axis array LBLX, the dependent axis

array LBLY and the TITL title array.

4.1.2 CALL XPLOT (XX,YY,NP,KK,JJ)

Subroutine XPLOT is called by PLOTMC and is designed to request axis scaling if
required, draw the curve, and to add the optional curve identifying symbols if
specifled. The values of the dependent and independent variables are contained
in the two floating point arrays XX and YY, respectively. Both arrays contain
NP*KK values which are used in pairs, i.e., a dependent variable value and the
corresponding independent variable, to generate a curve consisting of line
segments drawn between the data points. The integer KK is the skip count used
to define the 00 loop increment used in ::: awing the curve. NP is generally set
to the total number of points in the dependent and independent variable arrays,
in which case the skip count KK is set to unity. JJ is not currently used.

4.1.3 CALL XPLOTA (AFG,NX,LBLX,NY,LBLY,NT,TITL)

The functions performed by XPLOTA include drawing the axes and grids, annotating
the axes, and writing the title. XPLOTA is called directly by PLOTMC to generate
a base frame and subsequently called for each dependent axis added to the base
frame. Location of the dependent axis to be drawn is specified by the value of
the floating point variable AFG. For the first call to XPLOTA for a given
frame, AFG is zero. On subsequent calls to XPLOTA, used to add an additional
dependent axis to the left of the previous axis, AFG specifies the location at
rd,ich the new axis is to be drawn. Arrays LBLX, LBLY and TITL contain the
Hollerith character strings which are to be used as the independent and

VII-37

' " 8 161

dependent axis labels and the plot titles, respectively. The number of charac-
ters in the independent axis, dependent axis and problem title character strings
are specified through NX,NY and NT.

4.1.4 CALL PSCALE (L,KK,NP,ARG, SIZE,0RG, DELTA,XYLOG, CYCL)

Subroutine PSCALE is an extended version of the SCALE subroutine, designed to

perform scaling for linear or logarithmic axes (SCALE is for linear only). The
integer flag L is used in conjunction with the LIMS array in the TOLP commor.
block to determine whether the user has specified the range of a particular axis
or whether the range is to be computed by PSCALE. L is either specified as 1 or
2 for the independent or dependent axes, respectively. The product of the skip
indicator (KK) and the number of points to be plotted (NP) gives the number of
dependent variables or independent variables in the array ARG. ARG contains
independent variables when L=1 and dependent variables when L=2. The skip

indicator is used as a D0 loop increment when examining the KK*NP data items,
starting at the first item. The length of the axis is specified in inches by

the variable SIZE. The starting value of the axis is returned from PSCALE in
ORG and the scaling factor computed by PSCALE is returned in DELTA. The input
variable XYLOG is used to determine if logarithmic scaling is to be done (see
XPLTBK(7) in Table VII.4-1). For cases where logarithmic scaling is performed,
CYCL is returned as the inverse scale factor.

4.1.5 CALL AXIS (X,Y, LABEL,NC, SIZE, ANGLE,0RG, DELTA,N)

The AXIS subroutine is used to draw the axis lines, one inch grid marks, grid
annotations, and axis labels for linear axes. Separate calls to AXIS are required

for each dependent and independent axis drawn. The coordinates of the axis
line's starting point are given by X and Y. LABEL contains the NC character

axis label Hollerith character string, which is centered and placed parallel to

the axis line. The sign of NC determines on which side of the axis line the
scale grid lines and labeling information are drawn. If the sign of NC is
positive, all annotation appears on the counterclockwise side of the axis line
(normally desired for the dependent axis), while all annotation appears on the
clockwise side of the axis line for negative values of NC (normally desired for
the independent axis). Axis length and orientation are specified by SIZE, which
is the axis length in inches, and ANGLE, which is the angle in degrees (positive
or negative).

'7r6 \4}VII-58

The starting value of the axis, which will appear at the first tick mark on the
axis, is given by ORG. DELTA represents the number of data units per inch of
axis and is used to increment the value of ORG to obtain the annotations for
subsequent tick marks. Control of the precision of the numbers annotated with
the axis grids is obtained by use of the integer N. For a description of N,

refer to the discussion given in Section VII.4.1.7 describing the NUMBER subrou-
tine.

4.1.6 CALL LAXIS (X,Y, LABEL,NC, SIZE, ANGLE,0RG, DELTA,N)

The LAXIS subroutine is similar to the AXIS subroutine, except LAXIS is used to

generate logarithmic axes and AXIS draws linear axes. Use of the LAXIS subrou-
tine is identical to the AXIS subroutine discussed in the previous section, with
the exception of the integer N. For LAXIS, N is used as a flag to turn the

annotation and label drawing feature on or off. If N is non-zero, the annoia-
tions and label will be added to the axis and grid, while only the axis and grid
are drawn if N is zero.

4.1.7 CALL NUMBER (X,Y, HEIGHT,F, THETA,N)

The NUMBER subroutine converts a floating point number to the appropriate
decimal equivalent so that the number may be plotted in fixed point format or
scientific notation. X and Y provide the coordinates of the lower left-hand
corner of the first character to be produced. The pen is up while moving to
this point. Annotation may be continued following the location at which the
last annotation ended. Continuation occurs when X and/or Y equals 999.0, and
may be applied to X and Y independently. HEIGHT is the height in inches of the
character to be plotted. For best results, HEIGHT should be a multiple of seven
times the plotter increment size, although other values are acceptable. The
width of a character, including spacing, is typically the same as the height.
The floating point number to be converted and plotted is contained in F. THETA

is the angle at which the characters are to be plotted. N controls the precision
of the conversion of tha 'loating point number F. If the value of N is greater

than zero, it specifies the number of digits to the right of the decimal point
that are to be converted and annotated after rounding. For example, the floating
point number -1.33499 x 10' will be plotted as -13.350 if N=3. When N=0, only

the numbers integer portion and decimal point are plotted after rounding (-13.),

}{}VII-59 .7r

while only the integer portion is plotted if N=-1 (-13). A value of N < -2
_

indicates that the annotation is to be in scientific notation and that there
will be N characters to the right of the decimal point. N=-2 will result

in -1.33E+01 being plotted in the above example.

4.1.8 CALL NORMAL (X,Y, HEIGHT,F, THETA,M)

Subroutine NORMAL is called by NUMBER to draw floating point numbers in scienti-
fic notation. NORMAL may also be called directly to draw floating point numbers
in scientific notation. Use of NORMAL is identical to the use of NUMBER dis-
cussed above, with the exception of the last argument, M. M must be a positive
integer ranging from one to five inclusively, which specifies the number of
digits to be annotated to the right of the decimal point. For the example
discussed above for subroutine NUMBER, where N=-2; NUMBER merely sets H=-N in

the NORMAL argument list (passing all other arguments to NORMAL as input to
NUMBER) and then calls NORMAL and returns upon return from NORMAL.

4.1.9 CALL SYMBOL (X,Y, HEIGHT,IBCD, THETA,NC)

O
The SYMBOL subroutine produces plot annotation by use of either of two calling
formats. The standard calling format is used to draw text such as titles and
legends, while the special call is used to draw special centered symbols such as
a box, octagon or triangle for plotting data points. Refer to Figure VII.4-1
for the list of symbols plotted when using the special call. For both the
standard and special calls to SYMBOL, HEIGHT is the height of the character or
characters to be plotted and THETA is the angle at which the character or
characters are to be drawn. The height of the characters should be a multiple
of seven times the plotter increment size. Heights which are not a multiple of
seven times the increment size are acceptable, but best results will generally
be achieved if the rule is followed.

The standard call to SYMBOL is made by using a positive value of NC which then
specifies the number of characters contained in the IBCD array that are to be
annotated. If NC is greater than zero, characters to be plotted must te left-

justified in the first element of IBCD. If NC is zero, one character is drawn,

using a single character which is right-justified in the first element of IBCD.

b b

VII-60

For all standard calls, where NC is greater than or equal to zero, X and Y are
the coordinates, in inches, of the lower lef t-hand corner of the first character
to be drawn.

The special calls to SYMBOL are determined by a negative value of NC. If NC=-1,

the pin is up during a move to coordinates X and Y, after which a single symbol
is produced. For values of NC=-2, the pen is down during the move to coordinates
X and Y, where a single symbol is produced. The X and Y coordinates represent
the geometric center of the character to be produced on a special call. IBCD is
an integer flag used to specify the symbol to be plotted on a special call.
Figure VII.4-1 illustrates the special symbols which may be drawn and their
corresponding flag (IBCD) values.

''~8 165

VII-61

5.O BIT MANIPULATION FUNCTIONS

Quite of ten it is necessary to modify the content of a word in storage at the
bit level, to merge several words into a single word or to modify character
strings. To perform such manipulations, it is necessary to have the capability
to make logical sums and products, as well as logical and arithmetic shifts.
These functions are not available in the ANS FORTRAN IV programming language. A
set of FORTRAN callable assembly language functions which provide bit manipula-
tion capabilities are described in the following sections.

All of the real bit manipulation functions discussed in the following sections
must be declared as real functions in calling subroutines, if their default type
is not real. The real specification applies to CDC and IBM applications where
the Automatic Precision Increase facility of the H-extended compiler is used.
If the API feature of the H-extended compiler is not used for the calling sub-
routines, the real functions must be typed as REAL*8.

5.1 Logical Sum

O-

The logical sum (OR) of A and B is defined as follows. A bit position in the
result is set to one if the corresponding bit position of one or both operands A
and B are one; otherwise, the result bit is set to zero. An example of the
logical sum of two 32 bit words is:

A 01000110 00110011 11111111 10101010

B 00000000 11100011 00000111 01010100

Sum 01000110 11110011 11111111 11111110

The extension of the above example to words of a different length is obvious.

5.1.1 I = IOR(A,B)

The IOR integer function returns the logical sum of).ne two integer words A and
B as an integer result (returned in general register 0 for IBM and register X6
for CDC). For IBM applications the integer function assumes 32 bit integers,
while integers are 60 bits in length on CDC computers.

O
8 166"-

VII-62

5.1.2 DA = DOR (DB,0C)

The D0R real function returns the logical sum of the two real words DB and DC as
a real result (returned in floating register 0 for IBM and X6 for CDC). The
arguments DB and DC, as well as the result are 64 bit quantities (double prect-
sion) on IBM computers and 60 bit quantitles (single precision) on CDC computers.

5.2 Logical Product

The logical product (AND) of A and B is defined as follows: A bit position in
the result is set to one if both of the corresponding bit positions of A and B
are one; otherwise, the result bit is set to zero. An example of the logical
product of two 8 byte words is:

A 11110000 11111111 00000000 10101010 01010101 11001100 00110011 11100010

B 10101010 01010101 11110000 11110000 00001111 11111111 00000000 01010101

Sum 10100000 01010101 00000000 10100000 00000101 11001100 00000000 01000000

5.2.1 I = IAND(A,B)

The IAND integer function returns the logical product of the two integer words
A and B as an integer result (returned in general register 0 for IBM and X6 for
CDC). The integers are 32 bits on IBM and 60 bits on CDC.

5.2.2 DA = DAND(DB,0C)

The DAND real function returns the logical product of the two real words DB and
DC as a real result (returned in floating register 0 for IBM and X6 for CDC).
The arguments DB and DC, as well as the result are 64 bit quantities (double
precision) on IBM computers and 60 bit quantities (single precision) on CDC
computers.

5.3 Logical Left Shift

The logical left shift works slightly differently on IBM and CDC computers. In
the case of logical left shifts on IBM computers, the N high order bits are lost
(shif ted off the end of the register) and N low order bits are zerced for a

,7 r g k
VII-63

logical lef t shif t of N bits. Two examples of 15 bit logical left shifts of 32
bit words for IBM systems are as follows.

Before 01010101 01010101 01010101 01010101

After 10101010 10101010 10000000 00000000

Before 11111111 11111111 11111111 11111111

After 11111111 11111111 10000000 00000000

Logical left shifts on CDC computers are not "end-off" as in the case of IBM
computers, but rather "end around" shifts. In other words, bits shifted off the

high end of the register are transfered to the low end of the register as if the
register were circular. An example of a 15 bit logical left shift for a CDC
computer is shown below.

Before 111111111100011000000000000000000000000011111000000000000000

After 000000000000000000000000011111000000000000000111111111100011

5.3.1 I = ISL(X,N)

The ISL integer function returns the integer X shifted left N bits (returned in
general register 0 for IBM and X6 for CDC). For IBM applications the integer
function assumes 32 bit integers, while integers are 60 bits in length on CDC
computers.

5.3.2 DA = DSL(X,N)

The DSL real function returns a real value of X, shifted left N bits (returned
in floating register 0 for IBM and register X6 for CDC). The argument X as well
as the result are 64 bit quantities (double precision) on IBM computers and 60
bit quantities (single precision) on CDC computers.

5.4 Arithmetic Right Shift

The net result of an arithmetic right shift is identical for both IBM and CDC
computers. In other words, the low N bits of a word are shifted off the end of

a register and the N high order bits are set to zero if the word is postive, or

O
,.3 na

VII-64

the N high order bits are set to one if the word is negative (sign bit originally
set), where N is the number of bit positions to be sh.fted. Two examples of 15
bit arithmetic right shifts are illustrated below for 32 bit words.

Before 11111111 00000000 00000000 11111111

After 11111111 11111111 11111110 00000000

Before 01011111 00000111 11111111 11111111

After 00000000 00000000 10111110 00001111

5.4.1 I = ISR(X,N)

The ISR integer function returns the integer X arithmetically shifted right N
bits (returned in general register 0 for IBM and X6 for CDC). For IBM applica-
tions, the integer function assumes 32 bit integers, while integers are 60 bits
in length on CDC computers.

5.5 Bit Mask Generation

Bit masks are often used in conjunction with the shift, logical product and
logical sum functions to merge portions of several computer words or to isolate
a portion of a given word in memory. Two examples of a 30 bit mask in a 60 bit
word are given below.

High 111111111111111111111111111111000000000000000000000000000000

Low 000000000000000000000000000000111111111111111111111111111111

5.5.1 A = MASKF(N)

(he MASKF function generates an N bit mask in the real word A, where A is a 64
bit word on IBM computers and a 60 bit word on CDC computers (returned in
floating point register 0 for IBM and register X6 for CDC). For positive values
of N, an N bit high order mask is generated, while an N bit low order mask is
generated if N is negative, as illustrated in the previous example. The MASKF
function must be typed as REAL in the calling program (see additional discussion

in section VII.5).

0\''
p ~

5.6 Character String Comparison

CALL COMPAR (A(I), B(J), NCHAR),

where A(I) = uddress of first character string
B(J) = address of second character string

NCHAR = number of characters to test.

This subroutine compares a character string beginning at location A(I) with
another character string beginning at location B(J). The comparison is made one
character at a time and terminated after all requested characters are tested or
after the first inequality is found. The number of characters is returned

unchanged if both character strings match and is set to zero if an inequality is
present.

O

,,.g 170

O
VII-66

6.0 BUFFER I/O SUBROUTINE PACKAGE

The BUFIO package is a collection of interrelated subroutine entry points
providing an interface between the Fortran program and I/O operations on disk or
tape units. This package provides dynamic buffering for I/O units, issues
requests for and releases hardware devices, does end-of-volume processing, and
provides for ef ficient data transmission. Nine units are available for Fortran

Units 1-5 are scratch disks on CDC and can be disk or tape on IBM.users.
Units 11-14 are tape drives. These unit number designations do not necessarily
correspond to Fortran unit numbers.

Records written by BUFIO on CDC hardware are compatible with Record

Manager [VII.1-1] definitions for sequential files, block type C, and record type
F. In addition W type records can be read as input. All records written on IBM
hardware are type VBS, units 1-5 have a logical record length of 796 bytes and
blocksize of 800 bytes while units 11-14 are 7292 bytes and 7296 bytes respectively.

Functions provided by the subroutine include reading and writing data, file
positioning, and requesting and releasing devices. Entry points are provided to
check if operations are complete for systems using asynchronous I/O such as IBM.

Since I/O operations on CDC systems and IBM systems are fundamentally different
in their concept, this subroutine is machine dependent. The calling sequences
are the same so that differences are transparent to a user. The CDC operation
uses CIO rather than Record Manager and all requests are issued with recall.
The IBM operation uses the BSAM access method of asynchronous I/0. These opera-
tions must be checked for completion since a request for action only initiates
the operation.

A logical record is determined by the data transmitted by a write request. This
length can be of any size and the calling program is responsible for deblocking
the logical records when reading. A system record on the CDC system is termi-
nated by inserting a level number ranging from 0 to 17 , the latter being an8
end-of-file flag. On the IBM system, each write request produces a record with
its record descriptor word. Buffers are filled in both cases as long as data is
being transmitted to form physical records. The last physical record may be
short. When reading, less data than a record may be requested, but in no case
will more data be transmitted per request than exists in one record.

^

VII-67

6.1 Writing Data

Data is transmitted to double I/O buffers in the IBM version and a single circular
buf fer in the CDC version by making calls to the BUFOUT routine. The data is
assumed to be in logical records with the calling program responsible for control
of the record size. Thus, any length record may be transmitted. No internal
record terminators are appended to the data going to the CDC hardware device

except when specifically requested by the calling program. Variable length
record descriptor words are appended to each IBM logical record.

The calling sequence for a write request is as follows:

CALL BUFOUT (UNIT, A, NEXT, CHEK, LAST, VSN)

where

UNIT = An integer unit number
A = beginning location of data to write

NEXT = number of words to transmit (byte words assumed on IBM)
CHEK = status flag (returned) (Integer)

LAST = number of words written (returned)
VSN = Volume serial number of tape if unit is a tape drive (returned)

(real) (REAL*8 on IBM)

Status codes returned in CHEK are as follows:

CHEK = 1 no error

CHEK = 2 error - likely an attempt to read or write after previous
alternate operation and no intervening rewind.

CHEK = 3 end-of-record or end-of-file encountered
CHEK = 4 invalid unit number.

If the Unit is a tape drive, the VSN is returned in the variable VSN after the

first call to BUFOUT. The variable must accommodate six characters. The variable
is ignored for disk files.

,,,g \12 9
VII-68

The I/O buffers are obtained for a file when the first data transmission request
is issued. The buffer is an FTB file of 1025 words for CDC and 1600 bytes for

IBM (800 bytes for each buffer). For this call to BUFOUT, CHEK is used to pass
LOHI to the call to RESERV, i.e. , if CHEK is 1, the buffer will be at the

preferred end of core, if CHEK is 2, the buffer will be at the opposite end of

core.

Data transmission is not forced to completion until an end-of-record or end-
of-file is requested. Any file being written must be terminated by a call to

BUFWEF t.0 clear the buffers. The calling sequence for this entry is

CALL BUFWEF (UNIT, A, LEVEL, CHEK)

where

UNIT = unit number
A = dummy variable

LEVEL = level number for end-of-record
CHEK = status flag.

On CDC computers an end-of-record may have any level number between 0 and 16 '
8

A level number of 17 is equivalent to an end-of-file. If successful, the8
status flag is returned as 3.

No level number is written on IBM systems, but a short record is written and the
buffers cleared.

6.2 Reading Data

Data is received from the I/O buffers by making calls to the BUFIN routine.
Deblocking of records is the responsibility of the calling program. Data is
transmitted in the size records requested unless an end-of-record is encountered
on CDC or a segment end on IBM in which case a truncated record is transmitted.

Once initiated, reading ahead on the unit continues until an end-of-record is
encountered or the I/O buffers are full.

" 8 173
y, , ,

The calling sequence for the read request is as follows:

CALL BUFIN (UNIT, A, NEXT, CHEK, LAST, VSN)

where

UNIT = An integer unit number
A = beginning location where data is to be stored
NEXT = number of words requested to be read (8 byte words assumed on

IBM)

CHEK = status flag (returned) (Integer)
LAST = number of words actually read (returned)
VSN = Volume Serial Number of tape if unit is a tape drive (returned)

(real) (REAL*8 on IBM)

The status flag and buffer assignment are the same as for writing data.

6.3 Requesting Devices

Magnetic tapes units or catalogued disk files must be requested before attempting
to read or write on them. No request is necessary for scratch disk units. Only
two types of requests are permitted; the first is for a scratch file to be
opened in the write mode with the write ring inserted, and the second is for
existing files to be opened in the read mode and no write ring present. Writing
on an existing file is not permitted. If this latter operation is desired, the
file may be copied to a scratch unit and writing continued after the copy is
finished.

The calling sequence for a file request is as follows:

CALL BUFREQ (UNIT, VSN, DEN, LABEL, DATE, CHEK)

where

UNIT unit number

VSN = alphanumeric Volume Serial Number if file exists or is a disk
unit.

= 0 or blank if scratch tape

VII-70

DEN = alphanumeric recording density left adjusted (H format)
(HI = 556 bpi, HY = 800 bpi, 7 trk drives), (GE = 6250 bpi, PE =
1600 bpi, HD = 800 bpi, 9 trk drives). For IBM hardware, DEN =
blank designates data set resides on disk.

LABEL = alphanumeric tape label or data set DSNAME (up to 17 characters in

two words)
DATE = Julian creation date if old tape. Julian date returned

if scratch tape. Date in H format.

CHEK = status flag returned on both CDC and IBM. An 8-byte field passed
for IBM systems with Hollorith label type passed in high order 4 bytes
and file sequence number in low order 4 bytes. Label types permitted
are "BLP" - bypass label processing; "SL" - standard labels, and "NL"
- no lat,el.

A catalogued disk file on CDC systems can be attached to a job through the
request function on a read only condition. No provision is made for cataloging
a new file. The calling sequence is as follows:

CALL BUFREQ (UNIT, VSN, CY, PFNAME, ID, CHEK)

where

UNIT = unit number (1-5)
VSN = 4HDISK

CY = cycle number (highest cycle available is used if -

CY = 0).
PFNAME = perm file name (2 words). Data set name on IBM.
ID = users ID.
CHEK = return code.

6.4 File Positioning

Several file positioning requests may be issued from the calling program. These
include rewinding, unloading a reel, releasing the drive unit, spacing forward n
records, and spacing forward n files.

The calling sequence is as follows:

,cg 175
CALL BUFSKP (UNIT, REC, FILE, CHEK)

VII-71

where

UNIT = unit number
REC = depends upon operation

FILE = depends upon operation

CHEK = status flag.

The requested operation is defined by the parameters REC and FILE. A negative
value for FILE defines a rewind operation. Possible combinaticns include

FILE < 0

REC greater than 0, rewind file

REC equal to 0, rewind and release unit
REC less than 0, rewind and unload reel.

A rewind is required after writing a file if the file is to be read back. Disk

files which are released are returned to the system and become available to
other jobs. Releasing tape files decrements the unit count on the CDC job card
as well as freeing the drive for other jobs. The tape drive on IBM is not

released as it is a queued device.

A positive or zero value for FILE defines a skip operation. On CDC computers
FILE contains the level number of records to skip. This value can vary from

0-17 octal, where 17 defines an end-of-file. The level number is only a flag
8

for IBM and no end-of-file is written except at an end-of-information. The

variable REC contains the number of records of the specified level to skip. The
record count is decremented on IBM at the same physical location as the level
number on CDC records.

A check of end-of-record is made before skipping. If the system is at an end-

of record of the requested level, the record count is reduced by one. If this

results in a zero record count, control is returned to the calling program

without skipping any rec.ords.

, , q \ 16

O
VII-72

7.0 EXTENDED I/O SUBROUTINES

Several extended I/O subroutines have been written to ensure the compatibility

of FORTRAN programs with both IBM and CDC compilers. The extensions allow for
consistent c:J1ing of in-core read and write operations, as well as output to
the operator's console and the dayfile on CDC computers or the job allocation
edit on IBM r.omputers. These FORTRAN callable I/O extensions are discussed in
the following sections.

7.1 Incore Read / Write Subroutines

7.1.1 CALL INCORW (NCHAR, FORMT, ARRAY, 10 LIST, NWRDS)

The INCORW subroutine is written in FORTRAN and uses the CDC extension to FORTRAN,

ENC 0DE and DEC0DE in the CDC version, and the INFILQ subroutine (documented

below) for IBM applications. On a call to INCORW, NCHAR Hollerith characters
from NWRDS words in the I/O list 10 LIST, are written into the array ARRAY

according to the format specified in the FORMT array. NCHAR and NWRDS are
integers, while all of the arrays are real (60 bit words on CDC and 64 bit words
on IBM). A sample usage of INCORW is given below, where the integer INT is
converted into a 4 character Hollerith representation with blank fill in the low

4 characters.

DIMENSION REAL(1), ARRAY (1), FORMT(1)

EQUIVALENCE (REAL(1), INT)

DATA FORMT/ 8H(A4,4X) /, INT / 1333/

NCHAR = 8

NWRDS = 1

CALL INCORW (NCHAR, FORMT, ARRAY, REAL, NWRDS)

7.1.2 CALL INCORR (NCHAR, FORMT, ARRAY, 10 LIST, NWRDS)

INCORR is an entry point in the INCORW subprogram, and its use is similar to
that described above for INCORW. The difference is that for INCORR, the infor-

mation is read f rom the array ARRAY and transmitted to the 10 LIST array, much
like a FORTRAN read which transmits data from a file buffer (corresponding to

ARRAY), to the I/O list.

,- g 177
VII-73

7.1. 3 CALL INFILQ(ARRAY, NBYTES)

INFILQ is an IBM Fortran callable incore read and write subroutine. It modifies
IBCOM# in such a way that the next read or write request causes information in
the user's list to be placed in a core buffer. This routine performs functions
similar to ENC 0DE and DECODE statements allowed in FORTRAN for CDC computers.

INFILQ is called by the IBM versions of INCORW and INCORR in much the same way

as ENC 0DE and DECODE are called by the CDC versions of INCORW and INCORR. On a

call to INFILQ, ARRAY is the name of a temporary buffer sufficiently large to
contain the information to be written, and NBYTES is an integer constant (or
variable) which specifies the size of the buffer in bytes. A sample usage of

INFILQ is given as follows:

DIMENSION A(20), WD(80)

READ (5,100) WD

CALL INFILQ (A,80)

WRITE (10,100) (WD(I),I=1,80)

100 FORMAT (80A1)

CALL INFILQ (A,80)

READ (10,101) X, Y, Z

101 FORMAT (3F8.5)

Several items to consider when using INFILQ include:

1. A call to INFILQ must precede each dummy read or write.
2. Any unit number (1-99) may be used in the dummy read or write state-

ments.

3. No DD card is required for the unit used in the dummy statement.
4. The PRINT b, list and READ b, list statements, were b is the format

statement numbce, are also permissable.

7.2 Extended Message Subrontine

7.2.1 CALL REMARK (17H MESSAGE GOES HERE)

The REMARK subroutine places a message in the dayfile on CDC computers and in

the input JCL stream edit on IBM computers. The REMARK subroutine is very

O
"" - 7'

,.,cg \7B

useful on highly segmented subroutines, since it allows the programmer to edit
when a new segment is loaded and entered. REMARK also allows the programmer to
note error conditions that terminate a problem. The maximum message length is
80 characters. A message exceeding the maximum length is truncated, while a
message shorter than the maximum must have binary zeros in the two Hollerith
character positions following the message. These zeros are automatically supplied
when a Hollerith constant is used as the parameter, as illustrated above. The
REMARK subroutine is not physically present in the CDC environmental library and
is actually obtained f rom the FORTRAN library, but it does physically reside in
the IBM environmental library since it generally is not present in standard IBM
FORTRAN libraries.

~ 8 179

VII-75

8. 0 SYSTEM INTERR0GATION SUBROUTINES

It is quite often necessary to interrogate the computer operating system to
obtain information such as the current date, elapsed CPU time and remaining CPU
or I/O time. Such information is not available through ANS standard FORTRAN
subprograms; consequently, the following subprograms were written to allow
consistent calling procedures for both IBM and CDC applications.

8.1 CALL DATE (D)

The current date is returned as the value of argument D in the form 10HbMM/DD/YYb
for CDC computers and 8HMM/DD/YY for IBM computers, where b denotes a blank. MM

is the number of the month, DD is the day of the month and YY is the year. The
value returned is Hollerith data and may be output using an A format specifica-
tion. D is a 60 bit word for CDC applications and a 64 bit word for IBM. The
DATE subroutine is not physically present in the CDC environmental library and
is actually obtained from the FORTRAN library. It does, however, physically

reside in the IBM environmental library since it generally is not present in
standard IBM FORTRAN libraries.

8.2 Interval Timer Routine

The interval timer routine provides the user with the means of determining the
elapsed time of his task. Entry points to the interval timing routine are
discussed in the following sections.

Initially TIMSET is called which sets a programmed timer to a zero reference
time interval. The time interval is associated with the task that was active
when the subroutine was called, and the timer interval is incremented only when
the associated task is active.

The subroutine maintains two nested time measures. The outer measure is usually
used for the total execution time for a set of data, and the inner measure is

used for timing loops.

7r} }3

VII-76

8.2.1 CALL TIMSET(X)

The call to TIMSET is used to set the time interval zero reference point, where

X is a dummy argument (not used).

8.2.2 CALL TIMEL(X)

TIMEL is used to obtain the inner measure of time. X is returned as seconds in
floating point form (60 bits for CDC, 64 bits for IBM) as the elapsed time from
the last call to either TIMSET, TIMEL, or TIMER.

8.2.3 CALL TIMER (X)

TIMER is used to obtain the outer measure of time. X is returned as seconds in
floating point form as the elapsed time from the last call to either TIMSET or

TIMER.

8.3 L = NOTIM(ACPU, AIO)

The NOTIM logical function is used to determine if the job step is nearing its
allotted time limit. Since CDC operating systems provide for both CPU and I/O
time limits, both time limits are considered in the argument list. However, for
IBM applications no I/O time limits apply and AIO should be carried as a dummy
variable. The arguments ACPU and AIO are both input and returned (modified
internally) quantities to NOTIM. On input to NOTIM, ACPU and AID should specify
the minimum amount of CPU and I/O time in seconds, respectively, that must be
available to the job step. If less time is available than either of the two

input limits, NOTIM is set to true. Conversely, if there is more CPU and I/O

time available than that specified by ACPU and AIO, NOTIM is set to false. On
return from NOTIM, ACPU contains the remaining CPU time in excess of the limit
specified on INPUT to NOTIM and AIO contains the remaining I/O time in excess of
the limit specified in input to NOTIM. Both ACPU and AIO are 60 bit floating
point words for CDC applications and 64 bit floating point words for IBM.

F$ kb,7

VII-77

9.0 MISCELLANEOUS SUBROUTINES

Various functions and procedures are often required for use by FORTRAN programs
which are not standard ANS FORTRAN routines. These subprograms are not subject
to a great deal of change or modification and may be used by several programs.
As a result, such subroutines are included in an environmental library, which
may be viewed as an extension to the FORTRAN library. These extensions are
described in subsequent sections.

9.1 I = LOCF(A)

The LOCF function is used to obtain the address of variable A which may be any
type. The integer address returned (60 bits on CDC ano 32 bits on IBM), is the

core address relative to the load point, corresponding to the location in memory
occupied by A. For IBM applications, the address returned is in bytes, while
the returned address is in units of 60 bit words for CDC computers. The LOCF
function is not physically present in the CDC environmental library, but is
obtained from the FORTRAN library. The LOCF function is not available as a
FORTRAN library supplied routine for IBM application and is therefore physically
present in the IBM environmental library.

9.2 X = FLOATR(A)

The FLOATR function is used to ensure that the value of A stored in location X
is in floating point format. X is a 60 bit floating point number for CDC com-
puters and a 64 bit floating point number for IBM computers. A may be either a
floating point number or an integer. If A is a floating point number and FLOATR
is being used in an IBM program, A must be a 64 bit floating point number.
Integer values of A are 60 bit quantities on CDC computers and 32 bit quantities
on IBM computers.

9.3 I = FINDEP (ENTRY,NAME)

The integer function FINDEP is used to obtain the address at which the primary
entry point ENTRY is loaded. The address returned is relative to the load point
and is in bytes for IBM use and 60 bit words for CDC. The Hollerith character
string corresponding to the entry point name is returned in the NAME argu.w nt.

O-

- 8 182,,I.,e

Since the Hollerith names can be six characters in length, NAME should be a 64

bit word for IBM applications. The entry point must be specified as external in
any subroutine calling FINDEP.

9. 4 CALL MOVE (A(I), B(J), NUM)

Subroutine MOVE transfers data from one array A, to a second array B. The

contents of the first array are not modified unless the arrays overlap. The
move operation may start at either the beginning of the arrays (a forward move)
or at the end of the arrays (a backward move). The forward move is the faster
of the two types and should always be chosen if the arrays do not overlap. In
the case of overlap, the move direction depends on how the arrays are overlapped.

A backward overlapped move must be specified where the second array, B, begins
at some element of the first array, A, such as

EQUIVALENCE (B(1), A(2)).

A forward overlapped move must be specified where A begins at some element of B,

such as

EQUIVALENCE (A(1), B(2)).

Both A and B are comprised of 60 bit words on CDC computers (floating point or
integer) and 64 bit floating point wordt on IBM computers. NUM is a signed
integer whose absolute value specifies the number of words to move. A positive
value of NUM indicates a forward move and a negative value, a backward move.

9.4.1 CALL MOVEI (A(I), B(J), NUM)

The MOVEI subroutine is used to move integer arrays, but is otherwise identical
to MOVE. In the case of CDC computers where the integer and floating point word
lengths are identical, calls to MOVE and MOVEI are equivalent. For IBM usage,
the MOVEI subroutine is used to move 32 bit words, either floating point or

integer, as opposed to the MOVE subroutine which moves 64 bit words.

b'

VII-79

9.4.2 CALL MOVEC (A(I), B(J), NUM)

The MOVEC subroutine is used on IBM computers only and performs moves at the

character (byte) level. NUM indicates the number of characters (bytes) to be
moved.

9.5 CALL ZEROUT (A(I), NUM)

Subroutine ZEROUT sets an arbitrary number of sequential real words to zero.
The actual array type (INTEGER, LOGICAL, REAL, REAL*8) is not important; however,
for IBM applications it must be recalled that ZEROUT assumes 8 byte words. NUM

is the number of words to zero out (60 bit words on CDC and 64 bit words on
IBM), and A(I) provides the starting address for the zero procedure and must be
a double word boundary for IBM use.

9.6 CALL FABEND

Calling the FABEND subroutine causes an abnormal termination of the job step.
A core dump is printed if a SYSUDUMP or SYSABEND DD card is included in the job
step JCL for the IBM version. No modifications are made to the save areas so

that the save area trace can show subroutines that were previously called.

The CDC version also provides a traceback of the subroutine calling sequence and
generates a dump of the subroutine that calls FABEND.

9. 7 CALL MINV (A, N, D, L, M)

Subroutine MINV is called to invert the order N matrix contained in array A.
The method of solution is basically a double pivotal Gauss-Jordan reduction
method with the pivot terms being selected from the largest eligible elements of
the matrix. Upon entering the subroutine, A contains the matrix to be inverted,
and when return is made to the calling program, A contains the inverse matrix.
The area should be dimensioned to accommodate the maximum dimensions of a matrix
to be inverted. All of the arrays and variables in the argument list are com-
posed of 60 bit words for CDC applications and 64 bit words for IBM, with the
exception of tha integer N (32 bits on IBM), which indicates the order (dimension)
of the matrix to be inverted. The determinant of the matrix is returned in D
and the N element vectors L and M provide work space required by the double
pivotal Gauss-Jordan reduction method.

,yrg }8k' VII-80

VIII. OTHER CODE DETAIL

Previous sections have addressed the general coding philosophies used in devel-
oping the RETRAN Code Package, as well as some problem areas encountered during

the development. Additionally, the overall code structure and the interfacing
between the dynamic dimension and semi-modularization features have been discussed
in some detail. However, several topics, such as code maintenance or code
modification procedures and the loading schemes used for the various computing
systems, have not been presented. These topics are the subjects of the following
discussion.

,' 8 185

VIII-l

1. 0 CODE MAINTENANCE

During the development of the RETRAN Code Package, a single master copy of the
source code was maintained for use on both IBM and CDC computers. TI:e single
master insured that the code versions installed on both IBM and CDC computers
were in as close agreement as practically possible considering the different
system architectures and operating philosophies. By maintaining a single master
source, it was also much easier to insure that subsequent modifications to the
code were not inadvertantly omitted from the source for a given machine.

The master copy of the source was maintained on a CDC computer in a compressed
binaty form, compatible with the UPDATE program [VIII.1-1]. To generate a RETRAN
source for IBM application, an update was run and a card image source file
generated by use of the UPDATE program. This source contained all * DECK, *COMDECK

and * CALL cards that would be required to create a new compressed binary source,

or OLDPL, for UPDATE. The source was then processed by a text editing program
to comment out the CDC PROGRAM card; convert quotes (") to apostrophes (');
substitute a blank for any $ encountered in column one and add a C in column one
of the following card;I and to add sequence information in columns 73 thru 80
for the UPD program discussed in Appendix B. The resulting source produced by
the text editor is the IBM source code transmitted to IBM users, while the '

compressed binary file in OLDPL form is transmitted to CDC users.

1.1 RETRAN Maintenance on CDC Computing Systems

Maintenance of the RETRAN source code is facilitated through use of the UPDATE
program as described in Reference VIII.1-1. The OLDPL or compressed binary

source can not be processed directly by the compiler. Thus, the source must

1The $ in column one is treated as a comment card identifier by the FTN compiler.
Consequently, $ and anything following are treated as comments. In CDC FORTRAN,

entry point argument lists are assumed to be the same as the primary entry
point, while IBM requires seperate argument list specifications for each entry.
The IBM entry specifications are prefixed by a $ in column one on CDC versions,
but the prefix is dropped for IBM version and the following card (CDC entry),
.s commented.

VIII-2

7FQ }3b

9 . . *

b

o

%

h

-

ep

=

fB

%

/

first be processed by the UPDATE program which generates a card image file
containing the expansions of all comdecks, activated by * CALL cards. The
resulting card image file is then processed by the compiler.

As noted earlier, the RETRAN source and the source for the environmental library
reside on separate files, both of which are in OLDPL form.

1.2 RETRAN Maintenance on IBM Computing Systems

The source code for use on IBM systems is designed for the UPD program described

in Appendix B, and in general can not be input to the compiler as is. UPD must

be used as an intermediate step to provide the comdeck expansion in the auxiliary
file that supplies the input to the compiler. Use of an intermediate UPD step
may seem like an unnecessary complication, however, once the *COMDECK feature is
understood, it becomes evident that code maintenance or modification is greatly
simplified. As an example, RETRAN contains some 200 subroutines, and virtually
all of these contain the FTB labeled common block which resides in comdeck BKCM.
Without the comdeck, or a similar feature, coding changes to the FTB common
block would require that each of the subroutines be similarly modified. Using
comdecks, only a single copy of the coding exists and it resides in the comdeck.
The * CALL in effect issues a request to UPD to insert the comdeck contents in
the auxiliary file card image stream (* CALL is not placed in the auxiliary
file). As a result, there is only one physical copy of redundant coding to
modify, and any subsequent * CALL statements will result in the most recent copy
being inserted in the auxiliary file. The comdeck feature is described in the
UPD Manual in Appendix B.

~ Both the RETRAN source and the environmental library reside on separate files in

a form acceptable to UPD.

"8 i88

VIII-3

2. 0 OVERLAY DIRECTIVES

The RETRAN Code Package utilizes the overlay or segmented loading features on
both IBM and CDC computing systems. Little correspondence exists between the

IBM and CDC loader directives, owing to the different operating philosophies
around which the loader software was developed. In the course of implementing
RETRAN on several different processors and operating systems, problem areas were

encountered on IBM and CDC computers, in that loader directives may work satis-
factorily for one system configuration and not another for a given vendor, i.e.
IBM or CDC. The various loading schemes that have been used successfully during
the development of RETRAN, and their known range applicability, are given in the
following sections.

2.1 CDC CYBER 70/170 and 6000 Series Computing Systems

Two segmented loaders have been used on CDC hardware, where both perform the

same functions in a similar manner, but each has its own idiosyncrasies. In
particular, the two loaders are the "old" Cyber Loader documented in Reference
II.1-4 and the "new" Cyber Loader documented in Reference II.1-5. The loader
directives given in Table VIII.2-1 have been used successfully on the "old" and
the "new" Cyber Loaders provided PSR 452 has been implemented in the "new"
loader.

