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November 9, 1979

Mr. Fran: P. Schauer, Chief
Structural Engineering Branch
Division of Systems Safety
U. S. Nuclear Regulatory Commission
Washington, D. C. 20555

Subject: NUREG CR-0793
" Buckling Criteria and Application of Criteria
To Design of Steel Containment Shell", May 1979

Dear Mr. Schauer:

Chicago Bridge & Iron Company (CBI) has reviewed the subject
document with a great deal of interest since we have a long
history of involvement with design, construction, and experi-
mental testing of shell structures subjected to compressive
loads. We would like to offer a number of comments on NUREG
CR-0793 which reflect our experience in design of containment
vessels. Our detailed comments are attached as Enclosure No.
1. Enclosure No. 2 contains an elaboration of some of our
concerns regarding the NUREG recommendation on the use of two-
dimensional analyses.

We note that NUDEG CR-0793 lists Mr. C. D. Miller of CBI as one
of the individuals contributing information used in the prepara-
tion of the report. It should be clarified that Mr. Miller's
contribution was limited to a verbai presentation to the con-
sultants during the late stages of their study. That presenta-
tion resulted only in the consultants' referencing of some of
Mr. Miller's papers in their report. Mr. Miller does not concur
with some of the contents and recommendations of the consultants'
report.

CBI has cooperated with a Task Force of the ASME Working Group
on Containments on preparation of Code rules for buckling design
of containment shells. The Task Force's report has been approved
by the Working Group on Containment and forwarded to the Subgroup
on Design of the ASME's Section III Code. A commentary providing
the basis and the justification for the rules contained in the
Task Force's report has been prepared and submitted to the
Subgroup on Design. That commentary is still in a preliminary
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November 9, 1979
Mr. Fran: P. Schauer
U.S. Nuclear Regulatory Commission
Washington, D. C.

stage and, when completed, will provide detailed justification for
the proposed Code rules. The NRC representatives on these groups,
S. B. Kim and K. R. Wichman, have copies of these documents. We
fully concur with the recommendations of the ASME Task Force
report and suggest it be considered as an alternative to the
recommendations of NUREG CR-0793.

We are hopeful that the enclosures will be helpful in SRC's con-
sideration of proposed rules for buck.ing evaluation of containment
vessels. We would be pleased to discuss this subject with you to
pro.ide clarification of our comments as you deem necessary

\*ery truly yours,

,. - -; -
.

/ s.u , . . . u._ _ . _ _

W. R. Mikesell
Assistant Chief Engineer

ai

CC;

R.J. Bosnak-U.S. NRC
K.R. Wichman-U.S. NRC
S.B. Kim-U.S. NRC
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Enclosure No. 1

CHICAGO BRIDGE S IRON COMPANY's
COMMENTS ON NUREG CR-0793

" BUCKLING CRITERIA AND APPLICATION
OF CRITERIA TO DESIGN OF STEEL
CONTAINMENT SHELLS", May 1979
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INTRODUCTION

NUREG CR-0793 contains a valuable survey of the design and analysis
methods for buckling evaluation of containment shells and provides
some very helpful references. However, we feel that certain areas
of concern have not been adequately addressed and in some other
areas we do not agree with the con clusi ons and recommendations of
the report. In this enclosure, we have listed a number of comments
which we feel would be helpful in evaluating the NUREG.

Our basic critism of the NUREG is that it proposes the use of
complex two-dimensional finite element models for the stress analy-
sis and buckling analysis of containment vessels (Section 4.6)
The rationale for this recommendation is given in 3.2 by the use
of arguments that we do not support. We feel that both of these
analyses (stress and buckling) can be accomplished with simpler
and more reliable approaches for the vast majority of containment
vessel geometries and loadings. When the multiple load cases
used in the design of containment vessels and the time and space
varying nature of the dynamic responses (load cases often involve
mere than one dynamic component) are considered, the complexities
of the two-dimensional analysis are magnified and its reliability
further diminshed. The alternative of axisymmetric analyses per-
mits the evaluation of all representative locations on the vessel
and all spe ci fi e d load cases in a straight forward and tractable
manner. In a complex two-dimensional analysis, the potential
errors in modeling, in making the complex calculations, or in over-
looking a governing load combination may produce the opposite
result, a less accurate and less reliable analysis. (See Enclosure
No. 2 for further treatment of this subject.) Other specific com-
ments on 3.2 are mentioned later in this commentary.

The issue of acceptable and reliable knockdown factors is also
critical. We are in basic agreement with the general approach
proposed by the authors of the NUREG. We agree ~that the complete
body of relevant test data should be used to determine reliable
and conservative design values; and that for those cases where
adequate data is not available, additional testing should be under-
taken. The general accuracy of containment design and analysis
procedures for buckling is governed directly by the precision with
which the knockdown factors are defined. The use of the lower
bound of the available data should be conservative. The large
amount of scatter shown in buckling test data, which is used to
arrive at knockdown factors, further reinforces our belief that
the complex modeling and analyses procedures proposed by the
NUREG would not significantly add to the accuracy and utility of
the final results.
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The following are our specific comments on the contents of the
NUREG (the paragraph numbers referenced are those of the NUREG)

1. In Paragraph 3.2, it is stated that "in the case of a
nonlinear one-dimensional code, the load is axisymmetric
only". We would like to point out that there are a number
of non. linear one-dimensional codes with non-axisymmetric
loading capabilities.

