November 9, 1979

Mr. Franz P. Schauer, Chief
Structural Engineering Branch
Division of Systems Safety

U. S. Nuclear Regulatory Commission
Washington, D. C. 20555

Subject: NUREG CR-0793
"Buckling Criteria and Application of Criteria
To Design of Steel Containment Shell"™, May 1979

Dear Mr. Schauer:

Chicago Bridge § Iron Ccapany (CBI) has reviewed the subject
document with a great deal of interest since we have a long
history of involvement with design, construction, and experi-
mental testing of shell structures subjected to compressive
ioads. We would like to offer a number of comments on NUREG
CR-0793 which reflect our experience in design of containment
vessels. Our detailed comments are attached as Enclosure No.
1. Enclosure No. 2 contains an elaboration of some of our
concerns regarding the NUREG recommendation on the use of two-
dimensional analyses.

We note that NURPEG CR-0793 lists Mr, C. D. Miller of CBI as one
of the individuals contributing information used in the prepara-
tion of the report. It should be clarified that Mr., Miller's
contribution was limited to a verba. presentation to the con-
sultants during the late stages of their study. That presenta-
tion resulted only in the consultants' refsrencing of some of

Mr. Miller's papers in their report. Mr. Miller does not concur
with some of the contents and recommendations of the consultants'
report.

CBI nas cooperated with a Task Force of the ASME Working Group

on Containments on preparation of Code rules for buckling design
of containment shells. The Task Force's report has been approved
by the Working Group on Containment and forwarded to the Subgroup
on Design of the ASME's Section III Code. A commentary providing
the basis and the justification for the rules contained in the
Task Force's report has been prepared and submitted to the
Subgroup on Design. That commentary is still in a preliminary
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stage and, when completed, will provide detailed justification for
the proposed Code rules. The NRC representatives on these groups,
S. B. Kim and K. R. Wichman, have copies of these documents. We
fully concur with the recommendations of the ASME Task Force
report and suggest it be considered as an alternative to the
recommendations of NUREG CR-0793.

We are hopeful that the enclosures will be helpful in NRC's con-
sideration of proposed rules for buckling evaluation of containment
vessels. We would be pleased to discuss this subject with you to
provide clarification of our commeénts as you deem necessary

Very truly yours,

P—— - ™ ..
-

P L s e N B i
W. R. Mikesell
Assistant Chief Engineer
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J. Bosnak-U.S. NRC
.R. Wichman-U.S. NRC
B. Kim-U.S. NRC



Enclosure No. 1

CHICAGO BRIDGE & IRON COMPANY's
COMMENTS ON NUREG CR-0793
"BUCKLING CRITERIA AND APPLICATION
OF CRITERIA TO DESIGN OF STEEL
CONTAINMENT SHELLS", May 1979

Rkl S 74 |

November, 1979



INTRODUCTION

NUREG CR-0793 contains a valuable survey of the design and analysis
methods for buckling evaluation of containment shells and provides
some very he.pful references. However, we feel that certain areas
of concern have nct been adequately addressed and in some other
areas we do not agree with the conclusions and recommendations of
the report. In this enclosure, we have listed a number of comments
which we feel would be helpful in evaluating the NUREG.

Our basic critism of the NUREG is that it proposes the use of
complex two-dimensional finite element models for the stress analy-
sis and buckling analysis of containment vessels (Section 4.6).

The rationale for this recommendation is given in 3.2 by the use

of arguments that we do not support. We feel that both of these
analyses (stress and buckling) can be accomplished with simpler

and more reliable approaches for the vast majority of containment
vessel geometries and loadings. When the multiple load cases

used in the design of containment vessels and the time and space
varying nature of the dynamic responses (load cases often involve
mcre than one dynamic component) are considered, the complexities
of the two-dimensional analysis are magnified and it: reliability
further diminshed. The alternative of axisymmetric analyses per-
mits the evaluation of all representative locations on the vessel
and all specified load cases in a straight forward and tractable
manner. In a complex two-dimensional analysis, the potential
errors in modeling, in making the complex calculations, or in over-
looking a governing load combination may produce the opposite
result, a less accurate and less reliable analysis. (See Enclosure
No. 2 for further treatment of this subject.) Other specific com-
ments on 3.2 are mentioned later in this commentary.

The issue of acceptable and reliable knockdown factoers is also
critical. We are in basic agreement with the general approach
proposed by the authors of the NUREG. We agree that the complete
body of relevant test data should be used to determine reliable
and conservative design values; and that for those cases where
adequate data is not available, additional testing should be under-
taken. The general accuracy of containment design and analysis
procedures for buckling is governed directly by the precision with
which the knockdown factors are defined. The use of the lower
bound of the available data should be conservative. The large
amount of scatter shown in buckling test data, which is used to
arrive at knockdown factors, further reinforces our belief that
the complex modeling and analyses procedures proposed by the

NUREG would not significantly add to the accuracy and utilitv of
the final results.
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The following are our specific comments on the contents of the
NUREG (the paragraph numbers referenced are those of the NUREG):

1. In Paragraph 3.2, it is stated that "in the case of a
nonlinear one-dimensional code, the load is axisymmetric
only". We would like to point out that there are a number
of nonlinear one-dimensional codes with non-axisymmetric
loading capabilities.