Errors exist in the PSR 439 level of the "new" loader which cause catastrophic
failures at execution time. Basically, the errer occurs when a given subroutine
resides in several segments. The loader loads the subroutine into the multiple
segments properly, but the linkage is of ten performed incorrectly. Linkage is
generally made with a copy of the loaded subroutine that resides in a segment
that conflicts with the calling subroutine. The conflicting segment is not
swapped into memory and as a result, the return jump branches to the address

where the conflicting subroutine would reside, provided it was in memory. At
this point the code " terminates" in occasionally unpredicable ways. The loader
directives illustrated in Table VIII.2-2 were generated as a temporary measure
to bypass the error in the loader, but result in a significantly larger field
length requirement. An approximate increase in memory of 30K octal is realized
when the directives in Table VIII.2-1 are used as opposed to those in Table VIII.2-2.

r} }i

VIII-4

TABLE VIII.2-1

CYBER LOADER SEGLOAD DIRECTIVES-FINAL FORM

ROOT SEGMENT*

.

GLOBAL STH20C,FTB
GLOBAL G8.IO.,FCL.C.,REW.F0,JMPS.RM,A08.RM, CON.RM
TREE RMAIN-(INPUT,M001,M002, MOD 3)

INPUT INCLUDE INPUT,00CUMT,GETCOR,INITAL,FRLCOR, REDUCE
INPUT INCLUDE INP,CVI,INP2, LINK,MODER,PCKUPK, EOF
RMAIN INCLUDE RMAIN,BUFOUT,CIO:, CHEK, DELETE,DMPFIL,DMPLSI
RMAIN INCLUDE ERRMOD, ERROR,FABEND, FAIL,FTBIO,IA,IDFIND,L(ONTG
RMAIN INCLUDE LOCATE,LOCF, MOVE,NEXTID,RECOVR,RESERV,SHIF1
RMAIN INCLUDE SHFTL K, TIM INT ,TIMSE T,2E ROUT
RMAIN INCLUDE SYSTEMC,PUT.RM,REW.SQ,SYS.RM<

C *

PLOTER MODULE*

7,u * . ***********

M003 TREE PLOTER-(INPLOT, PLOTS)
INEDITD TREE INEDIT3-(EDATA10,EDATA20,EDATA30,EDATA40,EDINIT3, REQ

,EST3)
PLOTS TREE TRNCAT-(READ,PLTS)
PLTS TREE PLOT-LOCMD3
READ TREE REDTAP-(PULLIN,INEDITD)
EDATA1D INCLUDE EDATA1
EDATA2D INCLUDE EDATA2
EDATA30 INCLUDE EDATA3
EDATA4D INCLUDE EDATA4
EDINIT3 INCLUDE EDI NI T,INP2,L INK,MODER,PCK UPK ,MXSE TS,SE ARCH,INCNT 2
INEDIT3 INCLUDE INEDIT
INPLOT INCLUDE INPLOT,INP2,INP8, LINK,MODER,PCKUPK-

4 LOCMD3 INCLUDE LOCMD3
7 PLOT INCLUDE PLOT, AXIS,LAXIS,PLOTMC,PLOTR,XPLOT,XPLOTA

C%) PLOT INCLUDE PLOTS, NUMBER, NORM AL,P SC ALE ,SY MBOL,L ABLC K,FLO ATR
PLOTER INCLUDE PLOTER

-

O
CD

TABLE VIII.2-1 (Cont'd)

PULLIN INCLUDE SETUPE,POSITN,PULLIN,SETUPO,POSPLT,PULTRN

REDTAP INCLUDE REDTAP,FRECOR, REDUCE,ISFOPN,LAVAIL,NFSETS
REQEST3 INCLUDF REGEST,POSPLT

TRNCAT INCLUDE TRNCAT,ISFDES
/
.

REEDIT MODULE*

.***

M002 TREE REEDIT-(INEDT,EDITRE)

INEDT TREE INEDTE-(SETUPE,INMINE)

INMINE TREE INEDIT2-(EDATA1C,EDATA2C,EDATA3C,REEDATA,ElINIT2, REG
,EST2)

REEDATA TREE EDATA4C-LOCMD2
EDATA1C INCLUDE EDATA1

< EDATA2C INCLUDE EDATA2

[EDATA3C INCLUDE EDATA3

4 EDATA4C INCLUDE EDATA4
EDINIT2 INCLUDE EDINIT,MXSETS, SEARCH,INCNT2

EDITRE INCLUDE EDITRE,EDI T,FLO ATR,POSI TN,PULLIN, REDUCE ,FRI COR

EDITRE INCLUDE PRNPLT,PLOTPR,ROUND,ISF0PN,NFSETS,TRNCAT
EDITRE INCLUDE EDTCND,EDTCOR,EDTUNB,EDTHTX,EDTKIN,EDTLGL
EDITRE INCLUDE EDTPHP
INEDTE INCLUDE INEDTE,INP2, LINK,MODER,PCKUPK,1NP8
INEDIT2 INCLUDE INEDIT
LOCMD2 INCLUDE LOCMD2
REEDIT INCLUDE REEDIT
REGEST2 INCLUDE REGEST,POSPLT,PULLIN

SETUPE INCLUDE SETUPE,POSITN,PULLIN

'
. RETRAN AND RESTRT MODULES

C%)

-

d
-

O O O

TABLE VIII.2-1 (Cont'd)

MOD 1 TREE RETR A N-(INMODS, TR AN,INI T AL,PRNPLT ,CPYPL T,R t DUCE)

INMODS TREE INRTRN-INRSTR-(INDATA,INDRIV)
INDRIV TREE INTRAN-(INCNST,INVOL,INJUN,INPM,1NHTXG,INPVR,INHT,IN

,IFTE,INEDITB,INDNB,INCNTI)
INEDITB TREE INEDIT1-(EDATA18,EDATA2B,EDATA3B,EDATA48,ElINIT1, REG

,ESTI)
INHT TREE INHEAT-(INCORE,INGE0M,1NMPRD,INSLAP)

INITAL TREE STSTAT-(INITLZ,JVEDIT)

INPWR TREE INPOWR-(INRKEN)
LEVEL *** ALL OPTIONS LIVE IN SECOND LEVEL ABOVE ENTRY

POINT LOCMD1. SUBROUTINE ORDERING ABOVE LOCMDI IS*

* EXPILICITLY CONNECTED TO CODING IN SUBR. RfSOPT.
< OPTIONS TREE LOCTBL-(LOCMDI, LOGO)
Z CPYPLT INCLUDE CPYPLT,0VRLYP,POSITN
7 EDATA1B INCLUDE EDATA1
"

EDATA2B INCLUDE EDATA2
EDATA3B INCLUDE EDATA3
EDATA4B INCLUDE EDATA4
EDINIT1 INCLUDE EDINIT,MXSETS, SEARCH,INCNT2
INCNST INCLUDE INCNST,STH20I,INTSTP,TSTMOD,INTRIP,INCNTI
INCORE INCLUDE INCORE
INDATA INCLUDE INDATA
INDNB INCLUDE INDNB,INSTGN

INEDIT1 INCLUDE INEDIT
INGE0M INCLUDE INGE0M
INHEAT INCLUDE INHEAT
INHTXQ INCLUDE INHTXQ
INIFTE INCLUDE INIFTE~

INITLZ INCLUDE INITLZ,MASBAL,EQSETS,MINV, LOOPS
CC INJUN INCLUDE CHAIN,IMIXCK,INJUN,INCKV,1NAREA, INFILL

INMPRO INCLUDE INMPRO
~~' INPM INCLUDE INPM,INPUMP,PMPDTA,IPMCK
~D
N

TABLE VIII.2-1 (Cont'd)

INPOWR INCLUDE INPOWR
INRKEN INCLUDE INSCRM,INREAC,INRKEN
INRTRN INCLUDE INRTRN,INP2, LINK,MODER,PCKUPK,INPIO
INRSTR INCLUDE INRSTR
INSLAB INCLUDE INSLAB,INCDHT

INTRAN INCLUDE INTRAN,INP8

INVOL INCLUDE INVOL,INBUBL,INLVC,INTV
JVEDIT INCLUDE JVEDIT,KINITL

LOCMD1 INCLUDE BAL,BUBB,ENTRAN, FANG,FRICTN,HEADC,JUNHP,MALH,PNONEQ
LOCMD1 INCLUDE PO L A TE , POL 2,P OSTW, PRE W, SF R, ST A TE , S TH2 00, ST F201
LOCMD1 INCLUDE STH203,STH204,STH205,STPM TENLIQ,TFFM, TRIP.VAPORI
LOCMD1 INCLUDE V ISC, WP ACK,SS W T CH,5UR TE N,F LOA TR

OPTIONS START HERE*

5 LOCMD1 INCLUDE LOCMD1,RESSEG
C LOCMD1 INCLUDE CHKV
$2 LOCMD1 INCLUDE FILL

LOCMD1 INCLUDE PLTAPE
LOCMD1 INCLUDE SL ABH T,SE NG ,T A VE , SL ABD T ,T E MP,C OND , HTR C, PCHF , GDO T
LOCMD1 INCLUDE THCON,TKANDC,EDTCND
LOCMD1 INCLUDE ENERGY
LOCMD1 INCLUDE HTXQ,EDTHTX
LOCMD1 INCLUDE CONDHT
LOCMD1 INCLUDE PUMP, PUMPS,EDTPMP
LOCMD1 INCLUDE POWRT
LOCMD1 INCLUDE CORQ,EDTCOR
LOCMD1 INCLUDE MH20R,MWR'

4 LOCMD1 INCLUDE RKEN,RE AC ,CCC ,RNDO, SC RM ,ED TKIN
7 LOCMD1 INCLUDE LEVCAL,EDTLCL

C%) LOCMD1 INCLUDE CARDBC
LOCMD1 INCLUDE PRESS

* LOCMD1 INCLUDE TAPEbC
-f) LOCMD1 INCLUDE MIXFLO
W

O O O

TABLE VIII.2-1 (Cont'd)

LOCMD1 INCLUDE DNBM,0DNBBW,0DNBMA,QDNBW3,FCOLDW,FGRSPH,NONUHF
LOCMD1 INCLUDE FITHT,SIMQ,0DNBBA,GDNBBO,GDNBJL,EDTONB
LOCMD1 INCLUDE PRZR
LOCMD1 INCLUDE TRNSPT
LOCMD1 INCLUDE CONTRL,DIFF, DELAY,INTEG,LDLAG, LAG,VELLIM
LOCMD1 INCLUDE LOCEND,RESOPT,FINDEP,DMPER
LOCTBL INCLUDE LOCTBL
LOGO INCLUDE LOGO
PRNPLT INCLUDE PRNPLT,ROUND,ISFOPN,TRNCAT,PLOTPR,NFSETS,TRPSUM
REDUCE INCLUDE FRECOR, REDUCE
REGEST1 INCLUDE REQEST,POSPLT,PULLIN
RETRAN INCLUDE RETRAN

< STSTAT INCLUDE DELHP,HAVG,JHOFF,PRSORK,SINITL,STATPH,STSTAT.TEMZ
Z STSTAT INCLUDE VDVDT,BUBINT

T TRAN INCLUDE C SLVO L ,CVG E XP , CVG I MP, ED IT, E T SC ON, F L OSP,H
*

TRAN INCLUDE LEAK,NIFTE,NOTIM,TRAN,TRIPDT,TSED,TSTP
END RMAIN

..

7

Q

-

O
P

.

TABLE VIII.2-2

CYBER LOADER SEGLOAD DIRECTIVES-INTERIM FORM

* ROOT SEGMENT
.

GLOBAL G8.IO.,FCL.C.,REW.F0,JMPS.RM,A08.RM, CON.RM
GLOBAL STH20C,FTB
TREE RMAIN-(INPUT, MOD 1, MOD 2, MOD 3)

RMAIN INCLUDE ALOG,DNPFIL,DMPLST
.

PLOTER MODULE*

*

MOD 3 TREE PLOTER-(INPLOT, PLOTS)

PLOTS TREE CLOSE-(READ,PLTS)
PLTS TREE PLOT-LOCMD3

$ READ TREE REDTAP-(POLLIN,SETUPO)

Z PLOT INCLUDE PLOT, PLOTS, SYMBOL,L ABLCK,L A XIS,PL OTMC, PLOT H,XPL OT A

L PLOT INCLUDE ISFDES, AXIS, NORMAL, NUMBER,PSCALE,XPLOT
o .

REEDIT MODULE*

.

M002 TREE REEDIT-(INEDT,EDITRE)

INEDT TREE INEDTE-(SETA,INP8)

SETA TREE SETUPE-LOCMD2
.

.

* RETRAN AND RESTRT MODULES
*

MOD 1 TREE RE TR AN-(INMODS,TR AN,I NI TAL ,PRNPLT ,CPYPLT)
INHODS TREE INRTRN-INRSTR-(INDATA,INDRIV)

INDRIV TREE INTRAN-(INCNST,IN"0L,INJUN,INPM,INHTXG,INPkR,INHT,IN
' ,IFTE,INDNB,1NCNT1,1NCNT2)

CX) INHT TREE INHEAT-(INCORE,INGEOM,INMPRO,INSLAB)

INITAL TREE STSTAT-(INITL2,JVEDIT)

{} INPWR TREE INPOWR-(INRKEN)

w

& O O

TABLE VIII.2-2 (Cont'd)

LEVEL *** ALL OPTIONS LIVE IN SECOND LEVEL ABOVE ENTRY
* POINT LOCMD1. SUBROUTINE ORDERING ABOVE LOLMD1 IS

EXPILICITLY CONNECTED TO CODING IN SUER. RtSOPT.*

OPTIONS TREE LOCTBL-(LOCMDI, LOGO)

STSTAT INCLUDE SINITL,TEMZ, LOOPS
LOCMD1 INCLUDE B AL,B UBB,E NTR AN,F ANG, FR IC TN,HE ADC, JUNHP,M A(H

LOCMD1 INCLUDE POLATE, POL 2,POSTW,PREW,SFR, STATE,STH200,STP201

LOCMD1 INCLUDE STH203,STH204,STH205,STPM,TFFM, TRIP,VAPORI
LOCMD1 INCLUDE VISC,WPACK,SSWTCH,SURTEN

,

OPTIONS START HERE*

LOCMD1 INCLUDE LOCMD1,RESSEG,CHKV, FILL<
;| LOCMD1 INCLUDE PLTAPE,SLABHT,SENG,TAVE,SLABDT, TEMP

1* LOCMD1 INCLUDE COND,HTRC,PCHF,GDOT,THCON,TKANDC, ENERGY,HTAG
:| LOCMD1 INCLUDE CONDHT, PUMP, PUMPS,POWRT,CORQ,MH20R,MWR,RKEf,REAC,CCC

LOCMD1 INCLUDE RNDO,SCRM,LEVCAL,CARCBC, PRESS,TAPEBC,MIXFLo

LOCMD1 INCLUDE DNBM,GDNBBW,GDN9MA,GDNBW3,FCOLDW,FGRSPM
LOCMD1 INCLUDE NONUHF,FITHT,SIMQ,GDNBBA,QDNEBO,0DN8JL
LOCMDI INCLUDE PRZR,TRNSPT,CONTRL,DIFF, DELAY,INTEG,LDLAG, LAG,VELLIM
LOCMD1 INCLUDE LOCEND,RESOPT,FINDEP,DNPER

END RMAIN

1

-
d
2

The error in the "new" Cyber Loader was corrected between PSR 439 and PSR 452.

It should also be noted that the directives in Table VIII.2-2 will not work on
the "old" loader since the segment structure is not completely defined.

2.2 IBM 360/370 Computing Systems With OS or MVS Operating Systems

The overlay feature of the IBM loader described in Reference II.1-6, is used at
ir.;ta11ations running OS or MVS operating systems. However, the loader directives
that are used on MVS are significantly different than those used on 05 operating
systems in order to bypass an apparent flaw in the implementation of the overlay
feature on MVS. The details of the problem are given in Section II.3.2. Tables

VIII.2-3 and VIII.2-4 illustrate the overlay directives used with OS and MVS
operating systems, respectively.

O

' " 8 197

O
VIII-12

TABLE VIII.2-3

OS OVERLAY DIRECTIVES
.

INCLUDE ADD (RETRAN)
INSERT MAIN, CHEK, FAIL,TIMINT,DSL,DSR, MOVE,BUFOUT,CLOSE, DELETE,DMPFIL
INSERT DMPLST,DSCRIB, ERROR,FABEND,FINDEP,IDFIND,ISFDES,ISFOPN,LAVAIL
INSERT LCONTG, LOCATE,NFSETS,NEXTID,0 PEN,PROCES, PROC 4, REDUCE.RESERV
INSERT SHF TLK,SHIF T TRNC AT,ZEROUT,IBCOMa ,LOCF,D AND,INFILQ,DCR
INSERT TIMSET
OVERLAY R102
INSERT INPUT,CVI,DATE,GETCOR,INITAL,INP,INPSHF
OVERLAY R102
INSERT RETRAN,STH201 STH203,STH204,TRPSUM
OVERLAY R103
INSERT INRTRN,INRSTR,1NTRAN
OVERLAY R104

< INSERT INVOL,1NBUBL,INLVC,INTV.INCNST,STH201,INTSTP,TSTMOD,1NTRIP

= INSERT INCNT1
L OVERLAY R104
w INSERT CHAIN,IMIXCK,INJUN,INCKV,INAREA, INFILL

OVERLAY R104
INSERT INPM,INPUMP,PMPDTA,IPMCK
OVERLAY R104
INSERT INHEAT,INCORE,INGE0M,INMPRO,INSLAB.INCDHT,1NHTXQ
OVERLAY R104
INSERT INPOWR,1NREAC,1NRKEN,INSCRM,INDNB,INIFTE
OVERLAY R104
INSERT INEDIT,EDATA1.EDATA2,EDATA3,EDATA4,EDINIT,REGEST
OVERLAY R104
INSERT INDATA CPYPLT,0VRLYP

OVERLAY R103
'

INSELT STSTAT,HAVG
4 OVERLAY R104
' INSERT STATPH,INITLZ,MASBAL,EGSETS,PRSORK,5INITL,TENZ,JHOFF,JVEDIT

CX2 INSERT KINITL,VDVDT,DELHP,MINV, LOOPS

-

00

TABLE VIII.2-3 (Cont'd)

OVERLAY R103
INSERT TRAN,TSTP,NOTIM
OVERLAY R104
INSERT FLOSRH LEAK,NIFTE,CSLVOLeCVGEXP,ETSCON,TRIPDT
INSERT TSED,PLTAPE
OVERLAY R103
INSERT PRNPLT,PLOTPR,ROUND
OVERLAY R102

INSERT LAXIS,PLOTMC, SYMBOL,XPLOTA,xPLOT,PLOTR
OVERLAY R103

INSERT INPLOT
OVERLAY R201(REGION)
INSERT INP2,INP4,INPS,INP6,INP7,INP8,INP10, LINK,MODER,INPUPk
OVERLAY R201<

[INSERT EDIT,EDTCND,EDTCOR,EDTDNB,EDTHTX,ECTKIN,EDTLQL,EDTPMP

7 OVERLAY R301(REGION)
g INSERT BAL,BUBB ENTRAN, FANG,FRICTN,HEADC,JUNHP, MACH,POLATE

INSERT POL 2,POSTW,PREW,SFR, STATE,STH205,STPM,TFFM TRIP
INSERT VAPOR 1,VISC,WPACK,CHKV, FILL,SLABHT
INSERT SENG,TAVE,SLABDT, TEMP,COND,HTRC,PCHF,GDOT,SURTEN,THCON
INSERT TKANDC, ENERGY,HTXQ,CONDHT, PUMP, PUMPS,POWRT,CORQ,MH20F,MWR
INSERT RKEN,REAC,CCC,RNDO,SCRM,LEVCAL,CARDBC, PRESS,TAPEHC,MIXFLO
INSERT DNBM,GDNBBW,GDN6MA,GDNbk3,FCOLDW,FGRSPM,NONUHF,FITHT
INSERT SIMQ,GDNBBA,QDNBBO,GDNRJL,PRZR,TRNSPT,CONTRL,DIFF

4 INSERT DELAY,INTEG,LDLAG, LAG,VELLIM
l DVERLAY R401(REGION)

CX? INSERT BLKCM
ENTRY MAIN

* NAME RETRAN(R)W
W

.

O O O

TABLE VIII.2-4

1
MVS OVERLAY DIRECTIVES

INCLUDE ADD (RETRAN)

INSERT MAIN

OVERLAY END(REGION)

INSERT BLKCM

ENTRY MAIN

NAME RETRAN(R)

1An IEW0152 error will occur but will not affect execution. LET must be specified
on link edit step.

,"8 200

VIII-15

8

1

h

4

IX. SUBROUTINE AND FUNCTION SUBPROGRAM DEFINITIONS

A brief definition of subprograms in the RETRAN source code is included in this
section. Each subprogram is listed with its argument list. This is followed by

a description of the subprogram, a description of each item in the argument list
and the subprograms that call it.

'"8 202

IX-1

..

SUBROUTINE BAL (DT,STDATA)

SUBROUTINE BAL OBTAINS THE THERMODYNAMIC STATE PROPERTIES FOR
ALL NORMAL VOLUMES ON A U-V STATE PLANE, PLUS CALLS SUBROUTINES
THAT OBTAIN STATE PROPERTIES FOR TIME DEPENCENT VOLUMES AnD NON-
EQUILIBRIUM VOLUMES (PRESSURIZER MODEL).

BAL IS CALLED FROM SUBROUTINES TRAN, STSTAT, AND JUNHP.

DT : CURRENT TIME STEP SIZE (INPUT)
STDATA = ARRAY TO HOLO THE THERMODYNAMIC STATE PROPERTILS

RETURNED FROM STATE ROUTINE (INPUT)

..

SURROUTINE BUBB (11,I2, DEL,H,C,X,INITLeDT,WFRAC)

SUBROUTINE BUBB DEFINES JUNCTION ENTHALPY AND GUALITY PLUs
PARAMETER C FOR A NON-HOMOGENEOUS VOLUME P UBB LE MASS INTEuRATION.

BUBB IS CALLED FROM SUBROUTINES DELHP,8UBINT, AND
JUNHP.

II : VOLUME FILE INDEX (INPUT)
I2 : JUNCTION FILE INDEX (INPUT)
DEL : ESTIM ATED G AS MASS CH ANGE (INPUT)
H = ENTHALPY AT JUNCTION (OUTPUT)
C = FRACTION OF GAS REMOVED BY THE JUNCTION FROM

ABOVE MIX TURE (OUTPUT)
X = QUALITY AT JUNCTION (OUTPUT)
INITL = INITIAL CONDITION INDEX, C = TRANSIENT, I = IC

A CALL TO BUBB WITH INITL = I CAN ALSO BE USED TO SKIP
ENTHALPY TRANSPORT WHEN ONLY C IS WANTED (INPUT)

DT = TIME STEP SIZE (INPUT)
WFRAC = M ASS FR AC TION OF WATER IN JUNCTION FLOW (OUTPUT)

..

SUBROUTINE BUBINT (IDXV,ISZV,ITERST)

SUBROUTINE BUBINT INITIALIZES THE BUPBLE RISE MODEL FOR SiEADY
STATE.

BUBINT IS CALLED FROM SUBROUTINE STSTAT.

.,rg 203
IX-3

IDXV = INDEX OF A SC R A TC H FILE USED FOR STEADY STATE a0 STORE
VOLUME VA" FABLES (INPUT)

ISZV = SETSIZ OF THE SCRATCH FILE (INPUT)
ITERST = NUMBER OF ITERATIONS LEFT TO ITERATE IN STEADY STATE

(INPUT)

..

SUBROUTINE CARDBC

SUBROUTINE CARDBC OBTAINS THERMODYNAMIC BOUNDARY CONITIONs
FROM TABULAR INPUT FOR TIME DEPENDENT VOLUMES.

CARDBC IS CALLED BY SUBROUTINES INVOL, eAL AND RESOPT.

..

SUBROUTINE CCC (X,CA,CB,CC)

SUBROUTINE CCC CALCULATES EXPONENTIAL COEFICIENTS OF X.

CCC IS C ALLED FROM SUBROUTINE RKEN.

X = REAL NUMBER (INPUT)
CA = EXPONENTIAL COEFFICIENTS OF X (OUTPUT)
CB = EXPONENTIAL COEFFICIENTS OF X (OUTPUT)
CC = EXPONENTIAL COEFFICIENTS OF X (OUTPUT)

till..

SUHROUTINE CHAIN (IKP,JKP,IETA,NUETA,NTOT1,NTRM1,NCHAIN)

SUBROUTINE CHAIN SETS UP THE JUNCTION CONNECTION MATRIX Tu BE USED
BY SUBROUTINE NIFTE FOR EVALUATION OF THE CONSERVATION EuUATIONS.

CHAIN IS CALLED FROM SUBROUTINE INJUN.

IKP = ARRAY CONTAINING VOLUME NUMBER OF THE VOLUMES oN THE
"FROM" SIDE OF THE JUNCTION (INPUT)

JKP = ARRAY CONTAINING VOLUME NUMBERS OF THE VOLUMES ON THE
"T0" SIDE OF THE JUNCTION (INPUT)

IETA = ARRAY CONTAINING VOLUME CHAINS (INPUT)
NUCTA = ARRAY CONTAINING THE NUMBER OF VOLUMES

IN EACH CHAIN (INPUT)
NTOT1 = NUMBER OF JUNCTIONS (INAUT)
NTRM1 = NUMBER OF VOLUMES (INPUT)
NCHAIN = NUMBER OF ITEMS IN JUNCTION CONNECTION ARRAY t0UTPUT)

..

SUBROUTINE CHEK (IUNIT,ITYP,LABL, DEN)

,yrg 204 g
IX-4

SUBROUTINE CHEK MOUNTS THE REQUESTED DATA TAPE, CHECKS THL TAPE
L ABE L AND VSN, AND DETERMINE S THE DAT A TAPE TYPE.

CHEK IS CALLED FROM SUBROUTINES REDTAP, EDITRE, INEDTE
OVRLYP,INRSTR, AND TAPEBC.

IUNI T = TAPE UNIT NUMRER (INPUT)
ITYP = 1 FOR A RETRAN DATA TAPE (OUTPUT)

= 2 FOR RELAP4/003 UPDATE 54 AND UP, DATA TAPES
: 3 FOR RELAP4/002 DATA TAPES
: 4 FOR RELAP3 DATA TAPES
: 5 FOR RETRAN STRANGER DATA TAPES

LABL = ARRAY CONTAINING DATA TAPE LABEL, VSN AND CREAsION
DATE (INPUT)

DEN : OtNSITY OF THE DATA WRITTEN ON TAPE (INPUT)

..

SURROUTINE CHKV (I,DT)

SUBROUTINE CHKV DETERMINES THE JUNCTION FLOW AREA FOR JUNLTION
AREAS THAT ARE CONTROLLED BY ANY TYPE OF VALVE.

CHKV IS CALLED FROM SUBROUTINES INITLZ, PREW, AND RESOPT.

I : JUNCTION FILE INDEX (INPUT)
DT = TIME STEP SIZE (INPUT)

..

SUBROUTINE COND (LI L2,DT)

SUBROUTINE COND ACTS AS A DRIVER FOR OBTAINING HEAT CONDUCTOR
TEMPERATURE PROFILES, HEAT TRANSFER COEFFICIENTS, AND HEA
GENERATION RATES.

COND IS CALLED BY SUBROUTINE SLABHT.

L1 : FILE INDEX OF CONDUCTOR AT BOTTOM OF STACK (INPUT)
L2 : FILE INDEX OF CONDUCTOR AT TOP OF STACK (14PUT)
DT = RETRAN TIME STEP SIZE (INPUT)

..

SURROUTINE CONDHT (K,1)

SUBROUTINE CONDHT COMPUTES HEAT TRANSFER COEFFICIENTS FOR THE
CONDENSING HEAT TRANSFER MODEL.

F{,i

IX-5

CONDHT IS CALLED FROM SUBROUTINES SLABHT, SINITL, AND
RESOPT.

K : VOLUME FILE INDEX (INPUT)
I : CONDENSING HEAT TRAN. SET INDEX (INPUT)

..

SUBROUTINE CONTRL (INIT,NTS,ETIME,DT)

SUBROUTINE CONTRL IS THE DRIVER FOR ALL THE CONTROL SYSTEn
ELEMENTS. THE ORDER OF CALCULATION FOR EACH E LE ME NT IS OtTERMINED
BY THE ORDER IN WHICH THE ID OF THE ELEMENT IS STORED IN ARRAY
IDC IN F ILE 54.

CONTRL IS CALLED BY SUBROUTINES TRAN, STSTAT, AND RESOPT.

INIT = 0 INITIALIZATION PASS (INPUT)
= 1 NORMAL PASS

NTS : NUMBER OF ACTUAL RETRAN TIME STEPS (INPUT)
ETIME ELAPSED PROBLEM TIME (INPUT)
DT = CURRENT TIME STEP TO BE USED BY CONTROL SYSTEn,

IDENTICAL TO TIME STEP USED BY REST OF RETRAN (INPUT)

..

SURROUTINE CORQ (M,NS,K,VOL)

SUBROUTINE CORQ CALCULATES INTERNAL HEAT GENERATION RATE AND
MODERATOR HEATING RATE FOR EACH ACTIVE CONDUCTOR.

CORQ IS CALLED BY SUBROUTINES SINITL AND COND.

M : GEOMETRY FILE INDEX (INPUT)
NS : NODE NUMBER AT RIGHT SURFACE (INPUT)
K = CORE FILE INDEX (INPUT)
VOL = VOLUME OF CONDUCTOR, FT3 (INPUT)

..

SUBROUTINE CPYPLT (IUNIT,JUNIT)

SUBROUTINE CPYPLT IS USED TO GENERATE A DUPLICATE COPY OF THE
RE TR AN D A T A TAPE USED TO RESTART THE PROBLEM. THE COPY OrERATION
IS TERMINATED AT THE LAST DATA RECORD PRIOR TO THE RESTARI DATA
RECORD TO INSURE A CONTINUOUS DATA SET FOR EACH INDIVIDUAL
PROBLEM. DATA RECORDS ARE COPIED FROM IUNIT TO JUNIT.

CPYPLT IS CALLED BY SUBROUTINE RETRAN.

, q 206
.

IX-6

IUNIT = UNIT NUMBER FOR D AT A TAPE BEING READ
FOR RESTART (INPUT)

JUNIT = UNIT NUMBER FOR DATA TAPE BEING CREATED
DURING A RESTART (INPUT)

...*....

SUBROUTINE CSLVOL

SUBROUTINE CSLVOL DETERMINES WHICH VOLUMES ARE CAUSAL, THaT
IS VOLUMES FOR WHICH STATE CALLS ARE TO BE MADE.

CSLVOL IS CALLED BY SUBROUTINE NIFTE.

..***.******

SUBROUTINE DELAY (INPUT,0UTPUT,DL AY ,L,80X ,INDEX ,G AIN)

SUBROUTINE DELAY MODELS A TIME DELAY ELEMENT. THE INPUT Is SAMPLED
AT EQUALLY SPACED TIME INTERVALS AND STORED IN AN ARRAY. lHE
OUTPUT IS CALCULATED BY LINEARLY INTERPOLATING AMONG VALUtS STORED
IN THE ARRAYS. SAMPLES OF INPUT ARE DISCARDED WHEN THEY CuRRESPOND
TO A TIME EARLIER THAN THE CURRENT TIME MINUS THE TIME DELAY.

DELAY IS CALLED BY SUBROUTINE CONTRL.

INPUT VALUE AT INPUT SIGNAL AT THE CURRENT TIME STEP (INPUT)

O U TP UT : VALUE OF THE OUTPUT SIGNAL AT THE CURRENT
TIME STEP (OUTPUT)

DLAY = LENGTH OF TIME DELAY IN SECONDS (INrUT)
L = NUMBER OF SAMPLES. NOTE: TIME INTERVAL BETWEEN SAMPLES

EQUAL DLAY/L (INPoT)
BOX = STORAGE ARRAY REPRESENTING STATE OF THE

DELAY (INPUi/0UTPUT)
INDEX = ON ENTRY TO SUBROUTINE DELAY, INDEX IS THE ADDmESS

OF BOX (I) RELATIVE TO BOXX(1), ARRAY IN CALLINu
SUBROUTINE CONTRL BEFORE RETURNING TO CONTRL, ANDEX
IS INCREASED BY AN AMOUNT EQUAL TO THE LENGTH UF THE
BOX ARRAY. (INPUTiOUTPUT)

GAIN : GAIN OF THE CONTROL BLOCK

..

SUBROUTINE DELHP (I,J)

SUBROUTINE DELHP COMPUTES THE JUNCTION ENTHALPY RISE DUE 10
SEPARATION OR ENTHALPY TRANSPORT. THIS SUBROUTINE IS USEu FOR
STEADY STATE INITIALIZATION ONLY.

DELHP IS CALLED BY SUBROUTINE HAVG.

I : RELOCATABLE VOLUME FILE INDEX

'"8 207
IX-7

.

J = RELOCATABLE JUNCTION FILE INDEX

..

SUBROUTINE DIFF (INPUT,0UTPUT, GAIN, BOX)

SUBROUTINE DIFF MODELS A DIFFERENTIATOR FOR THE CONTROL STSTEM.

DIFF IS CALLED BY SUBROUTINE CONTRL.

INPUT VALUE AT INPUT SIGNAL AT THE CURRENT TIME STEP (INPUT)
O U TP U T : VALUE OF THE OUTPUT SIGNAL AT THE CURRENT

TIME STEP (OUTPUT)
GAIN : GAIN OF DIFFERENTIATOR (INPUs)
BOX = USED TO STORE THE PREVIOUS VALUE OF

THE INPUT (INPUT /0UTPUT)

..

SUPROUTINE DNBM

SUBROUTINE DNBM IS DIRECTS THE FLOW OF THE DNBR COMPUTATIuNS.

DNBM IS CALLED FROM SUBROUTINES TRAN, STSTAT AND RESOPT.

..

SUBROUTINE DOCUMT (DOC)

SUBROUTINE DOCUMT DEFINES THE DOCUMENTATION HEADERS PRINTLD
AT THE TOP OF EACH MAJOR EDIT.

DOCUMT IS CALLED BY SUBROUTINE INPUT.

DOC = ARRAY CONTAINING DOCUMENTATION HEADER (0U1PUT)

..

SUBROUTINE EDATA1 (MODE,Y,IX,IXI,JNDEX1,JFIL,IUNIT,II)

SUBROUTINE ED ATA1 SETS UP INFORMATION FOR EDIT VARIABLES AND
VARIABLES ARCHIVED ON DATA TAPE FROM RELOCATABLE FILES.
INFORMATION DEFINED IN EDATA1 IS INTIMATELY TIED IN WITH nAJOR
EDITS, MINOR EDITS, AND DATA TAPE MANIPULATION.

EDATAI IS CALLED BY SUBROUTINE INEDIT.

MODE : 1 FOR RETRAN OR RESTRT (INPUT)

0-1 (*<

IX-8

2 FOR READIT
= 3 FOR PLOTER

Y : SCRATCH ARRAY USED TO STORE INFORMATION DESCRIoING
THE RELOCATABLE FILES AND V ARI ABLE S IN THE FILLS (OUTPUT)

IX = COUNTER FOR THE NUMBER OF VARIABLES DESCRIBED LOUTPUT)
IXI : BEGINNING INDEX IN THE Y SCRATCH ARRAY WHERE inE

INFORM ATION DESCRIBING THE RELOCATABLE FILES AND
VARIABLES IS STORED (OUTPUT)

INDEXI : AN INDEX IN THE SCRATCH ARRAY Y USED AS A POSieION
INDICATOR TO STORE INFORMATION DESCRIBING THE nELOC-
ATABLE FILES (INPUT)

JFIL = AN ARRAY CONTAINING GENERAL HEADINGS. THIS ARnAY IS
DEFINED IN SUBROUTINE INEDIT (INPUT)

IUNIT = AN ARRAY CONTAINING VARIABLE UNITS. THIS ARRA IS
DEFINED IN SUBROUTINE INEDIT (IhPUT)

II : COUNTER FOR THE NUMBER OF FILES DESCRIBED (OU PUT)

..

SUBROUTINE EDATA2 (MODE,Y,1X,IXI,INDEXI,JFIL,IUNIT,II)

SUBROUTINE ED A TA2 SETS UP INFORMATION FOR EDIT VARIABLES AND
VARIABLES ARCHIVED ON DATA TAPE FROM RELOCATABLE FILES.
INFORMATION DEFINED IN EDATA2 IS INTIMATELY TIED IN WITH nAJOR
EDITS, MINOR EDITS, AND DATA TAPE MANIPULATION.

EDATA2 IS CALLED BY SUBROUTINE INEDIT.

MODE : I FOR RETRAN OR RESTRT (INPUT)
= 2 FOR REEDIT
= 3 FOR PLOTER

Y : SCRATCH ARRAY USED TO STORE INF0PMATION DESCRIoING
THE RELOCATABLE FILES AND VARIABLES IN THE FILtS (OUTPUT)

IX = COUNTER FOR THE NUMBER OF VARIABLES DESCRI8ED t0UTPUT)
IXI = BEGINNING INDEX IN THE Y SCRATCH ARRAY WHERE TnE

INFORMATION DESCRIBING THE RELOCATARLE FILES AND
VARIABLES IS STORED (INPUT)

INDEXI : AN INDEX IN THE SCRATCH ARRAY Y USED AS A POSIIION
INDICATOR TO STORE INFORMATION DESCRIBING THE nELOC-
A TABLE FILES (INPUT)

IUNIT =AN ARR AY CONT AINING VARIABLE UNITS. THIS ARRA: IS
DEFINED IN SUBROUTINE INEDIT (INPUT)

JFIL = AN ARRAY CONTAINING GENERAL HEADINGS THIS ARnAY IS
DEFINED IN SUBROUTINE INEDIT (INPUT)

II : COUNTER FOR THE NUMBER OF FILES DESCRIBED (OU PUT)

..

SUBROUTINE EDATA3 (MODE,Y,IX,IXI,INDEXI,JFIL,IUNIT,II)

097cs

IX-9

SUBRUUTINE EDATA3 SETS UP INFORMATION FOR EDIT VARIABLES AND
V A r.l ABLE S ARCHIVED ON DATA TAPE FROM RELOCATABLE FILES.
INFORMATION DEFINED IN EDATA3 IS INTIMATELY TIED IN WITH nAJOR
EDITS, MINOR EDITS, AND DATA TAPE MANIPULATION.

EDATA3 IS CALLED BY SUBROUTINE INEDIT.

MODE = 1 F OR RETRAN OR RESTRT (INPUT)
: 2 FOR REEDIT
= 3 FOR PLOTER

Y : SCRATCH ARRAY USED TO STORE INFORMATION DESCRIoING
THE RELOCATABLE FILES AND VARIABLES IN THE FILLS (OUTPUT)

IX : COUNTER FOR THE NUMBER OF VARIAELES DESCRI6ED tOUTPUT)
IXI : BEG INN ING INDEX IN THE Y SCRATCH ARRAY WHERE TnE

INFORMATION DESCRIBING THE RELOCATIVE FILES ANu
VARIABLES IS STORED (INPUT)

I NDE X 1 : AN INGEX IN THE SCRATCH ARRAY Y USED AS A POSIsION
INDICATOR TO STORE INFORMATION DESCRIb!NG THL HELOC-
ATABLE FILES (INPUT)

JFIL = AN ARRAY CONTAINING GENERAL HEA3INGS. THIS ARRAY IS
DEFINED IN SUBROUTINE INEDIT (INPUT.

IUNIT = AN ARRAY CONTAINING VARIABLE UNITS. THfS ARRAr IS
DEFINED IN SUBROUTINE INEDIT (INPUT)

11 : COUNTER FOR THE NUMBER OF FILES DESCRIBE 0 (OUIPUT)

..

SURROUTINE EDATA4 (MODE,Y,IX,1XI,INDLX1,JFIL,IUNIT,II)

SURROUTINE EDATA4 SETS UP INFORMATION FOR EDIT VARIABLES *ND
VARIARLES ARCHIVED ON DATA TAPE FROM RELOCATABLE FILES.
INFORMATION DEFINED IN EDATA4 IS INTIMATFLY TIED IN WITH nAJOR
EDITS, MINOR EDITS, AND DATA TAPE MANIPULATION.

