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ABSTRACT

Two piping models intended for use in a digital power plant

simulator are compared. One is a finite difference approximation to the

partial differential equatica called PIPE, and the other is a function

subroutine that acts as delay operator called PDELAY. The two models

are compared with respect to accuracy and execution time. In addition,

the stability of the PIPE model is determined.

The PDELAY model is found to execute faster than the PIPE meiel

with comparable accuracy.
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CHAPTER 1

INTRODUCTION

A digital simulator (BRENDA) for the Clinch River Breeder

Reactor Plant (CRBRP) has been written at The University of Arizona.

The simulator is a icw order simulator, of about sixty differential

equations, that will execute quickly on the computer and provide a

low cost tool for analysis of the CRBRP. This simulator would be

appropriate for 1) Plant sensitivity studies, 2) Verification of

higher order models, and 3) Identification of areas for further

study.

The simulator consists of a system of coupled non-linear first

order ordinary differential equations and some auxiliary sigebraic

equations. These differential equations are integrated, using the

DARE P simulation language developed by Dr. John V. Wait at The Uni-

versity of Arizona, to proviric the system response. The system of

ordinary differential equations (ODES) results from the application of

the principles of conservation of mass, momentum, and energy to spe-

cific regions in the CRBRP.

There are two major factors which affect the execution time of

a system of ODES: the order of the system and the size of time step

the integration routine is allowed to use. The execution time for

'|B7025
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a model may be reduced by decreasing the order of the model or by

increasing the size of the computational time step. The latter f

these methods is probably the most difficult to accomplish.

Generally the size of the allowed time step is governed by

the size of the largest eigenvalue for the sysram. In a non-linear

system the eigenvalues are a function of time, e.id variable time step

integration rules are used to keep the size of the time step as large

as possible. Another problem called " stiffness" may cause further

difficulties.

A stiff system of equations is one that has a large spread of

eigenvalue moduli and at least one large negative eigenvalue. A stiff

system of equations must be integrated with very small time steps when

using most methods and may eventually yield an unstable solution. Thus

a systen such as this must be integrated with an implicit integration

rule that will allow larger timesteps. However, implicit integration

rules are much more co.iplicated than the more familiar explicit rules

and take roughly an order of nagnitude more computation time. Thus, a

significant increase in the size er a computational timestep is not

easily accomplished. This leaves the first method, reducing the execu-

tion time by reducing the order of the system. This approach was used

in BRENDA from the beginning.

In many power plant simulators a large number of dif f erential

equations is used to describe the flow of a working fluid through a

pipe between two power plant components. Instead of describing this

'
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3

flow with dif ferential equations, a function subrouti.ne, PDELAY, was

used in BRENDA from the project's inception. This paper is intended to

compare these two solution methods based on their accuracy and the sav-

ings in execution time.

In Chapter 2 the models used for the comparison are presented

along with an analytic solution to the partial differential equation

that describes the flou of a fluid through a pipe. Chapter 3 will com-

pare the results from these models and Chapter 4 will contain the con-

clusions and summary.

E05],8)



CHAPTER 2

THE MODELS

The models used for c.;mparison are presented in this chapter.

The model used in BRENDA has been mentioned previously and is called

PDELAY (Pipe DELAY). The differential equation model to which it is

comparea is called PIPE. Before these are presented, an analytic solu-

tion to the partial differential equation is derived, This sol.ution

will provide one form of comparison in Chapter 3.

2.1 Anal tic Solutionl

The fluid in the pipe is being nodeled as an incompressible

fluid with inviscid flow in the axial direction only, known as slug

flow. In addition, heat flow into the fluid is neglected. Thus the

applicabla equation is a reduced form of the energy equatio':

5= 6 3h 2.1p
3t A Bn

In this equation

p = density, (lbm/ft )

u = internal energy, (BTU /lba)

t= tine, (sec)

m = mass flow rate, (1bm/sec)

A = flow cross section area, (ft )

h = enthalpy, (BTU /lbm)

z = axial coordinate, (ft). 8

4
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Because the fluid is incompressible Cp equals Cv. Therefore,

u=CT
P

and

h=cT
P

where,

i

C = heat capacity,

T = temperature, (F).

In addition

m = cvA

where,

v = fluid velocity.