2. We do not agree with the statement in Paragraph 3.2 implying
that it may be more convenient to use a two-dimensional shell
analysis to avoid using Fourier harmonics for describing
non-axisymmetric loads in an axisymmetric shell analysis. We
have extensive experience with both methods and have found
the converse to be true.

We agree with the statement in Paragraph 3.2 that for large
enough holes, the stress state in the entire shell will be
affected. However, we believe that, typically, reinforced
openings in containment vessels are not large enough to
affect the overall state of stress to the extent that a
two-dimensional analysis will be required. Paragraph 4.5
in the discussion of reinforcing openings per the ASME Co
requirements, supports our contention.

()
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4. We believe that the sample stress analysis calculations of
Paragraph 3.3 are rather misleading. The mathematical model

used is not nearly fine enough to provide an accurate estimate

of the response of the vessel. With such coarse mesh, local
discontinuity stresses will not be obtained. A mesh adequate
for providing accura%te stress results would have to be signi-
ficantly finer than that of the report. The complexities of
generating such a mesh and the costs of running such analysis
have been grossly underestimated in Paragraph 3.3 (see
Enclosure #2).

5. In seismic analysis of Paragraph 3.3.4, the use (f the first
15 natural modes for determining the response of the contain-
ment vessel to dynamic loads will not be sufficient to calcu-

late the local response near penetrations and attached masses.
A separate analysis, similar to that commonly used in conjunc-
tion with a one-dimensional analysis of the vessel, is required.

6. We strongly agree with the proposals of Paragraph 4.4 on the
use of the available body of test data to define knockdown
factors.

7. We agree with the statement under Paragraph 4.5.1.1 that "the

use of the critical uniform stress as a measure of the critical

maximum axial stress is conservative'.
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11,

13,

lie agree with Paragraph 4.5.1.2 in that the critical equi-
‘talent uniform pressure is not the maximum pressure but the
sength average of the pressure distribution. Evidence of
>uck behavior has been provided by a sample problem in the
commentary on the proposed ASME rules.

We agree with the statement in Paragraph 4.5.1.5 that the
reduction in a cylinder's load carrying capacity "can be
disregarded safely if a dynamic stress analysis is used to
determine the maximum axial stress, which ls then applied
as a static uniform stress in the structure". However, we
believe that such application of maximum stresses, obtained
from a dynamic analysis, as quasi-static stresses is alwavs
conservative for any shell structure under any kind of
loading. We, therefore, do not .2e any need for the tenta-
tive recommendation of Paragraph 4.6, which requires that
the dynamic axial stress be always greater than 140% of the
axial stress obtained with a static load application.

Paragraph 4.6(a) implies that all penetrations should be
included with a two-dimensional model. Penetrations on a
typical containment vessel are numerous and mostly small.
Accurate modeling of all penetrations, is impractical and
unwarranted, regardless of whether one-dimensional or two-
dimensional modeling is used.

Paragraph 4.6(c) requires tha: a linear bifurcation analvsis

be performed for the buckling evaluat.on We believe that the
theoretical critical stresses and the .interaction relationships
proposed in the proposed ASME rules would be a convenient and
acceptable alternative to a computer analysis. The proposed
interaction relationships are conservative estimates of
theoretical relationships, which have been confirmed by test.

Paragraph 4.6 makes reference to NASA SP-8007 for values of
capacity reduction factors for unstiffened cylinders. We
believe that the values recommended by Paragraph 1511 of the
proposed ASME rules are better estimates of these factors.
The justification for values of those rules and a comparison
of the proposed values with test results are included in the
commentary document submittad with the proposed rules.

The statement at top of Page 4-40 implies that no specific
recommendations for reduction factors of stiffened shells

are available and the conservative recommendation is made

that the reduction factors for stiffened shells be based on
unstiffened shells having buckling load capacity the same as
that of the stiffened cylinder. A great deal of work has

been done in the area of developing capacity reduction factors
for stiffened shells. The proposed ASME rules contain sug-
gested values for these factors. The basis and justification
for those factors are provided in the commentary document.

79 323
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We also disagree with the statement that for local buckling
between closely spaced longitudinal stiffeners, the reduction
factor may be taken as 1.0. As a minimum, "closely spaced"”
should be defined.

14, We agree with the Paragraph 4.6 recommendation that a safety
factor of 2.0, in combination with proper capacity reduction
factors, is sufficient to achieve a conservat.ve design.
However, to use a 0.1 factor on theoretical, to arrive at
design values, for stiffened cylinders under axial compres-
sion could result in gross overdesigns. While a knockdown
factor of 5.0 is realistic for long and thin unstiffened
cylinders, the value of this factor for stiffened cylinders
could be as low as 1.6 (see Figure 1511-2 of proposed ASME
rules). For short (stiffened) or thick cvlinders, the
critical axial stress approaches the yield strength of the
material. Obviously a factor of 0.1 applied to the failure
stress, to account for capacity reduction and safety factor,
is not realistic in such cases.

15. Under Section 5, it appears that references to (3a) and (3b)
in subparagraphs (a) and (b) have been mistakenly interchanged.
As indicated by the above comments, we don't agree with some
of the conclusions of Section 5. However, we would like to
strongly endorse the call for a rational method of combining
various loadings, based on the use of probability statistics
and risk analysis methods, to avoid the overconservatism of
straight addition of worst possible conditions.