EDATA4 IS CALLED BY SUBROUTINE INEDIT.

MODE : 1 FOR RETRAN OR RESTRT (INPUT)
- 2 FOR REEDIT
= 3 FOR PLOTER

Y : SCR ATCH ARRAY USED TO STORE It.FORPATION DESCRIeING
THE RELOCATABLE FILES AND VARIABLES IN THr FILLS (OLTPUT)

IX : COUNTER FOR THE NUMBER OF VARIAELES DESCEIHED s0UTPUT)
IXI : BEGINNING INDEX IN THE Y SCRATCH ARRAY WHEPE TnF

INFORMATION DESCRIBING THE RELOCATIVF FILES ANO
VARIABLES IS STORED (INPUT)

INDEXI : AN INDEX IN THE SCRATCH ARRAY Y USLD AS A POSIiION
INDICATOR TO STORE INFORMATION DESCRIPING THL nELOC-
ATABLE FILES (INPUT)

JFIL : AN ARRAY CONTAINING GENERAL HEADINGS. THIS ARRAY IS
DEFINED IN SUBROUTINE INEDIT (INPUT)

IUNIT =AN ARRAY CONTAINING VARIABLE UNITS. THIS ARRAr IS
DEFINED IN SUHROUTINE I NE D I T (INPUT)

F{,7

IX-10

II = COUNTER FOR THE NUMBER OF F ILE S DE SCR IBED (OUePUT)

..

SUBROUTINE EDINIT (IDXCRD,LEDT, MODE,NOFILS,IDXF,IFIL,JrIL,LFIL
,KFIL,NFIL,MFIL,DD)

SUBROUTINE EDINIT READS AND CHECKS MINOR EDIT REQUEST OR PLOT
VARIABLE REQUES7 CARDS, PLUS FINISHES SETTING UP THE DATA RECORD
DESCRIPT40N FJ.E (RELOCATABLE FILE 43) AND THE ABBRE VI ATEs FILE
DESCRIPTION.

EDINIT IS ' A LLED BY SUBROUTINE INEDIT.

IDXCRD = INDEX OF THE DATA CARD ARRAY (INPUT)
LEDT = LOGICAL FLAG TO INDICATE IF INPUT EDITING SHOULD BE

DONE (OUTPUT)
MODE : 1 FOR RETRAN OR RSTRT (INPUT)

: ? FOR REEDIT
3 FOR PLOTER

NOFILS : NUMBER OF FILLS IN THE ABBRIEVIATED FILE DESCR4PTION
(INPUT)

ID XF = AN ARR AY C fs N T A I N THE RELOCATABLE FILE INDICES r0R EACH
FILE IN T'1E DATA RECORD DESCRIPTION. (INPUT)

IFIL : AN ARRAY CONTAINING REGION C HE C K PARAMETER FOR MINOR
EDIT AND PLOT REGUESTS. = -1 MULTIPLE AND SECuENTIAL
SETS, => 0 MULTIPLE AND NONSEGUENTI AL SETS, = u ONLY
ONE SET (INPUT)

JFIL = AN ARRAY CONTAINING GENERAL COMPONENT HEADINGS, DEFINEC
IN SURROUTINE INEDIT (INPUT)

LFIL = AN ARRAY CONTAINING THE LENGTH OF A SET FOR EALH FILE
IN THE DATA RECORD DESCRIPTION (INPUT)

KFIL = AN ARRAY CONTAINING THE NUMBER OF SETS IN EACH FILE IN
THE DATA RECORD DESCRIPTION (INPUT)

NFIL = AN ARRAY CONTAINING THE RELOCATABLE FILID FOR LACH FILE
IN THE DATA RECORD DESCRIPTION (INPUT)

MFIL : AN ARRAY INDICATING IF THE RE L OC A T ABLE FILE IN THE DATA
RECORD DESCRIPTION IS A MAJOR FILL OR A SUBFILL. 0 :
MAJOR FILE WITHOUT A SU6 FILE, 1 : MAJOR FILE W4TH A
SURFILE, >l : SU9 FILE WITH NFIL EGUAL TO THE OrFSET
FOR THE REGION CHECK PARAMETEF IN THE MAJOR FILE (INPUT)

DD = THE ARRAY THAT CONTAINS THE EDIT HEADINGS FOR ALL
VARIABLES IN THE DATA RECORD DESL?ITPION (INPUT)

...............**...

SUBROUTINE EDIT (MAJC,MINC,PLTC,LABL, PEND,IUNIT)

SUBROUTINE EDIT IS THE DRIVER FOR MAJOR AND MINOR EDITING.

}kk,pr

IX-11

EDIT IS CALLED BY SUBROUTINES TRAN AND EDITFE.

MAJC = MAJOR EDIT FLAG (INPUT)
MINC = MINOR EDIT FLAG (I f, P U T)

PLTC = DATA TAPE WRITE FLAG (INPUT)
LABL = DATA TAPE LABEL WRITE FLAG (INPUT)
PEND = END OF RUN FLAG (INPUT)
IUNIT = UNIT NUMBER GIVEN TO A RESTART TAFE (I.PUT)

..

SUHROUTINE EDITRE

SUBROUTINE EDITRE CONTROLS THE DATA TAPF EDITING PROCESS r0R
MODULE REEDIT.

EDITRE IS CALLED FROM SU6 ROUTINE REEDIT.

..

SUBROUTINE EDTCND (ISUBC,IVSLOL)

SUBROUTINE EDTCND EDITS CONDUCTOR PARAMETERS FOR MAJOR ED4TS.

EDTCND IS CALLED BY SUBROUTINE EDIT.

ISUBC = OFFSET USED TO PICK UP TEMP. DIST. SUbf!LE (uUTPUT)
OVSLOL = OFF SE T TO OBTAIN VARIABLE IVSL FROM HEAT CONDUCTOR

FILE (OUTPUT)

..

SUBROUTINE EDTCOR (ISUBCR.IVSLOL)

SUBROUTINE EDTCOR EDITS CORE CONDUCTOR PARAMETERS FOR MAJuR EDITS.

EDTCOR IS CALLED BY SUBROUTINE EDIT.

ISUBCR r OP' SET USED TO PICK UP TEMP. DIST. SUBFILE (ANPUT)
IVSLOL = OFF SE T USED TO OBTAIN VARIABLE IVSL FROM HEAT LONDUCTOR

FILE (INPUT)

..

SUBROUTINE EDTDNB (NDELT)

SUBROUTINE EDTDNB EDITS AUXILIARY DNB PARAMETERS FOR MAJ0n EDITS.

O
.,cg 212

IX-12

EDTDNB IS CALLED BY SUBROUTINE EDIT.

NDELT = NUMBER OF DNR PARAMETERS EDITED (OUTPUT)

..

SUBROUTINE EDTHTX (IVOL,ISV)

SUBROUTINE EDTHTX EDITS NON-CONDUCTING HEAT EXCHANGER PARAMETERS.

EDTHTX IS CALLED BY SUBROUTINE EDIT.

IVOL = VOLUME FILE INDEX
ISV : VOLUME FILE SETSIZ

..

SUBROUTINE EDTKIN

SURROUTINE EDTKIN EDITS THE REACTOR KINETICS PARAMETERS.

EDTKIN IS CALLED BY SUBROUTINE EDIT.

..

SUBROUTINE EDTLQL

SUBROUTINE EDTLOL EDITS THE LIQUID LEVEL CALCULATION PARAnETERS
FOR MAJOR EDITS.

E D TL GL IS CALLED FROM SUBROUTINE EDIT.

..

SUBROUTINE EDTPMP

SUBROUTINE EDTPMP EDITS CENTRIFUGAL PUMP PARAMETERS FOR MAJOR
EDITS.

EDTPMP IS CALLED BY SUBROUTINE EDIT.

..

SURROUTINE ENERGY (DT,IBRNCH)

SUBROUTINE ENERGY EVALUATES THE VOLUME HEAT SOURCES AND S ANKS FOR
THE SYSTEM BY CALLING SUBROUTINES FOR THE CONDUCTION SOLU ION

8 2\3~' '

,,_ n

AND/OR NON-CONDUCTING HEAT EXCHANGERS.

ENER GY IS CALLED BY SUBROUTINES TRAN, STSTAT, INITLZ, AND -

RESOPT.

DT = RETRAN TIME STEP (INPUT)
IBRNCH = 1 FOR STEADY STATE INITIALIZATION (INPUT)

= 2 FOR TRANSIENT
(INPUT)

..

SURROUTINE ENTRAN (IVOL,J,DT,HNEW)

SUBROUTINE ENTRAN CALCULATES JUNCTION ENTHALPY USING ENTHaLPY
TRANSPORT. JUNCTION ENTHALPY IS CORRECTED FOR HEAT ADDITIuN FROM
VOLUME AVER AGE ENTH ALPY.

ENTRAN IS CALLED FROM SUBROUTINE BUBB.

IVOL = VOLUME FILE INDEX (INPUT)
J = JUNCTION FILE INDEX (INPUT)
DT = TIME STEP SIZE (INPUT)
HNEW = NEW JUNCTION ENTHALPY (OUTPUT)

INPUT VALUE IS JUNCTION ENTHALPY AS C ALCULATED BY BUBB

..

SUBROUTINE EQSETS (IDXV,ISZV,PEQS)

SUBROUTINE EGSETS DETERMINES THE NUMBER OF INDEPENDENT EQUATION
SETS NECESSARY TO CALCULATE VOLUME ENTHALPIES FOR STEADY STATE
INIT I ALIZ ATION AND SETS UP FLAGS FOR EACH EGUATION SET.

EOSETS IS CALLED BY SUBROUTINE INITLZ.

IDXV = INDEX OF A SCRATCH ARRAY USED TO CONTAIN VOLUMt
PARAMETERS FOR STEADY STATE INITIALIZATION (INPUT)

ISZV = SET SIZE OF THE SCRATCH ARRAY (INPUT 3
MEQS = NUMBER OF EQUATION SETS (OUTPUT)

..

SUBROUTINE ETSCON

SUBROUTINE ETSCON DOES THE EDITING OF THE TIME STEP CONTRuL
SUMMARY.

E T SC ON IS CALLED BY SUBROUTINE TRAN.

h
''

IX-la

..

SURROUTINE FAIL

SUBROUTINE FAIL SETS AN ERROR FLAG.

..

F UNC T I ON FANG (G,0,VIS,IFAN)

FUNCTION FANG COMPUTES THE F ANNING FRICTION F ACTOR AS A FUNCTION
OF REYNOLDS NUMBER.

FANG IS CALLED BY SUBROUTINE STPM.

G = MASS FLUX (INPUT)
D = EQUIVALENT FLOW AREA DIAMETER (INPUT)
VIS = FLUID VISCOSITY (INPUT)
IFAN : MEMORY INDEX FOR FANNING CALCULATION (INPUT) s0UTPUT)

..

SURROUTINE FCOLDW (GCORE PR,FCW, QUAL)

SUBROUTINE FCOLDW COMPUTES FACTOR FOR COLD WALL EFFECT.

FCOLDW IS CALLED BY DNBM.

GCORE = MASS FLUX (INPUT)
PR = PRESSURE (INPUT)
FCW = FACTOR FOR COLD WALL EFFECT (OUTPUT)
QUAL = QUALITY (INPUT)

..........s...

SUBROUTINE FGRSPM(FS,GCORE,TDC)

SUBROUTINE FGRSPN COMPUTES THE GRID SPACER MIXING EFFECT vN CHF.

FGRSPM IS CALLED BY SUBROUTINE DNBM.

FS : GRID SPACER MIXING FACTOR (OU PUT)
SCORE = LOCAL MASS FLUX tINrUT)
TDC = THERMAL DIFFUSION COEFFICIENT (INrUT)

..

FUNCTION FILL (I)
.

*

''8 215

IX-15

FUNCTION FILL INTERPOLATES IN THE FILL TABLES TO OBTAIN FLOW,

PRESSURE AND ENTHALPY FOR POSITIVE FILLS AND FLOW FOR NEGATIVE
FILL S. FLUID STA TE PROPER TIES ARE ALSO OETAIhfD FOR POSIT 4VE
FILLS VIA A CALL TO STH205.

FILL IS CALLED BY SUBROUTINES FLOSRM, BUblNT, INITLZ, JUNnP AND
RESOPT.

I : JUNCTION RELOCATABLE FILE INDEX. (INFUT)
FILL JUNCT19N MASS FLOW RATE (0UIPUT)

..

SUBR007:NE FITH.'

SUBROUTINE FITHT COMPUTES CORE POWER PROFILE SHAPE BASED GN CORE
NODE VOLUMES.

FITHT IS CALLED BY SUBROUTINE ONBM.

..**........

SUBROUTINE FLOSRH (DT)

SUBROUTINE FLOSRH COMPUTES TERMS FOR THE MOMENTUM EGUATION AND
M AKE S A PREDICTIVE CALCULATION OF CHOKED FLOW.

FLOSRH IS CALLED BY SUBROUTINE TRAN.

DT= RETRAN TIME STEP SIZE (INPUT)

..

SUBROUTINE FRICTN (BF,BR,RA1,RAK,RA2,MVN)

SUBROUTINE FRICTN COMPUTES FORWARD AND REVERSE
GEOMETRIC FRIC TION COEFFICIENTS FOR SHARP EDGE AREA
CHANGES. TWO AREA CHANGES ARE CONSIDERED FRCM THE
SOURCE VOLUME TO THE JUNCTION AND THEN FROM THE
JUNCTION TO THE SINK VOLUME.

FRICTN IS CALLED BY SUBROUTINES PREW AND MIXFLO.

BF = FORWARD FRICTION MULTIPLIER BASED ON JUNCTION AREA
(OUTPUT)

BR = REVERSE FRICTION MULTIPLIER BASED ON JUNCTION AREA
(0UTPUT)

RAI : RECIPROCAL INLET AREA (INPUT)
RAK = RECIPROCAL JUNCTION AREA (INPUT)
RA2 : RECIPROCAL OUTLET AREA (INPUT)

h
*'

IX-16

MVN : FLAG TO USE ZUBER EQUATION FORM = 4 (INPUT)

..

SUBROUTINE HAVG (IDXV,ISZV MEQS)

SUBROUTINE HAVG COMPUTES VOLUME AVERAGE ENTHALPIES
REQUIRED FOR STEADY STATE FLOW WITH ENERGY ADDITIONS

SOLVES C.HBAR = G. HAVG IS USED FOR STEADY-

STATE INITIALIZATION ONLY.

HAVG IS CALLED BY SU6 ROUTINES INITLZ AND STSTAT.

IDXV = INDEX OF A SCRATCH FILE NEEDED FOR STEADY STATt VOLUME
VARIABLES (INPUT)

ISZV = SETSIZ OF VOLUME SCRATCH (INPUT)
MEQS = NUMBER OF EQUATION SETS (INPUT)

...**** ..

SURROUTINE HEADC

SURROUTINE HEADC COMPUTES HEAD TERMS - EITHER VOLUME
GEOMETRIC CENTER OR CENTER OF MASS COORDINATES
MAY BE USED. FOR GEOMETRIC CENTER CALCULATION
CMAS = HALF.ZVOL.

HEADC IS CALLED BY SUBROUTINE PREW.

...**.........

SURROUTINE HTRC (AA,BB TSUR,ISIDE,LL,II)

SUBROUTINE HTRC PROVIDES THE SURFACE TEMPERATURE AND
SURF ACE FLUX BOUNDARY CONDITIONS FROM A GENER ALIZED
BOILING CURVE FOR THE HE AT CONDUCTION SOLUTION.

HTRC IS CALLED BY SUBROUTINES TEMP AND TEMZ.

AA = COEFFICIENTS OF THE CONDUCTION SOLUTION (INPUT)
BB = IN THE FORM Q:AA.TSUR+BB (INPUT)

TSUR = SURFACE TEMPERATURE (INPUT /0UTPUT)
ISIDE : HEAT CONDUCTOR SIDE (INDUT)

: RIGHT SIDE
: 2 LEF T SIDE

LL : HEAD CONDUCTOR FILE INDEX (INPUT)

II : 0 FOR INITIALIZATION (INPUT)

= 1 FOR TRANSIENT

,"8 217

IX-17

..

FUNCTION HTXQ (I, PT HER M,DELT, W AVE , TEMP, GLOSS,HE ,T IME Z)

FUNCTION HTXQ COMPUTES THE HEAT REMOVAL OR ADDITION
VIA A NON-CONDUCTING HEAT EXCHANGER.

HTXQ IS CALLED BY SUBROUTINE ENERGY.

I = HEAT EXCHANGER INDEX NUMRER (INPUT)
PTHERM = THERMAL POWER (INPUT)
DELT = TIME STEP SIZE (INPUT)
WAVE = VOLUME AVERAGED FLOW (INPUT)
TEMP = VOLUME TE MPER A TURE (INPUT)
QLOSS = TOTAL RATE OF HEAT REMOVAL (INPUT /0UTPUT)
HE = ENERGY EXTRACTED BY HEAT EXCHANGER (OUTPUT)
TIMEZ = TRANSIENT TIME (SEC) (INPUT)
HTXO = HEAT REMOVED (0UTPUT)

..

SURROUTINE IMIXCK

SUBROUTINE IMIXCK CHECKS USER INPUT OF THE MIXING INDEX, EVMIX,
AND DETERMINES NEW ARRAYS IJ AND IK FOR JUNCTIONS THAT MI)
MOMENTUM.

MVMIX(I) = 0, COMPRESSIBLE SINGLE STREAM FLOW, NO MIYING
IF MVMIX(I) = 1, JUNCTION I MOMENTUM IS MIXE0 WITH ANOTHER

JUNCTION IN THE "FROM" VOLUME
MVMIX(I) =2, JUNCTION I IS MIXED IN THE "T0" VOLUME
MVMIX(I) = 0, INCOMPRESSIBLE SINGLE STREAM FLOW

ONLY TWD FLOW RATHES CAN BE MIXED AND THEN ONLY ON ONE S I t?E
(EITHER THE VOLUME "FROM" OR THE VOLUME "T0"). MIXED Ft0WS MUST
RE MIXED ON EITHER THE INLET OR THE OUTLET SIDE OF A VOLUME
THEN IJtI) = J AND IJtJ) = I

THE IK ARRAY IS THE VOLUME NUMBERS FOR MIXING, OUTLET POSITIVE
AND INLET NEGATIVE

A FILL IS REVERSED AND MIXED WITH ANOTHER JUNCTION
IJ(J) = -I

IF A FILL JUNC TION IS SINGLE STREAM FLOW BUT REVERSED
IN DIRECTION THEN INPUT MVMIX AS -2 (FILL)
AND IJ(I) =IS SET TO -I

IMIXCK IS CALLED BY SUBROUTINE INJUN.

..

SUBROUTINE INAREA

SUBROUTINE INAREA READS AND CHECKS THE GENERALIZED

7 '~ h
a

IX-18

9 _ _ _ _ _ _ i-. _ _ . _ . _ .' " N ',.
. _ . .$_

. _. .. . _. . . ._ ..__ ______ _ _ .
>_ _

,,

.

TABULAR DATA C ARD S (12 XX Y Y) .
*, P

INAREA IS CALLED BY SUBROUTINE INTRAN.
..

.

. ..

SUBROUTINE INBUBL

SUBROUTINE INBUBL READS AND CHECKS THE BUBBLE *

.
RISE MODEL DATA CARDS (06XXX1). '

INBUBL IS CALLED BY SUBROUTINE INTRAN.
5

^

.. '

,

37 SUBROUTINE INCDHT

SUBROUTINE INCDHT READS AND CHECKS THE SPECIFIED e
HEAT TRANSFER COEFFICIENT CARDS (15000X). ''*

INCDHT IS CALLED BY SUBROUTINE INHEAT. ',
S

..

~

. . SUBROUTINE INCKV

SUBROUTINE INCKV READS AND CHECKS VALVE DATA CARDS
(11XXXO).

'

INCKV IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE INCNST (NOGO)

SUBROUTINE INCNST READS AND CHECKS THE PROBLEM CONTROL
AND CONSTANTS DATA CARD (010005). '

INCNST IS CALLED BY SUBROUTINE INTRAN.g

NOGO : ERROR FLAG (INPUT /0UTPUT)
.

.

.. *

SUBROUTINE INCNTI ..

SUBROUTINE INCNT1 READS ALL THE 70XXXX CARDS USED TO SPECIFYe

THE CONTROL SYSTEM MODEL, SETS UP FILES 53 AND 54, AND C ALCULA TES

_

<

.

IX-19
'*

.

A

*

n

V ""
-

KT.
3

'

|INDICES NEEDED BY TRANSIENT CALCULATIONS.

INCNTI IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE INCNT2

SUBROUTINE INCNT2 CALCULATES ADDRESSES RELATIVE TO ISTOR(1) WHICH
COULD NOT BE DONE BY INCNT1. THESE ADDRESSES ARE THE ADDbESSES OF
V ARI ABLE S TO BE MONITORED BY THE CONTROL SYSTEM AND THE A l'D R E S S E S
OF AREA VS. TIME TABLES USED BY THE FNG AN3 FN2 CONTROL Bl0CKS.

INCNT2 IS CALLED BY SUBROUTINE INEDIT.

..

SUPROUTINE INCORE

SUBROUTINE INCORE READS AND CHECKS THE CCRE SECTION
DATA CARDS (16XXX0).

INCORE IS CALLED BY SUBROUTINE INHEAT.

....................................

SUBROUTINE INDATA (IUNIT,JUNIT)

SUBROUITNE INDATA '.sP I ES HE A DE R L A BEL AND PROBLEM
DESCRIPTION DATA FROM IUNIT TO JUNIT AND STORES
THE ORIGINAL PROBLEM INPUT DATA IN FILE ID 1.0.
THIS SUBROUTINE IS USED FOR RESTART RUNS ONLY.

INDATA IS CALLED BY SUBROUTINE INRSTR.

IUNIT : UNIl TO READ DATA FROM (INPUT)
JUNIT = UNIT TO WRITE DATA TO (INPUT)

..

SUBROUTINE INDNB

SUBROUTINE INDNB READS AND CHECKS THE DNHR DATA CARDS
(8001XX,8002XX,8003XX, AND 8004XX).

INDNB IS CALLED BY SUBROUTINE INTRAN.

..

SURROUTINE INEDIT (IDXCRD.LEDT, MODE,ITYP,KUNIT)

Ih'7-

IX-20

SUBROUTINE INEDIT IS THE ORIVER FOR CREATION OF THE DATA hECORD
DESCRIPTION FILE (RELOCATABLE FILE 43).

INEDIT IS CALLED BY SUBROUTINES INEDTE, REDTAP, INTRAN.

IDXCRD = INPUf FILE DATA INDEX (INPUT)
LEDT = .TRUE. FOR RESTARTING WITH MINOR EDIT RE0 VESTS.

OTHERWISE . FALSE. (OUTPUT)
MODE : 1 FOR RELAP/E OR RESTRT/E (INPUT)

= 2 FOR REDIT/E
: 3 FOR PLOTR/E

ITYP = 2 FOR RELAP4/003 DATA TAPES (INPUT)
= 3 FOR RELAP4/002 DATA TAPES
= 4 FOR REL AP3 DT AT TAPES
: 5 FOR STRANGER DATA TAPES

KUNIT = TAPE UNIT NUMBER (INPUT)

..

SURROUTINE INEDTE

SUBROUTINE INEDTE RE ADS AND CHECKS INPUT DATA FOR
THE REEDIT MODULE.

INEDTE IS CALLED BY SUBROUTINE REEDIT.

..

SURROUTINE INFILL

SUeROUTINE INFILL READS AND CHECKS THE FILL D ATA
CARDS (13XXYY).

INFILL IS CALLED BY SUBROUTINE INTRAN.

..

SUER 0uTINE INGE0M (t.iDxTGM.IG,NR,1w,IDxR,IDxS.IDxvP,Rn01,St,
SR.IR,M)

SUBROUTINE INGE0M RE ADS AND CHECKS HE A T CONDUCTOR
GEOMETRY CARDS (17XXYY).

INGE0M IS CALLED BY SURROUTINE INHEAT.

L = GEOMETRY NUMBER (INPUT)
IDxTGM = INDEX OF TEMPORARY HUFFER FILE FOR READING IN bEOMETRY

DATA (INPUT)
IG = GEOMETRY TYPE (OUTPUT)

IX-21 7"h*

NR = NUMBER OF REGIONS (0UTPUT)
IW = EDIT FLAG (INPUT)
IDXS = INDEX OF FILE CONTAINING SURFACE AREA WEIGHT FOR THIS

CONDUCTGR GEOMETRY (INPUT)
IDXR = INDEX OF FILE CONTAINING GEOMETRY REGION VARIAFLES

(INPUT)
IDXVP = INDEX OF FILE CONTAINING NODAL VOLUMES FOR THIE

CONDUCTOR GEOMETRY (INPUT)
RROI = INITIAL FUEL ROD RADIUS (OUTPUT)
SL = LEF T CONDUC TOR SURFACE AREA PER UNIT HEIGHT (OUTPUT)
SR = RIGHT CONDUCTOR SURFACE AREA PER UNIT HEIGHT (OUTPUT)
IR = INPUT ERROR INDICATOR (OUTPUT)
M = NODE AT RIGHT SURFACE (OUTPUT)

..

SUBROUTINE INHEAT

SUBROUTINE INHEAT IS ESSENTIALLY THE DRIVER FOR
PROCESSING HEAT CONDUCTOR INPUT DATA.

INHEAT IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE INHTXQ

SUBROUTINE INHTXQ READS AND CHECKS THE NON-
CONDUCTING HEAT EXCHANGER DATA CARDS (21XXYY).

INHTXQ IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE INIFTE

SUBROUTINE INIFTE RESERVES A FILE FOR THE SCRATCH
ARRAYS USED IN SUBROUTINE NIFTE.

INIF TE IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE INITLZ (IDXV,ISZV,IDXV,ISZV,MECS)

SURROUTINE INITLZ OBTAINS INITIAL GUESSES FOR
STATE PROPERTIES, LOSS COEFFICIENTS, PRESSURES,

ENTHALPIES AND HEAT CONDUCTION FOR STEADY-STATE
INITIALIZATION. IF STEADY-STATE INITIALIZATION
IS NOT USED THIS SUHROUTINE DIRECTS THE INITIALAZTION OF IHE

''f
'

,
IX-22

PROBLEM

INITLZ IS CALLED BY SUBROUTINE STSTAT.

IDXJ = INDEX OF A SCRATCH FILE CONTAINING JUNCTION VARAlblES
USED FOR S TE A 0 Y-ST A TE INTIALIZATION (INPUT)

ISZV : SET SIZE OF THE JUNCTION SCRATCH FILE (I N o t>T)
IDXV = INDEX OF A SCR A TCH FILE CONTAINING VOLUME VARIABLES

USED FOR STEADY-STATE INITIALIZATION. (INPUT)
ISZV = SET SIZE OF THE VOLUME SCRATCH FILE (INPUT)
MEGS : NUMBER OF INDEPENDENT ENERGY EQUATION SETS (I N P t:T)

..

SURROUTINE INJUN

SUBROUTINE INJUN RE ADS AND CHECKS JUNCTION DAT A
CARDS (08XXXY).

INJUN IS CALLED BY SUBROUTINE INTRAN.

..

SURROUTINE INLVC

SUBROUTINE INLVC READS AND CHECKS EQUIVALENT LIQUID
LEVEL VOLUME CALCULATION DATA CARD (060000).

INLVC IS CALLED 8Y SUBROUTINE INBUBL.

..

SURROUTINE INMPRO (M,NK,NC,NX,IDXK,IDXC,IDXX)

SUBR OUT!N E INMPRO READS AND CHECKS. THERMAL HEAT
CAPACITY DATA CARDS (19XXYY), THERMAL CONDUCTIVITY
DATA CARDS (18XXYY), AND LINEAR EXPANSION COEFFICIENT
D A TA CARDS (20XXYY),

INMPRO IS CALLED BY SUBROUTINE INHEAT.

M = MATERIAL NUMBER (INPUT)
NK = NUMBER OF ENTRIES FOR THERMAL CCNDUCTIVITY TABLE

(OU TPU T)
NC = NUMBER OF ENTRIES FOR HEAT CAPACITY (OUTPUI)
NX : NUMBER OF ENTRIES FOR EXPANSION COEFFICIENT (OUTPUT)
IDXK = FILE INDEX OF THERMAL CONDUCTIVITY TABLE (INPUT)
IDXC : FILE INDEX OF HEAT CAPACITY TABLE (INPUT)
IDXX : FILE INDEX OF THERMAL EXPANSION COEFFICIENT (INPUT)

g 223

IX-23

..

SUBROUTINE INPLOT
-

SUBROUTINE INPLOT PROCESSES INPUT DATA AND RESERVES
FILES FOR PLOTTING.

INPLOT IS CALLED BY SUBROUTINE PLOTER.

..

SUBROUTINE INPOWR

SUBROUTINE INPOWR DETERMINES WHAT TYPE OF POWER
GENERATOR MODEL IS DESIRED AND CALLS THE
APPROPRIATE SUBROUTINE TO READ THE CARD DATA.

INPOWR IS CALLED BY SUBROUTINE INTRAN.

...>....................

SUBRCUTINE INPM

SURROUTINE INPM READS AND CHECKS PUMP DESCRIPTION
DATA CARDS (090XXY), PUMP HEAD MULTIPLIER DATA CARDS
(091XXY), PUMP TORQUE MULTIPLIER DATA CARDS (092XXY),
PUMD STOP DATA CARDS (095XX1), PUMP MOTOR TORQUE
D A TA f. A R D S (097XXY), AND THE PUMP CURVE SET INPUT

DATA CARD (100000).

INPM IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE INPUMP (K,NC,IDXP,IDXBUF,NAME,FILIDS)

SUBROUTINE INPUNP READS THE PUMP HEAD AND TORGUE DATA CARCS
(10XYYZ).

INPUMP IS CALLED BY SUBROUTINE INPM.

K = PUMP CURVE SET NUMBER (TNPUT)
NC = NUMBER OF CURVES (INPUT /0UTPUT)
IDXP = INDEX OF CURVE SET FILE (INPUT)
IDXBUF = INDEX OF FILE TO READ DATA (INPUT)
NAME = ARRAY TO PASS PUMP IDENTIFICATION FOR EDIT (OUTPUT)
FILIDS = ARRAY TO PASS PUMP FILE ID'S (OUTPUT)

..

SUBROUTINE INPUT (FIRST,LSST,NCASE,IGO)

k7r
,

a

IX-24

SUBROUTINE INPUT READS THE PROBLEM DIMENSION CARD
(01000Y). INPUT ALSO INITIALIZES FTB AND SETS UP THE
CARD DATA ARRAY VIA A CALL TO INP.

INPUT IS CALLED BY SUBROUTINE RMAIN.

FIRST = FIRST PROGRAM FLAG (OUTPUT)
LSST = LAST PROGRAM FLAG (OUTPUT)
NCASE : CASE NUMBER (OUTPUT)
IGO : PROBLEM TYPE (OUTPUT)

= 1 RELAP/E
: 2 RESTRT/E
: 3 REDIT/E
: 4 PLOTR/E

..**....

SUBROUTINE INREAC

SUBROUTINE INREAC READS AND CHECKS THE DENSITY
REACTIVITY TABLE DATA CARDS (1420XX), THE DOPPLER
TABLE DATA CARDS (1430XX), AND THE REACTIVITY COEFFICIENT
DATA CARDS (140XX0).

INAEAC IS CALLED BY SUBROUTINE INRKEN.

..

SUPROUTINE INRKEN

SURROUTINE INRKEN READS AND CHECKS THE KINETICS CONSTANTS
DATA CARDS (140000) AND THE DELAY NEUTRON DATA
OVERIDE CARD (140001)

INRKEN IS CALLED BY SUBROUTINE INPOWR.

..****..................

SURROUTINE INRSTR (IUNIT,JUNIT)

THIS SURROUTINE DIRECTS INPUT AND INITIALIZATION OF RESTRI
PROBLEMS. TWO INPUT DATA SETS ARE USED, THE MINIMAL
RESTART DECK SUPPLIED BY THE USER AND THE ORIGINAL DATA
STORED ON THE PLOT TAPE TO BE USED FOR RESTART.

INRSTR IS CALLE0 BY SUBROUTINE RETRAN.

IUNI T = TAPE UNIT NUMBER OF RESTART DATA TAPE (I NP tf T)

JUNIT = TAPE UNIT NUMBER OF WHICH NEW DATA TAPE IS WRI1 TEN

.., g 225
IX-25

(INPUT)

..

SUBROUTINE INRTRN

SUBROUTINE INRTRN CHECKS AND EDITS THE PROBLEM DIMENSION
DATA AND READS THE LABEL FOR A PLOT TAPE IF ONE IS
SUPPLIED (CARD 010040).

INRTRN IS CALLED BY SUBROUTINE RETRAN.

..

SUBROUTINE INSCRM

SUBROUTINE INSCRM READS AND CHECKS THE SCRAM TABLE CATA
CARDS (141XYY).

INSCRM IS CALLED BY SUBROUTINES INPOWR, AND INRKEN.

..

SUBROUTINE INSLAB

SUBROUTINE INSLAB READS, CHECKS AND EDITS THE HEAT
CONDUCTOR DATA CARDS (ISXXXY).

INSLAR IS CALLED BY SUBROUTINE INHEAT.

..

SUBROUTINE INSTGN

SUBROUTINE INSTGN READS AND CHECKS THE STEADY-STATE
INITIALIZATION CONVERGENCE CRITERIA DATA CARD (230000),
AND THE STEADY-STATE P0wER REMOVAL SYSTEM DATA
CARDS (230XXY).

INSTGN IS CALLED BY SUBROUTINE INTRAN.

...**.................

SUBROUTINE INTEG(INPUT,0UTPUT GAIN)

SUBROUTINE INTEG MODELS A RECTANGULAR INTEGRATOR.

INTEG IS CALLED BY SUBROUTINE CONTRL.

'"8 226
-

IX-26

INPUT : VALUE OF INPUT SIGNAL AT THE CURRENT TIME STEP (INPUT)
OUTPUT = VALUE OF OUTPUT SIGNAL AT THE CURRENT TIME STEP (OUTPUT)
GAIN : INTEGRATOR GAIN (INPUT)

s

..

SUBROUTINE INTRAN (NOGO)

SUBROUTINE INTRAN DIRECTS THE CALLING OF INPUT PROCESSING SEGMENTS
FOR RETRAN AND RESTRT MODULES.

INTRAN IS CALLED BY SUBROUTINE INRTRN AND INRSTR.

NOGO = SYSTEM ERROR FLAG (OUTPUT)

..

SUBROUTINE INTRIP (IDXCRN,LTRP,LRST)

SUBROUTINE INTRIP READS AND CHECKS THE TRIP CONTROL DATA
CARDS (04XXX0).

INTRIP IS CALLED BY SUBROUTINE INTRAN.

IDXCRN : INDEX OF THE FILE CONTAINING INPUT DATA CARDS (INPUT)
LTRP = .TRUE. IF RESTART WITH NEW TRIPS SUPPLIED

OTHERWISE . FALSE. (INPUT)
LRST = .TRUE. IF RESTART RUN, OTHERWISE . FALSE. (INPUT)

.............**...

SUBROUTINE INTSTP (IDXCRD,LTRP,LRST)

SUBRguTINE INTSTP READS AND CHECKS THE TIME STEP
DATA CARDS (03XXX0).

INTSTP IS CALLED BY SUBROUTINE INTRAN.

IDXCR0 : FILE INDEX OF ARRAY CONTAINING INPUT DATA (INPUT)
LRST = .TRUE. IF A RESTART RUN WITH NEW TIME STEPS

SUPPLIES, OTHERWISE . FALSE. (INPUT)
LRST = .TRUE. IF RESTART RUN, OTHERWISE . FALSE. (INPUT)

..

SUBROUTINE INTV

'"8 227y

SUBROUTINE INTV READS AND CHECKS THE T IME DEPENDENT
VOLUME DATA CARDS (07XXXY) AND THE BOUNDARY CONDITION
TAPE REQUEST DATA CARDS (01002Y).

INTV IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE INVOL

SUBROUTINE INVOL READS AND CHECKS VOLUME DATA CARDS
(OSXXXY). THIS SUBROUTINE ALSO OBTAINS INITIAL STATE
PROPERTIES FOR VOLUME THERMODYNAMIC CONDITIONS
DESCRIBED WITH ANYTHING OTHER THAN A PRESSURE AND
ENTHALPY ENTRY.

INVOL IS CALLED BY SUBROUTINE INTRAN.

... ** ..**......***

SUBROUTINE IPMCK

SUBROUTINE IPMCK PERFORMS FURTHER CHECKING ON THE PUMP
INPUT DATA PLUS INITIALIZES PARAMETERS NEEDE0
BY THE PUMP MODEL.

IPMCK IS CALLED BY SUBROUTINE INTRAN.

..

SURROUTINE JHOFF

SUBROUTINE JHOFF COMPUTES THE ENTHALPY BIAS (FOR FILL
JUNCTIONS FLAGGED AS BIAS JUNCTIONS) SUCH THAT DU/DT
IS ZERO. THIS SUBROUTINE IS USED FOR STEADY-STATE INITIALIZATION
ONLY.

JHOFF IS CALLED BY SUBROUTINE STSTAT.

...*********

SUBROUTINE JUNHP(DT,IBH1)

SUBROUTINE JUNHP PERFORMS TWO FUNCTIONS, IF IBH1 : 2 JUNHF
DEFINES JUNCTION ENTHALPY AND GUALITY AND COMPUTES DU/DM,
IF IBH1 = 1 JUNHP 00ES THE VOLUME BUBBLE MASS INTEGRATION.

JUNHP IS CALLED BY SUBROUTINES BAL AND PREW.

, *

O
IX-28

DT = RETRAN TIME STEP (INPUT)
IBH1 = 2 FOR JUNCTION ENTH ALPY CALCULATION, = 1 FOR

BUBBLE MASS INTEGRATION (INPUT)

............................ **........................**.......

SUBROUTINE JVEDIT (IDXS,ISZS,IDXB)

SUBROUTINE JVEDIT EDITS ACTUAL JUNCTION. VOLUME, HEAT
CONDUCTOR AND BUBBLE RISE DATA ACTUALLY BEING USED
AFTER INITIALIZATION OF THE PROBLEM.

JVEDIT IS CALLED BY SUBROUTINE STSTAT.

IDXS : INDEX OF A SCRATCH FILE USED TO STORE HEAT CONDUt. TOR
DATA FOR STEADY-STATE INITIALIZATION (INPUT)

ISZS : SET SIZE OF THE SCRATCH FILE CONTAINING HEAT
CONDUCTOR DATA. (INPUT)

IDXB : INDEX OF A SCR%TCH FILE USED TO STORE BUBBLE RISt
DATA FOR STEADY-STATE INITIALIZATION (INPUT)

. * * * . . . * * * .

SUBROUTINE KINITL

SUBROUTINE KINITL COMPUTES INITIAL CONDITIONS FOR THE POINT
K INE TICS MODEL.

KINITL IS CALLED BY SUBROUTINE STSTAT.

..

SUBROUTINE LABLCK (LABL,NC,IBMRUN)

SUBROUTINE LABLCK DETERMINES HOW MANY CHARACTERS ARE IN
THE AXIS LABEL FOR PLOTTING AND PACKS LABEL CHARACTERS
INTO A10 FORMAT FOR CDC MACHINES.

LABLCK IS CALLED BY SUBROUTINE PLOTR.

LABL : ARRAY CONTAINING AXIS LABEL (INPUT /0VIPUT)
NC : NUMBER OF CHARACTERS IN THE LABEL (OUTPUT)
IBMRUN : .TRUE. IF RUN ON IBM, . FALSE. IF CDC (INPUT)

.................**.......................******* .*****........

SUBROUTINE LAG (INPUT,0UTPUT, TAU, GAIN)

~'"8 229-

IX-29

SUBROUTINE LAG MODELS A LAG COMPENSATION NETWORK, WHIC H HAS
A LAPLACE TRANSF0kN OF 1/(1+S* TAU).

LAG IS CALLED BY SUBROUTINE CONTRL.