2. We do not agree with the statement in Paragraph 3.2 implying
that it may be more convenient to use a two-dimensional shell
analysis to avoid using Fcurier harmonics for describing
non-axisymmetric loads in an axisymmetric shell analysis. We
have extensive experience with both methods and have found
the converse to be true.

3. We agree with the statement in Paragraph 3.2 that for large
enough holes, the stress state in the entire shell will be
affected. However, we believe that, typically, reinforced
openings in containment vessels are not large enough to
affect the overall state of stress to the extent that a
two-dimensional analysis will be required. Paragraph 4.3.1.4,
in the discussion of reinforcing openings per the ASME Code
requirements, supports our contention.

.

4 We believe that the sample stress analysis calculations of
Paragraph 3.3 are rather misicading. The mathematical model
used is not nearly fine enough to provide an accurate estimate
of the response of the vessel. With such coarse mesh, local
discontinuity stresses will not be obtained. A mesh adequate
for providing accurate stress results would have to be signi-
ficantly finer than that of the report. The complexities of
generating such a mesh and the costs of running such analysis
have been grossly underestimated in Paragraph 3.3 (see
Enclosure #2).

5. In seismic analysis of Paragraph 3.3.4, the use < f the first
13 natural modes for determining the response of the contain-
ment vessel to dynamic loads will not be sufficient to calcu-
late the local response near penetrations and attached masses.
A separate analysis, similar to that commonly used in conjunc-
tion with a one-dimensional analysis of the vessel, is required.

6. We strongly agree with the proposals of Paragraph 4.4 on the
use of the available body of test data to define knockdown
factors.

7. We agree with the statement under Paragraph 4.5.1.1 that "the
use of the critical uniform stress as a measure of the critical
maximum axial stress is conservative".

" 9 !.2 2
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8. IIe agree with Paragraph 4.5.1.2 in that the critical equi-
talent uniform pressure is not the maximum pressure but the
length average of the pressure distribution. Evidence of
:,uch behavior has been provided by a sample problem in the
commentary on the proposed ASME rules.

9. We agree with the statement in Paragraph 4.5.1.5 that the
reduction in a cylinder's load carrying capacity "can be
disregarded safely if a dynamic stress analysis is used to
determine the maximum axial stress, which is then applied
as a static uniform stress in the structure". However, we
believe that such application of maximum stresses, obtained
from a dynamic analysis, as quasi-static stresses is always
conservative for any shell struc*ure under any kind of
loading. Ye, therefore, do not see any need for the tenta-
tive recommendation of Paragraph 4.6, which requires that
the dynamic axial stress be always greater than 140% of the
axial stress obtained with a static load application.

10. Paragraph 4.6(a) implies that all penetrations should be
included with a two-dimensional model. Penetrations on a
typical containment vessel are numerous and mostly small,
Accurate modeling of all penetrations, is impractical and
unwarranted, regardless of whether one-dimensional or two-
dimensional modeling is used.

11. Paragraph 4.6(c) requires tha. a linear bifurcation analysis
be performed for the buckling evaluat;on We believe thet the
theoretical critical stresses and the interaction ' relationships
proposed in the proposed ASME rules would be a convenient and
acceptable alternative to a computer analysis. The proposed
interaction relationships are conservative estimates of
theoretical relationships, which have been co n fi rme d by test.

12. Paragraph 4.6 makes reference to NASA SP-8007 for values of
capacity reduction factors for unstiffened cylinders. Ne
believe that the values recommended by Paragraph 1511 of the
proposed ASME rules are better estimates of these factors.
The j us ti fi ca t i on for values of those rules and a comparison
of the proposed values with test results are included in the
commentary document submittad with the proposed rules.

13. The statement at top of Page 4-40 implies that no specific
recommendations for reduction factors of stiffened shells
are available and the conservative recommendation is made
that the reduction factors for stiffened shells be based on
unstiffened shells having buckling load capacity the same as
that of the stiffened cylinder. A great deal of work has
been done in the area of developing capacity reduction factors
for stif fened shells. The proposed ASME rules contain sug-
gested values for these factors. The basis and justification
for those factors are provided in the commentary document.
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We also disagree with the statement that for local buckling
between closely spaced longitudinal stiffeners, the reduction
factor may be taken as 1.0. As a minimum, " closely spaced"
should be de fin ed .

14. We agree with the Paragraph 4.6 recommendation that a safety
factor of 2.0, in combination with proper capacity reduction
factors, is sufficient to achieve a conservative design.
However, to use a 0.1 factor on theoretical, to arrive at
design values, for stiffened cylinders under axial compres-
sion could result in gross overdesigns. While a knockdown
factor of 5.0 is realistic for long and thin unstiffened
cylinders, the value of this factor for stiffened cylinders
could be as low as 1.6 (see Figure 1511-2 of proposed ASME
rules). For short (stiffened) or thick cylinders, the
critical axial stress approaches the yield strength of the
material. Obviously a factor of 0.1 applied to the failure
stress, to account for capacity reduction and safety factor,
is not realistic in such cases.