16. We would like to point out that NUREG CR-0793 does not address
the question of inelastic buckling. The stiffener spacing on
most of the recently designed containment vessels is such that
buckling failure would occur at a stress above the proportional
limit of the fabricated material. For such cases, a plasticity
reduction factor will hav: to be applied. Furthermore, the
f1ilure behavior in the inelastic range will be different from
that predicted by a linear bifurcation analysis.

17. The NUREG does not provide adequate guidelines for selection
of knockdown factors, for either panel buckling or overall
instability. Adequate rules for sizing of stiffeners are not
provided either. Proposals in these areas are contained in
the proposed ASME rules.
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Enclosure 32

An Evaluation of 1-D and 2-D Analysis Methcds For The

Solution of Thin Shell Containment Vessel Problems
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INTRODUCTION

In engineering work, the simplest method which can adequately
solve a given problem should be used. Simple methods, when
justified, are the most effective engineering tools. Simple
analysis methods reduce the amount of engineering judgement that
must be employed to assure safe, reliable designs. A 1-D
analysis method can accurately predict the response of thin shell
containment vessels in almost all cases of current practical
interest. Guidelines can be established to isolate those few
cases where 2-D analysis methods are required. This enclosure
substantiates the tachnical acceptability and desirability of
1-D methods. Furthermore, it shows that using 2-D methods as

a routine approach cannot be cost justified.

The remainder of this enclosure is organized in four major
sections. The first section is a brief summary of important
findings and conclusions. The second and third sections are
technical discussions of 1-D and 2-D analysis methods, respect-
ively. Important benefits and problems are presented. The final
section is a cost study and cost-benefit evaluation. 1In develop-
ing the expected cost of a 2-D analysis, references are cited

and examples are presented which form the basis of some good
modeling sules. These rules are then used to develop a mesh
which will give an accurate solution to a real containment
problem. The cost of an analysis using this mesh is then estimated
and evaluated.
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SUMMARY

The primary conclusions supported by this enclosure zre as follows.

4.

wd
.

da

1-D analysis methods are accurate f{or most containment vessel
problems of interest.

Since 1-D methods are accurate in most cases, the use of 2-D
methods will not improve tlie solution. In actual practice,
potential errors and misinterpretations due to the increased
complexity of 2-D methods are likely to yield less accurate
solutions.

2-D methods are more expensive than 1-D methods by a facter
of at least 100 for typical containment prcblems.

NUREG CR-0793 quotes a cost of $150 to perform a 2-D eigenvalue
analysis of a "somewhat coarsely modeled" containment vessel.
CBI feels that the model is not somewhat inadequate, but
rather is grossly inadequate. As a result, the cost estimate
is misleading. The cost of an adequate analvsis is difficult
to predict but will probably be in the range of $30,000 to
$50,000. One commonly used and generally accurate rule of
thumb is that the cost of a computer solution is proportional
to the number of degrees of freedom sguared. Based on this
rule and an adequate mesh, the cost c¢f an egquivalent run could
be as much as $350,000.
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TECHNICAL DISCUSSION OF l1-D METHODS

CBI believes that a one-dimensional analysis is an effective
engineering tool for the analysis of thin shell containment
vessels under static and dynamic loads. A one-dimensional
analysis provides a reliable and accurate sclution to the

overall prcblem of determining the deformations and state of
stress in an ax.symmetric shell subjected to any arbitrary locading.

It is realized that a 1-D analysis will not predict the detailed
state of stress in the containment vessel in the immedizte vicinity
of the larger penetrations (such as an equipment hatch or a perscnnel
lock). However, these penetrations are not large encuch to sig-
nificantly affect the overall respcnse of the vessel. Certainly any
subtle changes in response would be much less significant than other
uncertainties, such as the proper knockdown factors to be used in the
buckling evaluation. The adequacy of local ar=2as can be assured

by simple design rules {(e.g., area replacement) and, when reqguired,
verified by a local 2-D analysis.

In order to substantiate the advantages of 1-D methods, Reference 1
is cited. This reference compares the computational efficiency
and reliability of one-dimensional analysis methods to that of the
two-dimensional finite element method.

Reference 1 presents a comparative analysis of a model motor casing
for static loads. The casing is in the form of a cylindrical shell
which is 304 cm. in diameter and 2121 cm. long with hemispherical
heads at both ends. The loading is in the form of a pinching locad
as shown in Figure 1. The problem was run using the STARS, BOSOR4,
NASTRAN, and MARC computer codes. The pertinent computer run times
for the various programs and idealizations are shown in Table 1.
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(2-3)



A review of Table 1 shows that the agreement for the maximum
deflection was within 1% for all programs except the MARC
program. It is possible that the MARC 2-D program was used
improperly. This is a serious danger with 2-D programs. Never-
theless, the excellent agreement between the two l1-D programs
(STARS-2 and BOSOR4) and the 2-D NASTRAN program prcves that a
1-D solution is accurate for this kind of problem. (Later
discussion will show that a 1-D solution may be more accurate
than 2-D for other problems.)