INPUT : VALUE AT INPUT SIGNAL AT THE CURRENT TIME STEP (INPUT)
OUTPUT = VALUE OF THE OUTPUT SIGNAL AT THE CURRENT TIME SlEP

(OUTPUT)
TAU = LAG TIME CONSTANT (INPUT)
GAIN : GAIN OF THE LAG BLOCK (INPUT)

..

SUBROUTINE LDLAG (INPUT,0UTPUT,TLEAD,TLAG, GAIN, BOX,INorX)

SUBROUTINE LDLAG MODELS A LEAD-LAG COMPENSATION NETWORK, VHICH
HAS A LAPLACE TRANSFORM OF (1+TLEAD*S)/(1+TLAG*S).

LDLAG IS CALLED BY SUBROUTINE CONTRL.

INPUT = VALUE AT INPUT SIGNAL AT THE CURRENT TIME S TE P (INPUT)
OUTPUT : VALUE OF THE OUTPUT SIGNAL AT THE CUTTENT TIME SIEP

(OUTPUT)
TLEAU = LEAD TIME CONSTANT (INPUT)
TLAG : LAG TIME CONSTANT (INPUT)
GAIN : GAIN OF NETWORK
BOX : STORAGE ARRAY REPRESENTING STATE OF THE

LEAD LAG ELEMENT (INPUT /0UTPUT)
INDEX : ON ENTRY TO SUBROUTINE, INDEX IS THE ADDRESS

OF BOX (1) RELATIVE TO BOX (1), ARRAY IN CALLING
SUBROUTINE CONTRL BEFORE RETURNING TO CONTRL, INUEX
IS INCREASED BY AN AMOUNT EQUAL TO THE LENGTH OF THE
BOX ARRAY (INPUT /0U TPUT)

..

FUNCTION LEAK (H,P,1,0GDP,ICHOK,ITYPE)
FUNCTION LEAK RETURNS TABLE VALUE OF M ASS FLUX GIVEN SOURLE
ENTHALPY, PRESSURE AND CHOKING TYPE INDICAT0k.

LEAK IC CALLED BY SUBROUTINL FLOSRH

H = SOURCE ENTHALPY (INPUT)
P : SOURCE PRESSURE (INPUT)
I : JUNCTION NUMBER (INPUT)
OGDP : CHANGE IN MAXIMUM FLOW RATES PER UNIT CHANGE 10

STAGNATION PRESSURE (OUTPUT)
ICH0n : LIQUID PHASE CHOKING CONDITION (INPUT)
ITYPE : CHOKING TYPE INDICATOR (OUTPUT)
LEAK = TABLE VALUE OF MASS FLUX (LHM/FT2 - SEC) (GUTPUT)

7r

IX-30

..

SUBROUTINE LEVCAL

SUBROUTINE LEVCAL PERFORMS THE LIQUID LEVEL CALCULATION.
LEVCAL SUMS LIQUID MASSES OVER SELECTED "0LUMES TO COMPUTt
AN EQUIVALENT HEIGHT.

LEVCAL IS CALLED BY SUBROUTINES BAL AND RESOPT.

...........................**................................**.

SUBROUTINE LOCEND

THIS IS A OUMMY SUHROUTINE USED ONLY TO F IND LOAD POINTS.

LOCEND IS CALLED BY SUBROUTINE RESOPT.

..****..** ...

SUBROUTINE LOCMD1 (IAD)

SUBROUTINE LOCMD1 IS USED TO OBTAIN THE BEGINNING ADDRESS F0
SEGMENT LOCMD1.

LOCMD1 IS CALLED BY SUBROUTINES INDATA AND INRTRN.

IAD = BEGINNING ADDRESS OF SEGMENT LOCMD1 (OUTPUT)

..

SUBROUTINE LOCMD2(IAD)

SUBROUTINE LOCMD2 IS USED TO OBT Aliv THE BEGINNING ADDRESS
OF SEGMENT LOCM02.

LOCMD2 IS CALLED BY SUBROUTINE REEDIT.

IAD = BEGINNING OF SEGMENT LOCMD1 (OUTPUT)

..***.........

SUBROUTINE LOCMD3(IAD)

SUBROUTINE LOCMD3 IS USED TO OBTAIN THE BEGINNING
ADDRESS OF SEGMENT LOCMD3.

LOCMD3 IS CALLED BY SUBROUTINE PLOTER.

'8 23I'

IX-31

IAD = BEGINNING ADDRESS OF SEGMENT LOCMD3 (OUTPUT)

..

SUBROUTINE LOCTBL

THIS SUBROUTINE IS USED TO LOCATE THE BEGINNING OF THE
LEVEL 2 LOADER TABLE.

LOCTbL IS CALLED BY SUBROUTINES RMAIN AND PESSEG.

..** .*****.........****

SURROUTINE LOOPS (NLOOP)

SUBROUTINE LOOPS DETERMINES THE NUMBER OF INDEPENDENT FLOV
NETWORKS AND LIN.S THEIR ASSOCIATED HEAT SOURCES AND SINKt TO
THEM.

LOOPS IS CALLED FROM SUBROUTINE INITLZ.

NLOOP = NUMBER OF INDEPENDENT FLOW NETWORKS (OUIPUT)

...........................***..................................

SUBROUTINE MACH (W,RA1,RAK,RA2,V1,VK,N2,C2,R1,RK,R2,JK,KK)

SUBROUTINE MACH COMPUTES THE COMPRESSIBLE EFFECT OF AN ARtA
CHANGE USING AN ISENTROPIC, CONSTANT VTLOCITY MODEL.

MACH IS CALLED BY SUBROUTINES PREW AND MIXCLO.

W = JUNCTION FLOW (INPUT
RA1 : RECIPRICAL NORMAL INLET FLOW ARE A (INPUT)
RAK = RECIPROCAL NORMAL JUNCTION FLOW AREA (IhPUT)
RA2 : RECIPROCAL NORMAL OUTLET FLOW AREA (INPUT)
V1 : SPECIFIC VOLUME, INLET (INPUT)
VK = SPECIFIC VOLUME, MINIMUM VALUE ON INPUT, JUNCTION

VALUE ON OUTPUT (INPUT /0UIPUT)
V2 : SPECIFIC VOLUME, OUTLET (INPUT /0U IPU T)
C2 = SONIC VELOCITY SQUARED (INPUT /0UTPUT)
R1 : OENSITY, INLET (0UTPUT)
RK = OENSITY, MAXIMUM VALUE ON INPUT, JUNCTION

VALUE ON INPUT (INPUT /0UlFUT)
R2 : DENSITY VOLUME, OUTLET (OUTPUT)
JK : SONIC CHOKING FLAG (OUTPUT)
KK = TABLE MEMORY INDEX (INPUT /0UTPUT)

..,.....................

SUBROUTINE MASBAL (IDXV,ISZV)

h7 F

IX-32

SUBROUTINE MASBAL COMPUTES JUNCTION M ASS FLOWS NOT SUPPLIED
VIA USER INPUT AND CHECKS TO INSURE A STEADY STATE MASS
FLOW BALANCE.

MASBAL IS CALLED BY SUBROUTINE INITLZ.

IDXV = INDEX OF A SCRATCH ARRAY CONTAINING VOLUME GU ANTIT IE S
FOR STEADY STATE INITIALIZATION (INPUT)

ISZV = SET SIZE OF THE VOLUME SCRATCH ARRAY (INPUT)

.........................***.**.......................**********

SUBROUTINE MH20R (AVEX,CLTI,CTR, CTRL,GASM,GMWR RLEN,RRC,DT,TS)

SUBROUTINE MH20R SETS ARGUMENTS FOR SUBROUTINE MWR AND COAVERTS
THE OUTPUT FROM MWR TO A GENERATION RATE.

MH20R IS CALLED BY SUBROUTINES SLABHT AND RESOPT.

AVEX : AVERAGE QUALITY (INPUT)
CLTI = INITIAL CLAD THICKNESS, FT. (INPUT)
CTR : DEPTH REACTION HAS PENETRATED CLADDING AT END OF ANY

TIME STEP, FT. (INPUT /0UTPUT)
CTRL = DEPTH REACTION HAS PENETRATED CLADDING AT END OF ANY

TIME STEP, FT. (OUTPUT)
GASM = GAS AMSS (INCLUDES BUBBLE MASS) (INPUT)
QMWR : HE A T GENER A TED PER FOOT OF ROD, BUT/SEC. (INPUT)

RLEN : ROD LENGTH (INPUT)
RRO : ORIGINAL FUEL ROD RADIUS, FT. (INPUT)
DT = TIME STEP, SEC. (INPUT)
TS i CALCULATED SURFACE TEMPERATURE, DLC. F (INPUT)

..***.............****

SUBROUTINE MIXFLO (I,W,AI,8W,C2,JC,VE.VI,HKE,PST,RAI,RtK,RAL,
RVI,VII,VI2,RVII,RVI2 bMIX,FKGE0M,IFET)

SUBROUTINE MIXFLO PERFORMS THE MOMENTUM MIXING CALCULATIOP:S.

MIXFLO IS CALLED BY SUBROUTINE PREW.

I : JUNCTION INCEX (INPUT)
W = FLOW (INPUT)
AI : JUNCTION AREA (INPUT)
BW = FANNING FRICTION COEFFICIENT OF W* 2 (OUTPUT)
C2 : MACH NUMBER SQUARED AT JUNCTION (INPUT /0U1DUT)
JC : SONIC CHOKING FLAG (INPUT)
VE = MOMENTUM (OUTPUT)
VI : SPECIFIC VOLUME (INPUT /0UTPUT)
HKE : CONVERSION FACTOR (INPUT)
PST = MIXED FLOW JUNCTION KINETIC ENERGY (OUTPUT)

~h
~7-

IX-33

RAI : RECIPROCAL OF JUNCTION AREA (INPUT)
RAK = RECIPROCAL OF VOLUME FLOW AREA ON "FROM" SIDE (INPUT)
RAL = RECIPROCAL OF VOLUME FLOW AREA ON "T0" SIDE (INPUT)
RVI = RECIPROCAL OF SPECIFIC VOLUME IN JUNCTION (INPUT)
VII : SPECIFIC VOLUME AT JUNCTION INLET (INPUl/0UTPUT)
VI2 : SPECIFIC VOLUME AT JUNCTION OUTLET (INPUI/0UTPUT)
RVII : RECIPROCAL OF SPECIFIC VOLUME AT JUNCTION INLEI (INPUT)
RVI2 : RECIPROCAL OF SPECIFIC VOLUME AT JUNCTION OUTLET (INPUT)
WMIX = MIXED FLOW (OUTPUT)
FKGEOM : CALCULATION TYPE FLAG (INPUT)
IRET = RETURN FLAG (OUTPUT)

..**..................**..

SUBROUTINE MWR (DRP DRP1,GMWR,T,MSTA,DT,RO,CT)

SUBROUTINE MWR COMPUTES METAL WATER REACTION HEAT AND TH)
DEPTH THE METAL WATER REACTION HAS PENETRATED THE CLADDING.

MWR IS CALLED BY SUBROUTINE MH20R.

DRP = DEPTH REACTION HAS PENETRATED CLADDING (INPUT)
AT START OF ANY TIME STEP, INCHES

DRP1 : DEPTH REACTION HAS PENETRATED CLADDING (OUTPUT)
AT END OF ANY TIME STEP. INCHES

QMWR = HEAT GENERATED BY M-W REACTION PER INCH (OUTFUT)
0F ROD, BTU /SEC

7 : SURFACE TEMPERATURE, DEG. RANKINE (INPUT)
MSTA = AMOUNT OF STEAM AV AIL ABLE F OR METAL-WATER

REACTION IN A CORE REGION ON A PER INCH
OF ROD BASIS (INPUT)

DT = TIME STEP, SEC (INPUT)
RO : ORIGINAL FUEL PIN RADIUS, INCHES (INPUT)
CT = INITIAL CLA0 THICKNESS, INCHES (INPUT)

..

SUBROUTINE NIFTE(DT,C,NSZ1,G,BA,XALPH,XGAM,0LDWP)

SUBROUTINE NIF TE NUMERIC ALLY INTEGR A TE S THE TRANSIENT EQUATIONS.
THE FALSH-4 METHOD IS USED. THE SOLUTION OBTAINED IS FOR
NON-CRITICAL JUNCTION FLOW, LEAK FLOW, TOTAL VOLUME ENERGY,
TOTAL FLUID MASS, AND TOTAL VOLUME AIR MASS.

NIFTE IS CALLED BY SUBROUTINE FLOSRH.

DT = TIME STEP (INPUT)
C = TEMPORARY STORAGE (INPUT)
N S Z1 : NUMBER OF JUNCTIONS (INPUT)
G = TEMPORARY STORAGE (OUTPUT)
BA = TEMPORARY STORAGE (OUTPUT)
XALPH : TEMPORAhY STORAGE (OUTPUT)

h1 f.

IX-34

XGAM = TEMPORARY STORAGE (OUTPUT)
OLDWP NOT USED

......................****.....**..............**********. ***.*

SURROUTINE OVRLYP (IUNIT)
SUBROUTINE OVRLYP OVERLA YS THE CURRENTLY POSITIONED DATA NECORD
ON THE FILES DEFINED IN INTRAN.

OVRLYP IS CALLED BY SUBROUTINE RETRAN.

IUNIT = UNIT NUMBER OF DATA TAPE FROM WHICH TO RETREIVF OVERLAY
DATA. (INPUT)

....**...............***.......................****.. ******** .

SUBROUTINE NONUHF (J,L,FC)

SUBROUTINE NONUHF COMPUTES NON-UNIFORM HEAT FLUX FACTOR.

NONUHF IS CALLED BY DNBM.

J = LEVEL OF HEIGHT INDICATOR (INPUT)
L = FL AG FOR W-3 OR B&W (INPUT)
FC = NON-UNIFORM HEAT FLUX FACTOR (OUTPUT)

..**................

SURROUTINE PCHF (G,CLI,DH,DR,HD,I,IVOL,K,L,FVed,CHF)

SUBROUTINE PCHF Obit. INS CRITICAL HEAT FLUX FROM ONE OF SEVERAL
CORRELATIONS DEPENDING ON INPUT PARAMETERS.

PCHF IS CALLED BY SUBROUTINES SINITL AND SLABHT.

G = MASS VELOCITY, LB/FT**2/HR (INPUT)

CLI : CORE CHANNEL LENGTH, IN (INPUT)
DH : HE ATED EQUIV ALENT DI AMETER, IN (INPUT)
DR = ROD DIAMETER, IN (POSITIVE) (INPUT)

: NEGATIVE OF PLATE HYDRAULIC DIAMETER, IF (NEGATIVE)
HD = HYDRAULIC OIAMETER, FT (INPUT)
I : INDEX FOR COEFFICIENTS (INPUT)

IVOL = VOLUME FILE INDEX (INPUT)

K = INLET JUNCTION INDEX (INPUT)
L = FLUID VELOCITY, FT/SEC (INPUT)

FV = FLUID VELOCITY (INPUT)

J = CORRELATION INDICATOR (INPUT)

J:0 MODIFIED B ARNE TT,B ARNETT, AND B +W-2 COMB INA IION
J:1 GENERAL ELECTRIC
J:2 SAVANNAH RIVER

g 235-

IX-35

CHF : CRITICAL HEAT FLUX, BTU /FT**2/HR (OUTPUT)

..

SUBROUTINE PLOTER

SUBROUTINE PLOTER IS THE DRIVER FOR THE ', TRAN PLOTTING
PACKAGE.

PLOTER IS CALLED BY SUBROUTINE RM.IN.

..**..**..........

SURROUTINE PLOTPR (NDATA,X,Y, TITLE,XTITLE,YTITLE)

SUBROUTINE PLOTPR GENERATES PRINTER PLOTS FOR ALL REQUESTtD MINOR
EDIT VARIABLES.

PLOTPR IS CALLED BY SUBROUTINE PRNPLT.

NDATA : NUMBER OF DATA POINTS (INPUT)
X = INDEPENDENT VARI"BLE ARRAY (INPUT)
Y : DEPENDENT V ARI AB LE ARRAY (INPUT)
TITLE : PLOT TITLE (80 CHARACTERS HAX.) (INPUT)
XTITLE : X-AXIS TITLE (32 CHARACTERS MAX.) (INPUT)
YTITLE : Y-AXIS TITLE (32 CHARACTERS MAX.) (INPUT)

..

SURROUTINE PLOTR

SUBROUTINE PLOTR IS THE DRIVER FOR THE ACTUAL PLOTTING AFTER
THE DATA HAS BEEN RETRIEVED FROM TAPE.

PLOTR IS CALLED BY SUBROUTINE PLOTER.

... **..................

SURROUTINE PLTAPE (IUNIT,LABL)

SUBR OUTINE PLT APE IS USED BY PROGRAM MODULE RETRAN AND RESTART
TO GENERATE A RETRAN DATA TA PE.

PLTAPE IS CALLED BY SUBROUTINES ED.t T A ND RESOPT.

IUNIT = TAPE UNIT DATA TAPE IS WRITTEN ON (INPUT)
LABL = FLAG TO WRITE TRAILER LABEL AND Ef4D OF FILE (INPUT)

F}, -7

IX-36

..

SUBROUTINE PMPDTA (K,IDXP NAME,FILIDS,NC)

SUBROUTINE PMPDTA CONTAINS THE DATA FOR THE BUILT-IN PUMP CURVES
AND RESERVES THE FILES FOR THE BUILT-IN PUMP USED.

PMPDTA IS CALLED BY SUBROUTINE INPM.

K PUMP CURVE INDEX (INPUT)
IDXP = FILE INDEX OF BUILT IN CURVE SET (INPUT)
NAME = PUMP CURVE NAME FOR EDITING (INPUT)
FILIDX : FILE ID OF BUILT IN CURVE SET (OUTFUT)
NC = FLAG TO INDICATE END OF CORE TO RESERVE FILE FOR BUILT

IN CURVE SET (INPUT)

..

FUNCTION POLATE (XY,XX,NN,KK,IR)

F UNC T ION POLATE, GIVEN A VALUE FOR X, INTERPOLATES FOR Y FROM A
TABLE OF PAIRS OF X AND Y.

POLATE IS CALLED BY SUBROUTINES LEAK, KINITL, INMPRO, FAND, MACH
CHKV, FILL, SENG, TKANDC, HTXQ, CONDHT, PUMP, PUMPS, POWRI, CORQ,
REAC, SCRM, LE VC AL, AND CONTRL.

XY : TABLE OF Y(1),X(1),Y(2),X(2), Y(NN),X(NN) (INPUT)...

XX : THE GIVEN VALUE FOR X (INPUT)
NN = THE NUMBER OF PAIRS OF ENTRIES IN XY (INPUT)

(INPUT /0UTPUT)
IR = 1 IF XY IS A TABLE OF X(1),Y(1),X(2),...,XC(NN),Y(NN)

(INPUT)
IR = 2 IF XY IS A TABLE OF Y(1),X(1),Y(2),X(2),...,v(NN)

X(NN)
POLATE : DEPENDENT VARIABLE (OUTPUT)

..............................**................................

SUBROUTINE POL 2 (X,Y,Z,IXT,JXT,XP,YP,ZP,1,J)

SUBROUTINE POL 2 IS A ROUTINE TO INTERPOLATE A FUNCTION OF TWO
VARIABLES.

POL 2 IS CALLED BY SUBROUTINE TFFM.

X : TABLE OF FIRST VARIABLE (INPUT)
Y : TABLE OF SECOND VARIABLE (INPUT)
Z = TABLE OF FUNCTIONAL VALUES (INPUT)
IXT = TOTAL NUMBER OF VALUES IN FIRST TABLE (INPUT)

'{9'

IX-37

JXT = TOTAL NUMBER OF VALUES IN SECOND TABLE (INPUT)
XP = GIVEN VALUE OF FIRST VARIABLE (INPUT)
YP = GIVEN VALUE OF SECOND VARIABLE (INPUT)
ZP = INTERPOL ATED FUNC TION AL V ALUE (OUTPUT)
I = INDEX FOR INITIAL GUESS AND FINAL POSITION OF VAR. 1

(INPUT / OUTPUT)
J = INDEX FOR INITIAL GUESS AND FINAL POSITION OF VAR. 2

(INPUT /0UTPUT)

......**..

SUBROUITNE POSITN (IUNIT,IPLOT,IE0V)

SUBROUTINE POSITN POSITIONS THE DATA TAPE ON UNIT NUMBER IUNIT,

AF TE R THE DATA RECORD HEADER PREFIX FOR DATA RECORD IPLOT.

POSITN IS CALLED BY SUBROUTINES OVRLYP, INEDTE AND REDTAP.

IUNIT : UNIT NUMBER OF DATA TAPE (INPUT)
IPLOT = DATA RECORD NUMBER (INPUT)
IE0V : RETURN CONDITION FLAG. (OUTPUT)

= -1 IF TRAILER LABEL ENCOUNTERED
: 0 FOR NORMAL RETURN
: 1 FOR END OF VOLUME ENCOUNTERED

........................**

SUBROUTINE POSPLT (IUNIT,ITYP,IPLOT,IE0V)

SUBROUTINE POSPLT LOCATES DATA RECORD ON RELAP3, RELAP4/0?,
RELAP4/03, OR RETRAN STRANGER TAPES.

POSPLT IS CALLED BY SUBROUTINE REDTAP.

IUNIT = UNIT NUMBER OF DATA TAPE (INPUT)
ITYP = TYPE OF DATA TAPE FLAG (INPUT)
IPLOT = DATA RECORD NUMBER (INPUT)
IE0V = R E T 'JR N CONDITION FLAG (OUTPUT)

= -1 TRAILER LABEL ENCOUNTEPED
: 0 FOR NORMAL RETURN
: 1 FOR END OF VOLUME ENCOUNTERED

..**...............****.

SUBROUTINE POSTW (IC)

SUBROUTINE POSTW CALCULATES AVERAGE VOLUME MASS FLOW RATE.

POST. IS CALLED BY SUBROUTINE FLOSRH.

DT = TIME STEP SIZE (INPUT)

O
. -3 name

IC = 1 FOR FIRST CALL (BEFORE FIRST CALL TO PREW) (INPUT)
IC = 2 FOR STEADY STATE ITERATION LOOP
IC = 0 FOR TR ANSIENT LOOP

...**...............** ...

FUNCTION POWRT (NODEL,DT)

FUNC TION POWRT DIRECTS THE TYPE OF POWER CALCULATES, E.G.
EXPLICIT POWER VS. TIME, FROM DATA TAPE OR PAINT KINETICS.

POWRT IS CALLED BY SUBROUTINES TRAN, INITLZ, AND RESOPT.

NODEL : POWER TYPE INDICATOR (INPUT)
DT = TIME STEP SIZE (INPUT)
POWRT = NORMALIZED POWER (OUTPUT)

................*** ..

SUBROUTINE PRESS (THERMO,STDATA, PHASE,15W,2M,ZVOL,IREAU)

SUBROUTINE PRESS DETERMINES 1. . E THERMODYNAMIC STATE IN A
VOLUME AND COMPUTES PARTIAL DERIVATIVES OF PRESSURE WITH bESPECT
TO WATER MASS, AIRMASS, AND TOTAL ENERGY. PRESS DETERMINE F
THE STATE PROPLxTIES FOR TIME DEPENDENT VOLUMES ONLY.

PRESS IS C ALLED BY SUBROUTINES INVOL, BAL AND RESOPT.'

THER M0 : THERMODYNAMIC DATA TABLE (INPUT)
STDATA = ARRAY OF INPUT AND OUTPUT STATE DATA
(INPUT /0UTPUT)
PHASE = PHASE OF WATER IN A VOLUME, (0UTPUT)

1 : SUBC00 LED
2 : TWO PHASE
3: SUPERHEATED
4 : CRITICAL

ISW = ERROR FLAG , 0 : NO ERROR , 1 : ERROR (OUTPUT)
ZM = VOLUME MIXTURE LEVEL (INPUT)
ZVOL = VOLUME HEIGHT (INPUT)
IREAD = TIME DEPENDENT VOLUME NUMBER (INPUT)

..

SUBROUTINE PREW (DT,IC)

SUBROUTINE PREW C ALCUL ATES FRICTION AND MOMENTUM FLUX TERMS FOR
ALL JUNCTIONS. PREW ALSO OBTAINS JUNCTION STATE PROPERTIt.S VIA
A PRESSURE-ENTHALPY STATE CALL.

PREW IS CALLED BY SUBROUTINES TRAN, STSTAT AND INITLZ.

~h~7

DT= RETPAN TIME STEP (INPUT)
IC : 0 FOR INI TI AL CONDITIONS (INPUT)

= 1 FOR TRANSIENT FORM

..

SUBROUTINE PRNPLT

SUBROUTINE PRNPLT IS THE DRIVER FOR OBTAINING PRINTER PLOIS.

PRNPLT IS CALLED BY SUBROUTINE RETRAN.

..................**..

SUBROUTINE PRSORK (IDXV,ISZV.IDXJ,ISZJ,ITERST,IUV)

SUBROUTINE PRSORK CALCULATES VOLUME PRESSURES OR JUNCTION LOSS
COEFFICIENTS FOR STEADY-STATE INITIALIZATION.

PRSORK IS CALLED BY SUBROUTINE STSTAT.

IDXV : INDEX OF A SCRATCH ARRAY CONTIANING VOLUME DATA FOR
STEADY-STATE INITIALIZATION (INPUT)

ISZV : SET SIZE OF THE VOLUME SCRATCH ARRAY (INPUT)
IDXJ = INDEX OF A SCRATCH ARRAY CONTAINING JUNCTION DATE FOR

STEADY-STATE INITIALIZATION (INPUT)
ISZJ = SET SIZE OF THE JUNCTION DATA SCPATCH ARRAY (INPUT)
ITERST : NUMBER OF ITERATIONS LEFT FOR STEADY-STATE

CALCULATIONS (INPUT)
IUV : INITIAL CALL FLAG, = 1 FIRST CALL TO PRSORK (INPUT)

...........................**...................................

SUBROUTINE PRZR (I,DT,STDATA)

SUBROUTINE PRZR CALCULATES THE THERMODYNAMIC STATES OF TWO
REGIONS IN A VOLUME ALLOWING NON-EQUILIBRIUM CONDITIONS
BETWEEN REGIONS BUT CONSTRAINED TO EQUAL PRESSURE IN THE
VOLUME.

PRZR IS CALLED BY SUBROUTINES BAL AND RESOPT.

I : VOLUME FILE INDEX (INPUT)
DT = RETRAN TIME STEP (I N P t.'T)
STD A TA = ARRAY OF INPUT AND OUTPUT STAT 7 DATA (INPUT /0UTPUT)

...........**...

SUBROUTINE PULLIN (IUNIT,IE0V)

O
IX-40 b 4

'

SUBROUTINE PULLIN IS USED BY MODULES PLOTER AND REEDIT, To MOVE
A DATA RECORDS INTO THE APPROPRIATE ABBREVIATED FILES RESERVED BY
SUBROUTINE SETUPE.

PULLIN IS CALLED BY SUBROUTINES REGEST AND REDTAP.

IUNIT = TAPE UNIT DATA TAPE IS TO BE READ FROM (INPUT)
IE0V = FLAG USED TO DETERMINE RETURN CONDITION, 0: NORMAL

RETURN, 1:END OF VOLUME (OUTPUT)

..***...

SUBROUTINE PULTRN (IUNIT,ITYP,IPLOT,IE0V)

SUBROUTINE PULTRN IS USED BY MODULE PLOTER TO MOVE DATA
RECORDS FF,0M RELAP4/02, RELAP4/03, AND RELAP3 DATA TAPES
TO THE APPROPRIATE ABREVIATED FILE S RE SERVED BY SETUPO.

PULTRN IS CALLED BY SUBROUTINE REDTAP.

IUNIT = TAPE UNIT DATA TAPE IS TO BE READ FROM (INPUT)
ITYP = TAPE TYPE FLAG (IFPUT)
IPLOT : DATA RECORD NUMBER (I t. P U T)
IE0V : RETURN CONDITION FLAG, 1 : END OF VOLUME, O : NOFMAL

(OUTPUT)

..

SUBROUTINE PUMP (K,N,W,H,T)

SUBROUTINE PUMP RETURNING A NORMALIZED VALUE OF LEAD AND 10RGUE
(FROM THE HOMOLOGOUS PUMP CORVES) GIVEN FLOW A SPEED.

PUMP IS CALLED BY SUBROUTINE PU5PS.

K = CURVE SET NUMBER (INPUT)
N : INDEX OF PUMP DESCRIPTION SET (INPUT)
W = VOLUME FLOW (INPUT)
H : PUMP HEAD, FT (OUTPUT)
T = PUMP TORQUE (OUTPUT)

..**..............

SUBROUTINE PUMPS (DT, START,INTEG)

SURROUTINE PUMPS C ALCULA TES PUMP PRE SSUR E S, TORQUES, SP E E t:, AND

ENERGY ADDITION TO THE FLUID.

PUMPS IS CALLED BY SUBROUTINE PREW.

fh' ' '

IX-41

DT = RETRAN TIME STEP (INPUT)
START = LOGICAL FOR INITIAL CONDITIONS (TRUE) (INPUT)
INTEG : PUMP SPEED INTEGRATION FLAG (INPLT)

..

SUBROUTINE QDNBBA (G,X,HFG,GDNB)

SUBROUTINE QDNBBA COMPUTES CHF BY BARNETT CORRELATION.

QDNBBA IS CALLED BY SUBROUTINE DNBM.

G = MASS FLUX (INPUT)
X = QUALITY (INPUT)
HFG = LATENT HEAT (INPUT)
QDNB : DNB HEAT FLUX (OUTPUT)

.......................**.***.....................**............

SUBROUTINE QDNBB0 (P,X,G,HFG,GDNB)

SUBROUTINE GDNBB0 COMPUTES CHF BY BOW R ING CORRELATION.

QDNBHO IS CALLED BY SUBROUTINE DNBM.

P = PRESSURE (INPUT)
X : QUALITY (INPUT)
G MASS FLUX (INPUT)
HFG = LATENT HEAT (INPUT)
QDNB : DNB HEAT FLUX (OUTPUT)

.................**...

SUBROUTINE QDNBBW (PR,HFG,GCORE,GDNB,0UAL)

SUP10UTINE QDNBBW COMPUTES CHF BY B+W-2 CORRELATION.

QDN98W IS CALLED BY SUBROUTINE DNBM.

PR = PRESSURE (INPUT)
HFG : LATENT HEAT (INPUT)
GCORE : MASS FLUX (INPUT)
GONB : DNB HEAT FLUX (OUTPUT)
QUAL = QUALITY (INPUT)

..

SUPROUTINE GDNBJL (G,X,P,GDNB)

h'

IX-42

SUBROUTINE QDNBJL COMPUTES DNB HEAT FLUX BY JANSSEN-LEVY CORRELATION.

QDN9JL IS CALLED BY SUBROUTINE DNBM.

G = MASS FLUX (INPUT)
X = QUALITY (INFUT)
P = PRESSURE (INFUT)
GDNB : DNB HE AT FLUX (OU1PUT)

..

SUBROUTINE GDNBMA (GN,X,HFG,GDNB)

SUBROUTINE QDNBMA COMPUTES CHF BY MACBETH CORRELATION.

QDNHMA IS CALLED BY SUBROUTINE DNBM.

GN : NASS FLUX (INPUT)
X = QUALITY (INPUT)
HFG = LATENT HEAT (INPUT)
QDNB : DNB HEAT FLUX (OUTPUT)

...***

SUBROUTINE QDNBW3 (PR,H, QUAL,GDNS,HFSAT,GCORE)

SUBROUTINE QDNBW3 COMPUTES CHF BY W-3 CORRELATION.

QDNBW3 IS CALLED BY SUBROUTINE DNBM.

PR = PRESSURE (INPUT)
H : ENTHALPY (INPUT)
QUAL = QUALITY (INPUT)
GDN9 : DNB HEAT FLUX (OUTPUT)
HFSAT = ENTHALPY OF SATURATED LIGUID (INPUT)
GCORE : M ASS FLUX (INPUT)

..

SUBROUTINE QDOT (A ,B,C PF , CPG,CP ,RF, RG , R,G, X,HD , HF ,HG ,PP ,QCR IT ,
QQ,TBULK,TS,TSAT,TSUR,IH,J,L,ITS)

SUBROUTINE GDOT C ALCULATES SURFACE TEMPERTAURE FLUX AND H t. A T
TRANSFER COEFFICIENT. GIVEN A SPECIFIC HEAT TRA*.SFER CORRELATION
AND CONDUCTION VALUES.

QDOT IS CALLED BY SUBROUTINE HTRC.

A, B = COEFFICIENTS FROM THE CONDUCTION SOLUTION IN THE FOR9
QQ = A*TSUR + B (INPUT)

CPF : SPECIFIC HEAT CAPACITY FOR SA TUR ATED LIQUID (INPUY)

IX-43

CPG = SPECIFIC HEAT CAPACITY FOR SATURATEG GAS (INPUT)
CP = SPECIFIC HEAT CAPACITY FOR SINGLE PHASE (INPUT)
RF : DENSITY FOR SATURATED LIQUID, FT**3/LBM (INPUT)
RG : DENSITY FOR SATURATED GAS (INPUT)
R = SINGLE PHASE DENSITY (INPUT)
G = COOLANT FLOW R4TE (INPUT)
X : VOLUME AVERAGE GUALITY (INPUT)
HD HYDR A ULIC DI A ME TER, FT (INPUT)
HF = SATURATION LIGUID ENTHALPY (INPUT)
HG = SATURATION GAS ENTHALPY (INPUT)
PR = VOLUME PRESSURE (INPUT)
GCRIT : CRITICAL HEAT FLUX (INPUT)
QQ = SURFACE HEAT FLUX (OUTPUT)
TBULK WATER TEMPERATURE (INPUT)
TSAT SATURATION TEMPERATURE (INPUT)
TSUR = SURFACE TEMPERATURE (INDUT)

(INPUT)IH = HEAT TRANSFER MODE --

I : FORCED CONVECTION TO LIQUID
2 : NUCLEATE BOILING
3 : FORCED CONVECTION VAPORIZATION
4 : FLOW TRANSITION BOILING
5 : FLOJ FILM BOILING
6 : POOL FILM BOILING
7 : POOL TRANSITION BOILING
8: FORCED CONVECTION TO GAS
9 : DOUGALL-ROHSENOW FOR LOW PRESSURE FLOW FILM a0ILING

10 LOW FLOW CONVECTION TO LIGUID COLLIER
II LOW FLOW NUCLEATE BOILING ROHSt NOW
12 FLOW FLOW TRANSITION BOILING BROMtEY
13 LOW FLOW CONVECTION TO STEM SIEDER-TATE (TLR6ULENT)

COLLIER (LAMINAR)
J = INDICATOR FOR FILM BOILING CORRELATION (INPUT)

0 : USE GROENEVLED 5.9 FOR MODE 5
1 : USE GROENEVELD 5.7 FOR MODE 5

L : TYPE OF POOL BOILING, USED ONLY FOR MODES, IH:6 AND 7

1 : TRANSITION POOL BOILING (OUTPUT)
2 : LAMINAR POOL BOILING

ITS = INDICATOR FOR SURFACE TEMPERATURE,
O : USE OLD VALUE, 1 : CALCULATE NEW VALUE (INPUT)

..

FUNCTION REAC

FUNCTION REAC COMPUTES THE TOTAL REACTIVITY FOR THE POINT
KINETICS MODEL.

REAC IS CALLED BY SUBROUTINE RKEN.

REAC = TOTAL FEEDBACK REACTIVITY + SCRAM REACTIVITY (OUTPUT)

..***....***........-

SUBROUTINE REDTAP

h 2kk7

IX-44

SUBROTUINE REDTAP IS THE DRIVER ROUTINE FOR READING DATA TAPES
AND STORING THE REQUESTED PLOT VARIABLES FOR MODULE PLOTEN.

REDTAP IS CALLED BY SUBROUTINE PLOTER.

...**...

SUBROUTINE REEDIT

SUBROUTINE REEDIT IS THE MAIN DRIVER FOR THE REEDIT MODULt..

REEDIT IS CALLED BY SUBROUTINE RMAIN.

..

SUBROUTINE RESOPT

SUBROUTINE RESOPT IS USED TO RESERVE SPACE FOR ACTIVE OPTIONS
AND FREE SPACE OCCUPIED BY IN ACTIVE OPTIONS FOR STORAGE.

RESOPT IS CALLED BY SUBROUTINE RESSEG.

..

SUBROUTINE RESSEG (LOCMOD)

SUBROUTINE RESSEG SETS UP INFORMATION USED TO RESERVE SPACE
FOR ACTIVE OPTIONS CODING AND FREE SPACE FOR INACTIVE OPTIONS
CODING.

RESSEG IS CALLED BY SUBROUTINES PLOTER, PEEDIT AND INRTRN

LOCMOD : BEGINNING OF THE SECOND LEVEL OF THE LOAD (INPUT)

..**..........

SURROUTINE REGEST (IUNIT,X,IX,IXI,ITYP)

SUBROUTINE REGEST GENERATES AN EDIT DATA TABLE TO BE USED BY
EDINIT FOR RELAP3, RELAP4/02, RELAP4/03, AND RETRAN STRANGER
DATA TAPE PLOT REQUESTS.

REGEST IS CALLED BY SUBROUTINE INEDIT.

IUNIT = TAPE UNIT CONTAINING DATA
X : SCRATCH ARRAY USED TO DESCRIBE VARIABLES AVAILABl.E FOR

EDITING. (OUTPUT)

h.'

IX-45

IX = COUNTER FOR THE NUMBER OF VARIABLES DESCRIBE 0 (OUTPUT)
IXI : POINTER IN THE X ARRAY TO THE STARTING POSITION CF

THE INDIVIDUAL VARIABLE DESCRIPTION (OUTPUT)
ITYP = DATA TAPE TYPE INDICATOR, 2=RELAP4/003, 3=RELAP4/002,

4:RELAP3, 5:RETRAN STRANGER TAPE (INPUT)

..**

SUBROUTINE RETRAN

SUBROUTINE RETRAN IS THE DRIVER FOR MODULE RETRAN.

RETRAN IS CALLED BY SUBROUTINE RMAIN.

...***

SUBROUTINE RKEN (DTM)

SUBROUTINE RKE N PERFORMS THE REACTOR POINT KINET ICS C ALCut. AT IONS.

RKEN IS CALLED BY SUBROUTINE POWRT.

DTM = RETRAN TIME STEP (INPUT)

..**........

SUBROUTINE ROUND (TMX, TMN,D EL TA ,V MA X,0RG,L AXE)

SUBROUTINE ROUND SCALES PLOTS TO GET THE APPROPRIATE POWEW OF TEN.

ROUND IS CALLED BY SUBROUTINE PLOTPR.
TMX : MAX VALUE OF DATA FOR SCALING (INPUT)
TMN = MIN VALUE OF DATA FOR SCALING (INPUT)
DELTA : LENGTH OF MAJOR AXIS DIVISION (OUTPUT)
VMAX : SCALE VALUE AT END (OUTPUT)
ORG = SCALE VALUE AT ORIGIN (OUTPUT)
LAXE : AXIS LENGTH (INPUT)

..

FUNCTION SCRM (NODEL)

FUNCTION SCRM RETURNS RE AC TI VI TY FROM THE REACTIVITY VERSUS TIME
SCRAM TABLE.

SCRM IS CALLED BY SUBROUTINE REAC.

N0 DEL = POWER TYPE CALCULATION INDICATOR (INPUT)

~h.7

IX-46

..

SUBROUTINE SE ARCH (IDX FLG,IDXV AR,IED T. MODE ,IDXF ,IF IL ,DD.J, K)

SUBROUTINE SEARCH VERIFIES REQUEST FLAGS (MINOR EDIT, PLOT. CONT.
BLK) AND REG NUMBERS AND RETURNS ADDRESS OF REQUE STED P AR AMETE R.

SEARCH IS CALLED BY SUBROUTINES EDINIT AND INCNT2.