15. Under Section 5, it appears that references to (3a) and (3b)
in subparagraphs (a) and (b) have been mistakenly interchanged.
As indicated by the above comments, we don't agree with some
of the conclusions of Section 5. However, we would like to
strongly endorse the call for a rational method of combining
various loadings, based on the use of probability statistics
and risk analysis methods, to avoid the overconservatism of
straight addition of worst possible conditions.

16. We would like to point out that SUREG CR-0793 does not address
the question of inelastic buckling. The stiffener spacing on
most of the recently designed containment vessels is such that
buckling failure would occur at a stress above the proportional
limit of the fabricated material. For such cases, a plasticity
reduction factor will hava to be applied. Furthermore, the
failure behavior in the inelastic range will be different from
that predicted by a linear bifurcation analysis.

17. The NUREG does not provide adequate guidelines for selection
of knockdown factors, for either panel buckling or overall
instability. Adequate rules for sizing of stiffeners are not
provided either. Proposals in these areas are contained in
the proposed ASME rules.
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Enclosure #2

An Evaluation of 1-D and 2-D Analysis Methods For The

Solution of Thin Shell Containment Vessel Problems
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INTRODUCTION

In engineering work, the simplest method which can adequately
solve a given problem should be used. Simple methods, when

justified, are the most effective engineering tools. Simple

analysis methods reduce the amount of engineering judgement that
must be employed to assure safe, reliable designs. A 1-D

analysis method can accurately predict the response of thin shell

containment vessels in almost all cases of current practical

interest. Guidelines can be established to isolate those few
cases where 2-D analysis methods are required. This enclosure

substantiates the tachnical acceptability and desirability of

1-D methods. Furthermore, it shows that using 2-D methods as

a routine approach cannot be cost justified.

The remainder of this enclosure is organized in four major
sections. The first section is a brief summary of important
findings and conclusions. The second and third sections are
technical discussions of 1-D and 2-D analysis methods, respect-
ively. Important benefits and problems are presented. The final
section is a cost study and cost-benefit evaluation. In develop-

ing the expected cost of a 2-D analysis, references are cited

and examples are presented which form the basis of some good
modeling iules. These rules are then used to develop a mesh-

which will give an accurate solution to a real containment

problem. The cost of an analysis using this mesh is then estimated

and evaluated.

<7"O ~ ' -
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SUMMARY

The primary conclusions supported by this enclosure cre as follows.

1-D analysis methods are accurate for most containment vessel1.

problems of interest.

2. Since 1-D methods are accurate in most cases, the use of 2-D

methods will not improve the solution. In actual practice,

potential errors and misinterpretations due to the increased

complexity of 2-D methods are likely to yield less accurate

solutions.

3. 2-D methods are more expensive than 1-D methods by a facter
of at least 100 for typical containment problems.

4. NUREG CR-0793 quotes a cost of S150 to perform a 2-D eigenvalue
analysis of a "somewhat coarsely modeled" containment vessel.

CBI feels that the model is not somewhat inadequate, but
rather is grossly inadequate. As a result, the cost estimate

is misleading. The cost of an adequate analysis is difficult

to predict but will probably be in the range of $30,000 to

$50,000. One commonly used and generally accurate rule of

thumb is that the cost of a computer solution is proportional

to the number of degrees of freedom squared. Based on this

rule and an adequate mesh the cost cf an equivalent run could
be as much as $350,000.
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TECHNICAL DISCUSSION OF 1-D METHODS

CBI believes that a one-dimensional analysis is an effective

engineering tool for the analysis of thin shell containment

vessels under static and dynamic loads. A one-dimensional

analysis provides a reliable and accurate solution to the.

overall problem of determining the deformations and state of

stress in an ax. symmetric shell subjected to any arbitrary loading.

It is realized that a 1-D analysis will not predict the detailed

state of stress in the containment vessel in the immediate vicinity

of the larger penetrations (such as an equipment hatch or a personnel

lock). However, these penetrations are not large enough to sig-

nificantly affect the overall response of the vessel. Certain1. an1
subtle changes in response would be much less significant than other

uncertainties, such as the proper knockdown factors to be used in the

buckling evaluation. The adequacy of local areas can be assured

by simple design rules (e.g., area replacement) and, when required,

verified by a local 2-D analysis.

In order to substantiate the advantages of 1-D methods, Reference 1

is cited. This reference compares the computational efficiency

and reliability of one-dimensional analysis methods to that of the

two-dimensional finite element method.

Reference 1 presents a comparative analysis of a model motor casing

for static loads. The casing is in the form of a cylindrical shell

which is 304 cm. in diameter and 2121 cm. long with hemispherical

heads at both ends. The loading is in the form of a pinching load

as shown in Figure 1. The problem was run using the STARS, BOSOR4,

NASTRAN, and MARC computer codes. The pertinent computer run times

for the various programs and idealizations are shown in Table 1.

~7'9 328
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A review of Table 1 shows that the agreement for the maximum

deflection was within 1% for all programs except the MARC

program. It is possible that the MARC 2-D program was used

improperly. This is a serious danger with 2-D programs. Never-
~

theless, the excellent agreement between the two 1-D programs

(STARS-2 and BOSOR4) and the 2-D NASTRAN program proves that a
1-D solution is accurate for this kind of problem. (Later

discussion will show that a 1-D solution may be more accurate

than 2-D for other problems.)