The particular problem in Reference 1 included gross geometrv
discontinuities (head to shell junctions) and a nonaxisymmetric
loading. It can also be shown that 1-D methods will accurately
sclve thin shell problems which include ring stiffeners, vertical
stiffeners, any arbitrary time varying nonaxisymmetric loading,

and fluid-structure interaction. It is also possible to perform

a coupled 1-D analysis which actually calculates the effect, if anvy,
of a local mass on the overall response of the vessel.

Reference 1 also provides some information about costs. The STARS-2
one dimensional shell of revolution program (based on a numerical
integration technigque) solved the problem in just 2.5 minutes. The
one~-dimensional BOSOR4 program (based on a finite difference form-
ulation) solved the problem in 3 minutes. However, it took NASTRAN
70 minutes to solve the problem. The NASTRAN 2-D finite element code
us2d a fine mesh of one-quarter of the structure. Note that, in
general, a quarter structure model could not be used for containment
vessels if one were trying to determine the effect of nonaxisymmetric
attachments or loading conditions. Based on these results, it is
evident that when solving specialty structures, such as shells of
revolution, the 1-D programs offer distinct advantages for static
analysis.
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The same general comparison was made between STARS-2 and NASTRAN
for an eigenvalue problem. The problem analyzed was the natural
vibration analysis of a free cylinder; R = 10", L = 150" and

t = .02". The STARS~2 program extracted 10 mode shapes in 6.7
minutes. However, the NASTRAN program took 21 minutes to extract
one mode shape. This was only achieved by using the results of
STARS to bracket the 2igenvalue search ranges. 1Initially, when
the run was made on NASTRAN without prior knowledge of the eigen-
values, th: 30 minute cutoff time was exceeded without calculating
even one eigenvalue.

Reference 1 also presents a practical comparison for a cylinder
subjected to a blast loading using the same three methods. The
analyses determine the linear transient response of a cylinder
subjected to the harmonic dynamic loading shown in Figure 2. The
results, also shown in Figure 2, are identical for the three tech-
nigues. However, the idealizations used serve to accent the sig-
nificant differences. These idealizations are contrasted in Table

(39

As can be seen, the numerical integration idealization is satis-
factory using an order of magnitude fewer degrees of freedom. An
extra benefit of the accuracy of the numerical integration method

1s an increase in the time integration step allowed before artifical
damping becomes evident.

The standard approach used by CBI to analyze cuntainment vessels
for their various loadings is to use a CBI proprietary one-dimen-
sional shell of revolution program which is based on linear class-
ical shell theory. The method of solution is one used by Kalnins
(Reference 2). A special version of CBI's program is used to
extract eigenvalues (calculation of mode shapes and frequencies
of the shell) and also to evaluate the dynamic response using the
direct integration method. The static and dynamic versions of
CBI's shell of revolution programs have been verified for their
intended applications.
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At this poin:, CBI would like to make a few comment about the

use of Fourier series to model nonaxisymmetric loads. In order
to limit the computational effort needed to obtain accurate
stresses and displacements, a technigue was developed for using

a greatly abbreviated Fourier series to represent the circumferen-
tial variation of the loading. This technique is described in
Reference 3. The truncation error in the variable (deformations,
stress and moment resultants) at any given point on the shell can
be evaluated from the shell soluticn using the last two harmonics
of the Fourier series. This error can be reduced to any level
desired. The important point is that the error is known. An
engineer can decide that a 2% error in the load will not affec:
the validity of his results. On the other hand, for 2-D methods
the analysis appears to be accurate. However, its accuracy is,

in general, unknown. Convergence studies using several mesh sizes
would have to be conducted to evaluate the accuracy of the numer-
ical results for a particular mesh.

To date, the approach adopted by CBI with regard to containment
vessel design has been tc evaluate the overall behavior of the
vessel using a shell of revolution type analysis and then sub-
sequently to perform a detailed design in the regions where there
are large openings (such as the locks and equipment hatch). All
openings of any size are reinforced in accordance with ASME Code
Section III rules. Section III of the Code specifies that the
shell material cutout by the opening be replaced within a specified
reinforcing zone. Application of these rules to openings in the size
range usually encountered assures that the local area is just as
safe from a buckling standpoint as the unpenetrated shell would
have been.
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Technical Discussion of 2-D Methods

CBI recognizes the need for, and value of, 2-D analysis methods

for certain structural problems. In fact, we have actively used
2-D methods for over 10 years in situations where simpler desicn
rules and analysis methods were not adeguate. Over that time,

we have gained an appreciation for the power of general purpose
finite element programs. We have also learned that, duvue to the
increased complexity of these programs, there are very real dancers
associated with their use. The complexity of a 2-D analysis will
invariably lead to more errors and misinterpretations of results
‘han a 1-D analysis. It is CBI's firm belief that, if 2-D methods
were reguired on a routine basis (and especially in situaticns
where their use should be optional), these errors and misinterpre-
tations would result in a relative net loss of confidence and safety.

To understand CBI's positon, one m.st understand three important
points. First, it should be recogn.:ed that it is CBI's policy to
design safe structures, and that we would not knowingly use desicn
or analysis methods which might yield inadequate structures. CBI
designs its structures to meet all specified customer, Code and
NRC requirements. Moreover, the company has additional internal
requirements to further assure the safety of its designs.