IDXFLG = INDEX RELATIVE TO RSTOR(1) FOR REGUESTED PARAM (OUTPUT)
IDXVAR = INDEX RELATIVE TO RSTOR(1) FOR REQUEST PA IR (INPUT)
IEDT = MINOR EDIT = 1, PLOT : 2, CONT BLK : 3 (INPUT)
MODE = RETRAN-RESTRT = 1, REEDIT : 2, PLOTER : 3 (INPUT)
IDXF = ARRAY CONTAINING FILE INDICES FOR AVAIL FILES (INPUT)
IFIL = ARRAY CONTAINING REGION CHECK FLAGS (CHECK TYPE) (INPUT)
DD = 5 X N ARRAY DESCRIBING PARAM AVAIL FOR REQUEST (INPUT)
J = POSITION IN IFIL OF VARIFIED REQUEST PAIR (OUTPUT)
K = POSITION IN DD OF VARIFIED REQUEST PAIR (OUTPUT)

.....**....................**...............................**..

SUBROUTINE SENG (L,MM,NJL,NJR,E)

SUBROUTINE SENG COMPUTES STORED ENERGY IN A HEAT CONDUCTOR

SENG IS CALLED BY SUBROUTINES SINITL AND COND.

L : HEAT CONDUCTOR FILE INDEX (INPtT)
MM = HEAT CONDUCTOR GEOMETRY FILE INDEX (I NP t'T)
NJL = h0DE NUMBER ON LEFT SURFACE (INPUT)
NJR = MODE NUMBER OF RIGHT SURFACE (INPUT)
E : STORED ENERGY (O U T F'U T)

..............**..

SUBROUTINE SETUPE (IUNIT)

SUBROUTINE SETUPE CREATES ABBREVIATED FILES USED TO PROCESS
RETRAN DATA RECORDS FOR MODULES REEDIT AND PLOTER.

SETUPE IS CALLE0 BY SUBROUTINES REDTAP AND INEDTE.

IUNIT = DATA TAPE UNIT NUMBER (INPUT)

...................................*......................**....

SUBROUTINE SETUP 0 (IUNIT,ITYP)

h
#1

IX-47

SUBROUTINE SETUP 0 CREATES ABBREVIATED FILES USED (0 PROCESS
RELAP3, REL A P4 /02, RELAP4/03, AND RETRAN STRANGER TAPES FOR
PLOTTING.

SETUP 0 IS CALLED BY SUBROUTINE REDTAP.

IUNIT = DATA TAPE UNIT NUMBER (INPUT)
ITYP = DATA TAPE TYPE INDICATOR, 2-RELAP4/03, 3=RELAP4/02,

4:RC ALP 3, 5: RETR AN STRANGER TAP *TNPUT)

..

SUBROUTINE SFR

SUBROUTINE SFR DETERMINES THE FLOW REGIME IN EACH VOLUME.

SFR IS CALLED BY SUBROUTINE PREW.

..

SUBROUTINE SIMQ (A,B,N,KS)

SUBROUTINE SIMQ SOLVES N LINEAR SIMULTANEOUS EQUATIONS,

SIMQ IS CALLED BY SUBROUTINE FITHT.

A = MATRIX A FOR AX = 8 (INPUT /0UTPUT)
B = MATRIX B FOR AX = 8 (INPUT /0UTPUT)
N = RANK OF MATRIX A (INPUT)
KS : SINGULARITY INDICATOR OF SOLUTION OF AX =8 (OUTPUT)

..

SUBROUTINE SINITL

SUBROUTINE SINITL IS THE DRIVER FOR THE TIME ZERO HEAT CONDUCTION
SOLUTION.

SINITL IS CALLED BY SUBROUTINE ENERGY.

..

SUBROUTINE SLABDT (DT)

SUBROUTINE SLABDT DETERMINES WHICH HEAT CONDUCTORS ARE CAUSAL
I.E. THE CAUSAL CONDUCTOR OPTION.

q '~ }
IX-48

SLABDT IS CALLED BY SUBROUTINE ENERGY.

DT = RETRAN TIME STEP (INPUT)

...**...........

SUBROUTINE SLABHT

SUBROUTINE SLABHT IS THE DRIVER FOR THE TRANSIENT HEAT CONDUCTION
SOLUTION

SLA8HT IS CALLED BY SUBROUTINE ENERGY.

.................**.......................................*..***

SUBROUTINE SURTEN (T, SIGMA)

SUBROUTINE SURTEN COMPUTES SURFACE TENSION GIVEN STEAM
TEMPERATURE.

SURTEN IS CALLED BY S'JBROUTINE QDOT.

T : STEAM TEMPERATURE (F) (INPUT)
SIGMA = SURFACE TENSION (LBF/FT) (CUTPUT)

........**...................................*****........**** .

SUBROUTINE STATE (THERMO,STDATA, PHASE,ISW)

SUBROUTINE STATE DETERMINES THE THERMODYNAMIC STATE IN EACH
VOLUME AND COMPUTES THE PARTIAL DERIVATIVE OF PRESSURE WilH
RESPECT TO WATER MASS, AIR MASS AND TOTAL INTERNAL ENERGY.

STATE IS CALLED BY SUBROUTINES BAL AND PRZR.

THERM 0 = THERMODYNAMIC DATA TABLE (INPUT)
STDATA = ARRAY OF INPUT AND OUTPUT STATE DATA (INPUT /0UIPUT)
PHASE : PHASE INDICATOR, 1: LIQUID, 2:TWO PHASE, 5:SUPErhEAT,

4: CRITICAL (OUTPUT)
ISW = ERROR SWITCH 0 :# NO ERROR, 1 :# ERROR (OUIPUT)

..

SUBROUTINE STATPH

SUBROUTINE STATPH COMPUTES FLUID STATE PROPERTIES GIVEN
PRESSURE AND ENTHALPY.

STATPH IS CALLED BY SUBROUTINES STSTAT AND INITLZ.

'''f .

IX-49

..

SUBROUTINE STH201

SUBROUTINE STH20I READS THE WATER PROPERTY TABLE INPUT ret;UEST
CARD (010050), RESERVES A FILE TO CONTAIN THE DATA AND
MOVE S THE DATA INTO THE FILE.

STH2 0I IS CALLED BY SUBROUTINE INTRAN.

..

SUBROUTINE STPM

SUBROUTINE STPM COMPUTES A F ANNING FRICTION F ACTOR AND A
TWO-PHASE FRICTION MULTIPLIER.

STPM IS CALLED BY SUBROUTINE PREW.

..................,...

SUBROUTINE STSTAT

SUBROUTINE STSTAT CONTROLS THE PROGRAM FLOW FOR STEADY
STATE INITIALIZATION.

STSTAT IS CALLED BY SUBROUTINE RETRAN.

..

SUBROUTINE TAPEBC

SUFROUTINE TAPEBC RETRIEVES VOLUME THERMODYNAMIC BOUNDARY
CO.90lTIONS AND/OR POWER HISTORIES FROM RETR 4N DA TA TAPES.

TAPEBC IS CALLED BY SUBROUTINES INVOL, BAL AND RESOPT.

..

SUBROUTINE TAVE (L,M,NL,NRR,TA)

SUBROUTINE TAVE COMPUTES THE AVERAGE METAL TEMPERATURE OF A
CORE HEAT CONDUCTOR.

TAVE IS CALLED RY SUBROUTINE S SINI TL , SENG, COND AND TKANUC.

L = HEAT CONDUCTOR FILE INDEX (INeUT)
M = HEAT +ONDUCTOR GEOMETRY FILE INDEX (INPUT)

'

h7 Is

IX-50

.

NL = MODE NUMBER AT LEFT SURFACE. (INFUT)
NRR NODE NUMBERS AT RIGHT SURFACE (INPUT)
TA = AVERAGE METAL TEMPERATURE (OUIPUT)

...*****......

SURROUTINE TEMP (DT,IC,M,0MWR,LL, ASS,V,TK,CR,G,A,T,B)

SUBROUTINE TEMP SOLVES THE ONE-DIMENSIONAL TRANSIENT HEAT
CONDUCTION EQUATION.

TEMP IS CALLED BY SUBROUTINE COND.

DT = RETRAN TIME STEP SIZE (INPUT)

IC : CONDUCTOR INDEX (INPUT)
M = NUMCER OF NODES (INPUT)
QHWR = ADDITIONAL HEAT GENERATED PER FOOT OF ROD BY MtTAL

WATER REACTION, BTU /SEC (INPUT)
LL = HEAT CONDUCTOR FILE INDEX (INPUT)
ASS : SURFACE AREA / 2 . DX (INPUT)
V : VOLUME, FT. 3 (INPUT)
TK = THERMAL CONDUCTIVITY, BTU /FT-SEC-F (INPUT)
CR = VOLUMETRIC HE AT C AP ACIT Y, BTU /FT**3-F (IN'UT)
Q = HEAT GENERATION RATE, BTU /FT**3-SEC (INPUT)
A = S*TK, OLD TIME STEP VALUES (INPUT)
T = TEMoERATURE, OLD TIME STEP VALUES, F
B = WORKING SPACE FOR MATRIX SOLUTION (OUTPUT)

..

SUBROUTINE TEMZ (M,IL,IR,TLX,TRX,SL,SR,HL,HR,S,V,G,TK,t T,B,

LL,FLP,FRP)

SUBROUTINE TEMZ SOLVES THE ONE-DIMENSIONAL STEADY-STATE MfAT
CONDUCTION EQUATION.

TEMZ IS CALLED BY SUBROUTINE SINI!L.

M = NUMBER OF NODES (INPUT)
IL = INDICATOR FOR LEFT BOUNDARY CONDITION (INPUT)
IR = INDICATOR FOR RIGHT BOUND AR Y CONDITION (INPUT)
TLX : LEFT SURFACE TEMPERATURE (INPUT)
TRX = RIGHT SURFACE TEMPERATURE (INPUT)
SL : SURFACE AREA /2, LEFT (INPUT)
SR = SURFACE AREA /2, RIGHT (INPUT)
HL = HEA T TRANSFER C OE F IC I E NT , LEFT (INPUT)
HR = HEAT TRANSFER COEFICIENT, RIGHT (INPUT)
S = SURFACE AREA / 2 * DX (INPUT)
V : VOLUME (INPUT)
Q = HE AT GENER ATION R ATE (I N P t|T)
TK = THERMAL CONDUCTIVITY (INPUT)
A = S*TK (OUTPUT)

1 ~

IX-51

T = TEMPERATURE (OUTPUT)
6 : SCRATCH SPACE FOR MATRIX SOLUTION (0UTeUT)
LL : HEAT CONDUCTOR NUMBER (INPUT)
FLP = FLUX AT LEFT SURFACE (INPLT)
FRP = FLUX AT R IGHT SURF ACE (INPUT)

..**..

SURROUTINE TFFM (G,PP,XX,TPF, IPR,IX1,1X2)

SUBROUTINE TFFM COMPUTES A TWO PHASE FRICTION MULTIPLIER.

TFFM IS C ALLED BY SUBROUTINE STPM.

G = MASS FLUX, LB/HR-FT**2 (INPUT)
PP = PRESSURE, LB/IN.*2 (INPUT)
XX : QUALITY (INPUT)
TPF : TWO-PHASE FRICTION FACTOR MULTIPLIER (OUTrUT)
IPR : PRESSURE TABLE INDEX (INPUT /0UTPUT)
IX1 : FIRST QUALITY TABLE INDEX (INPUT /0UTPUT)
IX2 : SECOND QUALITY TABLE INDEX (INPUT /0UTPUT)

..

SUBROUTINE THCON (N,T1,RH01)

FUNCTION THCON COMPUTES THE THERMAL CONDUCTIVITY OF SATUPaTED
LIQUID AND SATURATED AND SUPERHEATED VAPOR.

THCON IS CALLED BY SUBROUTINE GDOT.

N : 1, SATURATED LIQUID 2, SATURATED AND SUPERHE=TED
VAPOR
(INPUT)

T1 : TEMPERATURE (INPUT)
RH01 : DENSITY (INPUT)
THCON : THERMAL CONDUCITIVITY (BTU /FT-HR-F) (OUTrVT)

..

SURROUTINE TIMINT (NUMBER)

SUBROUTINE TIMINT IS AN INTERNAL TIMING ROUTINE USED TO TtME
VARIOUS FACTIONS OF RETRAN COMPUTATIONS.

TIMINT IS CALLED BY SUBROUTINES PLOTER, REEDIT, INRTRN, INDATA.

NUMBER TABLE NUMBER OF ROUTINE TO BE TIMED (INPUs)

.

O
IX-52

..

SUBROUTINE TKANDC (NN,LeMM)

SUBROUTINES TKANDC OBTAINS THERMAL CONDUCTIVITY AND SPECIrIC HEAT
C APA CITY FOR EACH CONDUCTOR NODE FROM THE TABULAR MATERIAL
PROPERTY DATA.

TKANDC IS CALLED BY SUBROUTINES SINITL AND COND.

NN : NUMHER OF HEAT CONDUCTOR NODES (INPUT)
L = HEAT CONDUCTOR FILE INDEX tihPul)
NN : HEAT CONDUCTOR GEOMETRY FILE INDEX (INPUT)

..

FUNCTION TRIDDT (TT)

SUBROUTINE TRIPDT PREDICTS TRIP ACTUATION TIMES TO FORCE eHE
EXPLICIT TIME STEP CONTROL OPTION TO CONSIDER TRIP TIMES =S
PART OF THE TIME S TE P SELECTION LOGIC.

TRIFDT IS CALLLD BY SUBROUTINE TSED.

TT = PREVIOUS TIME STEP SIZE (SEC) (INPUT)

..

SUPROUTINE TR A N(I UNIT)

SUBROUTINE TR AN DIRECTS THE PROGR AM FLOW FOR THE RETRAN AnD
RESTRT TR ANSIENT C ALCULA TIONS.

TRAN IS CALLED BY SUBROUTINE RETRAN.

IUNIT = TAPE UNIT NUMBER UPON WHICH DATA I S '.' a l T T E N (INrUT)

..

FUNCTION TRIP (N,DELT)

FUNCTION TRIP SCANS ALL TRIPS AND ACTIVATES OR DEACTIVATED TRIPS
ONCE THE SETPOINTS ARE REACHED.

TRIP IS CALLED BY SUBROUTINES TRAN, STSTAT, CHKV, FILL, HeXG,
CONDHT, PUMPS, POWRT, SCRM AND TAPEBC.

N : TRIP TYPE (IN-UT)
DELT = ELAPSED TIME SINCE ACTIVATION OF TRIP (0U:PUT)
TRIP : .TRUE. IF TRIP IS ACTUATED (OUePUT)

. 7 r-

IX-53

..

SUBROUTINE TRNSPT (II,J,H,X,DT,IBH1)

SUBROUTINE TRNSPT COMPUTES MESH ENTHALPIES FOR THE TEMPEpATURE
TRANSPORT MODEL.

TRNSPT IS CALLED BY SUBROUTINES BAL, JUNHP AND RESOPT.

II : VOLUME FILE INDEX OF THE TRANSPORT VOLUME LINPUT)
J = JUNCTION F ILE INDEX OF THE DOWNSTREAM JUNCTION. sINPUT)
H : JUNCTION ENTHALPY (INPU /0UTPUT)
X = JUNCTION QUALITY (OUePUT)
DT RETRAN TIME STEP (IN-UT)
IBHI : 1 INTEGRATE MASS FLOWS AROUND THE TRANSPORT VOLUME

= 2 ESTIMATE JUNCTION ENTHALPY FOR NEXT TIME STEP
: 3 SHIFT MESH ENTHALPIES ACCORDING TO MASS FLOWS ins 0

THE TRANSPORT VOLUME (IN-UT)

..**....

SURROUTINE TRPSUM

SUbR OUTINE TRPSUM PROVIDES A TRIP ACTUATION HISTORY SUMMAsY AS A
FUNCTION OF TIME.

TRPSUM IS CALLED BY SUBROUTINE RETRAN.

q||>..

FUNCTION TSED (MAJCON,MINCON,DMPCON,PLTCON,DTSTEP,IbRNLH)

FUNCTION TSED IS USED ONLY IF THE EXPLICIT TIME STEP CONTFOL
OPTION IS USED. (NCHK:2) TSED SETS A LIMIT FOR THE MAXIMUM
TIME STEP SIZE THAT CAN BE TAKEN RESTRAINED EY EDIT TIMES.
TRIP TIMES AND CHANGING OF TIME STEP DATA CAPDS (IBRNCH:)),
AND SET CONTROL EDIT FLAGS (IBRNCH:2).

TSED IS CALLED BY SUBROUTINES TRAN.

M AJC ON : MAJOR EDIT FLAG (0U1FUT)
MINCON : MINOR EDIT FLAG (OUIPUT)
DMPCON : ERROR EDIT FLAG (OUIPUT)
PLTCON : DATA RECORD DUMP FLAG (OUTPUT)
DTSTEP = PREDICTED TIME STEP SIZE (OUiPUT)
IBRNCH : 1 CALCULATE MAXIMUM TIME STEP SIZE, 2 SET EDIT

FLAGS (INwuT)
TSED = MAXIMUM TIME STEP SIZE ALLOWED (OUIPUT)

..

SUBROUTINE TSTMOD (IDXCRD,LTST)

h'*

.
,

IX-54

SURROUTINE TSTMOD READS AND CHECKS THE TIME STEPS ALGORITtMS
CONSTANTS DATA CARD (030001) AND/OR THE DETAILED EDIT CART.
(030002).

TSTMOD IS CALLED BY SUBROUTINES INTSTP.

IDXCRD = INDEX OF THE ARRAY CONTAINING INPUT CARD DATA (INPUT)
LTST = .TRUE. IF TIML STEP CARDS ARE SUPPLifD ON A PESTrRT

RUN (INrUT)

..e***

F UNC T ION TSTP (MAJCON,MINCON,DMPCON,PLTCON)

F UNC TION TSTP IS THE STANDARD TIME STEP CONTROL ROUTINE. TSTP
SELECTS THE RETR AN TIME STEPS AND SE TS EDIT F LAGS.

TSTP IS CALLED BY SUBROUTINES TRAN.

MAJCON : MAJOR EDIT FLAG (OUTPUT)
MINCON : MINOR EDIT FLAG (OUTPUT)
DMPCON = ERROR EDIT FLAG (OUTPUT)
PLTCON = WRITE DATA TAPE FLAG (OUTPUT)
TSTP = RETRAN TIME STEP (OUTPUT)

..

SUBROUTINE VAPOR 1 (LV,LE,LS)

SUBROUTINE VAPOR 1 SETS UP SLOPE AND INTERCEPT FOR CALCULAIION OF
PARTIAL DENSITIES OF GAS BUBBLES AND MIXTURE USED IN SUBRuuTINE
BUBB.

VAPOR 1 IS CALLED BY SUBROUTINES OVRLYP, DELHP, STATPH, BUPINT,
AND BAL.

LV : REGINNING FILE INDEX OF THE VOLUME FILE
LE : INDEX OF LAST SLT IN THE VOLUME FILE
LS : SET SIZE OF THE VOLUME FILE

..*.........

SUBROUTINE VELLIM (INPUT,0UTPUT,UPLIM,DVNLIM, GAIN,0FFStT)

SUBROUTINE VELLIM MODELS A SLEW RATE LIMITED AMPLIFIER.

VELLIM IS CALLED BY SUBROUTINE CONTRL.

INPUT = VALUE AT INPUT SIGNAL AT THE CURRENT TIME STEP (INPUT)
OUTPUT = VALUE OF THE OUTPUT SIGNAL AT THE CURRENT TIME STEP

8 255'
IX-55

(OUTPUT)
UPLIM = SLEW RATE IN POSITIVE DIRECTION (lNPUT)
DW AL IM = SLEW RATE IN NEGATIVE DIRECTION (INPUT)
GAIN : GAIN OF THE AMPLIFIER (INPUT)
0FFSET = OFFSET APPLIED AT THE OUTPUT OF THE AMPLIFIER (INPUT)

..

FUNCTION VISC (N,T1,RH01)

FUNCTION VISC COMPUTES VISCOSITY OF SATURATED LIQUIC AND
SATURATED AND SUPERHEATED VAPOR - 1967 STEAP TABLES.

VISC IS CALLED BY SUBROUTINES STPM, GOOT AND TURBCF.

N : 1, SATURATED LIQUID (INPUT)
2, SATURATED AND SUPERHEATED VAPOR.

T1 : TEMPERATURE (INPUT)
RH01 : DENSITY (INPUT)
VISC = VISCOSITY (OUTPUT)

..

SUBROUTINE VDVDT (IDXV,ISZV)

SUBROUTINE VDUDT COMPUTES VOLUME DU/DT FOR STEADY S(ATE
INITIALIZATION

IDXV : INDEX OF A SCRATCH ARRAY USED TO STORE VOLUME VARIARLES
FOR STEADY STATE INITIALIZATION. (INPUT)

ISZV = SET SIZE OF THE VOLUME SCRATCH ARRAY. LINPUT)

..

SUBROUTINE WPACK

SUBROUTINE WPACK COMPUTES READJUSTED FLOWS AT THE TIME OF
W A TE R PACKING.

WPAC IS CALLED BY SUBROUTINE BAL.

*7r8 56

O-

IX-56

e

t

.

I

%

b

a

/

s

J

K

X. SUBROUTINE CALL CHARTS

Figures X.1-1 through X.1-6 present the call charts for the RETRAN code package.
These call charts show the calls from each routine in the RETRAN code package
with the exception of calls to INP package routine. the FTB package routines,
error routines and other miscellaneous subroutines that would lend little insight
to the overall flow of the code. These calls were omitted in order to keep the

charts readable without sacrificing details of the logical organization. These
charts show logical organization but not the structure of the loaded code which
is covered in Sections II through V.

'~8 258

X-1

O
_INITAL

-lNP

INPUT INPSHF

INTRAN (SEE FIGURE X.1-3)

-INRTRN

-RESSEG - RESOPT

- RETRAN -STSTAT (SEE FIGURE X.1-4)

-REDUCE

-TRAN (SFE FIGURE X.1-5)

-TRPSUM

- PRNPLT - PLOTPR
CHEK

"
INDATA

- REDUCE INTRAN (SEE FIGURE X.1-3)

CPYPLT

- 0VRLYP

- TRAN (SEE FIGURE X.1-5)RMAIN RESTRT

- TRPSUM

-PRNPLT - PLOTPR

- REEDIT (SEE FIGURE X.1-2)

- PLOTER (SEE FIGURE X.1-2)

Figure X.1-1 Subroutine Calls from RMAIN h, , .

O
X-2

- EDATAl

- CHEK - EDATA2

- INEDIT - EDATA3

- INEDTE - SETUPE - EDATA4

- POSITfl "~

EDINIT
~"

PULLIN

REEDIT-
- CHEK

- PULLIN - EDTCND

- EDITRE POSI1N - EDTCOR

- REDUCE - EDTDNB

EDIT - EDTitTX

EDTKIN

- EDTLQL

- PRNPLT-PLOTPR - EDTPf1P

PLTAPE- RESSEG-RESOPT

- INPLOT

- CHEK

- SETUPE

- REDTAP - SETUP 0

- POSITN

- POSPLT - EDATA1

PLOTER- PULLIN - EDATA2

- PULTRN - EDATA3

- INEDIT - EDATA4
-SEARCH

REDUCE - EDINIT
- MXSETS

- REQEST- PLOT
- PLOTR ,- PLOTMC

- LABLCK

PLOTS

RESSEG-RESOPT-

bFigure X.1-2 Subroutine Calls from REEDIT and PLOTER

X-3

O
INCNST

STH201

INTSTP - TSTf10D

INTRIP

INCNTl
STH201

STH202
-

- STH200

- STH203
r-TRIP- TAPEBC
L. CHEK

PRESS STH200

INJUN CHAIN
STH202

- INAREA
" S H 03

- INCKV

- INFILL

- INPf1 INPUf1P

IPMCK
- INCDHT

- INHTXQ
-INGE0f1- INHEAT
- INSLAB

- INCORE

INMPR0

- INRKEN- INP0HR

- INSCRf1

INDNB

- EDATAl- INSTGN
- EDATA2- INEDIT
- EDATA3- INIFTE
- EDATA4

-11XSETS- EDINIT
SEARCH- INCNT2

Figure X.1-3 Subroutine Calls Fron INTRAN O
''

..

X-4

r-TRIP- POWRT
t- P0 LATE

- TRIP CHKV 0 TE
-T , p

- FILL - e0 LATE
- STH205- MASBAL

- POSTW

- EQSETS- INITLZ
LOOPS

r- TRI P- HTXQ~ L P0 LATE

-STH200- HAVG -STH202
STATPH - STH205

-VAPOR 1

- PREW (SEE FIGURE X.1-6)
r TRIP- HTXQENERGY POLATE

- PRSORK

-PCHF
STSTAT

r-TRI P- CONDHT
L POLATE- SINITLBUBB - ENTRAN - CORQ

- BUBINT FILL -TRIP TKANDC POLATE
- P0 LATE

- TEMZ HTRC-STH205
-SENG- VAPORl
-TAVE

r-DELHP- HAVG
L_ MINV

-STH200
-STH202

STATPH -STH205
-VAPORl

BAL (SEE FIGURE X.1-6)

POSTW r-TRIP
H

ENERGY
L POLATE

- PCHF
SINITL

JH0FF - CONDHT 0 TE

VDUDT -CORQ

JVEDIT -TKANDC- P0 LATE

CONTRL -TEMZ HTRC

K!NITL -SENG

}b2-TAVE ,7r

Figure X.1-4 Subroutine Calls from STSTAT

X-5

- TRIP

BAL (SEE FIGURE X.1-6)

- TSED -EDTCND
- EDTCOR

- EDIT - EDTDNB
- EDTHTX
- EDTKIN

- ZTEDIT - EDTLQL
-EDTPf1P

- ETSCON -POLATE

- TSTP

- POWRT
TRA?4 , TE

~

SCRAf1RKEN - REAC - POLATE
POLATE

r-TRIP- HUQ L POLATE

- ENERGY

- SLABDT -PCHF

-SLABDHT -CONDHT
TE

-f1HZOR - f1WR CORQ

-COND -TKANDC- P0 LATE
-QDOT

-TEMP - HTRC _STH203
-SENG

DNBM (SEE FIGURE X.1-6) -TAVE

- DELAY

- CONTRL
-

- EG
- POLATE
- LDLAG
- VELLIll
- DIFF

- PREW (SEE FIGURE X.1-6)
-LEAK P0 LATE

- FLOSRH -TRIP
- FILL -POLATE

-STH205

- NI FTE -

-POSTW .fr }}
Figure X.1-5 Subroutine Calls from TRAN

X-6

- CARDBC POLATE

rTRR
TAPEBC LCHEK

FBUBB- JUNHP
LTRNSPT

I- PRZR
BAL I- E

F STH202STATE ' STH204

-STH200
-STH201

PRESS -STH202
_STH203

TRNSPT

FITHT
TURBCF

- STH205
STH202
FGRSPM

DNBM
FCOLDW

QDNBW33
g QDNBBW

QDNBMAo.

QDNBBAe
E QDNBB0

5
g SFR

N Ib3 STPMg ' FANG

S CHKVg L- POLATE

$ HEADC
% -PUMP - P0 LATE

PREW PUMPS -TRIP
c -POLATE

TRIP
s -FILL -POLATE

$ JUNHP LSTH205

5 -BUBB - ENTRAN

y -TRNSPT
n
x STH205
e
'
g FRICTN

MACH - POLATF

MIXT'_0 [h0 LATE O~'

X-7

. _

h '

.-

e

4

e

9

O

XI. REFERENCES

I-1 "WREM: Water Reactor Evaluation model", Revision 1, NUREG-75/056,

May 1975.

II.1-1 Fortran Extended Version 4 Reference Manual, Control Data Corp,

#60305600, Revision E(5-10-74).

II.1-2 IBM 05 FORTRAN IV (H-Extended) Compiler Programmer's Guide Order

No. SC28-6852-2.

11.1-3 N05/BE VERSION 1 REFERENCE MANUAL, Control Data Corporation, #60493800,

Revision E (6-1-78).

II.1-4 LOADER REFERENCE MANUAL, Control Data Corporation, Publication

No. 60344200, Revision G (3-75).

II.1-5 CYBER o'ADER VERSION 1 REFERENCE MANUAL, Control Data Corporation,

Publication Number 60429800, Revision F (April 15, 1978)

11.1-6 IBM 05 Linkage Editor and Loader, Order Number GC28-6538-10.

VII.1-1 INEL Environmental Subroutine Manual, 1972.

VII.3-1 C. A. Mayer et al, " Thermodynamic and Transport Properties of Steam",
The American Society of Mechanical Engineers, 1967.

VII.3-2 E. Schmidt, Properities of Water and Steam in SI Units, Springer-
Verlag New York Inc., 1969.

VII.3-3 K. V. Moore, ASTEM -- A Collection of Fortran Subroutines to Evaluate
the 1967 ASME Equations of STATE for Water / Steam and Derivatives of

These Equations, ANCR-1026 (October 1971).

,,eg }6hXI-1

VII.4-1 RELAP4/M005 Volume II Program Implementation, ANCR-NUREG-1335

(Sept 1976), p. 237.

VII.4-2 Programming CALCOMP Electromechanical Plotters, California Computer
Products, Inc, August 1974.

VIII .1-1 UPDATE REFERENCE MANUAL, Control Data Corporation, No. 60342500,

Revision D(5-74).

.

g

O
XI-2

/

.

O

. s

Appendix A

RETRAN FILE DIRECTORY

The RETRAN file directory is presented in this Appendix. Examples of file con-
struction, including accessing the files and adding new variables to these files,
are given in Section 11.2.

,"B 269

A-1

este.ee...ee..ee.e.e....eet.eeet..ee.e..e...e.eee.e........ee.e.e.

RETRAN FILE DIRECTORY* .

e e

ALL STORAGE REGUIREMENTS FOR DATA A F. R A Y S ARE ASSIGNLD AT* .

LXECUTION TIME, IN THE APPROPRIATE INPUT ROUTINES. ALL .*

STORAGE IS ASSIGNED WITHIN A SINGLE ARRAY. A UNIGUE9 *

DESCRIPTION IS MAINTAINED FOR EACM FILE THROUGM USF Cr THE* *

FOUR CONTROL ARRAYS DESCRIAED BELOW. SCME FILES MIGHT NOTe *

BE DEFINED DURING EXECUTION OF A GIVEN PROBLEM IF THE DATA* *

* NORMALLY FOUND IN THE FILE IS NOT REGUIRED FOR PROBLEP e

EXECUTION.* .

. .

FILID (II) : UNIGUE FLOATING POINT FILE ID oUMBER* *

FILIDX(II) : UNIGUE INTEGER INDEX WHICH SPELIFIES* *

THE ORIGIN OF THE FILE* *

FILSIZ(II) : AN INTEGER WORD SPECIFYING THE TOTAL* *

LENGTH OF A GIVEN FILE* *

SETSIZ(II) : AN INTEGER WCRO SPECIFYING THE SIZE* .

* OF A SUBSET OF DATA WITHIN A FILE. *

* AS AN EXAMPLE, THL DATA FOR A f- I V E N *

VOLUME FORMS A SET AND THE NUMtEP OF* *

* SETS WOULD 6E EGUAL TO THE NUMrER OF *

VOLUMES DEFINED. CONSEQUENTLY, TMF* *

FILSIZ MUST BE AN INTEGER MULTIPLE* *

* OF THE SETSIZ *

II : A FIXED INDEX ASSIGNED TO EACH FILE **

* e

e THE FILE DEFINITION AND STRUCTURE IS SHOLN BELOW. ALL *

FILES LISTED, ARE PACKED AT THE PREFERED END OF CORE.* *

e .

esteeteeteet.e.eeeeeeeet.eee.eee.seeegete.eeeeeeeeeeeee.ee.eee.ee.

'~8 270
'

A-3

..

... FILID(01) : CARDS - CONTAINS CARD INPUT CATA PROCESSEI 6Y
THE INP PACKAGE, ONCE THE INPUT DATA IS Pr oCESSED.
THE DATA IS WRITTEN TO FORTRAN UNIT 2
FOR USE IN MULTIPLE CASE F u t,5 AND DATA

TAPE HEADER RECORDS

..

O
A-4

..

.*. FILID(02) = PRBDIM PROBLEM DIMENSIONS-

... FILE 2 IS RESERVED IN SUBROUTINE INPUT

WORD
(01) : LDMP = RESTART, PLOT TAPE CONTROL FLAG
(02) : NEDI : NUMBER OF MINOR EDIT PARAMETLRS
(03) = NTC = TIME STEP CARD COUNT
(04) : NTRP = TRIP CARD COUNT
(05) : NVOL = NUMBER OF VOLUMES
(06) = NBUB = BUBBLE DATA CARD COUNT
(07) : NTDV : NUMBER OF TIME DEPENDENT VOLUMES
(08) : NJUN NUMBER OF JUNCTIONS
(09) : NPHPC = NUMBER OF PUMPS
(10) : NCKV : CHECK VALVE CARD COUNT
(11) : NLK = NUMBER OF LEAK SETS
(12) : NFLL = NUMBER OF FILL SETS
(13) : NSLB : NUMBER OF HEAT CONDUCTORS
(14) = NGOM = NUMBER OF HE A T CONDUCTOR GEOMETRIES
(15) : NMAT : NUMBER OF HEAT CONDUCTOR M A TE RI ALS
(16) : NCOR = NUMBER OF CORE SECTIONS
(17) : NHTX = NUMBER OF HEAT EXCHANGER SETS
(18) : NTMM = TWO STREAM MOMENTUM MIXING OPTION JET PUFP-

=0 NOT USED, >0 OPTION USED
(19) : N0D E l. : POWER CALCULATION TYPE
(20) : MWREAC: METAL WATER C ALCUL ATION FL AG

=0 NO M-W REAC, >0 M-W REAC CALC
(21) : NLVC = NUMBER OF VOLUMES TO BE SUMMED IN EQUIVAltNT

LIQUID LEVEL CALCULATICN
(22) : MTDV : NUMBER OF TIME DEPENDENT VOLUME BOUNDARY

CONDITIONS TO BE RETRIEVED FROM A DATA TAPE
(23) : ISFLAG: FLAG TO TURN ON SLIP C ALCULATION
(24) : NCHT = NUMBER OF CONDENSING STEAM HT CORRELATION DESCRIPTIONS
(25) : JSST : FLAG TO TURN OFF STEADY STATE INITIALIZATION, 1 FOR NO

INITIALIZATION, O FOR INITIALIZATION
(26) : IPRZR = NON-EQUILIBRIUM OPTION FLAG
(27) : ITRNS = TRANSPORT DELAY OPTION FLAG
(28) : IDNBC = AUXILIARY DNB OPTION FLAG
(29) : ICF : CONTROL SYSTEM OPTION FLAG

..

A-5

qgi,
..

FILID(03) : EDVLOC - CONTAINS MINOR EDIT HEADINGS, EDIT...

VARIABLE ADDRESSES AND VALUES FOR UP T O 5 tt
TIME STEPS

EDVLOC CONTAINS 55 SETS, EACH SET IS (NEDI + 1) WORDS LONG...

AND CONTAINS INFO FOR EACH MINOR EDIT VARIABLE PLUS
THE ELAPSED TIME

... FILE 3 IS RESERVED IN SUBROUTINE EDINIT

unRD
(01) : MINOR EDIT VARIABLE AND REGION NUMBER
(02) : IST HALF OF THE TITLE LINE (AB)
(03) = 2ND HALF OF THE TITLE LINE (A4)
(04) : UNITS LINE OF TITLE (A8)
(05) : CORE LOCATION USED TO FETCH VALUE OF EDIT VARIABLt
(06) : VALUES OF MINOR EDIT VARIABLES FOR 50 TIME STEPS
.

.

(55)

..

O

~8 273' ' '

9-
A-6

..

..* FILID(04) : TSTEP TIME STEP INPUT DATA-

..* FILE TSTEP HAS NTC DATA SETS. A DATA SET IS SHOWN BELOW

..* FILE 4 IS RESERVED IN SUBROUTINE INTSTP

WORD
(01) : NMIN = NUMBER OF TIME STEPS PER MINOR EDIT AND PLOT TAPE

EDIT
(02) : NMAJ = NUMBER OF MINOR EDITS PER MAJOR EDIT
(03) : NOMP = NUMeER OF MAJOR EDITS PER TIMING EDIT
(04) : NCHK : TIME STEP CONTROL OPTION- 0, BLANK OR NEG=YLS,POS:NO
(05) : OELTM: MAXIMUM TIME STEP SIZE
(06) = OTMIN: MINIMUM ALLOJABLE TIME STEP SIZE
(07) : TLAST: END OF INTERVAL
(08) : EPSMAX= MAXIMUM ERROR TOLERANCE IN FLOW SOLUTION
(09) : EPSMIN: MINIMUM ERROR TOLERANCE IN FLOW SOLUTION
(10) : EPST = ERROR TOLERANCE IN HEAT TRANSFER SOLUTION
(11) : EPSCVL= ERROR TOLE R A NCE IN CAUSAL VOLUME TREATMENT
(12) = FLGI MINIMUM CHANGE IN RELATIVE PRESSURE THAT ACTIVATES

THE IMPLICIT ITERATIVE SOLUTION
(13) : EPSI : CONVERGENCE CRITERA IN PRESSURE FOR THE IrPLICIT SOLUTION
(14) : IEVERY : DETAILED EDIT CONTROL

..

'

A-7

gig,..