The particular problem in Reference 1 included gross geometry

discontinuities (head to shell junctions) and a nonaxisymmetric

loading. It can also be shown that 1-D methods will accurately

solve thin shell problems which include ring stiffeners, vertical

stiffeners, any arbitrary time varying nonaxisymmetric loading,

and fluid-structure interaction. It is also possible to perforn

a coupled 1-D analysis which actually calculates the effect, if any,

of a local mass on the overall response of the vessel.

Reference 1 also provides some information about costs. The STARS-2
one dimensional shell of revolution program (baned on a numerical

integration technique) solved the problem in just 2.5 minutes. The

one-dimensional BOSOR4 program (based on a finitc dif ference form-

ulation) solved the problem in 3 minutes. However, it took NASTRAN

70 minutes to solve the problem. The NASTRAN 2-D finite element code

used a fine mesh of one-quarter of the structure. Note that, in

general, a quarter structure model could not be used for containment

vessels if one were trying to determine the effect of nonaxisymmetric

attachments or loading conditions. Based on these results, it is

evident that when solving specialty structures, such as shells of

revolution, the 1-D programs offer distinct advantaged for static

analysis.
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The same general comparison was made between STARS-2 and NASTRAN

for an eigenvalue problem. The problem analyzed was the natural

vibration analysis of a free cylinder; R = 10", L r 150" and

t =. 02". The STARS-2 program extracted 10 mode shapes in 6.7

minutes. However, the NASTRAN program took 21 minutes to extract

one mode shape. This was only achieved by using the results of

STARS to bracket the eigenvalue search ranges. Initially, when

the run was made on NASTRAN without prior knowledge of the eigen-

values, ths 30 minute cutoff time was exceeded without calculating

even one eigenvalue.

Reference 1 also presents a practical comparison for a cylinder

subjected to a blast loading using the same three methods. The

analyses determine the linear transient response of a cylinder

subjected to the harmonic dynamic loading shown in Figur'e 2. The

results, also shown in Figure 2, are identical for the three tech-

niques. However, the idealizations used serve to accent the sig-

nificant differences. These idealizations are contrasted in Table 2.

As can be seen, the numerical integration idealization is satis-

factory using an order of magnitude fewer degrees of freedom. An

extra benefit of the accuracy of the numerical integration method

is an increase in the time integration step allowed before artifical

damping becomes evident.

The standard approach used by CBI to analyze containment vessels

for their various loadings is to use a CBI proprietary one-dimen-

sional shell of revolution program which is based on linear class-

ical shell theory. The method of solution is one used by Kalnins

(Reference 2). A special version of CBI's program is used to

extract eigenvalues (calculation of mode shapes and frequencies
of the shell) and also to evaluate the dynamic response using the
direct integration method. The static and dynamic versions of

CBI's shell of revolution programs have been verified for their

intended applications.

(2-5) '''9 jjQ
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At this point, CBI would like to make a few comment about the
use of Fourier series to model nonaxisymmetric loads. In order
to limit the computational effort needed to obtain accurate
stresses and displacements, a technique was developed for using
a greatly abbreviated Fourier series to represent the circumferen-
tial variation of the loading. This technique is described in
Reference 3. The truncation error in the variable (deformations,

stress and moment resultants) at any given point on the shell can
be evaluated from the shell solution using the last two harmonics
of the Fourier series. This error can be reduced to any level
desired. The important point is that the error is known. An
engineer can decide that a 2% error in the load will not affect

the validity of his results. On the other hand, for 2-D methods

the analysis appears to be accurate. However, its accuracy is,
in general, unknown. Convergence studies using several mesh sizes
would have to be conducted to evaluate the accuracy of the numer-
ical results for a particular mesh.

To date, the approach adopted by CBI with regard to containment
vessel design has been to evaluate the overall behavior of the

vessel using a shell of revolution type analysis and then sub-
sequently to perform a detailed design in the regions where there
are large openings (such as the locks and equipment hatch). All

openings of any size are reinforced in accordance with ASME Code
Section III rules. Section III of the Code specifies that the

shell material cutout by the opening be replaced within a specified
reinforcing zone. Application of these rules to openings in the size
range usually encountered assures that the local area is just as
safe from a buckling standpoint as the unpenetrated shell would
have been.

'7"9 331
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Technical Discussion of 2-D Methods

CBI recognizes the need for, and value of, 2-D analysis methods
for.certain structural problems. In fact, we have actively used

2-D methods for over 10 years in situations where simpler design

rules and analysis methods were not adequate. Over that time,

we have gained an appreciation for the power of general purpose
finite element programs. We have also learned that, due to the

increased complexity of these programs, there are very real dangers

associated with their use. The complexity of a 2-D analysis will

invariably lead to more errors and misinterpretations of results

chan a 1-D analysis. It is CBI's firm belief that, if 2-D methods

were required on a routine basis (and especially in situaticns

where their use should be optional), these errors and misinterpre-

tations would result in a relative net loss of confidence and safety.

To understand CBI's positon, one m'ast understand three important

points. First, it should be recognized that it is CBI's policy to

design safe structures, and that we would not knowingly use design

or analysis methods which might yield inadequate structures. CBI

designs its structures to meet all specified customer, Code and

NRC requirements. Moreover, the company has additional internal

requirements to further assure the safety of its designs.