The second point is that a 2-D analysis is far more complex than

a 1-D analysis. A mesh must be generated and associated data
prepared. This data would involve as many as 100,000 numbers for

a simple static analysis of a properly modeled containment. The
output generated would be even more voluminous. Furthermore, the
output would not generally be in a usable form so that additional
calculations and manipulations would have to be performed. To
properly prepare and interpret all these numbers is a difficult
assignment. To do so on a routine basis would increase the likeli-
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hood of errors, confusion and misinterpretations of results. It
does not make sense to risk che occurence of these problems when
a simpler method is available which yields an accurate solutioi.

The third important point is that the containment vessel design
procedure is, in reality, an extremely complex iterative process.
This fact further complicates the analysis required. The many
trials normally needed to reach an acceptable design are further
increased by common chances in specified loadings and other input
information. Many different loads and load combinations must be
studied. Design details must be adjusted and reanalyzed. The
complete process is long, inveolved and difficult - even when 1-D
methods are used. To prepare good designs, engineers shculd have
a "feel" for the problem being sclved and the behavior of the
structure. Reliance or. 2-D methods would make it more likely that
engineers would become lost in the numbers and less able to make
good engineering decisions:
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COST STUDY & COST BENEFIT EVALUATION

In this section, the computer costs associated with performing

a 1-D ané 2-D dynamic analysis for a typical containment vessel
will be evaluated. The higher engineering mannour costs associated
with 2-D methods will not be included. The problem used for com-
parison is the containment vessel eigenvalue problem analyzed in
NUREG CR-0793. The containment vessel is assumed to be a cylin-
drical shell 120 ft. in diameter and 150 ft. high with a 2:1
ellipsoidal top head. Six circumferential ring stiffeners are
attached to the cylindrical stell. The spacing of these stiff-
enere, starting at the point of embedment, is 200", 200", 400",
200", 400", and 200".

he first step in the evaluation will be to confirm that the computer
cost rate used in the NUREG examples is reasonable. Next the cost
of a 1-D analysis will be presented. The third step will be to
develop the 2-D analysis cost. CBI will show what kind of mode.-

ing detail is required for an accurate 2-D analysis of a real
contairment vessel. It will also show that the mesh proposed in

the NUREG is grossly inadequate. Finally the cost of an adegquate

2-D analysis will be estimated and compared with the 1-D costs.

COMPUTER COST RATE

CBI has recreated the coarse 2-D mesh used in the NUREG examples
and has confirmed that the computer rates quoted are reasonabnle.
The $30 static run used 0.93 minutes of CPU on CBI's computer, and
a computer rate of about $30 per minute is reasonable. Ncote that
the basis of this rate is the NUREG example. An eigenvalue run

to extract 15 modes took 5.67 CPU minutes. Based on $30 per minute
(ané assuming cost proportional to CPU), the run would cost about
$170. The NUREG quoted $150 for the analysis, including a modal
superposition time history analysis.
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The cost of a modal superposition time history solution varies widely
depending on how many points in time and space and how many var-
iables per point are evaluated. The cost of this part of the
solution should be about the same for both 1-D and 2-D methods.

For the amount of Jdata reported the NUREG example, CBI would estimate
the cost of evaluation at about $40. Thus, the $150 guote compares
reasonably well with an estimate based on $170 + $40 = $210. It is

possible that the NUREG did not include the cost of the time history
solution.

ESTIMATE FOR 1-D ANALYSIS

Based on CBI's experience with similar problems, the computer cost
for a complete 1-D modal time history dynamic analysis is estimated
to be about $300. For the eigenvalue solution alcne, the cost
would be about $115. This is for a model with 150 segments (more
than enough for a real containment) and 15 modes (the same number
used in the NUREG e ample).

As discussed above, the time history solution would add about $40
for the number of points evaluat=d in the NUREG example. Assuming
that more points in space and more variables are evaluated for a
real containment analysis, the cost could be a few hundred dollars.
Fo:r the purpcse of comparing the 1-D and 2-D costs, we will use a
figure of $185. Thus the total coct for the 1-D analysis would be
$115 + $185 = $300.

ESTIMATE FOR 2-D ANALYSIS

The computer cost of a 2-D eigenvalue analysis is directly related
to the size of the mesh. Hence, in a 2-D analysis it is important
to select "a priori" the optimum mesh. An optimum mesh is defined
as one which essentially provides converged results (toc within some
engineering accuracy) for any pertinent response variable of
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interest. The only way to prova convergence is to redo the analysis
with a finer mesh and show that the results do not change. Since
this must be done for each lcad case, this approach is genzrally

not feasible and can be avoided by developing and following good
modeling rules. Such rules are not easy to define since they depend
on the structure, closeness to discontinuities and the loading.

For this reason, no published and generally accepted rules are
available for general use. However, for the purpose of this
evaluation, some realistic rules can be developed for the mart-
icular problem of interest.

In the following, three examples are presenteé¢ wnich give some
Juicdance as to what kind of mcdeling is requirei for accurate
sclutions of different types of thin shell problems. hese

examples only tackle the initial problem of accurately calculating
the static stress concentration factor at the shell to stiffener
junction and around openings. The static response must be accuratelv
predicted before ocne can expect the dynamic response to be valid.