*** FILID(05) : VOLUME VOLUME QU AN TI TIE S-

FILE VOLUME HAS NVOL DATA SETS. A DATA SET IS SHOWN BtLOW***

.. FILE 5 IS RESERVED IN SUBROUTINE INVOL

WORD VARIABLE
(01) : IBUB = BUBBLE DATA INDEX
(02) : IREAD: VOLUME DATA RETRIEVAL INDEX
(03) : P = VOLUME PRESSURE
(09) : TEMP = VOLUME TEMPERATURE
(05) : HUM = VOLUME HUMIDITY
(06) : V = VOLUME (FT3)
(07) : ZVOL VOLUME HEIGHT
(08) = 2M = MIXTURE LEVEL
(09) : JTPMV: TWO PHASE FRICTION INDEX
(10) = FLOWA = VOLUME FLOW AREA
(11) : DIAMV : EQUIVALENT DIAMETER OF FLOW AREA
(12) : ELEV : ELEVATION AT THE BOTTOM OF TME VOLUME
(13) : SATP : SATURATION PRESSURE
(14) : SATT : SATURATION TEMPERATURE
(15) : SATVF : SATURATION SPECIFIC VOLUME OF LIGUID
(16) : SATVG : SATURATION SPECIFIC VOLUME OF GAS
(17) : SATUF : SATURATED LIGUID SPECIFIC INTERNAL ENERGY
(18) : SATUG : SATURATED GAS SPECIFIC INTERNAL ENERGY
(19) : SATHF : SPEC IF IC ENTHALPY OF SATURATED LIQUID
(20) : SATHG : SPECIFIC ENTHALPY OF SATURATED GAS
(21) : VL : SPECIFIC LIQUID VOLUME
(22) : VS : SPECIFIC GAS VOLUME
(23) : UW : INTERNAL SPECIFIC ENERGY
(24) : Hw = VOLUME SPECIFIC ENTHALPY
(25) : GASH : GAS SPECIFIC ENTHALPY
(26) : LIGH = LIQUID SPECIFIC ENTHALPY
(27) = 2L = LIQUID LEVEL
(28) : AVEX = AVERAGE QUALITY
(29) : ZMO = MIXTURE LEVEL FOR PREVIOUS TIME STEP
(30) : GASM : GAS MASS (INCLUDES BUBBLE MASS)
(31) : FMASS : TOTAL VATER MASS
(32) : ARMASS: AIR MASS
(33) : BUBM = BUBBLE MASS
(34) : LIQM : LIQUID MASS
(35) : MIXV : MIXTURE VOLUME
(36) : GASV : GAS VOLUME
(37) : LIQV : LIQUID VOLUME
(38) = AVED = AVERAGE DENSITY
(39) : U : TOTAL ENERGY
(40) : MIXQ : MIXTURE GUALITY
(41) : A : VOLUME AREA
(42) FLOWL : VOLUME FLOW PATH LENGTH
(43) : FLOWRA1/(144*GC*FLOWA. 2)
(44) : WVBAR = AVERAGE VOLUME FLOW (L8M/SEC)
(45) : WVBARO: PREVIOUS TIME STEP VALUE OF LVBAR
(46) = SPVZ = VOLUME AVERAGE SPECIFIC VOLUME (F T3 / LB M)
(47) = SPVZO : PREVIOUS TIME STEP VALUE OF SPV2

'}7',

A-8

(48) : AINERV: HALF-VOLUME INERTIA (L/2.A*14**GC)
(49) : CMAS : CENTER OF MA SS HLIGHT
(50) : F ANING:F ANNING FRIC TION FACTOR
(51) : ELOD :(L/0)/(144 GC A**2)
(52) : TPNV :TWO-PHASE MULTIPLIER F OR FANNING FRICTION TERPS
(53) : CMACHV: MACH NUMBER SQUARED FOR AVERAGE VOLUML FLOW
(54) : IFAN : MEMORY INDEX FOR FANNING FRICTION CALCULAIION
(55) = JVISC MEMORY INDEX FOR VISCOSITY CALCULATION
(56) : TLIG : LIQUID TCPPERATURE (TWO TEMPERATURE MODEL8
(57) : SOUN02:ISENTROPIC SONIC VELOCITY SGUARED, CP/DRikHC
(58) : VSTIDX: MEMORY INDEx FOR VOLUME STATE PROPERTIES
(59) : SATIOx: MEMORY INDEx FOR SATURATED STATE PROPERTIt S
(60) : PHASE : PHASE OF WATER IN VOLUME
(61) : IIN : JUNCTION INLET NUMBER (NE W)
(62) = IOUT : JUNCTION OUTLET NUMBER (neb)
(63) : CSUBP :SPECIFC HEAT CAPACITY AT CONST ANT PRESSURt
(64) : CSUBPF:CSUBF FOR SA TUR ATED W A TER
(65) : CSUBPG:CSUBF FOR SATURATED STEAM
(66) = ICIN = HEAT CALCULATION INDEX
(67) : A1 : SLOPE OF GAS BUBBLE DENSITY
(68) : B = INTERCEPT OF GAS BUHHLE DENSITY
(69) : E : SLOPE OF MIXTURE DENSITY
(70) : F : INTERCEPT OF MIXTURE DENSITY
(71) : RGBT = BUBBLE FRACTION AT MIXTURE SURFACE
(72) : DPDU :DP/00 AT CONSTANT M, MA
(73) : OPDMF :DP/DMF AT CONSTANT U, MA
(74) : OPDMA =OP/DMA AT CONSTANT U, MF

(75) : FU =0U/DT = ENERGY EQUATION
(76) : FM :DM/DT = MASS EQUATION
(77) = FMA =0MA/DT = AIR MASS EQUATION
(78) : WQ : POWER INTO COOLANT
(79) : QSPL : VOLUME HEAT SOURCE
(80) : ITWOT = INITIAL VOLUME NUMBER TREATED BY TWO T E r.P . MODEL
(61) : IVFROM = VOLUME FROM WHICH TWO TEMP. MODEL IS PROP 0 GATED
(82) : OLVOLN : OLO VOLUME NUMBER
(83) : GFLAG : FLAG FOR PRESENCE OF GAS OR AIR IN THE v0LUME
(84) : VGASV : VOLUME GAS VELOCITY
(65) : VSLPVO = VOLUME SLIP VELOCITY
(86) : JTPR = PRESSURE TABLE INDEX FOR 2-PHASE MULTIPLIER CALC.
(67) : JTXI : FIRST QUALITY TABLE INDEX FOR 2-PHASE Mt'LTIPLIER CALC.
(88) = JTX2 : SECOND GUALITY TABLC INDEX FOR 2-PHASE .*.U L T I P L I E R CALC.
(89) = IVEDIT = NUMBER OF TIMES VOLUME HAS 8EEN WATER DrCK
(90) : OLO TE M = OLD VOLUME TEMPERATURE
(91) : OLDP = OLO VOLUME PRESSURE
(92) : XUO = OLO VOLUME ENERGY
(93) : XMF0 : OLD VOLUME FLUID MASS
(94) : XMAO : OLD VOLUME AIR MASS
(95) : BUBM0 : OLD VOLUME HUSBLE MASS
(96) : ICVOL : CAUSAL VOLUME INDICATOR,YES:1
(9 7) = XGAMA1 CREDIT IN ENERG FOR NONCAUSAL VOLUME
(98) = XGAMA2= CREDIT IN FLUID M ASS FOR NONCAUSAL VOLUMt.
(99) = xGAMA3: CREDIT IN AIR MASS FOR NOCAUSAL VOLUME

(100) : TLIGO : OLD LIQUID TEMPERATURE (TWC TEMPERATURE F0 DEL)
(101) : VOIOV : VOLUME V010 FRACTION

q 276

A-9

(102) = WGV = VOLUME GAS FLOW
(103) = WLV = VOLUME LIQUID FLOW
(104) = VSLPV = VOLUME SLIP VELOLITY
(105) = QVBAR = AVERAGE VOLUMETRIC FLOW
(106) = QVBARO: OLD AVERAGE VOLUMETRIC FLOW
(107) = SPVZC = SPECIFIC VOLUME AT VOLUME GEOMETRIC CENTFE
(108) = IFR = FLOW REGIME INDEX
(109) = INEQ = NON-EQUILIBRIUM VOLUME NUMBER
(110) = VR = RAIN 0UT VELOCITY (NON-EGUILIBRIUM VOLUME)
(111) = IPTN = PIPE TRANSPORT VOLUME NUMBER

*... ,

O
A-10

...

*.. FILID(06) : DJUNCT - JUNCTION QUANTITIES
... FILE DJUNCT HAS NJUN DATA SETS. A DATA SET IS SHOWN wELOW
... FILE 6 IS RESERVED IN SUBROUTINE INJUN

WORD
(01) : IW1 : VOLUME NUMBER AT JUNCTION INLET
(02) : IW2 : VOLUME NUMdER A T JUNC TION OUTLET
(03) : IPUMP = PUMP CURVE NUM8ER
(04) = IVALVE = VALVE NUMBER
(05) : WP = JUNCTION WEIGHT FLOW
(06) = AJUN : JUNCTION FLOW AREA
(07) : 2JUN : JUNCTION ELEVATION
("3) : INERTA : JUNCTION INERTIA
(09) : FJUNF = SPECIFIC ENERGY LOSS COEFFICIENT FOR FORWARD FLO.
(10) = FJUNR : SPECIFIC ENERGY LOSS COEFFICIENT FOR REVtRSE FLOW
(11) : JVERTL = VERTICAL JUNCTION CONTROL INDEX
(12) : JCHOKE : JUNCTION CHOKING INDE X
(13) : JCALCI : INITIAL CONDITION CALCULATION TYPE CONTRCL INCEX
(14) : MVMIX : MOMENTUM MIXING INDEx
(15) : DIAMJ = JUNCTION DIAMETER
(16) : CONCO : CONTRACTION COEFFICIENT
(17) : ICHOKE : LIQUID PHASE CHOKING CONDITION (0:NO CH0 PING)
(18) : IHQCOR = ENTHALPY TRANSPORT INDLX
(19) : DELA = PRESSURE DIFFERENTIAL ACCELERATION-

ELEVATION(20) : DELE : PRE SSURE DIFFERENTI AL -

(21) : DELF = PRE SS UR E DIFFERENTIAL FRICTION-

(22) : XP = JUNCTION QUALITY
(23) : HP : JUNCTION FLUID ENTHALPY
(24) : ITP = CHOKING TYPE INDICATOR
(25) : PUMPP = PUMP HEAD
(26) : FMFRAC = MASS FRACTION OF WATER IN JUNC T ION FL O'W
(27) = OELP = PRESSURE DIFFERENTIAL VOLUME TO VOLUME-

(28) : SPVJ = JUNCTION SPECIFIC VOLUME
(29) = AJUNT = TIME DEPENDENT JUNCTION FLC6 AREA
(30) : KCHOKE : CHOKING INDICATOR (0:UNCHOKED)
(31) : CHKVK : CHECK VALVE FRICTION FACTOP
(32) : IJ = MIXING JUNCTION NUMBER
(33) : IK : MIXING kOLUME NUMBER
(34) : PSTAR1 : UNMIXED PRESSURE AT JUNCTION OUTLET
(35) : PSTAR2 : UNMIXED PRESSURE AT JUNCTION INLET
(36) : VGASJ1 : JUNCTION GAS VELOCITY
(37) : JVLPJO : PREVIOUS TIME STEP JUNCTION SLIP VELOCITY
(38) : SPVST1 : SPECIFIC VOLUME AT JUNCTION OUTLET
(39) : SPVST2 : SPECIFIC VOLUME AT JUNCTION INLET
(40) : eWSGR1 : COEFFICIENT OF WJ. 2 FROM MACH
(41) : BWSGR2 : FANNING FRICTION COEFFICIENT OF W**2
(42) : AVEDJ = AVERAGE JUNCTION DENSITY
(43) : :

(44) : :

(45) : HKIN : JUNCTION KINETIC ENERGY
(46) : IVAP = JUNCTION VAPOR PRESSURE INCEA
(47) : SPVJO : PRE VI OUS TI ME STEP JUNCTION SPECIFIC VOLitML

,cg 27B
A-ll

(48) : RESDK : RESIDUAL JUNCTION FRICTION FACTOR
(49) = JPEDIT = NUMBER OF TIMES JUNCTION J HAS BEEN MODItIED

(WATER P ACK ING)
(50) : TPMJ = 2-PHASE MULTIPLIER FOR FORM LOSS
(51) : CHACH1 : JUNCTION MACH NUMBER
(52) : KMACH : MACH table MEMORY INDEX
(53) : HEADR1 : HEAD TERM FOR JUNCTION INLET
(54) = t.EADR2 : HEAD TERM F OR JUNCT ION OUTLET
(55) : IH : ENTH. INDEx FOR MOODY CRITICAL FLOW T ABLt S
(56) : IP = PRES. INDEX FOR MOOJY CRITICAL FLOW TABLtS
(57) : IHH : ENTH. INDEx FOR HENRY CRITICAL FLOW T A d L t. S
(56) : IPH : PRES. INDEX FOR HENRY CRITICAL FLOW TA8LtS
(59) : IHHE = ENTH. INDEx FOR EXTENDED HENRY CRIT. FL0k TABLES
(60) : IPHE : PRES. INDEX FOR EXTENDED NENRY CRIT. FLOW TABLES
(61) : WJSUM = UNUSED
(62) : HSPIN : EQUIVALENT JUNCTION INLET ENTHALFY
(63) : HSPOUT = EQUIVALENT JUNCTION OUTLET ENTHALPY
(64) : IWIN = NEW VOLUME NUMBER AT JUNCTION INLET
(65) = IW2N : NEW VOLUME NUMBER AT JUNCTION OUTLET
(66) : IPUMPN : NEW PUMP CURVE NUMBER
(67) : OLJUNN : OLD JUNCTION NUMBER
(68) : HOLDA = OLD JUNCTION ENTHALPY SAVE ARRAY
(69) : ESUBKO = OLD ESUBK
(70) = FSUBK = FRICTION TERM K/ RHO FOR MOMENTUM EGUATIOrs
(71) : ESUBK = DW/DT MOMENTUM EQUATION
(72) : CMACHJ = MACH NUMBER SQUARED AT JUNCTION
(73) : PUMPK = PUMP FRICTION FACTOR
(74) : WAVG = TIME AVERAGED FLOW
(75) : DW1 : FLOW CHANGE (PREVIOUS TIME STEP)
(76) : DW2 = PROJECTED MAXIMUM FLOW CHANGE
(77) : DW = ABS (DW1 - DW2)
(78) : DWOLD = DW (PREVIOUS TIME STEP)
(79) : WOLD : OLD FLOW
(80) : HPL JUNCTION LIQUID ENTHALPY
(81) : HPG : JUNCTION GAS ENTHALPY
(82) : SPVJL = JUNCTION LIQUID SPECIFIC VOLUME
(83) : SPVJG = JUNCTION GA S SPECIFIC VOLUME
(84) : VOID : JUNCTION VOID FRACTION
(85) : VSLPJ = JUNCTION SLIP VELOCITY
(86) : WLJ = JUNCTION LIQUID FLOW
(87) : WGJ = JUNCTION GAS FLOW
(88) : ISP = SPRAY JUNCTION FLAG

..

7e

O
A-12

..

FILID(07) = SYSTEM - OVERAL SYSTEM QUANTITIES*..

... FILE 7 IS RESERVED IN SUbROUTIN INCNST

WORD
(01) = NOGO = ERROR FLAG
(02) = OMEGA = IMPLICI T-E XPLIC I T N UMBE RS CONST A NT,I. DWF t1LLY IMPLICIT
(03) = POWRI = INITIAL POWER LEVEL
(04) = AE = ENERGY ADDEO
(05) = AMASS = MASS ADDED
(06) = BMASSW = MASS BALANCE OF WATER
(07) = BMASSA = MASS BALANCE OF AIR
(08) = OMASSW = MASS OF WATER LEAKED
(09) = OMASSA = MASS OF AIR LEAKED
(10) EB = ENERGY B ALANCE-

(11) = FE = ENERGY IN FUEL
(12) HE = ENERGY EXTRACTED BY HEAT EXCHANGER
(13) = PNCRM = NORMALIZED REAC10R POWER
(14) = QLOSS = TOTAL RATE OF HE AT RE MOV AL
(15) = UFILL = ENERGY F ROM FILLS
(16) = ULOSS = ENERGY LEAKED
(17) = TIMEx = PROBLEM TIME
(18) = POWER = SYSTEM POWER
(19) = PNUCL = INITIAL NUCLEAR POWER LEVEL
(20) = PTHERM = INITIAL THERMAL POWER LEVEL
(21) : MAxN00 : MAXIMUM NUMBER OF NODES SPECIFIED FOR ANY CONDU.
(22) = PMPPOM = TOTAL HEAT ADDITION TO THE SYSTEM FROM TnE PUMPS
(23) = TIMEx1 : TIMEX ONE TIME STEP BACK
(24) = TIMEX2 : TIMEX TWO TIME STEPS BACK
(25) : LCOUNT = MAX. NUMBER OF STEADY STATE ITERATIONS
(26) = ACEPSI = ACCELERATION PSI CONVERGENCE CRITERIA
(27) = HEPSII = VOLUME ENERGY BALANCE CONVERGENCE CRITER1A
(28) = EPSIMI = MASS BALANCE CONVERGENCE CPI TERI A
(29) = ICEQST = FLOW NETWORK NUMBER TO WHICH THE CORE SELTIONS

BELONG

..

- g 280-

A-13

...........................e................

..* FILID(G8) : TRIP TRIP VARIABLES-

.** FILE TRIP HAS NTRP DA",A SETS. A DATA SET IS SHOWN BELOW
*** FILE 8 IS RESERVED IN SUBROUTINE INTRIP

WORD
(01) : IDTRP = INDEX FOR TRIP TYPE
(02) : IDSIG : INPUT SIGNAL INDEX
(03) : IX1 : SIGNAL 1 INDEX (VOLUME OR JUNCTION NUMBER)
(04) : IX2 : SIGNAL 2 INDEX (NONZERO FOR DIFFERENCES)
(05) : SETPT = SIGNAL SETPOINT, TYPE ACCORDING TO IDSIG
(06) = OELAY = TRIP DELAY AFTER SETPOINT IS PASSED
(07) : TSIG = TIME TO REACH SETPOINT
(08) : FLOG = TRUE MEANS SETPOINT REACHED
(09) : ABX = PREVIOUS TIME STEP VALUE OF TRIP VARIABLE

..

O

., a 281

O
A-14

**********e............................,,,,,,,,,,,,,,,,,,,,,,,,,,,

FILID(09) : STEAMT - FILE CONTAINING THE WATER THERM 0t;YNAMIC***

PROPERTY TABLE
*** FILE 9 IS RESERVED IN SUBROUTINE S TH2 01

WORD
(01) : THERMO = THERMODYNAMIC PROPERTY TABLES

***********................................,,,,,,,,,,,,,,,,,,,,,,,

- g 282

A-15

..

**. FILID(10) : EDTF IL - RETRAN DOCUMENTATION AND PROBLEr. TITLE.
*** FILE 10 IS RESERVED IN SUBROUTINE INPUT

WORD
(01) : : HEADER LABEL
(02) = =

(03) = =

(04) : :

(05) = = DOCUMENTATION HEADER
(06) : :

(07) = =

(08) : :

(09) = =

(10) = =

(11) : :

(12) : :

(13) : :

(14) : :

(15) : :

(16) : :

(17) : :

(18) = =

(19) : : DATE
(20) : : PROBLEM TITLE
(21) : :

(22) : :

(23) : :

(24) : :

(25) : :

(26) : :

(27) : :

(28) : :

(29) : :

WORDS 30 AND ON WILL NOT BE PRESENT IF A
DATA TAPE 10 NOT GENERATED

(30) : : TRAILER LABEL
(31) : :

(32) = =

(33) : :

(34) : : 8HDATA REC
(35) = = DATA RECORD NUMBER
(36) : : LENGTH OF DATA RECORD
(37) : : TAPE LABEL
(38) = =

(39) : : TAPE VSN
(40) : : JULIAN CREATION DATE

.

.

REEDIT MAY REQUIRE MULTIPLE PAIRS OF.

VSN AND CREATION DATE

..

A-16

******.. ,,,,,,,,,,,,,,,,,

*** FILID(11) : BUBBLE - CONTAINS BUBBLE SET DATA
*** FILE BUBBLE HAS NBUB:1 D ATA SETS. A DATA SET IS SHOWN BELOW
*** FILE 11 IS RESERVED IN SUBROUTINE INBUBL

FIRST SET CONTAINS ALPH : 0. AND VBUB : 0.

WORD
(01) : ALPH = BUBBLE GRADIENT PARAMETER
(02) : VBUB = BUBBLE VELOCITY

*******...,,,,,,,,,,,,,,,,

A-17

..

... FILID(12) : VALVES - CONTAINS VALVE DATA
. FILE VALVES HAS NCKV DATA SETS. A DATA SET IS SHOWN PELOW

FILE 12 IS RESERVED IN SUBROUTINE INCKV...

WORD
(01) : ITCV = TYPE OF CHECK VA LVE
(02) : IACV = INDEX FOR AREA VS TIME OR ANGLE TABLE
(03) : PCV = BACK PRESSURE TO CLOSE CHECK VALVE
(04) : CV1 : FORWARD FLOW FRICTION FACTOR OR 000R AREA TIMES

MOMENT OF INERTIA
(05) : CV2 = REVERSE FLOU FRICTION FACTGH, VALVE OPEN

OR DOOR MOMENT OF INER TI A
(06) : CV3 : REVERSE FLOW FRICTION FACTOR, VALVE CLOSE0

OR 000R DAMPING CONSTANT
(07) : THDOT = DOOR ANGLE VELOCITY
(08) : THETA : DOOR ANGLE
(09) = OPEN = .TRUE. MEANS CHECK VALVE IN OPEN POSITION

..

O
. ,

s 213 5

O
A-18

..

CONTAINS TIME DEP. AREA DATA... FILID(13) : TDAREA -

*** FILE TDAREA HAS NLK DATA SETS. A DATA SET IS SHOWN BELOW
*** FILE 13 IS RESERVED IN SUBROUTINE INAREA

WORD
(01) : NAREA NUMBER OF NORMALIZED AREA VS TIME DATA POINTS

OR NORMALIZED AREA VS ANGLE DATA POINTS
(02) : IAREA = CURRENT POSITION IN AREA VS TIME TABLE
(03) : IDXARE: INDEX OF FILE CONTAINING NORM. AREA TABLE

*** FILE AREATL IS A SUBFILE OF TDAREA, CONTAINS AREA TABLE
WORD
(01) : TAREA(1) : TIME OR ANGLE
(02) : TAREA(1) : AREA NORMALIZED TO FULL OPEN
.

.

.

(2*NAREA-1) = TAREA(NAREA) : TIME OR ANGLE
(2.NAREA) : TAREA(NAREA) : AREA NORMALIZED TO FULL OPtN

..

,

A-19

..

FILID(14) : FILLER CONTAINS FILL DATA*** -

FILE FILLER HAS NFLL DATA STES. A D1TA SET IS SHOWN wELOW***

. FILE 14 IS RESERVED IN SUBROUTINE INFILL

WORD
(01) : NFILL : NUMBER OF PAIRS IN FILL TABLE
(02) : ITFILL = TRIP NUMBER CONTROLLING FILL
(03) : JX = INDEPENDENT VARIABLE TYPE (-1:DIFF PRES,0: TIME,1:VOL PRES)
(04) : JY : DEPENDENT VARIABLE TYPE (0:LB/SEC,1: GALL / MIN)
(05) = IFILL = CURRENT TABLE POSITION
(06) : IDXFLT = INDEX OF FILE CONTAINING FILL TABLE
(07) : PFILLO = PREVIOUS TIME STEP FILL PRESSURE

IF JX.GE.0, CONSTANT FILL PRESSURE IF JX.LT.0
(08) : IDXENT : INDEX OF ENTHALPY SUBFILE
(09) = STHIDX = MEMORY INDEX FOR FILL STATE PROPERTIES
(10) : IDXPRS = INDEX OF PRESSURE SUBFILE DEFIhED ONLY IF JX .GE. 0-

**. FILID FILTBL IS A SUBFILE OF FILLER, CONTAINS FILL TAPLE
WORD
(01) = FILT8L(1) : TIME OR PRESSURE
(02) : FILTBL(1) : FLOW
.

.

?

(2*NFILL-1): FILTBL(NFILL) : TIME OR PRESSURE
(2*NFILL) : FILTBL(NFILL) : FLOW

ENTHALPY CORRESPONDENCE S'BFILE***

(EACH ITEM CORRESPONDS TO J VS T OR P PAIR IN FILTBL)
WORD
(01) = FILENT(1) : FILL ENTHALPY
(02) = FILENT(2) =
.

.

.

(NFILL) : FILENT(NFILL) : FILL ENTHALPY

. PRESSURE CORRESPONDENCE SUBFILE
(EACH ITEM CORRCSPONDS TO W VS T OR P PAIR IN F'LTbL)

WORD
(01) : FILPRS(1) = FILL PRESSURE
(02) : FILPRS(2) :
C *** NOTE - FOR JX= -1 THIS TABLE IS NOT DEFINDEU
.

.

(NFILL) : FILPRE(NFILL) : FILL PRESSURE
***...

, e B 2137

O
A-20

..*****.......

. FILID(15) : PMPDSC - PUMP DESCRIPTION AND STOP DATA
FILE PMPDSC HAS NPMP DATA SETS. A DATA SET IS SHOWN HELOW***

FILE 15 IS RESERVED IN SUBROUTINE INPUMS**.

WORD
(01) : IPC = PUMP CURVE SET INDICATOR
(02) : ITPUMP TRIP NUMBER TO SHUT OFF PUMP
(03) : IRP = PUMP REVERSE INDICATOR (1 : REVERSE ALLOWED)
(04) : IPM = INDEX FOR TWO-PHASE OPTION (0:NO - 1:YES)
(05) = INT = INDEX FOR PUMP MOTOR TORQUE CURVE
(06) : POMGAR = RATED PUMP SPEED
(07) : PSRAT = RATIO OF INITIAL TO RATED SPEED
(08) : PFLOWR = RATED PUMP FLUW
(09) : PHEADR : RATED PUMP HEAD
(10) : PTORKR = RATED PUMP TORCUE
(11) : FINRTA = PUMP MOMENT OF INERTIA
(12) : VRHOI = RATED OR INITIAL DENSITY
(13) : TORKMR = RATED PUMP MOTOR TORQUE
(14) : TORKF1 : TORKF1 THROUGH TORKF4
(15) : TORKF2 : ARE COEFFICIENTS FOR
(16) : TORKF3 : FRICTIONAL TORQUE AS A CUBIC
(17) : TORKF4 : FUNCTION OF THE SPEED RATIO.
(18) : CAVCON : PUMP STOP ON ELAPSED TIME
(19) : FPUMP = PUMP STOP ON MAXIMUM FORWARD SPEED
(20) : SPUMP = PUMP STOP ON MAXIMUM REVERSE SPEED
(21) : TORKFR = FRICTIONAL TORQUE AT RATED SPEED
(22) : TORQUE : NORMALIZED PUMP TORGUE
(23) : IMZ = MEMORY INDEX FOR MOTOR TORQUE CURVE TABLt
(24) : IVPUMP = PUMP VOLUME NUMBER
(25) : JDISRG : PUMP DISCHARGE JUNCTION NUMBER
(26) : JSUCTN = PUMP SUCTION JUNCTION NUMBER
(27) : JPHD = MEMORY INDEX FOR HEAD CURVE TABLE
(28) : JPHD4 : MEMORY INDEX FOR SINGLE-2 PHASE %FAO CURVE TABLE
(29) : JPHM MEMORY INDEX FOR PUMP HEAD MULT. CURVE TABLE
(30) : JPTK : MEMORY INDEX FOR TORQUE CURVE TABLE
(31) : JPTK4 : MEMORY INDEX FOR SINGLE-2 PHASE TORQ CURVE TABLE
(32) : JPTM = MEMORY INDEx FOR PUMP TORGUE MULT. CURVE TABLE
(33) : POMGA = ACTUAL PUMP ANGULAR VELOCITY
(34) : OLPMPN OLD PUMP NUMBER
(35) = IVPMPO : OLD PUMP VOLUME NUMBER
(36) : PMTORQ = NORMALIZED PUMP MOTOR TORGUE
(37) : PFTORQ NORMALIZED PUMP FRICTIONAL TORGUE
(38) : PMPOWR = POWER TO COOLANT DUE TO IRRECOVERABLE LOSSES
(39) : IPEGST = FLOW NETWORK NUMBER TO WHICH THE PUMP BELONGS

..

c g 288

A-21

.. **...

. FILID(16) : PMTORK-CONTAINS INDEXES OF PUMP MOTOR TORM CURVES -

... FILE 16 IS RESERVED IN SUBROUTINE INPUNS

WORD
(01) : IDXPM1 : INDEX OF PUMP MOTOR TORQUE CURVE 1
(02) : IDXPM2 : INDEX OF PUMP MOTOR TORQUE CURVE 2

*** FILID - PTORK1 IS A SUBF ILE OF PMTORK, CONTAINS PUMP MOTOR

TORQUE CURVE 1
WORD
(01) : NTH 01 : NUMBER OF POINTS IN PUMP MOTCR TORQUE CURVE 1
(02) : PTM0(1) : PUMP SPEED
(03) : PTM0(1) : MOTOR TORQUE
.

.

*
.

(2*NTM01) : PTM0(NTM01) : PUMP SPEED
PfM0(NTM01)(2XNTM01+1) = : MOTOR TORQUE

. FILID PTORK2 IS A SUBFILE OF PMTORK, CONTAINS PUMP N0 TOR-

TORQUE CURVE 2
WORD
(01) : NTM02 : NUMBER OF POINTS IN PUMP MOTOR TORQUE CURVE 2
(02) : PTM0(1) : PUMP SPEED
(03) : PTM0(1) : MOTOR TORQUE
.

.

.

(2*NTM02) : PTM0(NTM02) : PUMP SPEED
(2.NTM02+1) : PTM0(NTM02) : MOTOR TORQUE

..

*

O
A-22

..

FILID(17) : PMPDEG - PUMP HEAD AND TORQUE MULTIPLIER*.

*** DATA FOR DEGRADATION CURVES
*** FILE IT IS RESERVED IN SUBROUTINE If4PUMS

WORD
(01) : ICURVE : INDEX OF FILE CONTAINING PUMP DEGRADATIOr, CURVE
(02) : IDXPHM = INDEX OF FILE CONTAINING HEAD MULTIPLIER CURVE
(03) : IDXPTM = INDEX OF FILE CONTAINING TORQUE MULTIPLItR CURVE
.

.

.

FILE PHDMLT IS A SUBFILE OF PHPDEG***

(01) : NPHM = NUMBER OF DATA POINTS IN THE PUMP HEAD Mt LT. CURVE
(02) : PHDM = PUMP HEAD MULTIPLIER CURVE TABLE

*** FILE PTKMLT IS A SUBFILE OF PMPDEG
(01) : NPTM = MUMBER OF DATA POINTS IN THE PUMP TORQ. P.U L T CURVE
(02) : PTRM : PUMP TORQUE MULTIPLIER CURVE TABLE

..................**..

.c g 290

A-23

..

FILIO(18) : TIMF IL - CONTAINS SUBROUTINE TIMING INFORrATION***

*** FILE 18 IS RESERVED IN SUBROUTINE TIMINT
WORD
(01) : : ELAPSED CPU TIME FOR SUEROUTINE
(02) : = NUMRER OF CALLS FOR SUBROUTINES.
.

.

.

(2*N-1) : ELAPSED CPU TIME FOR SUBROUTINE
(2 * f.) : NUMBER OF CALLS FOR SU6 ROUTINE.

** ...

O
, 8 29i

O
A-24

............................&...**......e....****... 6...e******e.

CONTAINS INDEXES OF EACH CURVE St T FILE*** FILID(19) : PPHDTQ -

... FILE 19 IS RESERVED IN SUBROUTINE INPUMP

WORD
(01) : IDXP1 : INDE X OF FILE CRVSET-1
(02) : IDXP2 : INDEX OF FILE CRVSET-2
(03) : 10XP3 : INDEX OF FILE CRVSET-3
(04) : IDXP4 : INDEX OF FILE CRVSET-4

*** FILE CRVSET IS A SUBFILE OF PPHDTQe CRVSET CONTAINS e0TH
HEAD AND TORQUE CH ARACTERISTIC CURVES FOR ONE SET

WORD
(01) : IDXCRV(1) = INDEX OF HEAD CURVE TABLE - TYPE 1
(02) : IDXCRV(2) =
(03) : IDXCRV(3)
(04) : IDXCRV(4) =
(05) : IDXCRV(5) =
(06) : IDXCRV(6) :
(07) : IDXCRVt7) =

TYPE 8(08) : IDXCRV(8) : INDEX OF HEAD CURVE TABLE -

(09) : IDXCRV(9) : INDEX OF TORGUE CURVE TABLE - TYPE 1
(10) 10XCRV(10)
(11) : IDXCRV(11) =
(12) : IDXCRV(12) :
(13) : IDXCRV(13) :
(14) : IDXCRV(14) :
(15) : IDXCRV(15) :
(16) : IDXCRV(16) : INDEX OF TORQUE CURVE TABLE - TYPE 8

*** PUMP HEAD AND TORQUE SUBFILES
WORD
(01) : NPCR = NUMBER OF POINTS IN THE TABLE FOR THIS CLRVE
(02) : PHEAD(1) OR PTORK(1)
(03) : PHEAD(2) OR PTORK(2)
(04) : PHE AD(3) OR PTORK(3)
(05) : PHEAD(4) OR PTORK(4)

.

O

e

e

e

e

....e.........e....e...e.ee.ee&6ees.**.e.et.e.**ee.ees.es.t.eeee.e

A-25

..............................****...........**..............*****

FILID(20) : SLABHT - HEAT CONDUCTOR DESCRIPTIONS AND UATA***

*** FILE SLABHT HAS NSLB DATA SETS. A DATA SET IS SHOWN PELOW
FILE 20 IS RESERVED IN SUBROUTINE INSLA6.*.

WORD
(01) : IVSL = INDEX NO. OF VOLUME AT LEFT SURFACE OF CUND (NEW)
(02) : IVSR : TNDEX NO. OF VOLUME AT RIGHT SURFACE OF LOND(NEW)
(03) = IGON : GEOMETRY INDEX
(04) : ISB = STACK INDICATOR
(05) : IMCL = LEF T SURF ACE INDICATOR FOR HEAT TRAN. con.
(06) : IMCR = RIGHT SURFACE INDICATOR FOR HEAT TRAN. CUR.
(07) : AHTL = HEAT TRAN AREA AT LEF T CONDUCTOR SURFACE
(08) : AHTR = HEAT TRAN AREA AT RIGHT CONDUCTOR SURFACL
(09) : VOLS : VOLUME OF HEAT SLAB
(10) : HDML = HYDRAULIC DIAMETER OF VOLUME ON LEFT OF LOND
(11) : HDMR = HYDRAULIC DIAMETER OF VOLUML ON RliHT OF COND
(12) : DHEL = HE A TED EQUIV ALENT DI AMETER ON LEFT 3F C 0 r. D
(13) : DHER = HE A TED EGUIV ALENT DI AMETER ON RIGHT 7F COND
(14) : CHNL = CHANNEL LENGTH ON LEFT OF COND
(15) : CHNR = CHANNEL LENGTH ON RIGHT OF COND
(16) : SE : STORED ENERGY IN CONDUCTOR
(17) : IHXQF = FLAG TO INDICATE USE OF HEAT CONDUCTOR 4t A HEAT

EXCHANGER = 1
(18) : FCHL = CRITICAL HEAT FLUX AT LEFT COND SURFACE
(19) : FCHR = CRITICAL HEAT FLUX AT RIGHT COND SURFACE
(20) : HTCL : HE AT TR ANSFER COEFFICIENT AT LEFT COND SLRi
(21) : HTCR = HEAT TR ANSFER COEFFICIENT AT RIGHT COND SURF
(22) : PHIL = HEAT FLUX AT LEFT COND SURFACE
(23) : PHIR = HEAT FLUX AT RIGHT COND SURFACE
(24) : SLEN = EQUIVALENT LENGTH OF HEAT COND
(25) : WGCL = HEAT TRANS RATE TO FLUID AT LEFT COND SUnFACE
(26) : WQCR = HEAT TRANS RATE TO FLUID AT RIGHT COND SLRFACE
(27) : IBCL = LEFT BOUNDARY CONDITION INDICATOR
(28) : IBCR = RIGHT BOUNDARY COND IT ION INDICATOR
(29) : IHTL : HEAT TRANS MODE AT LEFT COND SURFACE
(30) : INTR = HEAT TRANS MODE AT RIGHT COND SURFACE
(31) : ISCO : CORE NUMBER
(32) : TL = LEFT SINK TEMPERATURE, F
(33) : TR RIGHT SINK TEMPERATURE, F
(34) : AZL = AZL THROUGH HZR ARE COEFFICIENTS FOR CHF
(35) : A Z '. L = CORRELATIONS (LEFT SIDE)
(36) 0;L : .

(37) : CZL = .

(38) : EZL : .

(39) : EZ1L = .

(40) : FZL : .

(41) : HZL = .

(42) : WED : WETTED EQUIVALENT DI AMETER. IN
(43) : IDXTP = INDEX OF FILE CONTAINING TP FOR EACH NODL
(44) : IDXAP = INDEX OF FILE CONTAINING AP FOR EACH N00t
(45) : IDXTPC = INDEX OF FILE CONTAINING ITPC FOR EACH RtGION
(46) : IDXTPK : INDEX OF FILE CONTAINING ITPK FOR EACH RtGION

O
*7'~@ 29)A-26

(47) : IDXTPX : INDEX OF FILE CONTAINING ITPX FOR EACH R t.G I O N
(48) : OLSLBN = OLD CONDUCTOR NUMBER
(49) : IVSLOL : OLD VOLUME NUMBER (LEFT SIDE)
(50) = IVSROL = OLD VOLUME NUMBER (RIGHT SIDE)
(51) : AZR : AZR THROUGH HZR COEFICIENTS FOR CHF C OR R t. L A T I ON S
(52) : AZ1R = FOR RIGHi SIDE
(53) : BZR = .

(54) : EZR = .

(55) = EZ1R = .

(56) : FZR = .

(57) : FZR : .

(58) : HZR : .

(59) : :

(60) = =

(61) : PHOL : HEAT FLUX AT LEFT COND SURFACE (OLD TIME STEP)
(62) : PHOR : HEAT FLUX AT RIGHT COND SURFACE (OLD TIMt STEP)
(63) : GL = LEFT COOLANT FLOW RATE
(64) : GR = RIGHT COOLANT FLOW RATE
(65) : PHIR0 : OLD RIGHT SURFACE HEAT FLUX
(66) : DPHIR = FIRST NUMERICAL DERIVATIVE OF RIGHT SURFeCE

HEAT FLUX
(6T) : CREDL : CAUSAL CONDUCTOR CREDIT (LEFT SIDE)
(68) : CREDR = CAUSAL CONDUCTOR CREDIT (RIGHT SIDE
(69) : ICC : CAUSAL CONDUCTOR COUNTER
(70) : PREQST = FLOW NETWORK NUMBER FOR SECONDARY SIDE OF THE

STEAM GENERATOR (>0 ONLY IF IHXQF>G)

*** FILE SLBTP IS A SUBFILE OF SLABHT. SLBTP CONTAINS VAKIABLE
TP FOR EACH NODE IN A SLAB. INDEX OF FILE SLbTP IS WORD (43)
0F FILID(20)

WORD
(01) : NNODE : NUMBER OF TEMPER A TURE NODES IN THE HEAT SLAB
(02) : TP = NODE 1 TEMPERATURE
(03) : TP = NODE 2 TEMPERATURE

.

.

.

(XX+1) : TP = NODE XX TEMPERATURE
(XX) = TP = NODE XX TEMPERATURE

*** FILE SLBAP IS A SUBFILE OF SLABHT. SLBAP CONTAINS VAFIABLE
AP FOR EACH NODE IN A HEAT CONDUCTOR. INDEX OF FILE St B AP IS
WORD (44) 0F FILID(20)

WOR D

(01) : AP = -2* SURFACE WEIGHT * THERMAL CONDUCTIVITY (FOR t.0 D E 1)
(02) : AP = -2* SURFACE WEIGHT * THERMAL CONDUCTIVITY (FOR A0DE 2)

.

.

.

(XX) =AP -2* SURFACE WEIGHT * THERMAL CONDUCTIVITY (FOR NODE XX)

b_'

A-27

*** FILE SLITPC IS A SUbFILE OF SLABHT. SLBAP CONTAINS VARIABLE
ITPC FOR EACH REGION OF A HEAT CONDUCTrR. INDEX OF FILE SLITPC
IS WORD (45) 0F FILID(20)

WORD
(01) : ITPC = CURRENT POSITION IN TPC TAELE FOR REGION 1
(02) : ITPC : CURRENT POSITION IN TPC TABLE FOR REGION 2

.

.

.

(XX) : ITPC CURRENT POSITION IN TPC TABLE FOR REGION X/

*** FILE SLITPK IS A SUBFILE OF SLABHT. SLITPK CONTAINS %ARIABLE
ITPK FOR EACH REGION OF A HEAT CONDUCTOR. INDEX OF FItE SLITPK
IS WORD (46) 0F FILID(20)

WORD
(01) : ITPK = CURRENT POSITION IN TPK TABLE FOR REGION 1
(02) : ITPK : CURRENT POSITION IN TPK TABLE FOR REGION 2

.

.

.

(XX) : = CURRENT POSITION IN TPK TABLE FOR REGION XX

*** FILE SLITPX IS A SUBFILE OF SLABHT. SLIPTX CONTAINS VARIABLE
ITPX FOR EACF REGION OF A HEAT CONDUCTOR. INDEX OF FILE SLITPX
IS w0RD(47) 0F FILIO(20)

WORD
(01) : ITPX : CURRL'NT POSITION IN TPX TABLE FOR REGION 1
(02) : ITPX = CURRENT POSITION IN TPX TABLE FOR REGION 2

.

.

.

(XX) : ITPX : CURRENT POSITION IN TPX TABLE FOR REGION X)

..

*7

O
A-28

..

FILID(21) : SLABGM VARIABLES DESCRIBING CONDUCTOR Gt0 METRY*** -

FILE SLABGM HAS NGOM DATA SETS. A DATA SET IS SHOWN PELOW***

.. FILE 21 IS RESERVED IN SUBROUTINE INGE0M

WORD
(01) : IDXR : INDEX OF FILE CONTAINING GEOPETRY REGION VARIABLES
(02) : IG = GEOMETRY TYPE, 1-RECTANGULAR, 2-CYLINDRICAL
(03) : NR = NUMBER OF REGIONS
(05) : ASUR = RIGHT COND SURFACE AREA PER UNIT HEIGHT
(04) : ASUL = LEFT COND SURFACE AREA PER UNIT HEIGHT
(06) : NSI : NODE AT RIGHT SURFACE
(07) : IDXS : INDEX OF FILE CONTAINING SURFACE AREA WEIbHT FOR

THIS CONDUCTOR GEOMETRY
(08) : IDXVP = INDEX OF FILE CONTAINING NODAL VOLUMES F0H THIS

CONDUCTOR GEOMETRY

*** FILE GEOMR IS A SUBFILE FROM SLABGM. GECMR CONTAINS VARIABLES
ASSOCIATED WITH EACH GEOMETRY REGION. THE INDEX OF FILE GEOMR
IS THE FIRST WORD OF FILID(21)

WORD
(01) : IKC = HATERIAL INDEX
(02) : P0FR = FRACTION OF POWER IN REGION OF CORE HEAT COND
(03) : NREG = VOLUME OF REGION PER FOOT OF LENGTH
(04) : VRI : VOLUME RATIO AT INTERFACE
(05) : XDCR = COLD RADIUS OR DISTANCE TO RIGHT SURFACE OF REGION
(06) : IGAP = GAP INDICATOR
(07) : NI = NODE AT INTERFACE

*** FILE NODEVP IS A SUBFILE FROM SLARGM. NODEVP CONTAINS REGION
VOLUMES FOR EACH COND. THE INDEX FOR THIS FILE IS WOPD (08)
0F F IL I D (21)

WORD
(01) : VP = VOLUME OF REGION 1
(02) : VP = VOLUME OF REGION 2

:.