The second point is that a 2-D analysis is far more complex than

a 1-D analysis. A mesh must be generated and associated data

prepared. This data would involve as many as 100,000 numbers for

a simple static analysis of a properly modeled containment. The

output generated would be even more voluminous. Furthermore, the

output would not generally be in a usable form so that additional

calculations and manipulations would have to be performed. To

properly prepare and interpret all these numbers is a difficult

assignment. To do so on a routine basis would increase the likeli-
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hood of errors, confusion and misinterpretations of results. It

does not make sense to risk the occurence of these problems when

a simpler method is available which yields an accurate solutio:..

The third important point is that the containment vessel design

procedure is, in reality, an extremely complex iterative process.
This fact further complicates the analysis required. The many

trials normally needed to reach an acceptable design are further
increased by common changes in specified loadings and other input
information. Many different loads and load combinations must be
studied. Design details must be adjusted and reanalyzed. The

complete process is long, involved and difficult - even when 1-D
methods are used. To prepare good designs, engineers should have
a " feel" for the problem being solved and the behavior of the

structure. Reliance on 2-D methods would make it more likely that

engineers would become lost in the numbers and less able to make
good engineering decisions;

~ ''' 9 3 3 3
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COST STUDY & COST BENEFIT EVALUATION

In this section, the computer costs associated with performing
a 1-D and 2-D dynamic analysis for a typical containment vessel
will be evaluated. The higher engineering manhour costs associated

with 2-D methods will not be included. The problem used for com-

parison is the containment vessel eigenvalue problem analyzed in
NUREG CR-0793. The containment vessel is assumed to be a cylin-

drical shell 120 ft. in diameter and 150 ft. high with a 2:1

ellipsoidal top head. Six circumferential ring stiffeners are

attached to the cylindrical shell. The spacing of these stiff-

eners, starting at the point of embedment, is 200", 200", 400",
200", 400", and 200".

The first step in the evaluation will be to confirm that the computer
cost rate used in the NUREG examples is reasonable. Next the cost

of a 1-D analysis will be presented. The third step will be to

develop the 2-D analysis cost. CBI will show what kind of model-
ing detail is required for an accurate 2-D analysis of a real
containment vessel. It will also show that the mesh proposed in

the NUREG is grossly inadequate. Finally the cost of an adequate

2-D analysis will be estimated and compared with the 1-D costs.

CCMPUTER COST RATE

CBI has recreated the coarse 2-D mesh used in the NUREG examples
and has confirmed that the computer rates quoted are reasonable.
The $30 static run used 0.93 minutes of CPU on CBI's computer, and

Note thata computer rate of about $30 per minute is reasonable.
the basis of this rate is the NUREG example. An eigenvalue run

Based on $30 per minute
to extract 15 modes took 5.67 CPU minutes.
(and assuming cost proportional to CPU), the run would cost about
$170. The NUREG quoted $150 for the analysis, including a modal
superposition time history analysis.
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The cost of a modal superposition time history solution varies widely

depending on how many points in time and space and how many var-
iables per point are evaluated. The cost of this part of the

solution should bn about the same for both 1-D and 2-D methods.
For the amount of data reported the NUREG example, CBI would estimate

the cost of evaluation at about $40. Thus, the S150 quote compares

reasonably well with an estimate based on $170 + S40 = $210. It is

possible that the NUREG did not include the cost of the time history

solution.

ESTIMATE FOR l-D ANALYSIS

Based on CBI's experience wi th similar problems, the computer cost

for a complete 1-D modal time history dynamic analysis is estimated

to be about $300. For the eigenvalue solution alone, the cost

would be about Sll5. This is for a model with 150 segments (more

than enough for a real containment) and 15 modes (the same number

used in the NUREG e' ample).

As discussed above, the time history solution would add about $40

for the number of points evaluated in the NUREG example. Assuming

that nore points in space and more variables are evaluated for a

real containment analysis, the cost could be a few hundred dollars.

For the purpose of comparing the 1-D and 2-D costs, we will use a

figure of $185. Thus the total coct for the 1-D analysis would be

S115 + S185 = S300.

ESTIMATE FOR 2-D ANALYSIS '

The computer cost of a 2-D eigenvalue analysis is directly related

to the size of the mesh. Hence, it, a 2-D analysis it is important

to select "a priori" the optimum mesh. An optimum mesh is defined

as one which essentially provides converged results (to within some

engineering accuracy) for any pertinent response variable of
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interest. The only way to prova convergence is to redo the analysis

with a finer mesh and show that the results do not change. Since

this must be done for each load case, this approach is generally

not feasible and can be avoided by developing and following good

modeling rules. Such rules are not easy to define since they depend

on the structure, closeness to discontinuities and the loading.

For this reason, no published and generally accepted rules are

available for general use. However, for the purpose of this

evaluation, some realistic rules can be developea for the part-

icular problem of interest.

In the following, three exaiuples are presented wnich give some

guidance as to what kind of modeling is required for accurate

solutions of different types of thin shell problems. These

examples only tackle the initial problem of accurately calculating

the static stress concentration factor at the shell to stiffener

junction and around openings. The static response must be accurately

predicted before one can expect the dynamic response to be valid.