The examples also provide scme useful information about the relat-
ionship between the modeling detail and the computer costs in a

2-D analysis.
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EXAMPLE 1: PLANE STRESS ANALYSIS OF CIRCULAR PLATE WITH HOLE

The problem considered was that of a circular plate with a central
circular hole subjected to an in-plane unifora tension load of

1.0 ksi. It shows what kind of modeling detail is required in the
vicinity of an opening. The dimensions of the plate are shown

in Figure 3. The geometric parameters are R = 0", a = 1.00",

t =1.00".

Symmetry of the loading, geometr 1ind material properties made
the analysis of only one-gquarter of the plate sufficient. Adeguacy
of the mesh size is determined by comparing two separate models
which vary in grid size. The finite element idealizations of the
quarter panel using a fine and coarse mesh are shown in Figures

4 and 5. For the fine mesh the radial length of the elements

in the region extending around the hole was made equal to .25"
(one-quarter the radius of the hole) for a radial distance of P
In the outer regions, progressively larger elements were used

(3" and 1" sizes). For the fine mesh there are 84 elements with
105 nodes, resulting in 180 degrees of freedom. For the coarse
mesh the length of the elements was made twice as long as the
corresponding elements in the fine mesh, resulting in 27 elements
with 35 nodes and 54 degrees of freedom.

The problem was analyzed using the SAP4 procgram and plane stress
membrane (SAP Type 3) elements. The tensile and compressive stress
concentration factors predicted at the edge of the hole using the
fine and coarse meshes are given in Table 3 together with the
results of the solution using CBI's 1-D program. These results

are compared to the elasticity solution of the same problem given
in Theory of Elasticity by Timoshenko and Goodier.

The results from C8I's 1-D program are correct to three signifcant
digits when compared to the exact elasticity solution. The results
from CBI's program can also be considered "exact" because the
program uses a numerical integration technique to solve the plate
differential equations and uses a very small convergence criteria.

Ay LT
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The SAP4 solution for the fine mesh shows an error of 3% for the
tensile SCF and an error ot 15% for the compressive SCF. The
corresponding errors for the coarse mesh are 14% and 40% respect-
ively. The agreement between the exact solution and the fine mesh
finite element solution is relatively close; however, the results
of the coarse mesh solution show considerable inaccuracy and in-
dicate that the solution has not converged.

The questionable adequacy of the fine mesh to solve this problem
shows that in order to obtain good engineering accuracy for stresses
in the immediate vicinity of the hole, the size of the elements

in the neighborhood of the cutout should not exceed one-fourth

the radius of the hole, and, preferably, should be smaller.
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EXAMPLE 2: CYLINDRICAL SHELL WITH A CIRCULAR CUTOUT SUBJECTED TO
AXIAL TENSION LOAD

This example has been taken from the paper "The Analysis of Thin
Shells with Transverse Shear Strains by the Finite Element Method",
by S. W. Key and 2. Beisinger. It was published in the Proceedings

of the Second Conference on Matrix Methods in Structural Mechanics.

This problem, illustrated in Figure 6, will provide additional
guidance into modeling requirements near an cpening.

Taking advantage of the two planes of symmetry, only one-guarter

of the rhell needs to be modeled. Figures 7 & 8 illustrate the fine

mesh which has a 27x27 grid with 533 elements and 589 ncdes. The

size of the smallest elements in the immediate wvicinity of the cut-

out for the fine mesh is of the order of r/10 (one-tenth the cutout

radius) or about 1/10YRt. The coarse mesh, shown in Figures 9 & 1C,

uses a 1l4x14 finite element grid with 148 elements and 176 nodal pcints.

For the coarse mesh the size of the smallest elements is of the

order of r/3 (one-third the hole radius) or about 1/3/Rt. Typical

results are given in Table 4 along with the analytical soluticn

obtained by Lekkerkerker. The stresses are compared at points A

and B which correspond to the side and top edges of the hole respect-
sely. The finite element solutions for the membrane and surface

stresses are compared with the analytical solution.

For the meridional surface stresses at point A, the results for the
fine and coarse meshes are within 1% and 8% respectively of the
analytical solution. For the circumferential surface stresses at
point B, the errors for the fine and coarse meshes are of the order
of 10% and 20% respectively.

is 9 %1
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The authors have given the execution time for the two meshes. For
the cnarse mesh the execution time was 0.3 hours, but for the fine
mesh the time increased by a factor of nearly 12 to 3.5 hours.

Note that the number of nodes (and degrees of freedom) in the fine
mesh increased by 589/176 = 3.35 over the coarse mesh. Assuming
that the run time is proportional to (DOF)?, one would expect an
increase in the run time from 0.3 hours to 0.3 (3.35)2 = 3.36 hours.

The fine mesh run time of 3.5 hours confirms that this rule is
reasconable.

The conclusions to be drawn from this example problem are that:

: i For a cylindrical shell with a circular cutout subjected tc a
uniform loading, the coupled membrane - bending behavior near
the hole appears to be characterised reascnably well if the size
of the elements used in the immediate vicinity of the hole
is of the order of 1/3 WRt.

& The CPU time is about proportional to (DOF)z.
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EXAMPLE 3: STIFFENED CYLINDRICAL SHELL WITH PINCHING LOAD

This example was selected because it gives some indication of the
mesh size necessary to give accurate results for a cylindrical shell
the same size as a containment vessel. The problem includes im-
portant real phenomenon like a stiffener and a nonaxisymmetric
loading.