Substituting these expressions into eg. (2.1) yields

iT AT
- = - v -- 2.2
3t az

which is the equation to be solved. The boundary condition is

T(0,t) = Tf (t) 2.3

and the initial condition ir

T(z,0) = T . 2.4
o

To solve this equation it is first convenient to transform it

using Laplace transforms. Throughout this derivation the transform of a

variable will be indicated by writing that variable with a bar over it,

i.e.,

Ji[T(z,t)] = T(z,s).

Let

v = 1/T,

767029
and the transform of eq. (2.2) is
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si - T(z,0) = -1/T (di/dz). 2.5

Note that the result is an ordinary differential equation in space, and

the transform variable s is only a coefficient in this equation. Using

the initial condition, eq. (2.4), eg. (2.5) may be written in the usual

form

di/dz + sTT = TT 2.6o

The particular solution is given by

T = T /s 2.7
P o

and the homogeneous solution is given by

i = C(s)exp(-Siz) 2.8

where C(s) is an arbitrary function of s. The general solution is the

sum of the homogeneous solution and the particular solution,

T = C(s)exp(-sit) + T /s. 2.9g

To evaluate the function C(s), the boundary condition must be trans-

formed to s-space. The result of this,

T(0,s) = i (s), 2.10
f

may be applied to the general solution, eg. (2.9) , yielding

T (s) = C(s) + T /s
1

or

C(s) = T (s) - T /s. 2.11
1

The solution to eq. (2.6) is then given by

T = [T (s) - T /s]exp(-sTz) + T /s 2.12
g g g

and the solution to the partial differential equation may be obtained by

taking the inverse transform of this equation.

,g/030
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If eq. (2.12) is rewritten as

i = 5'g (s)exp (-sT z) - (T /s)exp(-sT z) + T /sg g

the inverse transform, term by term, is

T(z,t) = T (t - Tz) [0 ]-

f

if t>Tz
- [To0 if t>Tz] + T 2.13

o

This result may be interpreted by remembering

T = 1/v

and by reference to Figures 2.la and 2.lb.

In Figure 2.la, t = 0 and the initial temperature is T . T (t)g f

will be assumed to be a constant, T. In Figure 2.lb, t t nd for all=
g 1

z> t v, T = T , while for z> t v, T = T . This means that the temperaturey g y 1

at any position z is the same as it was at z = 0 a time t = z/v in the

past where the time t is simply the transit time for the fluid. This

solution is valid for T equal to any function of time. In the follow-g

ing chapter this result will be compared with results from the models

presented in the next two sections of this chapter.

2.2_ Ordinary Differential Equatf 1 Model (PIPE)

This method of solution involves dividin, he pipe into a finitee

numoer of regions and writing an ordinary differential equation to de-

scribe the transient behavior of each region. Physical properties are

assumed to be uniform within a region and the model is called a lumped

parameter model because of this. There are many methods of deriving

the region equations and the reader is referred to Appendix A for

comparisons.

787031
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The method presented here is to start with the partial differ-

ential eg. (2.2) repeated below,

= -v 2.2

and discretize the spatial derivative using a general alpha finite dif-

ference approximation. This leads to an ordinary differential equation

for the nth region,

dTn "n+1+( ~ "} ~ + ~

n-1n n
" ~*

dt Sz
2.14

In this 'quation alpha is a parameter assigned a value between zero and

one. If alpha = 0 the finite difference approximation is known as a

" backwards difference", alpha = 1 is a " forward difference", and alpha

- J.5 is a " central difference".

This equation is applied to each of the N regions in the pipe,

and the resulting set of coupled dif ferential equations is integrated to

provide the system response. The temperature in the Nth region is the

outlet temperature from the pipe. The two end regions are treated sep-

arately due to their special nature.

The first region, n = 1 is bounded on the left by a " ghost" re-

gion, n = 0. The temperature in this zone is considered to be the exit

temperature of the component flowing into the pipe. The last region of

the pipe, n = N, is treated in a similar manner. A " ghost" region,

n = N + 1, has its temperature defined so the difference approximation

for the last zone is reduced to a " backwards difference" approximation.

These equations are the core of the PIPE model. Other equations

were used to calculate error terms used for choosing an optimum value

787033
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of alpha for use in the model. These equations are essentially energy

balance equa~ ions for the pipe as a whole and are presented here.
' ' ' 't t

E (t) = E (d) + / Ein(t ) dt - / Eout(t ) dtp p o o
2.16

this is to say that the energy in the pipe is equal to the initial

energy plus the total energy that hes flawed in minus the total energy

that has flowed out. The energy in the pipe may also be represented by
N

E (t) = E mC T 2.17
P n Pn nn=1

where,

m = mass of the nth region

C = specific heat of the nth region,pn

and a measure of the accuracy of a model is the ratio of these two dif-

ferent calculations. If this ratio is much different from one, the

method is not conserving energy well.