The examples also provide some useful information about the relat-

ionship between the modeling detail and the computer costs in a

2-D analysis.

.

7#
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EXAMPLE 1: PLANE STRESS ANALYSIS OF CIRCULAR PLATE WITH HOLE
.

The problem considered was that of a circular plate with a central
circular hole subjected to an in plane uniform tension load of
1.0 ksi. It shows what kind of modeling detail is required in the
vicinity of an opening. The dimensions of the plate are shown
in Figure 3. The geometric parameters are R = 10", a = 1.00",
t= 1.00".

Symmetry of the loading, geometr. And material properties made
the analysis of only one quarter of the plate sufficient. Adequacy
of the mesh size is determined by comparing two separate models
which vary in grid size. The finite element idealizations of the -

quarter panel using a fine and coarse mesh are shown in Figures
4 and 5. For the fine mesh the radial length of the elements
in the region extending around the hole was made equal to .25"
(one-quarter the radius of the hole) for a radial distance of 1" .
In the outer regions, progressively larger elements were used
( " and 1" sizes). For the fine mesh there are 84 elements with
105 nodes, resulting in 180 degrees of freedom. For the coarse

mesh the length of the elements was made twice as long as the
corresponding elements in the fine mesh, resulting in 27 elements
with 35 nodes and 54 degrees of freedom.

The problem was analyzed using the SAP 4 program and plane stress
membrane (SAP Type 3) elements. The tensile and compressive stress

concentration factors predicted at the edge of the hole using the
fine and coarse meshes are given in Table 3 together with the
results of the solution using CBI's 1-D program. These results

are compared to the elasticity solution of the same problem given
in Theory of Elasticity by Timoshenko and Goodier.

The results from CBI's 1-D program are correct to three signifcant
digits when compared to the exact elasticity solution. The results
from CBI's program can also be considered " exact" because the
program uses a numerical integration technique to solve the plate
differential equations and uses a very small convergence criteria.

(2-12)
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The SAP 4 solution for the fine mesh shows an error of 3% for the
tensile SCF and an error et 15% for the compressive SCF. The

corresponding errors for the coarse mesh are 14% and 40% respect-
ively. The agreement between the exact solution and the fine mesh

finite element solution is relatively close; however, the results

of the coarse mesh solution show considerable inaccuracy and in-
dicate that the solution has not converged.

The questionable adequacy of the fine mesh to solve this problem
shows that in order to obtain good engineering accuracy for stresses
in the immediate vicinity of the hole, the size of the elements

in the neighborhood of the cutout should not exceed one-fourth

the radius of the hole, and, preferably, should be smaller.

'''9 338
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EXAMPLE 2: CYLINDRICAL SHELL WITH A CIRCULAR CUTOUT SUBJECTED TO

AXIAL TENSION LOAD

Thi.s example has been taken from the paper "The Analysis of Thin
Shells with Transverse Shear Strains by the Finite Element Method",

by S. W. Key and Z. Beisinger. It was published in the Proceedincs

of the Second Conference on Matrix Methods in Structural Mechanics.
This problem, illustrated in Figure 6, will provide additional

guidance into modeling requirements near an opening.

Taking advantage of the two planes of symmetry, only one quarter

of the shell needs to be modeled. Figures 7 & 8 illustrate the fine

mesh which has a 27x27 grid with 533 elements and 589 nodes. The

size of the smallest elements in the immediate vicinity of the cut-

out for the fine mesh is of the order of r/10 (one-tenth the cutout

radius) or about 1/10/Rt. The coarse mesh, shown in Figures 9 & 10,

uses a 14x14 finite element grid with 148 elements and 176 nodal peints.

For the coarse mesh the size of the smallest elements is of the
order of r/3 (one-third the hole radius) or about 1/3/Rt. Typical

results are given in Table 4 along with the analytical solution

obtained by Lekkerkerker. The stresses are compared at points A

and B which correspond to the side and top edges of the hole respect-

tvely. The finite element solutions for the membrane and surface
stresses are compared with the analytical solution.

For the meridional surface stresses at point A, the results for the

fine and coarse meshes are within 1% and 8% respectively of the

analytical solution. For the circumferential surface stresses at

point B, the errors for the fine and coarse meshes are of the order
of 10% and 20% respectively.
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The authors have given the execution time for the two meshes. For

the coarse mesh the execution time was 0.3 hours, but for the fine

mesh the time increased by a factor of nearly 12 to 3.5 hours.

Note that the number of nodes (and degrees of freedom) in the fine

mesh increased by 589/176 = 3.35 over the coarse mesh. Assuming

that the run time is proportional to (DOF) , one would expect an

increase in the run time from 0.3 hours to 0.3 (3.35)2 3.36 hours.=

The fine mesh run time of 3.5 hours confirms that this rule is

reasonable.

The conclusions to be drawn from this example problem are that:

1. For a cylindrical shell with a circular cutout subjected to a

uniform loading, the coupled membrane - bending behavior near

the hole appears to be characterised reasonably well if the size

of the elements used in the immediate vicinity of the hole

is of the order of 1/3 .RT.

2. The CPU time is about proportional to (DOF) .
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EXAMPLE 3: STIFFENED CYLINDRICAL SHELL WITH PINCHING LOAD

This example was selected because it gives some indication of the
mesh size necessary to give accurate results for a cylindrical shell of

the same size as a containment vessel. The problem includes im-

portant real phenomenon like a stiffener and a nonaxisymmetric
loading.