A pinchinc load is applied to the shell because it will cause a
rapid variation of the displacement normal to the shell in the
circumferential direction. This pinching lcad is analcgous to

the asymmetric nature of the Safety Relief Valve Loading for

which some containment vessels have to be analyzed. The dimensicns
of the shell are R = 720", t = 1.5", The length of the cylindrical
shell is taken as 100' and the boundary conditions at the ends

are assumed as simple supports. The shell has been stiffened 2v

a ring stiffener as shown in Figure 1l.

A study was carried out using two mesh sizes and the SAP4 pro-
gram. The fine mesh as shcwn in Figure 12 has 437 ncdes spaced
such that there are 18 elements in the circumferential direction.
The size of the elements in the circumferential direction is 63".
In the meridicnal direction, the size of the elements 1s made
equal to about x/Rt (16") for a distance of 2/Rt (64") from the
shell-to-stiffener junction. The size of the elements in the
axial direction away from the stiffener (distance greater than
2/Rt) is made equal to /Rt (32"). The maximum aspect ratio of
the guadrilateral elements is limited to about (4:1). The mesh
has a total of 378 gquadilateral shell-plate elements (SAP Type 6)
including 18 which are used to model the stiffener flange. In
the web, there are an additional 18 membrane plane stress elements.
This mesh idealization gives rise to 2321 unknowns with a maximum
bandwith of 204.
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The coarse mesh (shown in Figure 13) has the same configuration
except that the dimensions of all elements have been doubled. This
mesh has 99 shell-plate elements and 9 plane stress elements. There
are 130 nodes wnich give rise to 620 unknowns with a maximum band-
width of 99.

The pinching load is imposed by means of a 20 psi pressure applied
over the complete length of the shell in the meridicnal direction

o :
and encompassing an arc of 20" circumferentially.

Both meshes were analyzed using the SAP4 program. To provide a
comparison of these two analyses, the stress results at and near

the stiffener-to-shell connection are tabulated in Table 5 along
with the results of a solution obtained using CBI's 1-D program.

For this problem, the results from CBI's program are very nearly
exact (error less than 1%) because of the method of solution

(i.e: numerical integration, small convergence criteria) and the

fact that the Fourier series used to describe the load was carried to

the second zero point (as described in Reference 3).

Because the SAP finite element solution gives stresses at the
centroid of the element, the stress comparisons are shown for point
A on the fine mesh and point B for the coarse mesh. These points
are slightly away from the stiffener junction, and corresponding
points from the 1-D solution are used. The SAP centroidal stresses
are also compared to the corresponding maximum discontinuity
stresses from the l1l-D analysis. The maximum stresses occur at the
shell-to-stiffener junction along a longitudinal section which
passes through the center of the loaded area.

For the fine mesh, the hoop stresses at point A on both the inside
and outside surfaces are underpredicted by 19% The hoop membrane
stress is also underpredicted by 19%. For the meridional

"9 342
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stra2sses, SAP underpredicted the surface stress by 15%. However,
the meridional membrane stress is overpredicted by 32%.

For the coarse mesh, the stresses are compared at point B which is

16" from the transverse plane of symmetry and 5° from the longitudinal
plane of symmetry. 1In this case, the hoop stresses both on the in-
side and outside are underpredicted by about 45%. The membrane

hoop stress is also underpredicted by 45%. For the meridicnal
stresses, the stresses on the inside and outside surfaces are un-
derpredicted by 18% and 39% respectively. However, the membrane
stress is overpredicted by 52%.

The maximum surface discontinuity stresses pred.cted by the 1l-D
shell analysis are in the meridional direction. The £fine mesh
underpredicts these values by 60%. The coarse meshes underestimates
the stress by 95%. The maximum value of the membrane discontinuity
stress is in the hoop direction. The fine mesh underestimates this
stress by 31% and the coarse mesh by 70%. This comparison shows
that both meshes are inadequate to perform the analysis.

These comparisons illustrate some of the dangers of 2-D analysis.

It is apparent that elements near a discontinuity in geometry or

load should be smaller than %/Rt. Elements away from discontinuities
may be larger. However, it is CBI's experience that real containment
loadings do not result in any large areas of constant stress. 1In
areas removed from obvious discontinuities, elements should be no
larger than 1.0 Rt.

The number of degrees of freedom increased by a factor of 2321/620 =
3.74 and the cost increased by a factor of 173.4/25.9 = 6.69. This
implies that, for this problem, the cost is proportional to (DOF)1'44.
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DEVELOPMENT OF AN ADEQUATE 2-D MESH AND COST ESTIMATE

The results of the previous three examples show that the maximum
element length in the meridional direction should be about 1/3

/Rt or 1/4 the hole radius in the vicinity of large openings,

less than %/Rt near stiffeners and 1/Rt in other shell regions.
Clements can be lenger in the circumferential direction. In no case
should the maximum aspect ratio be more than 4:1l. Using these
rules, the size of the mesh necessary to model the containment
vessel analyzed in NUREG CR-0793 can be determined in a manner
which will approximate, but not overestimate, the engineering re-

Juirements.

for the normal stiffener spacing of 200", a typical 90° slice of
the vessel would reguire (4+2+4)18 = 180 elements. This is oased
on 4 rows of %/Rt elements above the first stiffener (or bottom)
and also below the next stiffener with 2 rows of 1/Rt elements

in between. Using a 4:1 maximum aspect ratio, 18 elements are
needed per 90° segment per row. For a 400" stiffener spacing, the
corresponding number of elements is (4+8+4)18 = 288. An additional
36 elements are required to model the web and flange of each

stiffener.