2.3 PDELAY

This method of solution was based on the realization that the

desired behavior of a pipe subroutine was similar to the benavior of a

delay operator that already existed in the DARE P library. PDELAY was

designed to operate in the same manner, with one exception. The delay

time in PDELAY is designed to be a function of time to enable variable

flow rates to be mode!.ed.

PDELAY is a FUNCTION subroutine and is called with the expres-

sion

TOUT = PDELAY (TIN. TAU, I, TINI),

,jegG34
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where

TOUT = outlet temperature

TIN = inlet temperature

TAU = transit time for the fluid

I = an index number

TINI = initial temperature of the fluid in the pipe.

PDELAY works by saving values in two linear arrays. The values

are a state variable, such as temperature, and the time when that value

of the state variable will exist at the exit of the pipe. Variable flow

rates are modeled by adjusting the titae the state variable is expected

to exit the pipe. The FORTRAN expression that does this is

TEXIT = [(TEXIT - T)/TAUL]* TAU + T.

( In this expression

T = simulator time

TEXIT = fluid exit time

TAUL = previous transit time

TAU = current transit time.

The expression in square brackets is the fraction of the pipe left to be

traveled by a particular fluid element. This quantity is multiplied by

the new transit time and then added to the system time to define the new

exit time for the fluid element in question. This method of solution is

essentially a way to reproduce the analytic solution by numeric means.

For a constant flow rate the output of PDELAY is identical to the input

delayed by a time TAU.

t
n
J
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CHAPTER 3

RESULTS

In this chapter the results from the models are presented. In

the first section the results from PDELAY and PIPE for three different

input functions, a step, a ramp, and a sine wave are presented. Since

the PDELAY function is the same as an analytic solution, only PDELAY and

PIPE outputs are presented. In the second section, optimum values of

alpha for the PIPE model are discussed. In the third sectio' the models

are incorporated in the CRBRP model, BRENDA, and results from BRENDA are

presented.

It is worth noting that there are actually an infinite number of

PIPE models. This is due to two factors; first, the parameter N, the

number of regions, may be set to any positive integer value anu second,

the parameter alpha may vary between zero and one. For this reason mul-

tiple results for the PIPE model are presented.

3.1 PDELAY and PIPE Results

Th2 results for the PDELAY and PIPE models are presented in

Figures 3.1 through 3.4. Three inlet functions were used to drive the

models, a step, a ramp, and a sine wave.

Figure 3.1 is the response of PDELAY and PIPE (alpha - 0.0,

alpha = 0.5) to a step, as is expected. The two PIPE outputs share the

common characteristic that they do not agree with the analytic solution.

12
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The solution for alpha = 0.5 has a further characteristic; it oscillates.

This behavior is very nonphysical in that fluid flows out of the pipe at

a higher temperature than it ever flows in.

Figure 3.2 is the response of PIPE to a step at time zero, with

alpha = 0.75. This model is unstable. Since the system of equations in

PIPE are linear, the stability of the system is determined by the eigen-

values of the system. Furthermore, the stability of the system is inde-

pendent of the type of the inlet function. Thus, the PIPE model will

always be unstable with alpha = 0.75, independent of the inlet function.

The value o alpha that is the boundary between stability and instabil-

ity is a practical limit for alpha. This value will be investigated in

the next section.

Figure 3.3 is the response of PDELAY and PIPE (alpha = 0.0,

alpha = 0.5) to a ramp inlet. Again PDELAY is essentially the analytic

solution. The PIPE model (alpha = 0.5) exhibits oscillatory behavior,

as the model did for the step inlet. This is expected because the os-

cillatory behavior results from the fact that some eigenvalues of the

system are complex for alpha = 0.5.

Figure 3.4 is the response of PDELAY and PIPE (alpha =

alpha = 6.5) to a sir.e wave inlet. Once more PDELAY is the analytic so-

lution. The PIPE model with alpha = 0.5 seems to be a much better rop-

resentation than tl.9 PIPE model with alpha = 0.0. This topic will be

pursued further in the next section.

These results point to the basic question addressed in the next

section, the choice of alpha to be used in PIPE when it is incorporated

in the CRERP simulator, BRENDA.