A pinching load is applied to the shell because it will cause a
rapid variation of the displacement normal to the shell in the
circumferential direction. This pinching load is analogous to

the asymmetric nature of the Safety Relief Valve Loading for
which some containment vessels have to be analyzed. The dimensicns

of the shell are R = 720", t = 1.5". The length of the cylindrical

shell in taken as 100' and the boundary conditions at the ends

are assumed as simple supports. The shell has been stiffened by

a ring stiffener as shown in Figure 11.

A study was carried out using two mesh sizes and the SAP 4 pro-
gram. The fine mesh as shown in Figure 12 has 437 nodes spaced

such that there are 18 elements in the circumferential direction.
The size of the elements in the circumferential direction is 63".
In the meridional direction, the size of the elements is made

/equal to about /Et (16") for a distance of 2 Rt (64") from the
shell-to-stiffener junction. The size of the elements in the

axial direction away from the stiffener (distance greater than

2 /EE) is made equal to /Et (32"). The maximum aspect ratio of

the quadrilateral elements is limited to about (4:1). The mesh

has a total of 378 quadilateral shell plate elements (SAP Type 6)
including 18 which are used to model the stiffener flange. In

the web, there are an additional 18 membrane plane stress elements.
This mesh idealization gives rise to 2321 unknowns with a maximum
bandwith of 204.
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The coarse mesh (shown in Figure 13) has the same configuration

except that the dimensions of all elements have been doubled. This

mesh has 99 shell plate elements and 9 plane stress elements. There

are 130 nodes wnich give rise to 620 unknowns with a maximum band-

width of 99.

The pinching load is imposed by means of a 20 psi pressure applied

over the complete length of the shell in the meridional direction

and encompassing an arc of 20 circumferentially.

Both meshes were analyzed using the SAP 4 program. To provide a

comparison of these two analyses, the stress results at and near

the stiffener-to-shell connection are tabulated in Table 5 along

with the results of a solution obtained using CBI's 1-D program.

For this problem, the results from CBI's program are very nearly

exact (error less than 1%) because of the method of solution

(i.e: numerical integration, small convergence criteria) and the

fact that the Fourier series used to describe the load was carried to.

the second zero point (as described in Reference 3).

Because the SAP finite element solution gives stresses at the

centroid of the element, the stress comparisons are shown for point

A on the fine mesh and point B for the coarse mesh. These points

are slightly away from the stiffener junction, and corresponding

points from the 1-D solution are used. The SAP centroidal stresses

are also compared to the corresponding maximum discontinuity

stresses from the 1-D analysis. The maximum stresses occur at the

shell-to-stiffener junction along a longitudinal section which

passes through the center of the loaded area.

For the fine mesh, the hoop stresses at point A on both the inside

and outside surfaces are underpredicted by 19% The hoop membrane
stress is also underpredicted by 19%. For the meridional

7n9 342
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stresses, SAP underpredicted the surface stress by 15%. However,

the meridional membrane stress is overpredicted by 32%.

For,the coarse mesh, the stresses are compared at point B which is

16" from the transverse plane of symmetry and 5 from the longitudinal

plane of symmetry. In this case, the hoop stresses both on the in-

side and outside are underpredicted by about 45%. The membrane

hoop stress is also underpredicted by 45%. For the meridional

stresses, the stresses on the inside and outside surfaces are un-

derpredicted by 18% and 39% respectively. However, the membrane

stress is overpredicted by 52%.

The maximum surface discontinuity stresses predicted by the 1-D

shell analysis are in the meridional direction. The fine mesh

underpredicts these values by 60%. The coarse meshes underestimates

the stress by 95%. The maximum value of the membrane discontinuity

stress is in the hoop direction. The fine mesh underestimates this

stress by 31% and the coarse mesh by 70%. This comparison shows

that both meshas are inadequate to perform the analysis.

These comparisons illustrate some of the dangers of 2-D analysis.

It is apparent that elements near a discontinuity in geometry or

load should be smaller than /Et. Elements away from discontinuities

may be larger. However, it is CBI's experience that real containment

loadings do not result in any large areas of constant stress. In

areas removed from obvious discontinuities, elements should be no

larger than 1.0 dt.
.

The number of degrees of freedom increased by a factor of 2321/620 =

3.74 and the cost increased by a factor of 173.4/25.9 = 6.69. This

implies that, for this problem, the cost is proportional to (DOF)1*44 .
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DEVELOPMENT OF AN ADEQUATE 2-D MESH AND COST ESTIMATE

The results of the previous three examples show that the maximum
element length in the meridional direction should be about 1/ 3
/Rt or 1/4 the hole radius in the vicinity of large openings,
less than /Rt near stiffeners and 1/Rt in other shell regions.

Elements can be longer in the circumferential direction. In no case

should the maximum aspect ratio be more than 4:1. Using these

rules, the size of the mesh necessary to model the containment
vessel analyzed in NUREG CR-0793 can be determined in a manner
which will approximate, but not overestimate, the engineering re-
quirements.