The NUREG document recommends modeling all the major locks. This
requires that all 360 degrees of the shell be modeled. It can be
shown that each properly modeled lock or hatch (tased on the 1/4
vadius rule) would cause a net increase of about 500 elements.
This number would be even larger if 1/10/Rt elements were used.
Hence, for the subject vessel with six stiffeners (4 with 200"
spacings and 2 at 400" spacings) and 3 locks (2 personnel locks
and 1 equipment hatch), the number of elements required to model
the cylindrical vessel will be 4*4*180+4%*2*288+4*6*36+3*500 = 7548
elements. A slice of the resulting mesh is show in Figure 14.

9 544
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Assuming that about 600 elements would be needed to model the top
head, the total number of elements required to model the conplete
vessel will be about 8200. Even with this many elements, the mesh
does not account for any fine mesh layouts which might be required
for other penetrations nor for any node points at locations where
floor response spectra are needed. It alsc does not account for
the modeling required for fluid-structure interaction problems.

The containment vessel sample problem in the NUREG document used
only 170 elements. The size of each element was 200" which is
about 6/Rt. This mesh will not adegquately describe the curved
surf:ce and will not yield an accurate solution for real contain-
ment lc - ngs. CBI's more realistic estimate of about 8200
elements is about 48 times the number given in the NUREG document.
The NUREG example is gquite misleading.

Because the NUREG mesh is inadegquate, the estimated computer cost

of $150 is grossly underestimated. A generally accepted rule of
thumb is that the computer cost of a 2-D analysis is propcrtional

tc the square of the rnumber of degrees of freedom (DOF)Z‘ Example

2 confirmed this rule while Example 3 showed the cost was proportional
to (DOF)]"44 for that particular problem. Using the (DOF)2 rule
(and assuming that the ratio of the number of elements is about
equal to the ratio of the number of degrees of frewdom), the cost

of a single eigenvalue analysis would increase by a factor of

(48)2 to $350,000. Based on a rule of (DoF)1*%%, the cost would
increase to $40,000. It should be noted that this estimate is based

on an extrapolation using the NUREG example's computer cost rate.

CBI recognizes the uncertainty in the cost formula and the fact
that an extrapolation of this magnitude cannot be made with as
great a confidence as one involving a smaller change in the number
of degrees of freedom. Nevertheless, CBI believes a realistic
estimate of the computer cost for one ran would be in the range of
$30,000 to $50,000. Using this figure, 2-D methods are mole
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expensive than 1-D methods by a factor of at least 30,000/300 =

100. The cost of the modal superposition time history evaluation
would still be about $200 and would be insignificant relative to the
cost of the 2-D eigenvalue solution.

A cost of say $40,000 would cover only the cost for one dynamic
analysis for seismic loads. Many containment vessels also have

to be analyzed for several nonaxisymmetric time varying pressure
load cases, in addition to several static lcad cases. Many load
combinations exist. Hence, the actual cost of analyzing the
vessel could approach or exceed $1,000,000. That kind of expend-
iture cannot be justified when there is no real benefit to be
gained and the potential exists for increased confusion and errors.

ADDITIONAL COMMENTS

There are two additional problems with the 2-D approach which should
be discussed at this time. Both relate to the accuracy of the
solution. The first problem is that it appears that only 2 of the
15 modes found by SAP represent zero or first harmonic displacemeunt
patterns. These two harmonics are the only ones important in de-
termining the overall vessel response to a seismic load. Therefore,
the 1-D analysis could have used only 2 modes to obtain the same
accuracy as the 2-D analysis. This would reduce the 1-D cost.

On the other hand, if 15 modes were required from the first two
harmonics, SAP would probably have to extract well over 100 modes

to find 15 in the first two harmonics. This would further increase
the 2-D cost by an order of magnitude. A reguirement to find 15 or
more modes is not unusual. On some real containment contracts,

CBI has been required to find all modes in the first two harmonics
whose frequencies were less than 33 hertz. The number of such modes
would be greater than 15.
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The second problem with the 2-D approach 1is that in attempting

to calculate the response near openings, a relatively inaccurate
solution will be found in areas away from the openings. These
areas away from openings account for about 96% of the shell surface.
Tre critical region of the shell will likely be in a region away
from the large penetrations.

The main concern of the NUREG document is that the detailed state

of stress in the vicinity of penetrations be accurately determined,
on the basis that these stresses are needed to realistically
evaluate the safe buckling loads. On the other hand, the document
states “nat studies of the buckling of cylinders with reinforced
holes have shown that the critical buckling stress for a cylindrical
shell with a reinforced cutout is higher than the corresponding
critical stress for the unpenetrated shell. All openings on a
containment vessel are reinforced in accordance with ASME

Code rules. These rules are intended to insure that the penetrated
shell is at least as strong as the plain shell. It appears that

it would serve no purpose to use a two-dimensional finite element
analysis to study these local effects, especially one that modeled
the entire shell.
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