787041
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3.2 Optimum Values of Alpha

There are two basic issues involved in choosing alpha: stability

and accuracy. The question of stability will be discussed first, fol-

lowed by a discussion of the accuracy of the model.

It was indicated in the previous section that the stability of

the PIPE model was determin .d by the eigenvalues, and the eigenvalues

are determined by the choice of alpha. For any value of alpha it is

passible to write the coef ficient matrix for the system of equations.

The eigenvalues are the roots of the characteristic equation, formed by

the operation

det( - Ai) = 0
where,

the coefficient matrix=

A = the eigenvalu' vcetor

5 = the identity matrix.

Stability of the system depends on the real parts of all eigen-

values being negative. Thus examining the signs of the real parts of

the eigenvalues as a function of alpha determines the limit of stability.

Except for the cases alpha = 0.0, alpha = 1.0 and the case alpha = 0.5,

N==, finding the eigenvalues is a difficult analytic problem, so a

numerical approach was used.

Figure 3.5 is a root locus plot for the PIPE model, with N = 5

and alpha varying between zero and one. For alpha equal to zero there

are five identical negative real roots. As alpha is increased the roots

*/g/042
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move toward the imaginary axis as one real root and two complex

conjugate pairs. At the point where they cross the imaginary axis into

the right half plane, the PIPE model becomes unstable.

Using an iterative procedure this value was found to be alpha

equal to 0.537. This was then repeated for various values of N. Fig-

ure 3.6 is r. plot of the " critical" alpha vs. N. For stability alpha

must be less than this " critical" value. As N goes to infinity the

Jacobian mr.trix for alpha equal to one-half is skew-symmetric. The

eigenvalues for a skew-symmetric matrix are always purely imaginary.

Thus as N goes to infinity the " critical" value of alpha approaches one-

half. This defines the acceptable range of valres on the basis of sta-

bility and it is this range of values that can be examined with respect

to accuracy. An important consequence of this stability analysis has a

direct application in power plant simulation. When flow reversal occurs

in a flow path the spatial finite difference must be reversed to reflect

this fact. Thus the dif ference approxination changes as the flow direc-

tion changes so that the system stability may be maintained.

Two criteria are used in this paper to judge the accuracy of a

particular method. First a common measure of accuracy is applied to the

outlet of the pipe. The total error is defined as

rr(t) = [1/o(T -T an) dt']E
t out

1he error is equal to the square root of the average square of the dif-

ference between the outlet temperature and the analytic solution, at an

arbitrary time t during the simulation.

.
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For the purpor,es of comparison the inlet function is a sine wave

one period in length, and the time of the simulation is constant for all

values of alpha. Tha results of this error analysis are presented in

Figure 3.7. It can be seen that the error increases as alpha decreases

with the upper curve being for alpha equal to zero. The value of Err (t)

can be interpreted as the time integrated error in temperature averaged

over the length of the simulation.

The second measure of error employed is the degree to which a

model conserves energy. Raferring to eqs. (2.16) and (2.17), the nergy

conservation ability of a method may be judged by comparing values from

these two equations. This rat.'o is plotted in Figure 3.8.

The model that conserves energy the best is the model with alpha

equal to zero. As alpha increases, the energy conservation gets worse.

This reeult is slightly surprising hecause it n. cans the method that con-

serves energy the best does the worst job of predicting outlet tempera-

tures. It should be noted that all of the methods conserve energy to a

high degree.

The next section will present rerults obtained from BRENDA when

these models were used.

3.3 BRENDA Resule.s

Two models were implemented in BRENDA for comparison. The

PDELAY model was used throughout in one simulacor and in the second sim-

ulator the PIPE model was used in all of the sodium pipes. The BRENDA

with PDELAY is a fifty-seventh order system. BRENDA with PIPE models

in the sodium pipes is a hundred and forcy-first order system. The
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region sizes in the PIPE models were chosen such that the time constant,

tau, for a region was approximately one second. The two models were

then run for various transients. Results are shown in Figure 3.9.

for a ten cent reactivity step at time zero. In these figures the

dotted line is BRENDA with the PIPE models in the sodium loops and the

solid line is ERENDA with the PDELAY model throughout. It can be seen

that the differences in the results from the two models are very small.

The most significant difference is seen in Figure 3.9a. In the graph

of TS9 the PIPE models have a damping effect on the temperature. This

is a result of the PIPE model that can be minimized by increasing the

number of regions.