For the normal stiffener spacing of 200", a typical 90 slice of

the vessel would require (4+2+4)18 = 180 elements. This is based

on 4 rows of /EE elements above the first stiffener (or bottom)
and also below the next stiffener with 2 rows of lvRE elements
in between. Using a 4:1 maximum aspect ratio, 18 elements are
needed per 90 segment per row. For a 400" stiffener spacing, the

corresponding number of elements is (4+8+4)18 = 288. An additional

36 elements are required to model the web and flange of each
stiffener.

The NUREG document recommends modeling all the major locks. This

requires that all 360 degrees of the shell be modeled. It can be

shown that each properly modeled lock or hatch (based on the 1/4
radius rule) would cause a net increase of about 500 elements.
This number would be even larger if 1/10/RE elements were used.
Hence, for the subject vessel with six stiffeners (4 with 200"
spacings and 2 at 400" spacings) and 3 locks (2 personnel locks
and 1 equipment hatch), the number of elements required to model
the cylindrical vessel will be 4*4*180+4*2*288+4*6*36+3*500 = 7548
elements. A slice of the resulting mesh is show in Figure 14.
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Assuming that about 600 elements would be needed to model the top

head, the total number of elements required to model the con.plete

vessel will be about 8200. Even with this many elements, the mesh

does not account for any fine mesh layouts which might be required

for other penetrations nor for any node points at locations where

floor response spectra are needed. It also does not account for

the modeling required for fluid-structure interaction problems.

The containment vessel sample problem in the NUREG document used
only 170 elements. The size of each element was 200" which is

about 6/Rt. This mesh will not adequately describe the curved
~

surfcce and will not yield an accurate solution for real contain-

ment lc ngs. CBI's more realistic estimate of about 8200

elements is about 48 times the number given in the NUREG document.

The NUREG example is quite misleading.

Because the NUREG mesh is inadequate, the estimated computer cost

of $150 is grossly underestimated. A generally accepted rule of

thumb is that the computer cost of a 2-D analysis is proportional

to the square of the number of degrees of freedom (DOF) Example*

2 confirmed this rule while Example 3 showed the cost was proportional

to (DOF) for that particular problem. Using the (DOF) rule*

(and assuming that the ratio of the number of elements is about

equal to the ratio of the number of degrees of freedom), the cost

of a single eigenvalue analysis would increase by a factor of

(48) to $350,000. Based on a rule of (DOF) l . 44 the cost would,

increase to $40,000. It should be noted that this estimate is based

on an extrapolation using the NUREG example's computer cost rate.

CBI recognizes the uncertainty in the cost formula and the fact

that an extrapolation of this magnitude cannot be made with as

great a confidence as one involving a smaller change in the number

of degrees of freedom. Nevertheless, CBI believes a realistic

estimate of the computer cost for one ran would be in the range of

$30,000 to $50,000. Using this figure, 2-D methods are more

(2-20)
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expensive than 1-D methods by a factor of at least 30,000/300 =
100. The cost of the modal superposition time history evaluation
would still be about $200 and would be insignificant relative to the

cost of the 2-D eigenvalue solution.

A cost of say $40,000 would cover only the cost for one dynamic
analysis for seismic loads. Many containment vessels also have
to be analyzed for several nonaxisymmetric time varying pressure
load cases, in addition to several static load cases. Many load

combinations exist. Hence, the actual cost of analyzing the

vessel could approach or exceed $1,000,000. That kind of expend-
~

iture cannot be justified when there is no real benefit to be

gained and the potential exists for increased confusion and errors.

ADDITIONAL COMMENTS

. There are two additional problems with the 2-D approach which should
be discussed at this time. Both relate to the accuracy of the

solution. The first problem is that it appears that only 2 of the

15 modes found by SAP represent zero or first harmonic displacement
patterns. These two harmonics are the only ones important in de-

termining the overall vessel response to a seismic load. Therefore,

the 1-D analysis could have used only 2 modes to obtain the same
accuracy as the 2-D analysis. This would reduce the 1-D cost.

On the other hand, if 15 modes were required from the first two

harmonics, SAP would probably have to extract well over 100 modes
to find 15 in the first two harmonics. This would further increase

the 2-D cost by an order of magnitude. A requirement to find 15 or

more modes is not unusual. On some real containment contracts,

CBI has been required to find all modes in the first two harmonics

whose frequencies were less than 33 hertz. The number of such modes
would be greater than 15.

(2-21) 7'g 34



.

.

.

The second problem with the 2-D approach is that in attempting
to calculate the response near openings, a relatively inaccurate
solution will be found in areas away from the openings. These

areas away from openings account for about 96% of the shell surface.
The critical region of the shell will likely be in a region away

from the large penetrations.

The main concern of the NUREG document is that the detailed state
of stress in the vicinity of penetrations be accurately determined,
on the basis that these stresses are needed to realistically

evaluate the safe buckling loads. On the other hand, the document

states tnat studies of the buckling of cylinders with reinforced

holes have shown that the critical buckling stress for a cylindrical

shell with a reinforced cutout is higher than the corresponding

critical stress for the unpenetrated shell. All openings on a

containment vessel are reinforced in accordance with ASME
Code rules. These rules are intended to insure that the penetrated

shell is at least as strong as the plain shell. It appears that

it would serve no purpose to use a two-dimensional finite element
analysis to study these local effects, especially one that modeled
the entire shell.

.

#
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