:.

. =

(XX) : VP = VOLUME OF THE LAST REGION XX

..* FILE NODES IS A SUBFILE OF SLABGM. NODES CONTAINS SUFFACE
AREA WEIGHT, A/2DX, FOR ONE GEOMETRY. THE INDEX FOR 1HIS
FILE IS WORD (07) 0F FILID(21)

WORD
(01) : S = SURFACE AREA WEIGHT OF REGION 1
(02) : S : SURFACE AREA WEIGHT OF REGION 2

.

.

.

(XX) : S : SURFACE AREA WEIGHT OF THE LAST REGION XX

f-1'*.

A-29

..

FILID(22) : SLABCM - CORE VOLUME AND METAL WATER REACIION DATA -***

. FILE SLABCM HAS NCOR DATA 'iE T S . A DATA SET IS SHOWN HELOW
*** FILE 22 IS RESERVED IN SUBROUTINE INCORE

WORD
(01) = ISLB = OLD CONDUCTOR NUMBER
(02) : CLTI : INITIAL CLAD THICKNESS
(03) : QFRAC = FRACTION OF POWER IN CORE SECTION
(04) : FQ = POWER GENERATION IN CORE HEAT CONDUCTOR
(05) : TM = AVERAGE TEMPERATURE OF CORE HEAT CONDUCTOR
(06) : TS = SURFACE TEMPERATURE Of CORE HEAT CONOUCTUR
(07) : CTR DEPTH OF MW REAC PENETRATION AT END OF TIME STEP
(08) : CTRL = DEPTH OF MW REAC PENETRATION AT STRT OF IIME STEP
(09) = RRO = ORIGINAL FUEL PIN RADIUS
(10) : ISLBNW = NEW CONDUCTOR NUMBER
(11) : QMWR = HEAT GENERATED BY M-W REACTION (BTU /HR)
(12) : CTRIN : I N T E P.N A L DEPTH OF M-W REACTION
(13) : MG = MODERATOR HEATING RATE (BTU /HR)

..

O

n&

O
A-30

..

FILID(23) = XNIFTE = SCRATCH..*

SPACE FOR THE COEFFICIENT ARRAYS USED IN rIFTE
(JJ IS THE NUMBER OF CONTROL VOLUMES, NVOL)

*** FILE 23 IS RESERVED IN SUBROUTINE INIFTE

WORD
(01) = ALPHA (1,1)

.

.

(JJ) = ALPHA (JJ,1)
(JJ+1) = ALPHA (1,2)

.

.

(2. JJ) = ALPHA (JJ,2)
(2*JJ+1) = ALPHA (1,3)

.

.

(3*JJ) = ALPHA (JJ,3)
(3*JJ+1) = BETA (1,1)

.

.

(6*JJ) : BETA (JJ,3)
(6*JJ+1) = XGAMA(1,1)

.

.

(9. JJ) = XGAMA(JJ,5)
(9*JJ+1) = XLAMB(1,1)

.

.

(12*JJ) = XLAMB(JJ,3)

.vg 298

A-31

..

**. FILID(24) : THRCND - CONTAINS NMAT TABLES OF THERMAL
CONDUCTIVITY OATA

... FILE 24 IS RESERVED IN SUBROUTINE INMPRO

WORD
(01) : IDXK1 : INDEX OF TABLE FOR MATERIAL I
(02) : IDXK2 : INDEX OF TABLE FOR MATERIAL 2
.

.

.

(IDXK1) : NKP = NUMBER OF POINTS IN TABLE 1
(IDXKl+1): TPK (1) : TEMPERATURE
(IDXKl+2): TPK (2) : THERMAL CONDUCTIVITY

.

.

.

(IDXK) : NKP = NUMBER OF POINTS IN TABLE NMAT
(IDXK+1) : TPK (1) : TEMPERATURE
(IDXK+2) : TP K(2) : THERMAL CONDUCTIVITY

.

.

.

...........................e.........e...e...................e....

O

, 8 299

O
A-32

..

FILID(25) : VHTCAP - CONTAINS NMAT TABLES OF VOLUMETRIC***

HEAT CAPACITY DATA
FILE 25 IS RESERVED IN SUBROUTINE INMPRO***

WORD
(01) : IDXC1 : INDEX OF TABLE FOR MATERIAL 1
(02) : IDXC2 : INDEX OF TABLE FOR MATERIAL 2

.

.

.

(NMAT) :IDXC = INDEX OF TABLE FOR MATERIAL NMI 1
(IDXC1) = NCP = NUMBER OF POINTS IN TABLE 1
(IDXC1+1): TPC(1) : TEMPERATURE
(IDXC1+2): TPC(2) : VOLUMETRIC HEAT CAPACITY

.

.

.

(ID XC1 + 2 * NC P- 1): TPC (2*NCP-1) : TEMPERATURE
(IDXC1+2*NCP) : TPC(2*NCP) : VOLUMETRIC HEAT CAPACITY
(IDXC1+2*NCP+1) = TPCI(1) : INTEGRAL OF TCP
.

.

.

(ID XC1+ 3* NCP) : TPCI(NCP) - INTEGRAL OF TCP
.

.

.

(IDXC) : NCP = NUMBER OF POINTS IN TABLE NMAT
(IDXC+1): TPC(1) : TEMPERATURE
(IDXC+2): TPC(2) : VOLUM E TR IC HEAT CAPACITY
.

.

.

(ID XC+ 2 * NCP-1): TPC(2*NCP-1): TEMPER A TURE
(IDXC+2*NCP) : TPC(2*NCP) : VOLUMETRIC HEAT CAPACITY
(ID XC+2 * NCP +1): TPCI(1) : INTEGRAL OF TCP
.

.

.

(IDXC+3*NCP) : TPCI(NCP) : INTEGRAL OF TPC

...***......

, g ',0 3 .

A-33

,gg,..

FILID(26) : EXPCOF CONTAINS NMAT TABLES OF THERMAL... -

EXPANSION COEFICIENTS
. FILE 26 IS RESERVED IN SUBROUTINE INMPRO

WORD
(01) : IDXXI : INDEX OF TABLE FOR MATERIAL 1
(02) : IDXX2 : INDEX OF TABLE FOR MATERIAL 2

.

.

.

(NMAT): IDXX = INDEX OF TABLE FOR MATERIAL NMAT
(IDXX1) : NXP = NUMBER OF POINTS IN TABLE 1
(IDXX1+1): TPX(1) : TEMPERATURE
(IDXX1+2): TPX(2) : LINEAR EXPANSION COEFICIENT
.

.

.

(IDXX) : NXP = NUMBER OF POINTS IN TABLE NMAT
(IDXX+1): TPX(1): TEMPERATURE
(IDXX+2): TPX(2): LINEAR EXPANSION COEFICIENT
.

.

.

...e.....................................ee..........e............

O

, 3 301

O
A-34

..

*** FILID(27) : CONKIN - CONTAINS KINETICS CONSTANTS DATA
FILE CONKtN IS A RESERVE FILE WITH STARTING INDEX IDXKIN...

*.. FILE 27 IS RESERVED IN SUBROUTINE INRKEN

WORD
(01) : KODEL = KINETICS CALCULATION OPTION FLAG
(02) : KMUL : MULTIPLYING F ACTOR F OR DECAY LNERGY RELEASE RATES
(03) : 80VL = BETA / MEAN NEUTRON LIFETIME
(04) : RHOIN : INITIAL REACTIVIY
(05) : UDUF = U-238 ATOMS CONSUMED PER U-235 ATOMS FISS10NED
(06) : PROMPT = FRAC OF FISSION POWER RELEASED AT TIME OF FISSION
(07) : LAMBDA = FRACTION OF SURFACE HEAT PRODUCING SUBC00 LED

VAPOR BUBBLES
(08) : TAU = VAPOR BUBBLE LIFETIME
(09) : DT = IREKIN TIME INTERVAL
(10) : W1 : INVERSE PERIOD AT PREV IOUS TIME STEP
(11) : :

(12) : PER0ID = REACTOR PERIOD
(13) : PREAC = TOTAL REACTIVITY
(14) : SLOPE : RATE OF CHANGE OF REACTIVITY
(15) = SS = TIME DEPENDENT SOURCE
(16) : SUM = DELAYED NEUTRON SOURCE
(17) : T = IREKIN TIME STEP SIZE
(18) : W = AVER AGE RECIPROC AL PERIOD
(19) : W3 : INSTANTANEOUS RECIPROCAL PERIOD
(20) : KK RUNGA KUTTA STAGE
(21) : PHIl = OLD EMITTER CONCENTRATION

.

.

.

.

(41) : PHIl = OLD EMITTER CONCENTRATION
(42) : PHI 2 : NEW EMITTER CONCENTRATION

.

-.

(62) : PHI 2 : NEW EMITTER CONCENTRATION
(63) : PPOW = PROMPT POWER
(64) : DPOW = DELAYED POWER
(65) : EGAM(1) = YIELD FRACTIONS OF GAMMA NEUTRON EMITTEMS
.

.

(75) : EGAM(11): YIELD FRACTIONS OF GAMMA NEUTRON EMITTEkS
(76) : EGAMit2): EQUIVALENT YIELD FRACTIONS FOR U-239 + r, P - 2 3 9
(77) : EGAM(13): EQUIVALENT YIELD FRACTIONS FOR U-239 + hP-239
(78) : EGAM(14): EQUIVALENT YIELD FRACTION FOR FISSION POWER
(79) : DLAMDA DECAY CONSTANTS FOR SIX DELAYED NEUTRON GROUPS
(85) : AJOVRA : YIELD FRACTIONS FOR SIX DELAYED NEUTRON GROUPS

....................................**............................

-8 302-

m

..

FILID(28) : SCR A MT - CON T A IN S RE AC TIV I'. Y TABLE QUANTIIIES.**

*** FILE 28 IS RESERVED IN SUBROUTINE INSCRM

WORD
(01) : RC = CONTROL REACTIVITY
(02) : RCCAL = CALCULATED CONTROL REACTIVITY AT THE STAhT
(03) : NSC = NUMBER OF SCRAM CURVES
(04) : NSCR = NUMBER OF SCRAM DATA POINTS FOR TABLE I
(05) : ITSCRM = TRIP NUMBER FOR SCRAM 1
(06) : ISCR = CURRENT TABLE 1 POSITION
(07) : IDXTBL = INDEX OF FILE CONTAINING TABLE 1
(08) : NSCR = NUMBER OF SCRAM DATA POINTS FOR TABLE 2
(09) : ITSCRM = TRIP NUMBER FOR SCRAM 2
(10) ISCR = CURRENT TABLE 2 POSITION
(11) : IDXTBL = INDEX OF FILE CONTAINING TAELE 2

.

.

.

(XX) : NSCR = NUMBER OF SCRAM DATA POINTS FOR TABLE NSL
(XY) : ITSCRM = TRIP NUMBER FOR SCRAM NSC
(YY) = ISCR = CURRENT POSITION IN TABLE NSC
(YX) : IDXT8L : INDEX OF FILE CONTAINING TABLE NSC

. FILID REATBL IS A SET OF SUBFILES OF SCRAMT, EACH FILt
CCNTAINS A REACTIVITY TABLE

WORD
(01) : TSCR = TIME
(02) : TSCR = REACTIVITY OR NORMALIZED P06ER
.

.

.

(2*NSCR-1) : TSCR = TIME
(2*NSCR) : TSCR REACTIVITY OR NORMALIZED POWER

..

*

O
A-36

..

CONTAINS DENSITY RE ACTIVITY FEEDBACK DATA... FILID(29) FEDBAK -

.*. FILE 29 IS RESERVED IN SUBROUTINE INREAC

WORD
(01) : RHOCAL = INPUT REACTIVITY
(02) : NVOID = NUMBER OF POINTS IN VOIDRO TABLE
(03) : IDXDNT = INDEX OF FILE CONTAINING VOIDRO TABLE
(04) : RW = COOLANT REACTIVITY
(05) : RWCAL = CALCULATED COOLANT REACTIVITY AT START
(06) : RV = VOID REACTIVITY
(07) : RVCAL = CALCULATED VOID REACTIVITY AT START
(08) : N00P = NUMBER OF POINTS IN DOPRO TABLE
(09) : IDXDPT = INDEX OF FILE CONTAINING 00 PRO TABLE
(10) : RF = FUEL REACTIVITY
(11) : RFCAL = CALCULATED FUEL REACTIVITY AT START
(12) : RD = DOPPLER REACTIVITY
(13) : RDCAL = CALCULATED DOPPLER REACTIVITY AT START
(14) = IDXMHT = INDEX OF MODERATOR HEATING WEIGHTING FACIOR

SUBFILE
(15) : NMODHT = NUMBER OF MODERATOR HEATING WEIGHTING FACTOR

DATA POINTS

FILID DENTBL IS A SUBFILE OF FEDBAK, CONTAINS DENSITY***

REACTIVITY TABLE
(01) = VOIDR0(1) : DENSITY NORMALIZED TO BEGINNING VALUE
(02) : VOIDR0(1) : REACTIVITY

.

.

(h*NDEN-1): VOIDR0(NDEN): DENSITY NORMALIZED TO BEGINNINb VALUE
(2*NDEN) : VOIDR0(NDEN): REACTIVITY

*** FILID 00PTBL IS A SUBFILE OF FEDBAK, CONTAINS DOPPLER TABLE
WORD
(01) : DOPR0(1) : TEMPERATURE
(02) : 00PR0(1) : REACTIVITY

.

.

(h.NDOP-1): DOPR0(NDOP) : TEMPERATURE
(2.NDOP) = 00PR0(NDOP) : REACTIVITY

FILID AMODHT IS A SUBFILE OF FEDBAK, CONTAINS MODERATOR***

HEATING WEIGHTING FACTOR TABLE.

WORD
(01) : WEIGHT (1) : FLUID DENSITY
(02) : WEIGHT (1) : WEIGHTING FACTOP

.

.

(2*NMODHT-1) : WEIGHT (NMODHT) : FLUID DENSITY

~h b'

A-37

g,2. _ 1, = m e 1 _ 1, =me-,_

..

..sss
e

O
A-33

...............c..

*.. FILID(30) - CONTAINS CONDENSING HEAT TRANSFER DATA
*** FILE 30 IS RESERVED IN SUBROUTINE INCOHT

WORD
(01) : IDXCHT = INDEX OF THE DATA SET CONTAINING CONDENSANG

HEAT TRANSFER DATA
(01) : MODE : CONDENSING HEAT TRANSFER CORRELATION T YP t.
(02) : UCHMUL : UCHIDA CORRELATION MULTIPLIER
(02) : HCONST = USER SUPPLIED CONSTANT HEAT TRANSFER COErFICIENT
(03) : IUCHID = TABLE POSITION INDICATOR
(04) : IBLO = TRIP ID USED TO INITIATE BLOWDOWN
(05) : BLOTIM = ESTIMATED LENGTH OF BLOWDOWN PHASE
(06) : HMAX = MAX. PRE-BLOWDOWN HEAT TRANSFER COEFFICItNT
(07) : HMIN : MIN. PRE-BLOJDOWN HEAT TRANSFER COEFFICItNT
(08) : TRNCON = TRANSITION DELAY CONSTANT

..

, 8 306

A-39

gig,
..

FILID(31) = REACT - CONT AINS RE ACTIVITY COEFICIENT DAIA***

**. FILE REACT HAS NCOR DATA SETS. A DATA SET IS SHOWN BtLOW
... FILE 31 IS RESERVED IN SUBROUTINE INPEAC

WORD
(01) : VOIDWT = DENSITY WEIGHTING FACTOR
(02) : DOPWT = FUEL TEMPERATURE WEIGHTING FACTOR
(03) : ALPHTM : FUEL TEMPERATURE COEFICIENT
(04) : ALPHTW = WATER TEMPERATURE COEFICIENT
(05) : V1 : INITIAL COOLANT SPECIFIC VOLUME
(06) : IDOP = CURRENT POSITION IN 00 PRO TABLE
(07) : IVOID = CURRENT POSITION IN VOIORO TABLE
(08) : VW = SU6C00 LED VAPOR VOLUME FRACTION
(09) : QPM0D = CORE SECTION MODERATOR PROMPT POWER FRACIION
(10) : QDMOD : CORE SECTION MODERATOR DELAYED POWER FRALTION
(11) : IMHT = MEMORY INDEx FOR MODERATOR HEATING WEIGHIING

FACTOR TABLE

..

O

'''8 307

O
A-40

..

CONTAINS LIQUID LEVEL CALCULATIONFILID(32) : ALIGLV*** -

VARIABLES
. FILE 32 IS RESERVED IN SUBROUTINE INLVC

WORD
(01) : ZLVC : EQUIVALENT LIQUID LEVEL
(02) : ITLVC = CURRENT TABLE POSITION
(03) : NTLVC = NUMBER OF PAIRS IN VZLVC
(04) : IDXLVC = INDEX OF FILE CONTAINING IVLC
(05) 10XTLC = INDEX OF FILE CONTAlts:NC VZLVC
(06) : LVCVOL = IST VOLUME IN SUM,FOR EDIT ONLY

*** FILE AILVC IS A SUBFILE OF ALIQLV, CONTA'NS IVLC
WORD
(01) : ILVC = VOLUMES TO BE SUMMED (NEW)
(02) : ILVC =
.

.

.

(NLVC): ILVC :

FILE AVZLVC IS A SUBFILE OF ALIQLV, CONTAINS VZLVC...

WORD
(01) : VZLVC = HEIGHT (1)
(02) : VZLVC = VOLUNE(1)
.

.

.

(2.NTLVC-1): VZLVC = HEIGHT (NTLVC)
(2*NTLVC) : VZLVC = VOLUME (NTLVC)

..

A-41

..

*** FILID(33) : TVOLUM TIME DEPENDENT VOLUME QUANTITIES-

FILE 33 IS 'FSERVED IN SUBROUTINE INTV**.

WORD
(01) : TIMTBL(1) : TIME
(02) = PTABL(1) = PRESSURE
(03) = TTABL(1) = TEMPERATURE
(04) = XTABL(1) = QUALITY OF MIXTURE
(05) = ZTABL(1) : MIXTURE LEVEL
(NTDV) = IIR = CURRENT TABLE INDEX OF LAST TIME DEPENDENI VOLUME
(*:T O V + 1) = IDXTVT = INDEX OF FILE CONTAINING T. D. VOLUML 1 TABLE
.

.

.

(2.NTDV) = IDXTVT = INDEX OF FILE CONTAINING LAST T. D. v. TAPLE

*** FILE TDVTBL IS A SUBFILE OF TVOLUM, CONTAINS TIME DEPtNDENT

VOLUME TABLE FOR VOLUME XX. THERE ARE NTOV TDVTOL FILtS
WORD
(01) = IRIN = NUMBER OF DATA POINTS FOR THIS SET
(02) = TIMTBL(1) = TIME
(03) = PTABL(1) = PRESSURE
(04) = T1ABL(1) = TEMPERATURE
(05) = XTABL(1) = QUALITY OF MIXTURE
(06) : ZTABL(1) = MIXTURE LEVEL

.

.

.

(5.IRIN-3) = TIMTHL(IRIN)
(5*IRIN-2) = PT ABL(IRIN)
(5.IRIN-1) = TTABL(IRIN)
(5+IRIN) = XTABL(IRIN)
(5*IRIN+1) = ZT ABL(IR;N)

..

@
A-42

..

CONTAINS SLAB STACK INDICATORSFILID(34) : SLBSTK*.. -

..* FILE 34 IS RESERVED IN SUBROUTINE INSLAb

WORD
(01) : ISHD(1) : NUMBER OF DIMENSIONS FOP HEAT TRANSFER . STACK 1)
(02) : ISSB(1) : INDEX OF SLAB AT HOTTOM OF AXIAL STACK (STACK 1)
(03L = ISST(1) : INDEX OF SLAB AT TOP OF AXIAL STACK (STACK 1)
(04) : ISHD(2) : NUMBER OF DIMENSIONS FOR HEAT TRANSFER (STACK 2)
(05) = ISSB(2) : INDEX OF SLAB AT BOTTOM OF AXIAL STACK tSTACK 2)
(06) : ISST(2) : INDEX OF SLAB AT TOP OF AAIAL STACK (STACK 2)

.

.

.

(XX) : ISHD(X2/3) -

(XY) = ISS8(XZ/33 -

(XZ) : ISST(XZ/3) -

..

..

A-43

..........o...

FILID(35) = TSPCON CONTAINS TIME STEP CONSTANT FACTORS... -

FILE 35 IS RESERVED IN SUBROUTINE TSTMOD***

WORD
(01) : FC3 : FC3 ... FC7 = TIME STEP CONSTAkT FACTORS
(02) : FC4 :
(03) : FC5 =
(04) : FC6 :
(05) : FC7 =
(06) : FC8 =
(07) : FC9 :
(08) : OTNEXT = DEC RE MEN TED TIME USED TO GIVE E VEN TIME r.TTS HOUNDARIES
(09) : IDNP = NUMBER OF COMPLETE EDITS SINCE LAST T I M I r.G EDIT
(10) : IMAJ = NbHAER OF BRIE. LuITS SINCE LAST COMPLETt EDIT
(11) : IMIN : NUMBER OF TIME STEP SINCE LAST BRIEF EDIT
(12) : IPLT = NUMBER OF TIME STEPS SINCE LAST PLOT SAVt.
(13) : NSET = CURRENT INTERVAL INDEX
(14) : NSTEP = CURRENT TIME STEP NUMBER
(15) : NTSET = NUMBER OF TIME STEP SETS
(16) : NTTSP = TOTAL NUM9ER OF TIME STEPS USED
(17) : LNDSTP = .TRUE. INDICATES LAST TIME STEP INTERVAL REDUCED
(18) : REDUC = .TRUE. INDICATES PREVIOUS TIME STEP REDULED
(19) : IDXITS : INDEX OF FILE CONTAINING ITSPL
(20) = IDXKNT = INDEX OF FILE CONTAINING KNTDT
(21) : DT6LDS : PREVIOUS TIME STEP UPON RETURN TO TSTP, CURRENT

DT UNTIL RETURN
(22) : OLDHTC = OLD HEAT TRANSFER TIME CREDIT
(23) : HTMIN : HE A T TR ANSFER TIME CONSTANT

(24) : HTT = HEAT TRANSFER TIME STEP
(25) : HTTO = OLD HEAT TRANSFER TIME STEP
(26) : EXPCVG = EXPLICIT ITERATION CONVER3ENCE FLAG LOG!r ;
(27) : IMPCVG : IMPLICIT ITERATION CONVERGENCE FLAG LOCiLAL
(28) : HTFLG = HEAT TR ANSFER C ALCULATION FL AG LealCAL
(29) : DTMAX = MAXIMUM ALLOWABLE TIME STEP SIZE FOR A GIVEN TIME POINT

FILE FITSPL IS A SUB F I LE OF T SPC ON , INDEX OF FILE FIT *PL IS*** o

WORD (19) 0F FILID(35)
WORD
(01) : ITSPL = COUNT FOR VOLUME OR JUNCTION CONTROLLING TIME STP

.

.

.

(NMAX) = ITSPL = (NMAX = MAX 0(NJUN,NVOL))

FILE FKNTDT IS A SUBFILE OF TSPCON, INDEX OF FILE FKNIDT IS...

WORD (20) 0F FILID(35)
WORD
(01) : KNTDT = NUMBER OF TIME S TE P SELECTION CRITERIA
.

,7

A-44

.

.

(10) = KNTDT =

* * ***********e................ ,,,,,,,,,,,

>cg 3\2

A-45

..

... FILID(37) : HEAT EXCHANGER QUANTITIES

.** FILE 37 IS RESERVED IN SUoROUTINE INHTXG

WORD
(01) : INDHTX = INDEX FOR TIME-HEAT REMOVAL RATE TABLE
(02) : IHTX : HEAT EXCHANGER TYPE 0: FLO6 AND TEMPERAIURE
(03) : ITHTXQ = TRIP NUMBER CONTROLLING HEAT EXCHANGER
(04) : JVOL : VOLUME NUMBER (NEW)
(05) : THQ = HEAT EXCHANGER PRIMARY SIDE TEMPERATURE
(06) : HTG = HEAT REMOVAL RATE
(07) : TSEC = HEAT EXCHANGE SECONDARY SIDE TEMPERATURE
(08) : HTXC0 = HEAT EXCHANGER HEAT TRANSFER COEFFICIENT

OEPENDENT N : NUMBER OF TIPE-POWER POINTd
(09) : IHQ = LAST POSITION IN HTXT6L
(10) : IHTYPE : FLAG FOR TYPE OF NON-CONDUCTING HEAT EXCHANGER
(11) : QHTR = FRESSURIZER HEATER POWER
(12) : QTAU = PRESSURIZER HEATER DECAY CONSTANT
(13) = QPREV = PRESSURIZER HEATER POWER (PREVIOUS TIME STEP)
(14) : GUAP = PEAK POWER BEFORE PRESSURIZER HEATER TRIPS OFF
(15) : TIMOFF = TIME PRESSURIZER HEATER TRIPS OFF
(16) : HTXCOI : INITIAL HEAT TRANSFER COEFICIFNT
(17) : POWERF = INITIAL FRACTION OF POWER TO BE REMOVED
(18) : IHEQST = FLOW NETWORK NUMBER TO WHICH THE HEAT EXLHANGER

BELONGS

*** FILID HTXTBL IS A SU6 FILE OF HEATEX,CONTAINS TIME-HEAI REMOVAL

RATE...

(01) : HTXTBL = TIME
(02) : HTXTBL = NORMALIZED POWER

.

.

.

(IHTX-1) : HTXTBL : TIME
(IHTX) : HTXTBL : NORMALIZED POWER

..

'

O
A-46

..

SCRATCH UORK AREA FOR TRANSIENT LIhK... FILID(38) - WORK -

THE FILSIZ & SETSIZ FOR FILID 38 ARE SET 10
THE TOTAL LENGTH OF SCRATCH SPACE AVAILABLE
BEGINING AT WORKA(1)

*.. FILE 38 IS RESERVED IN SUBROUTINE INIFTE

W OR D

(01) : IDXWKA: INDEX OF FILE CONTAINING WORKA OR ALL
AVAILABLE SCRATCH SPACE
ALSO THE INDEX OF THE C ARRAY USED IN NIFIE

(02) : IDXG = INDEX OF FILE CONTAINING G ARRAY USED IN r. I F T E
(03) : IDXBA : INDEX OF THE BA ARRAY USED IN NIFTC
(04) : IDXXAL= INDEX OF FILE CONTAINING XALPH ARRAY USED IN N IF TE
(05) : IDXGAM: INDEX OF FILE CONTAINING XGAM ARRAY USED)N NIFTE
(06) : IDX0LW: INDEX OF FILE CONTAINING OLDWP ARRAY USED IN GAUSS

*** FILE WORKA IS A SU8 FILE OF WORK. WORKA PROVIDES
A UNIVERSAL WORK ARRAY UTILZED BY SEVERAL ROUTINES
IN RETRAN. THE INDEX FOR THIS FILE IS WORD (01) FROM
FILID(38).
(XX IS NJUN*NJUN AND YY IS NJUN)

WORD
(01) : C(1) OR WORKA(1)
(02) : C(2) OR WORKA(2)
.

(XX) : C(XX) OR WORKA(XX)
... FILE G IS A SUBFILE OF WORK. G PROVIDES STORAGE UTILI/ED

IN NIFTE. THE INDEX OF THIS FILE IS WORD 2 FROM FILE $8.
WORD
(01) : G(1) OR WORKA(XX+1)
(02) : G(2)

.

.

(YY) : G(YY) OR WORKA(XX+YY)
FILE BA IS A SUBFILE OF WORK. BA PROVIDES SCRATCH*.*

STORAGE UTILIZED IN NIFTE. THE INDEX FOR THIS FILE IS
=0RD 3 FROM FILE 38.

WORD
(01) : BA(1) OR WORKA(XX+YY+1)
(02) : BA(2)
.

.

(YY) : BA(YY) OR WORKA(XX+2*YY)
**. FILE XALPH IS A SUBFILE OF WORK. XALPH PROVIDES STOR A(>E

UTILIZED IN NIFTE. THE INDEX OF THIS FILE IS WORD 4 Fh0M
FILE 38.

WORD
(01) = XALPH(1) OR WORKA(XX+2*YY+1)
(02) = XALPH(2)
.

*

A-47

.

(YY) : XALPH(YY) OR WORKA(XX+3*YY)
... FILE XGAM IS A SUbFILE OF JORK. XGAM PROVIDES STORAGE

UTILIZED IN NIFTE. THE INDEX OF THIS FILE IS WORD 5 FbOM
FILE 38.

WORD
(01) : XGAM(1) OR WORKA(XX+3+YY+1)
(02) = XGAM(2)
.

.

(YY) : XGAM(YY) OR WORKA(XX+4.YY)
... FILE OLOWP IS A SubFILE OF JORK. OLOWP PROVIDES S T O R A L.E USED IN

GAUSS. THE INDEX OF THIS FILE IS WORD 6 F ROM FILE 38
WORO
(01) = OLDJP(1) OR WORKA(XX+4*YY+1)
(02) : OLOWP(2)

.

.

.

(Y?) : OLOWP(YY) OR WORKAtXX+5+YY)

NOTE ..*.* WORKA MAY BE LONGER THAN XX+4*YY

..

O

'ss'a.,,ss

O
A-48

..

CONTAINS VARIABLES ASSOCIATED WIIH EACH.** FILID(39) : TRIPID -

IDTRP. FILE TRIPID HAS A DATA dET FOR
EACH IDTRP. A DATA SET IS SHOWN BELOW

FILE 39 IS RESERVED IN SUBROUTINE INTRIP...

WORD
(01) : OLDTRP = OLD TRIP ID
(02) : TRPT = TIME TO REACH SETPOINT + DELAY TIME
(03) : FLAG = TRUE MEANS SETPOINT REACHED AND DELAY TITE HAS

EXPIRED
(04) : UNUSED AT PRESENT TIME
(05) = TRPT = TIME TO REACH SETPOINT + DELAY TIME FOR MESET

TRIP
(06) : FLAG = TRUE MEANS SETPOINT REACHED AND DELAY TIME HAS

EXPIRED FOR RESET TRIP

..

A-49

..

. FILID(40) : RANGER CONTAINS VARIABLES FOR JUNCTION URDERING --

FILE 40 IS RESERVED IN SUBROUTINE INIFTE*.*

WORD
(01) : MPP = NUMBER OF FIRST CRITICAL JUNCTIOR
(02) : MS : NUMBER OF CHAINS
(03) : MCTR : LENGTH OF JUNCTION CONNECTION ARRAY IWF
(04) : NG = LENGTH OF NON-CHAIN PORTION OF CONNECTION MATRIX
(05) : NTRI : NUMBER OF CHAIN JUNC TIONS
(06) : NX = NUMBER OF NON-CRITICAL JUNCTIONS
(OT) IDXIWF = INDEX FOR FILE CONTAINING IWF ARRAY
(08) = IDXNP = INDEX FOR FILE CONTAINING CHAIN LENGTH ARRAY
(09) IXNPSI = INDEX OF FILE CONTAINING NPSI ARRAY
(10) : IDXNUM = INDEX OF FILE CONTAINING NUMAX ARRAY.

FILE FIWF IS A SUBFILE FROM RANGER. FIWF CONTAINS***

JUNCTION CONNECTION ARRAY IWF THE INDEX FOR THIS.

FILE IS WORD (OT) 0F FILID(40)
WORD
(01) : IWF : POSITION OF FIRST NON-ZERO ELEMENT
(02) IWF : POSITION OF SECOND NON-ZERO ELEMENT
.

.

(XX) : IWF : POSITION OF LAST NON-ZER0 ELEMENT

*** FILE FND IS A SU8 FILE OF RANGER. FNP CONTAINS ARRAY
NP. THE INDEX FOR THIS FILE IS WORD (08) 0F FILID(40)

WOR D

(01) : NP = LENGTH OF FIRST CHAIN
(02) : NP = LENGTH OF SECOND CHAIN
.

.

(XX) = NP = LENGTH OF FINAL CHAIN

FILE FNPSI IS A SUBFILE FROM RANGER. FNPSI CONTAINS.**

ORDER OF JUNCTION SOLUTION. THE INDEX FOR THIS FILE
IS WORD (09) 0F FILID(40)

WORD
(01) : FIRST JUNCTION SET
(02) : SECONDJUNCTION SET

.

.

(XX) : NPSI : LAST JUNCTION SET

FILE FNUMAX IS A SU8 FILE OF RANGER. FNUMAX CONTAINS***

THE NUMAX ARRAY. THE INDE X FOR THI S F ILE IS WORD (10)
FROM FILID(40)

WORD

7'h

A-50

(01) = NUMAX = NUMBER OF NONZERO ELEMENTS IN FIRST R0W Ot MATRIX
(02) : NUMAX = NUMBER OF NONZERO ELEMENTS IN SECOND ROW LF MATRIX
.

(XX) = NUMAX : NUMBER OF NONZERO ELEMENTS IN LAST ROW OF MATRIX

...,,,,,,,,,,,,,,,,,,,

*
%

A-51

..

*** FILID(41) - CONTAINS INDEXES OF F I LE S -

WORD
(01) : IDXQN : INDEX OF FILE CONTAINING VARIAHLE QN
(02) : IDXTK = INDEX OF FILE CONTAINING VARIABLE TK
(03) : IDXCR : INDEX OF FILE CONTAINING VARIABLE CR

. FILE SLBCR IS A SURFILE OF F ILID(41) . SLBCR CONTAINS VARIABLE
CR FOR EACH NODE IN A HEAT CONDUCTOR.
SUBFILES OF FILID(41)

WORD
(01) : CR = VOLUMETRIC HEAT CAPACITY AT NCDE 1
(02) : CR = VOLUMETRIC HEAT CAPACITY AT NODE 2
.

.

.

(XX) : CR = VOLUMETRIC HEAT CAPACITY AT NODE XX

FILE SLBTK IS A SUBFILE OF FILID(41). SLBTK CONTAINS VARIABLE.*.

TK FOR EACH NODE IN A HEAT CONDUCTOR.
SUBFILES OF FILID(41)

WORD
(01) : TK = THERMAL CONDUCTIVITY AT NODE 1
(02) : TK = THERMAL CONDUCTIVITY AT NODE 2

.

.

.

(XX) : TK THERMALL CONDUCTIVITY AT NODE XX

..

q 7''

O
A-52

..

*** FILID(42) : TIME DEPENDENT DATA RETREIVED FROM TAPE
*** FILE 42 IS RESERVED IN SUBROUTINE INTV

WORD
(01) = NDREC CURRENT DATA RECORD NUMBER
(02) : NVOLO = NUMBER OF VOLtJMES ON RETREIVED TAPE
(03) : NVOLS = SETSIZ OF RETREIVED VOLUME DATA RECORD
(04) : NJUNO = NUMBER OF JUNCTIONS ON RETRLIVED TAPE
(05) = NJUNS = SETSIZ OF RETREIVED JUNCTION DATA RECORD
(06) : TIMNEW = TIME OF CURRENT RETREIVED RECORD
(07) : TIMOLD = TIME OF PREVIOUSLY RETREIVED RECORD
(08) : POWNEW = NORMALIZED POWER OF CURRENT RETREIVED RECORD
(09) : POWOLD = NORMALIZED POWER OF PREVIOUSLY RETREIVED RECORD
(10) : IDXVT8 : INDEX OF TIME DEPENDENT VOLUME DATA SUBFJLE
(11) : IDXVSN : INDEX OF SUBFILE CONTAINING VSN AND CREAI!ON DATE
(12) : NTVOL : NUMBER OF TAPE VOLUMES WITH DATA TO RETREIVE
(13) : NTVOLX = COUNTER ON CURRENT LOCATION IN VSN SU8 FILE
(14) : LABEL 1 : LABEL OF TAPE FROM WHICH TO RETREIVE DATA,
(15) : LABEL 2 : TWO WORDS
(16) : IDXVLC = INDEX OF VOLUME TO TIME DEPENDENT VOLUME DATA SET

CORRESPONDENCE SUBFILE
(17) : IVLOL : OFFSET USED TO PICK VOLUME NUMBER FROM AFREVIATE

VOLUME FILE
(18) : IPRES : OFFSET USED TO PICK PRESSURE FROM AN ABRtVIATED

VOLUME SET
(19) : ITEMP = OFFSET USED TO PICK TEMP. FROM AN ABREVI ATED

VOLUME SET
(20) : IQUAL = OFFSET USED TO PICK Q UA LI TY FROM AN ABREVIATED

VOLUME SET
(21) : IZMIX = OFFSET USED TO PICK MIXTURE LEVEL FROP Ah

ABREVIATED VOLUME SET
(22) : ITINX = OFFSET USED TO PICK TIMEX FROM ABREVIATED S YS TE M

FILE
(23) : IPOWN = OFFSET USED TO PICK PNORM FROM ABREVIATEl. SYSTEM

FILE

SUBFILE CONTAINING VOLUME DA1A FOR N VOLUMES***

*.. (THERE ARE MTDV SETS OF DATA)

WORD
(01) : IVOLN = VOLUME NUMBER OF VOLUME DATA RETREIVED
(02) : PNEW = CURRENT PRESSURE
(03) : POLD = PREVIOUS PRESSURE
(04) : TNEW = CURRENT TEMPERATURE
(05) : TOLD PREVIOUS TEMPERATURE
(06) : XNEW = CURRENT GUALITY
(07) : X0LD = PREVIOUS QUALITY

h(08) = ZNEW = CURRENT MIXTURE LEVEL 9"
(09) : 20LD = PREVIOUS MIXTURE LEVEL

*** SUBFILE CONTAINING TAPE VSN AND CREATION DAT

A-53

WORD
(01) : IVSN = VOLUME SERIAL NUMBER OF TAPE
(02) : IDATE : JULEAN CREATION DATE OF TAPE

FOR NTVOL PAIRS

.*. SUBFILE CONTAINING INDECES OF SETS IN THL VOLUME FILE.FOR VOLUMES
USING THE CORRESPONDING TIME DEPENDENT VOLUME DATA SE1 FROM THE ABOVE
SUBFILE

WORD
(01) = IDXVST(1) : INDEX OF VOLUME DATA SET USING THE FIRST SET

OF TIME DEPENDENT VOLUME DATA
(02) : IDXVST(2) : INDEX OF VOLUME DATA SET USING THE SECOND SET

OF TIME DEPENDENT VOLUME DATA
.

.

.

*
.

(N) = IDXVST(MTDV) .

..

o

O

B >211
'

..

O
A-54

..***.

... FILID(43) - PLTREC - DATA RECORD DESCRIPTIONS

WORD
(01) : NOFILS : NUMBER OF ABREVIATED FILES DUMPED
(02) : IDXADD = INDEX OF FILE CONTAINING ADDRESSES
(03) : NSET NUMBER OF VARIABLES REGUIRED TO DESCRIBF EACH

FILE INCLUDED IN A D A TA RECORD. THE VARIABLES
ARE DEFINED AS FOLLOW,

(04) : NFIL = RELOCATABLE FILE ID. IF A SUBFILE, THE VALUE
IS MINUS ONE TIMES THE MAJOR FILE 10 POINTING
IS MINUS ONE TIMES THE MAJOR FILE 10. INDEX IN
MAJOR FILE POINTS TO SUBFILE AS DISCUSSED BELOW.