The two models were both integrated with a Runge-Kutta-Merson

variable step method with a simulation time of one hundred seconds and

with an implicit method, EPISODE, with a simulation time of twenty sec-

onds. Execution times for the models on a CYBER 175 are summarized in

Table 3.1. As is expected the difference in execution times is greater

with the implicit method than with the explicit method.
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Table 3.1 Comparative Execution Times on the CYBER 175, in Secondo

Integration RUNGE-KUTTA EPISODE
Method MERSON
(Model) TMAX=100 TMAX=20

BRENDA-PDELAY 76.3 138.6

BRENDA-PIPE 86.0 353.5
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CHAPTER 4

CONCLUSIONS AND SlDDIARY

The intent of this paper was to show th..c PDELAY could be

implemented in a low order power plant simulator with little change in

accuracy, and a significant savingr in execution time. Results showing

that this was the case were presented in Chapter 3. It should be empha-

sized that the savings in execution time is a conservative estimate. If

all of the PDELAY operators had been replaced with PIPE models instead

of only those for the sodium pipes, a greater difference would have been

seen. Another advantage of using PDELAY in a simulator is the savings

in core storage. The PDELAY simulator required three quarters of the

core that the PIPE simulator required.

These are the major conclusions of this paper and they reflect

the primary goals. However, during the cours2 of this research other

conclusions were reached that affected the method of solution used in

<he PIPE model.

The finite difference method used for the pipes in BRENDA was

the method with alpha equal to zero, or a backwards difference approxi-

mation. There is one major reason why this approximation was used: the

solution does not oscillate. There are three reasons why this behavior

is undesirable. First, it is not physically reasonable to expect the

exit temperature to be higher than the inlet temperature. Second, this

31
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behavior would be interpreted by the controllers as real and they would

act accordingly. Thus, the model would initiate a controller action

which would be 2ntirely unreal. Third, to introduce a nonphysical be-

havior into a simulator may cause unpredictable results.

These facts, plus the fact that the average increase in error is

on the order of only 4% when alpha is zero as opposed to one-half, make

the backwards difference model the most desirable.
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APPENDIX A

ALTERNATE DERIVATIONS

There are, of course, many ways to derive the equations used in

PIPE. There are so many, in fact, that equatin the many approachese

taken in the literature is sometimes a non-trivial task. This appendix

is intended to illustrate how some derivations are special cases of the

general alpha difference presented in Chapter 2, and how others are

equivalent to it.

The most common derivation is one based on a control volume with

an inlet and an exit. The rate of change of internal energy is equal to

the energy flow in minus the energy flow out. Referring to Figure A.1

this can be written as

_

"
mC = mC T - mC T A.1v dt pn-1 pn

where the variables are defined as usual except

T = the average temperature in region n.

T '"I ""P "#" ' I 81 " "*n-1"
T = the exit temperature from region n.

Again assuming invompressibility, and defining

T = 0.5(T +T)n n n

eq. (A.1) may be written

dT
"

= $ 0.5T - 0.5T - 1] A.2dt AB n+1 n

33 'j:y;-Q[f/
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Figure A.1 - Finite Difference Notation
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This is exactly the same result that can be obtained from eq. (2.14) by

using alpha = 0.5, remembering that in eq. (2.14) the T's are region

temperatures, not boundary temperatures. This is the central difference

approximation. This type of analysis is sometimes carried one step fur-

ther by assuming the rate of change of the outlet temperature is equal

to the rate of change of the average temperature, or

dT di
A.5

dt dt

Realizing that n is simply a reference variable and using eq. (A.5),

eq. (A.1) may be rewritten as

dT
^'" ~ ~

*

dt n n

This result can be obtained from eq. (2.15) by using alpha = 0, and is

the backward difference approximation.

Another approach (Agrawal et al., 1977, p. 488) which leads to

a result similar to that in Chapter 2, is to define an average tempera-

ture.

/ T(E)da A.7T =
_y

The average temperature is then the state variable in the equation

"
[T -T A.8=

d n n-1

They then define the average temperature to be a linear combination of

the end point values,

T = aTn-1+ ~ ") n A.9

YW50UU
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This approach is also equivalent to that presented in Chapter 2,

differing only in point of view. In Chapter 2 the position of the time

derivative is fixed, and the position of the space derivative is varied.

Here, the space derivative is fixed, and the position of the time deriv-

ative is varied.

There are other ways to derive the differential equations, but

these three illustrate how some common approaches are related.
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