(05) : LFIL = ABREVIATED FILE SET SIZE
(06) : NSET = NUMBER OF SETS IN FILE
07) : MFIL = FLAG FOR FILE WITH ASSOCIATED SUBFILE TO BE

WRITTEN TO DATA TAPE.
: 0 MAJOR FILE WITH NO SUBFILE TO BE WRITTEN
> 0 IF MAJ FILE, NUMBER OF SUBFILES TU BE

WRITTEN
IF A SUBFILE (DETERMINED BY SIGN OF NFIL), THE
BOTTOM HALF OF THE WORD CONTAINS THE OFFSET FROM
THE BEGINING OF THE ABBREVIATED MAJOR FILE TO
THE INDEX POINTING TO THE SUBFILE. THE TOP
HALF WORD CONTAINS THE OFFSET TO THE INDEX FOR
THE FULLY DESCRIBED MAJOR FILE.

.

.

: FOR NOFILS QUADRUPLETS
.

.

*** ADDRESS IS A SUBFILE OF FILE PLTREC AND CONSISTS OF NOFIL
GROUPS OF DATA. A TYPICAL GROUP IS DESCRIBED BELOW.

WORD
(01) : LFIL(1) = THE NUMBER OF EDIT ADDRESSES FOR FILE ID NFIL(1)
(02) : : ADDRESS OF 1ST EDIT VARI ABLE FROM FILE hFIL(1)
.

.

.

.

.

(LF IL(1) +1) = ADDRESS OF LAST EDIT
.

.

.

.

AND SO ON FOR NOFIL GROUPS (IF A FILE SPECIFIED IN NFIL ARRAY.

DOES NOT EXIST FOR A GIVEN PROBLEM,THE GROUP CONSISTS OF.

ONE WORD : 0).

*''f

A-55

,gg,..

*** FILID(44) : PLOTD - PLOTTING INFORMATION

WORD
(01) : NDSET = NUMBER OF DATA SETS FOR PLOTTING
(02) : FRAMES : NUMBER OF PLOT FRAMES REOUESTED
(03) : NPLOTC = NUMBER OF PLOT CURVES
(04) : NPLOTO : NUMBER OF PLOT CURVES WITH COMBINATIONS
(05) : NPEDIT = EDIT FLAG - LE.0 NO EDIT GT.0 EDIT DATA PLOTTED-

(06) : IDXNDS = INDEX OF SUBFILE FOR DATA SLT DESCRIPTIONS
(07) : IDXAXS : INDLX OF SUBFILE FOR PLOT AXIS DESCRIPTIONS
(08) : IDXPLC : INDEX OF SUBFILE FOR PLOT CURVES
(09) : IDXPLD : INDEX OF SUBFILE FOR PLOT CURVES WITH C0rBINATION
(10) : IDSET : NUMBER OF CURRENT DATA SET FROM WHICH DAIA IS

BEING RETREIVED
(11) = FTBID : FTb FILE 10 0F FIRST PLOT DATASET

*** FILE DATSET IS A SUBFILE CONTAINING DATA SET INFORMATION
...

WORD
(01) : NVSN : NUMBER OF VSN'S FOR THIS DATA SET
(02) : NPSIZE = SETSIZE OF FILE
(03) : NPSETS : NUMBER OF SETS IN FILE
(04) : LABL1 : ALPMANUMERIC LABEL FOR TAPE, UP TO 17 CHrRACTERS
(05) : LABL2 : IN TWO WORDS
(06) : IDSDEN : RECORDING DENSITY OF DATA SET
(07) : IVSN : VOLUME SERIAL NUMBER OF FIRST VOLUME OF SET
(08) : ICREAT : CREATION DATA 0F FIRST TAPE VOLUME OF SE1

: 9(2.NVSN+2) : IVSN : VOLUME SERIAL NUMBER OF LAST VOLUME (F SET
(.NVSN+3) : ICREAT : CREATION DATE OF LAST TAPE VOLUME OF SET

FILE AXIS IS A SUBFILE CONTAINING PLOT AXIS INFORMATION***

*** X AXIS DATA
...

WORD
(01) : XVAR = INDEPENDENT V AR I ABLE
(02) : XREG : DEPENDENT VARIABLE REQUEST FLAG
(03) = XLINOG : LINEAR OR LOGARITHMIC SCALE ON X AXIS,OEFAULT LIN
(04) = XLENG = LENGTH OF X AXIS
(05) = XMIN : MINIMUM X
(06) : XMAX : MAXIMUM X
(07) : XLABL1 : X AXIS LABEL 4A8
(08) = XLABL2 : .

(09) : XLABL3 : .

(10) : XLABL4 : .

(11) : NAXIS : NUMBER OF Y-AXES FOR FRAME
...

..* Y AXIS DATA (INDEX : IDXAXS + 11.NFRAMES)

...

WDRD
(01) = YLINOG : LINEAR 0/. L OG AR IT HM IC SCALE ON Y AXIS
(02) : YLENG : LENGTH OF Y AXIS

|9r

A-56

(03) : YMIN : MINIMUM Y
(04) = YMAX : MAXIMUM Y
(05) : YLAB1 = Y A XIS L ABEL 4A8
(06) = YLAB2 = .

(07) : YLA83 = .

(08) : YLAB4 = .

(09) : KFRAME = FRAME NUMBER FOR Y-AXIS
(10) : NCURVS = NUMBER OF CURVES TO USE Y AXIS SCALING

**e FILE PLOTC IS A SUBFILE CONTAINING PLOT CURVE INFORMATION
ese

WORU
(01) = YVARC = DEPENDENT VARIABLE
(02) : IYREGC : DEPENDENT VARIABLE REGION
(03) : IDSETC = DATA SET NUM6ER
(04) : IDXYAX INDEX OF Y-AXIS SUBFILE
(05) : ICARDC = CARD NUMBER, USED FOR COMBINATION PLOTS
(06) YSCTRN : DEPENDENT VARIABLE TRANSLATION SCALING FACTOR
(07) : YSCMAG = TRUE IF MAGNIFICATION, FALSE IF TRANSLA1 ION
(08) = XSCTRN : INDEPENDENT VARIABLE TRANSLATION SCALING FACTOR
(09) = XSCMAG = TRUE IF MAGNIFICATION, FALSE IF TRANSLAIION

FILE PLOTD IS A SUBFILE CONTAINING PLOT CURVE WITH COPBINATIONtee

e INFORMATION
994

WORD
(01) : ICPLOT = FRAME NUMBER FOR THIS COMBINATION PLOT (yXY)
(02) : NOP = NUMBER OF OPERA TIONS FOR COMBINATION CUR %E
(03) : IDCOMB = INDEX OF COMBINATION SUBFILE

tee FILE PLOTCS IS A SUBFILE CONTAINING INDICES OF PLOT CURVES
6*e0EFINED IN PLOTC, TO BE COMBINED.
WORD
(01) : IDXCRV : INDEX OF PLOTC SUBFILE
(02) = IOP = COMBINATION CURVE OPERATION (+ - e /)
(03) : IDXCRV
(04) : IOP AND SO ON FOR NOP OPERATIONS
(05) : IDXCRV

.

O

9

eeteetteeeeee**eeeeeeeeeeeeeeeeeetteteeteeeeeeeeeeeeeeeeeeeeettee

e

A-57

..

,,,,
... FILID(47) - CONTAINS PROBLEM DIMENSIONS FOR DNB CALCULATIONS,

HOT CHANNEL FACTORS, LINEAR HEAT GENERATION RATES, DNBR
VALUES, AND THE INFORMATION OBTAINED IN CORE CALCULATIONS.

. FILE 47 IS RESERVED IN SUBROUTINE INDNB

WORD
(01) : LWR = REACTOR TYPE
(02) : ICW = FLAG FOR COLD WALL
(03) : NUH = FLAG FOR NON-UNIFORM HEAT FLUX
(04) : ICHF : FLAG FOR CHF CORRELATION
(Ob) : ISPGR : GRID SPACER INDICATOR INDICATOR
(06) = NOA = NUMBER OF AXIAL POWER PROFILE DATA SETS
(07) : N1 : NUMBER OF CORE VOLUMES
(08) = FQENG : ENG. HEAT FLUX FACTOR
(09) : FRN : NUC. RADIAL HEAT FLUX FACTOR
(10) : FQUNC = HE A T FLUX UNCERTAINTY FACTOR
(11) = FDHCOR = ADJUSTMENT FACTOR ON HOT BUNDLE MASS FLUX
(12) : FDELH CHANNEL ENTH ALPY ADJUSTMENT FACTOR
(13) : ZMIN MIN. HEIGHT OF FUEL FOR DNB CALC.(FT)
(14) : ZMAX : MAX. HEIGHT OF FUEL FOR DNB C ALC . (F T)
(15) : PITCH = ROD-ROD PITCH (F T)
(16) : RODIA : ROD DIAMETER (FT)
(17) : EQDIA = EQU IV ALENT DIA. BASED ON WETTED PERIMETEH(FT)
(18) : TOC = THERMAL DIFFUSIVITY PARAMETER
(19) : FRPOW = FRACTION OF POWER GENERATED IN FUEL ROD
(20) : RGRID : R GRID FACTOR
(21) : HEATL : HEATED CHANNEL LENGTH
(22) : NDELT = NO. OF DNB C ALC. BE TWEEN RETRAN TIME STEW
(23) : HIDIA : HYDRAULIC DIA BASED ON HEATED PERIMETER
(24) : JLEVEL = NODAL POINT NUMBERED FROM BOTTOM OF CORE
(25) : COTHT = TOTAL CORE HEIGHT
(26) : TOTA = TOTAL HEAT TRANSFER AREA
(27) : QBAR = AVERAGE HEAT FLUX IN CORE
(28) : QTZBAR = AVERAGE HEAT FLUX IN CORE AT TIME ZERO
(29) : HGGRCO : LINEAR HEAT GENERATION RATE IN CORE
(30) : DNBRCO = DNB RATIO 0F AVERAGE CORT
(31) : HGRMNZ = LINEAR HEAT GENERATION RATE AT ZMIN
(32) : DNBRMZ = DNB RATIO AT ZMIN
(33) : HGRHOT : LINEAR HEAT GENERATION RAT [AT HOT SPOT
(34) : DNBHRT : DNB RATIO AT HOT SPOT
(35) : ZMDNB = HEIGHT OF MIN DNRR
(36) : HGRMD = LINEAR HEAT GENER ATION R ATE AT ZMONB
(37) : DNBRM = MIN DNBR VALUE
(38) : TIMDNB = TIME OF DNB CALCULATION
(39) : ZHOT = HEIGHT OF HOT SPOT
(40) : CORHP1 : CORE INLET ENTHALPY
(41) : CORHP2 : CORE OUTLET ENTHALPY
(42) : CORFL1 : CORE INLET FLOW RATE
(43) : CORFL2 : CORE OUTLET FLOW RATE
(44) NEG = NO. OF NODAL POINTS F OR FNERGY CALC. IN CORE-

(45) : NDNB : NO. OF NODAL POINTS FOR DNB CALC.
(46) : IDXPRO : SUBFILE INDEX FOR POWER PROF ILE TABLE

G~

A-58 b

(47) = IDXN00 : SUBFILE INDEX FOR DNB CALC.
(48) = IDXDRA = SUBFILE INDEX F OR DNBR

**********e.....,,,,,

''"8 326

A-59

..

FILID(48) - CONTAINS THE INFORMATION PERTAINING TO THE AVERAGE CORE***

VOLUMES FOR DN8 MODEL
FILE 48 IS RESERVED IN SUBROUTINE INDNB***

WORD
(01) : COREPR = CORE INLET VOLUME PRESSURE
(02) : CORESP = CORE INLET SPECIFIC VOLUME
(03) : HTA = HEAT TRANSFER AREA FOR A CONDUCTOR IN COFE
(04) : COHTF = HEAT FLUX FOR CONDUCTOR IN CORE
(05) : COVDHT = I N'.E T C OR E VOLUME HEIGHT
(06) : COREX : INLET CORE VOLUME QUALITY
(07) : SOL = COEFFICIENTS FOR HEAT FLUX AS FUNC. OF POSITION
(08) : CONODE = NODAL POSITION IN CORE VOLUMES
(09) : QCRIT : DNB FLUX FOR AVG. CORE
(10) : COTEMP = CORE FLUID TEMPERATURE
(11) : NVLDN8 : CORE VOLUME NUMBER

..

O

~"8 527

O
A-60

..

**. FILID(49) - CONTAINS THE INFORMATION PERTAINING TO THt ENERGY
CALCULATIONS FOR THE ONB MODEL

FILE 49 IS RESERVED IN SUBROUTINE INDNB...

W OR D

(01) = XQUAL = QUALITY AT NODAL POINT FOR ENERGY CALC.
(02) = ZENG = NODAL POINT HEIGHT FOR ENERGY CALC.
(03) = PRSRE = PRESSURE AT NODAL POINT FOR ENERGY CALC.
(04) = GFLO = MASS FLUX AT NODAL POINT FOR ENERGY CALC.
(05) = GGENG = HEAT FLUX AT NODAL POINT FOR ENERGY CALC.
(06) : RHO = DENSITY AT NODAL POINT FOR ENERGY CALC.
(07) = HENG = ENTHALPY AT NODAL POINT FOR ENERGY CALC.
(08) = GDNB = LOCAL MASS FLUX CORhECTED FOR ENERGY CALL.
(09) = XTEN = QUALITY AT NODAL POINT
(10) : TTEN = TEMPERATURE AT NODAL POINT
(11) = SPA = SPECIFIC VOLUME AT NODAL POINT
(12) = F7N = AXI AL HOT CH ANNEL F AC TOR
(13) = HF = ENTHALPY OF SATURATED LIQUID
(14) = HFG = LATENT HEAT
(15) = QTZFZ = HEAT FLUX AS FUNCTION OF HEIGHT AT TIME ZERO

..

A-61

qq;,..

FILID(50) - CONTAINS THE INFORMATION PERTAINING TO DNH CALCULATIONS...

FILE 50 IS RESERVED IN SUBROUTINE INDNB.**

WORD
(01) : QQ = HEAT FLUX FOR DNB CALC.
(02) : PRS : LOCAL PRESSURE
(03) : DENS = OENSITY OF FLUID AT LOCAL POINT
(04) : XQ = QUALITY AT LOCAL POINT
(05) = GT = MASS FLUX AT LOCAL POINT
(06) : HDNB = ENTHALPY AT LOCAL POINT
(07) : HFDN8 : ENTHALPY OF SATURATED LIQUID AT LOCAL POINT
(08) : ZDNB : NODAL POINT FOR DNB CALC.
(09) : HFGDNB = LATENT HEAT FOR DNB CALC.
(10) = 88 = HEAT FLUX CALCULATED FOR NON-UNIFORM FACTOR CALC.
(11) : XM = HEAT FLUX / LENGTH FOR NON-UNIFORM FACIOR CALC.

..

9
,- B sit 9-

O
A-62

..

FILID(51) - NON EQUILIBRIUM VOLUME PRESSURIZER QUANTIIIES..*.

.** FILE 51 IS RLSERVED IN SUBROUTINE INVOL

WORD
(01) : NELM = NON-EQ. LIQUID hEGION TOTAL MASS
(02) : NELU = NON-EG. LIGUID REGION SPECIFIC ENERGY
(03) : NELE : NON-EQ. LIQUID REGION TOTAL ENERGY
(04) : NELH : NON-EG. LIQUID REGION AVERAGE ENTHALPY
(15) : NELLM = NON-EG. LIQUID REGION L IQUID MASS
(06) : NELVM = NON-EG. LIQUID REGION VAPOR MASS
(07) : NELX : NON-EG. LICUID REGION QUALITY
(06) : NELLV = NON-EQ. LIQUID REGION LIQUID SPECIF IC VOLUME
(09) : NELVV : NON-EG. LIQUID REGION VAPOR SPECIFIC VOLLME
(10) : NELV = NON-EQ. LIQUID REGION SPECIFIC VOLUME
(11) : NELLH : NON-EQ. LIQUID REGION SATURATED LIQUID EsTHALPY
(12) : NELVH = NON-EQ. LIQUID REGION SATURATED VAPOR ENIDALPY
(13) : NELVOL : NON-EQ. LIQUID REGION VOLUPE
(14) : VIDXL : NON-EQ. LIQUID REGION STATE PROP. MEMORY INDEX
(15) : SIDXL = NON-EQ. LIQUID REGION SAT. STATE PROP. M'MORY IND
(16) : NELT : NON-EQ. LIQUID REGION TEMPREATURE
(17) : NELP = NON-EG. LIGQUID REGION PRESSURE
(18) : NEVM = NOS-LG. VAP0H REGION MASS
(19) : NEVU = NON-EQ. VAPOR REGION SPECIFIC ENERGY
(20) : NEVE NON-EQ. VAPOR REGION TOTAL ENERGY
(21) : NEVH = NON-EG. VAPOR REGION AVLRAGE ENTHALPY
(22) : NEVLM = NON-EQ. VAPOR REGION LIQUID MASS
(23) : NEVVM : NON-EQ. VAPOR REGION VAPOR MASS
(24) : NEVX = NON-EG. VAPOR REGION QUALITY
(25) : NEVLV : NON-EG. VAPOR REGION LIQUID SPECIFIC VOLUME
(26) : NEVVV : NON-EQ. VAPOR REGION VAPOR SPECIFIC VOLUFE
(27) : NEVV = NON-EG. VAPOR REGION SPECIFIC VOLUME
(28) : NEVVOL : NON-EQ. VAPOR REGION VOLUME
(29) : VIDXV = NON-EQ. VAPOR REGION STATE PROP. MEMORY INDEX
(30) : SIDXV : NON-EQ. VAPOR REGION SAT. STATE PROP.MEMrRY INDEX
(31) : NEVT = NON-EG. VAPOR REGION TEMPERATURE
(32) : NEVP = NON-EQ. VAPOR REGION PRESSURE
(33) : IXP = FLAG FOR SPECIAL TREATMENT OF SPRAY
(34) : IPHSEL : PHASE UNDEX FOR LIQUID REGION
(35) : IPHSEV = PHASE INDEX FOR VAPOR RfGION
(36) : IPHSE = PHASE INDEX AFTER SYSTEM HAS GONE CRITICtl
(37) : NELV2 = SPECIFIC VOLUME LIQUID REGION T.'O TIME SIEPS BACK
(38) : NELV1 : SPECIFIC VOLUME OF LIQUID REGION FROM PREVIOUS

TIME STEP
'39) : CONM = MASS RAINED FROM VAPOR REGION TO LIQUID
s40) : FLAM : LIQUID MASS FLASHED FROM LICUID TO VAPOR REGION
(41) : CONE : ENERGY ADDED TO LIQUID REG. FROM MASS RAINED OUT
(42) : FLAE : ENERGY ADDED TO VAPOR REGION FROM F L A SH I''G
(43) : NELMO = NON-EQ. LIQUIO REGION MASS (PREVIOUS TIFF STEP)
(44) : NELE0 : NON-EQ. LIQUID REGION TOTAL ENERGY

(PREVIOUS TIME STEP)
(45) : NEVMO = NON-EQ. VAPOR REGION MASS (PREVIOUS TIME STEP)
(46) : NEVE0 = NON-EG. VAPOR REGION TOTAL ENERGY

h
'

A-63

(PREVIOUS TIME STEP)
(47) : VOLOLD : OLD LIQUID REGION VOLUME
(48) : NEVOLO : OLD VAPOR REGION VOLUME

..

8 $31
'

O

O
A-64

..

FILID(52) - PIPE TRANSPORT QUANTITIES...

..* FILE 52 IS RESERVED IN SudROUTINE INVOL

WORD
(01) : WPT02 : SUM OF THE FLOWS OUT OF THE VOLUME
(02) : WPT01 : SUM OF THE FLOWS OUT OF THE VOLUME

(PREVIOUS TIME STEP)
(03) : WPTI2 : SUM OF THE FLOWS INTO VOLUME
(04) : WPTIl : SUM OF THE FLOWS INTO THE VOLUME

(PREVIOUS TIME STEP)
(05) : MIN = INTEGRATED MASS INTO THE VOLUME OVER TIMt STEP
(06) : EIN = INTEGRATED ENERGY INTO THE VOLUME OVER TJME STEP
(OT) : MOUT = INTEGRATED MASS OUT OF THE VOLUME OVER TIME STEP
(08) : EOUT = INTEGRATED ENERGY OUT OF VOLUME OVER TIMt STEP
(09) = ACEIN : ACCUMULATED ENERGY IN THE VOLUME
(10) : ACHIN : ACCUMULATED MASS IN THE VOLUME
(11) : ACEOUT : ACCUMULATED E NE RG Y OUT OF THE VOLUME
(12) : ACMOUT = ACCUMULATED MASS OUT OF THE VOLUME
(13) : ACMINO : ACCUMULATED MASS IN THE VOLUME (OLO TIME STEP)
(14) : ACEINO : ACCUMULATED ENERGY IN TEH VOLUME (OLD T!*E STEP)
(15) : ACMOTO : ACCUMULATED MASS OUT OF THE VOLUME

(OLD TIME STEP)
(16) : ACE 0TO : ACCUMULATED ENERGY OUT OF THE VOLUME

(OLD TIME STEP)
(IT) : IDXMSH : INDEX OF THE SUBFILE CONTAING MESH ENTHALPIES
(18) : MESH : NUMBER OF MESH POINTS IN THE VOLUME
(19) : ITVOLD : OLD VOLUME NUMBER FOR MINOR EDIT REGION CHECK $

..

* "I

A-65

..

FILID(53) : CONTROL - CONT AINS P AR AMETERS DESCRIBING L ACH**.

CONTROL HLOCK. EACH SET IS IN ORDER OF I r.C R E A S I NG VALL
OF IDC (CONTROL ULOCK 10).

.** FILE CONTRCL CONTAINS (IDMAX-IDMIN+1) SETS
FILE 53 IS RESERVED IN SUBROUTINE INCNT1...

WORD
(01) : ITYPE: BLOCK TYPE
(02) = INC1 : INTEGER CONTROL BLOCK PARAMETLR 1. USUALLY USED TO

SPECIFY IDC OF THE CONTROL BLOCK CONNECTED TO THE INPUT.
(03) : INC2 : INTEGER CONTROL BLOCK PARAMLTER 2
(04) : CP1 : FLOATING POINT CONTROL BLOCK PARAMETER 1
(05) : CP2 : FLOATING POINT CONTROL BLOCK PARAMETER 2
(06) : CGAIN: CONTROL BLOCK GAIN
(07) : COUT = CONTROL BLUCK OUTPUT
(08) : CMIN : MINIMUM ALLOWED VALUE OF CONTROL BLOCK OUTPUT
(09) : CMAX = MAXIMUM ALLOWED VALUE OF CONTROL BLOCK OUT6 UT
(10) : IDXEDT : MINOR EDIT REGION CHECK FOR CONTROL SYSTLM

..

O

a 333.,

O
A-66

..

. FILID(54) : CSYSTEM - OVERALL CONTROL SYSTEM QUANTITIts
.*. FILE 54 IS RESERVED IN SUBROUTINE INCNT1

WORD
(01) : NCI = NO. OF CONTROL SYSTEM INPUT CARDS
(02) : NCB : NO. OF CONTROL BLOCK DESCRIPTION CARDS
(03) : IDMIN : A NEGATIVE NUMBER EQUAL TO MINIMUM VALUE OF IDC
(04) : IDMAX : A POSITIVE NUMBER EQUAL TO MAXIMUM VALUE UF IDC
(05) : NCSTOR: NUMBER OF WORDS OF AUXILIARY STORAGE IN AnRAY

NAMED BOX
(06) : INIT = INITIALIZATION FLAG
(07) : NTS : NUMBER OF ACTUAL TIME STEPS
(08) : ETIME : ELAPSED PROBLEM TIME
(09) : DT NEW TIME STEPS

**. THE REST OF THIS FILE CONSISTS OF TWO ARRAYS IDC AND c0X.
IOC IS A CARD ORDERED ARRAY WHICH ALSO DETERMINES THE ORDER OF
CALCULATION USED BY SUBROUTINE CONTRL
60X IS AN AUXILLIARY STORAGE ARRAY USED TO STORE THE STATE OF
CONTROL BLOCKS WHICH HAVE MEMORY

WORD
(10) : IDC(1)
(11) : IDC(2)
. .

. .

. .

(IDMAX-IDMIN+10) : IDC(IDMAX-IDMIN+1)
(IDMAX-IDMIN+11) : BOX (1)
. .

. .

. .

(ID M A X-IDMI N+ 10 + NCS TOR) : BOX (NCSTOR)

..

*N

A-67

..

CONTAINS ENERGY BALANCE INFORMATION DESCR1BING STEAM*** FILID(56) -

GENERATORS OR FEEDWATER SYSTEMS FOR STEADe STATE
INITIALIZATION. THIS FILE IS RELEASED ArlER STEADY STA

FILE 56 IS RESERVED IN SUdROUTINE INSTGN.*.

WORD
(01) : NSTG = NUMBER OF STEAM GENERATORS
(01) : ISGNUM = STEAM GENERATOR NUMBER
(02) : JBIAS : JUNCTION NUMBER FOR ENTHALFY BIAS
(03) : JBAL = OUTLET JUNC TION NUMBER FOR PO WE R REMOVAL SYSTEM
(04) : POWF = POWER FRACTION TO BE REMOVED BY THIS STEAM GLN.
(05) : HTXSUM = TOTAL POWER REMOVED BY THE STEAM GENERATuR
(06) : ISEQST = FLOW NETWORK NUMBER THIS STEAM GENERATOR IS TO

REMOVE POWER FROM

..

O
a sss,

O
A-68

..

..* FILID(57) - CONTAINS TOTAL THERMAL POWER FOR EACH FLO.
NETWORK

... FILE 57 IS RESERVED IN SUBROUTINE INTILZ

WORD
(01) = NEQST : NUMBER OF FLOW NETWORKS
(02) : PTHRM : NETWORK 1 THERMAL POWER
(03) : PTHRMO : NETWORK 1 PREVIOUS TIME STEP THERMAL POWLR

. .

. .

. .

PTHRM = NETWORK NEQSr THERMAL POWER
PTHRMO = NETWORK NEOST PREVIOUS TIME STEP THERMAL POWER

.7"} h

A-69

e

>
4

4

/ ,

%

.

.

%

1

,,

9

0

>

J

4

9

9

_

9

8

4- 4 -

%

.

* e

Appendix B

UPD PROGRAM DESCRIPTION

UPD is a program for editing and/or updating card files on an IBM computer. This
Appendix provides instructions on the use of UPD along with sample input deck
listings.

8 338~'

B-1

TABLE OF CONTENTS

Page

1.0 INTRODUCTION B-1

2.0 CONTROL CARDS B-2

2.1 $ LOCATE B-2

2.2 $ REMOVE B-3

2.3 $ NUMBER B-3

2.4 $ INSERT B-4

2.5 $ENDRUN B-4

2. 6 $ DELETE B-5

2.7 $ CHANGE B-5

2.8 $ MODIFY B-6

2.9 *COMDECK B-7

2.10 *END B-7

2.11 * CALL B-7

2.12 SOURCE CARD B-8

0
3.0 SAMPLE CECKS AND JCL B-9

3.1 JCL DECK B-9

3.2 SAMPLE UPD DECKS B-9

b-,

e
B-2

1. 0 INTRODUCTION

UPD is a program for editing and/or updating card files. Source decks for
programs are the most common application for UPD, but its use is not limited to
source cards. UPD can process any 80 column card image provided there is no $
character in Column 1 (could be modified if necessary) and that Columns 73-80
are reserved for a name and sequence field. This document describes the control
cards available and their function. Sample input deck listings illustrate the

use of the program.

.vg $49

.

B-3

2. 0 CONTROL CARDS

The UPD program operates on a sequence of card images. Operations may include
dividing the cards into decks, deleting certain ones, adding others, and replace-
ment. These operations are under the control of input cards to the UPD program.
Such control cards are identified with a $ or * character in Column 1. Cards

with any other characters in Column 1 are assumed to be source cards. Cards
having a * character in Column ! are treated as control cards only if the next
three characters are one of the permissible control identifiers.

UPD operates in e deck mode, a deck being a series of cards with identical
character strings in Columns 73-76. Cards are ordered within decks by a sequence

number in Columns 77-80. For programs with many subroutines, it is natural to
use the subroutine name, or a derivative, in Columns 73-76. At the end of a

run, UPD produces an index of the decks contained on the old master tape, the
new master tape, and the auxiliary (temporary) file. The auxiliary file will

normally be used as input to a compiler or an assembler and erased.

Source cards may either be input from the normal input channel or obtained from ,

an old master program file. In either case, a new master program file may be
created which will include the current control requests.

Two types of decks may reside on a master file. The first kind is the normal
source d?ck for a subroutine, for example. These decks are accessed sequentially
and contr>l cards or replacement cards must be organized in the same sequence as
the master file. The second type of deck is a C04 DECK which is a group of cards
which is (tsually) common to multiple decks. These decks must reside at the
beginning of the master program file and are accessed randomly during a UPD run.
COMDECK's are identified by name and the contents of the deck inserted in the
auxiliary file replacing the request control card. The request card is copied

onto the new master program file.

2.1 $ LOCATE

$ LOCATE: Format (19A4, I4)

r} hk \.n

O
B-4

Examples: (numbers are column numbers)

1 1 2

1 9 3 7 0

$ LOCATE DECK

$ LOCATE DECK PCH DEK

$ LOCATE causes the old master file to be positioned at a deck boundary, com-
pleting a partially processed deck if necessary. The old master is then advanced
and copied until the deck specified in Columns 9-12 is found. The located deck
is marked partially processed and the auxiliary file writer turned on if a non-
blank appears anywhere in Columns 13-16.

A second deck name in Columns 17-20 has the effect of copying all decks between
and including the two deck names to the auxiliary file.

2.2 $ REMOVE

$ REMOVE: Format (19A4, I4)

Examples:

1 1 2

1 9 3 7 0

$ REMOVE DCKQ

$ REMOVE DCKQDCKT

$ REMOVE causes the old master file to be positionad at a deck boundary, com-
pleting a partially processed deck if necessary. The old master is then advanced
and copied until the deck specified in Columns 9-12 is found. The old master is
then advanced without copying until the deck specified in Columns 13-16 is
passed. If the second deckfield is blank, only the deck specified in Columns
9-12 is removed. No removed deck can be put on the auxiliary file.

2.3 $ NUMBER

7rg jk2$ NUMBER: Format (3A4, 214, 14A4, 14)

B-5

Examples:

1 1 2

1 9 3 7 0

$ NUMBER DECK 0050

$ NUMBER DECK 00500002

$ NUMBER turns the sequencing feature on. Cards are given the identifier listed
in Columns 9-12 and starting sequence number in Columns 13-16. In the examples,
the next card placed on the new master file (and auxiliary file) will be numbered
(Columns 73-80) DECK 0050. Subsequent cards will have the sequence number

(77-80) increased by the increment specified in Columns 17-20 of the $ NUMBER

card. A blank or zero increment will default to a value of 0010. The renum-
bering feature is turned off when processing a new deck is begun.

NOTE: A deck can be renamed by renumbering.

2.4 $ INSERT

$1NSERT: Format (19A4, 14)

Examples:

1 1 2

1 9 3 7 0

$ INSERT DECK

$ INSERT PUN

$1NSERT causes the old master file to be positioned at a deck boundary, com-
pleting a partially processed deck if necessary. Cards are read from the input
stream and placed on the new master file (and the auxiliary file if a non-blank
appears anywhere in Columns 13-16). If a deck name has been put in Columns
9-12 of the $ INSERT card, the insert operation will terminate when a non-blank

deck name different from that on the $ INSERT card is encountered. If Columns
9-12 of the $ INSERT card have been left blank the insert operation will process
all source cards until a control card other than a $ NUMBER card is found.

2.5 $ENDRUN

$ENDRUN: Format (19A4, I4)

- 8 30
,.,

Examples:

1 1 2

1 9 3 7 0

$ENDRUN DECK P

$ENDRUN

$

$ENDRUN (or a single $ character) causes the old master file to be positioned at
a deck boundary, completing a partially processed deck if necessary. The old
master is then advanced and ccpied until the deck specified in Columns 9-12 is
found. The auxiliary writing control is then turned on if a non-blank appears
anywhere in Columns 13-16, the specified deck is copied, and the update run is
terminated. Blanks in Columns 9-12 will result in copying the rema nder of thei

old master. An end-of-input condition results in a $ card being generated.

2.6 $ DELETE

$ DELETE: Format (3A4, 2I4, 14A4, I4)

Examples:

1 1 2

1 9 3 7 0

$ DELETE DECK 00650250

$ DELETE DECK 0065

If Columns 9-12 are different from the current deck name, the effect is to issue
a $ LOCATE DECK XXX control card before finding the cards to be deleted.

$ DELETE copies the old master file until the first sequence number (Columns
13-16) is reached. Cards are then deleted (inclusively) until the old master
file is beyond the second sequence number (Columns 17-20). A blank or zero
second sequence number will cause the specified card to be the only one deleted.

2.7 $ CHANGE

$ CHANGE: Format (3A4, I4,16A4)

g 344
B-7

Examples:

1 1

1 9 3 7

$ CHANGE DECK 0150 'ABC'CBA

$ CHANGE DECK 0220 /25/

$ CHANGE will locate the card stipulated by DECK (Columns 9-13) and the card
sequence number (Columns 13-16). On the $ CHANGE card, the first non-blank

character after Column 17 will be designated a delimiter. The progrim searches
the input card for the second occurrence of the delimiter, counting the inter-
vening characters. The program then searches the designated source card for the
same sequence of characters found on the $ CHANGE card between the first and

second delimiters. When this is found, it is replaced with an identical number
of characters which follow the second delimiter on the $ CHANGE card. In the
first example given, card number 0150 of the routine DECK would be located and

the first occurrence of the characters ABC would be replaced by CBA. In this
example single quotes are used as delimiters. In the second example slashes are
the delimiters and card number 0220 will have the number 25 replaced by blanks.
This is a convenient way to remove statement numbers.

O
2.8 $ MODIFY

$ MODIFY: Format (3A4, I4, 16A4)

Examples:

1 1

1 9 3 7

$ MODIFY DECK 0990 'I'L

The $ MODIFY card is similar to the $ CHANGE card except that instead of only the
first occurrence of the character sequence being replaced, every occurrence on
the source card of the character sequence between the two delimiters will be
replaced by the sequence following the second delimiter. Thus, in the example
above, I in the selected source card will be replaced by an L whereas $ CHANGE
'I'L would cause only the first I enceuntered (lef t-most) to be replaced.

O
.

, 7 r g 3 ASB-8

s

2.9 *COMDECK

*COMDECK: Format (2A4, 1X, A3, 17A4)

Example:

1 9

*COMDECK DK01

A *COMDECK card identifies the cards following it as a COMDECK. The order of

any COMDECKs in the input stream or on the old master file is not important, but
these decks must be processed before any of the other decks. At least one blank
character must separate the COMDECK character sequence and the deck name (DK01

in the example). The deck name is arbitrary and independent of the card identi-
fiers in Columns 73-76. However, it is advantageous to have the same names for
both identifiers. COMDECKs are updated by referencing the identifier in Columns
73-80. COMDECKs are called by referencing the deckname in a * CALL NAME card.

2.10 *END

*END: Format (A4)

Example:

1 5

*END

A *END card terminates processing of the COMDECK. All cards following a *COMDECK

card are placed in the COMDECK and new master file until a *END card is

encountered.

2.11 * CALL

* CALL: Format (AS, 1X, A2, 17A4, 14)

Example:

1 6

* CALL DK01

-8 346g
B-9

A * CALL card requests a COMDECK to be placed in the auxiliary file. The * CALL
card resides on the old master file or is read in the input stream as a source
card. The new master file includes the * CALL card. In the auxiliary file, the
* CALL card is deleted and replaced with the contents of the requested COMDECK.

2.12 SOURCE CARD

SOURCE LANGUAGE CARD: Format (19A4, 14)

UPD will accept and process properly formatted source cards without requiring
the presence of control cards. This is a normal situation when replacing or
adding source cards. This mode of operation may be arbitrarily intermixed with
the use of control cards.

If the deckfield (Columns 73-76) is non-blank and different from the current
deck name, the effect is to issue a $ LOCATE DECK XXX control card before pro-
ceeding. (Exception: In the $1NSERTbbbb mode, the deck name is not checked.)
The old master file is then copied until at the positioned at the source card
having the same sequence number. The new source language card is inserted in
the new master file and the corresponding card (if one exists) is deleted.

~~1"f hk

O
B-10

3.0 SAMPLE DECKS AND JCL

3.1 JCL Deck

A sample list of JCL cards sufficient to execute a UPD problem is given as
follows:

//UPD EXEC PGM=UPD, REGION =100K

//STEPLIB DD DSN=@l152.UPD7, DISP =(0LD,0ELETE),VOL=REF=*.UPDL. DISK

//FT04F001 DD DSN-@l152 MEA.T00DEE2. SOURCE, UNIT = TAPE 9,VOL=SER=901215,

// DISP =(0LD, KEEP), LABEL =(2,BLP,EXPDT=98000),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//FT05F001 DD DDNAME=SYSIN

//FT06F001 DD SYSOUT=A

//FT07F001 DD DSN=&& CARDS, UNIT =SYSDA, SPACE =(1600,(200,20)),

// DISP =(NEW, PASS),DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)

//FT08F001 DD DUMMY

//FT99F001 DD UNIT =SYSDA, SPACE =(80,(2500,20),,CONTIG),

// D I S P= (N EW , D E L ET E) ,0CB2 (R EC 4t= F , B L KS I Z E=80)

//SYSIN DD *

The STEPLIB card defines an executable load module and its location. The par-

ticular JCL options specified would be in accordance with the status of the load
module.

The old master program library, if one exists, is defined by the FT04F001 card.
This may be either disk or tape. The auxiliary file, if written, is defined by
the FT07F001 card. This file is normally a temporary one to be passed to a
compile step. The new master program is writter onto the file defined by the
FT08F001 card. In the example, no file is saved. The FT99F001 card defines the
random access file for COMDECKs.

3.2 Sample UPD Decks

The examples of UPD decks illustrate the use of the control and source cards.

~@ hkb7'

B-11

EXAMPLE 1: Make a master tape from cards read in the input stream. The program
has three subroutines, MAIN, INPUT, and OUTPUT.

Col 1 9 73 80

//SYSIN DD
$ INSERT

$ NUMBER MAIN 0010

Source Cards for MAIN

$ NUMBER INPT0010

Source Cards for INPUT

$ NUMBER OUTP0010

Source cards for OUTPUT

/* or other JCL card.

The $ INSERT operation specifies cards follow on the input stream and is necessary
since no old master program library exists. Each $ NUMBER card defines a new

deck name and numbering sequence for the cards following them.

EXAMPLE 2: Replace cards INPT0350 with a new one, delete cards INPT0430 through
INPT0510, insert INPT0615, and delete card INPT0700. Note that a card in the

input stream with an identifier identical with one in the old master library is
a replacement card. A card in the input stream which has no counterpart in the
old master library is a new one to be inserted.

Col 1 8 73

//SYSIN DD *

X3 = X3 +1 INPT0350

$ DELETE INPT03400510

X5 = X4 - 3 INPT0615

$ DELETE INPT0700

/* or other JCL card.

EXAMPLE 3: Create a master file with a COMDECK and main program. The COMDECK

is named DK01, which is also used as the sequence identifier. The main program
is labeled DK02. Note that $ NUMBER cards are not required since the deck cards
were previously sequenced. The *END card terminates the COMDECK.

7"} hkh*

B-12

Col 1 73

//SYSIN DD *

$ INSERT

*COMDECK DK01 DK010000

IMPLICIT REAL*8 (A-H,0-Z) DK010010

C DECK TO TEST COMDECKS DK010020

COMMON /FTB/A(1),FIRST,LAST DK010030

LOGICAL FIRST DK010040

INTEGER LAST DK010060

C DK010070

*END DK01

$ INSERT

C MAIN PROGRAM DK020010

* CALL DK01 DK020020

WRITE (6,101) DK020030

101 FORMAT (lH1,5X,' TEST

OF COMDECK') DK020040

RETURN DK020050

END DK020060

/* or other JCL card.

br.r

.

B-13

