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ABSTRACT

Two piping models intended for use in a digital power plant
simulator are compared. One is a finite difference approximation to the
partial differential equatica called PIPE, and the other is a function
subroutine that acts as . delay operator called PDELAY. Th2 two models
are compared with respect to accuracy and execution time. In addition,
the stability of the PIPE model is determined.

The PDELAY model is found to execute faster than the PIPE mciel

with comparable accuracy.
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CHAPTER 1

INTRODUCTION

A digital simulator (BRENDA) for the Clinch River Breeder
Reactor Plant (CRBRP) has been written at The University of Arizona.
The simulator is a lcw order simulator, of about sixty differential
equations, that will execute quickly on the computer and provide a
low cost tool for analysis of the CRBRP. This simulator would be
appropriate for 1) Plant sensitivity studies, 2) Verification of
higher order models, and 3) Identification of areas for further
study.

The simulator consists of a system of coupled non-linear first
order ordinary differential equations and some auxiliary algebraic
equations. These differential equations are integrated, using the
DARE P simulation language developed by Dr. John V. Wait at The Uni-
versity of Arizona, to provirde the system response. The system of
ordinary differential equations (ODEs) results from the application of
the principles of conservation of mass, momentum, and energy to spe-
cific regions in the CRBRP.

There are two major factors which affect the execution time of
a system of ODEs: the order of the system and the size of time step

the intogration routine is allowed to use. The execution time for




a model may be reduced by decreasing the order of the model or by
increasing the size of the computational time step. The latter f
these methods is probably the most difficult tc accomplish.

Generally the size of the allowed time step is governmed by
the size of the largest eigenvalue for the system. In a non-lipear
system the eigenvalues are a function of time, «.d variable time step
integration rules are used to keep the size of the time step as large
as pos.ible. Another problem called "stiffness" may cause further
difficulties.

A stiff system of equations is one that has a large spread of
eigenvalue moduli and at least one large negative eigenvalue. A stiff
system of equations must be integrated with very small time steps when
using most methods and may eventually yield an unstable solution. Thus
a system such as this must be integrated with an implicit integration
rule that will allow larger timesteps. However, implicit integration
rules are much more coaplicated than the more familiar explicit rules
and take roughly an order of magnitude more computation time. Thus, a
significant increase in the size of a computational timestep is not
easily accomplished. This leaves the first method, reducing the execu-
tion time by reducing the order of the system. This approach was used
in BRENDA from the beginning.

In many power plant simulators a large number of differential
equations is used to describe the flow of a working fluid through a

pipe between two power plant components. Instead of describiug this
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flow with differential equations, a function subroutine, PDELAY, was
useds in BRENDA from the project's inception. This raper is intended to
compare these two solution methods based on their accuracy and the sav-
ings in execution time.

In Chapter 2 the models used for the comparison are presented
along with an analytic solution to the partial differential equation
that describes the flow of a fluid through a pipe. Chapter 3 will com-
pare the results from these models and Chapter 4 will contain the con-

clusions and summary.
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CHAPTER 2

THE MODELS

The models used for cumparison are presented in this chapter.

The model used in

BRENDA has be2=n mentioned previously and is called

PDELAY (Pipe DELAY). The differential equation model toc which it is

compareda is called PIPE. Before these are presented, an analytic solu-

tion to the partial differential equation is derived. This solution

will provide one form of comparison in Chapter 3

The fluid

2.1 Analytic Solution

in the pipe is being modeled as an incompressible

fluid with inviscid flow in the axial direction only, known as slug

flow. In addition, heat flow into the fluid is neglected. Thus the

applicable equation is a reduced form of the energy equatio :

In this equation

0=

3h

L
A 9z

%)
.
b

density, (1bm/ft3)

internal energy, (BTU/lbm)
time, (sec)

mass flow rate, (lbm/sec)

flow cross section area, (ftz)
enthalpy, (BTU/1bm)

axial coordinate, (ft). 78?928

4




V
|

Becavse the fluid is incompressible Cp equals Cv. Therefore,
u = CpT
and
h = CPT
where,
Cp = heat capacity,
T = temperature, (F).
In addition
m = rvA
where,
v = fluid velocity.
Substituting these expressions into eq. (Z.1) yielids
21 L 2.2
which is the equation to be solved. The boundary condition is

T(0,t) = T, (t) 2:3

i
and the initial condition ie

T(z’o) - TO' 204

To solve this equation it is first convenient to transform it
using Laplace transforms. Throughout this derivation the transform of a
variable will be indicated by writing that variable with a bar over it,

1.8,

L(T(z,t)] = T(z,s).

ve=1/T, —_—
57029

and the transform of eq. (2.7) is




sT - T(z,0) = -1/t (dT/dz). 2.5
Note that the result is an ordinary differential equation in space, and
the transform variable s is only a coefficient in this equation. Using
the initial condition, eq. (2.4), eq. (2.5) may be written in the usual
form

dT/dz + s1T = TTO 2.6

The particular solution is given by

T =T /s - A
P 0

and the homogeneous solution is given by

T = C(s)exp(-St2) 2.8
where C(s) is an arbitrary function of s. The general solution is the
sum of the homogeneous solution and the particular solution,

T = C(s)exp(-stt) + T /s. 2.9

To evaluate the function C(s), the boundary condition must be trans-
formed to s-space. The result of this,

T(0,8) = Ti(s). 2.10
may be applied to the general solution, eq. (2.9), yielding

fi(s) = C(s) + To/s
or

C(s) = T ,(s) - T /s. 2:11
The solution to eq. (2.6) is then given by

Ts= [fi(s) - To/s]exp(-srz) - TO/s 2.12

and the solution to the partial differential equation may be obtained by

taking the inverse transform of this equation.

v ‘3)030




If eq. (2.12) is rewritten as

Te= Ti(s)exp(-srz) - (To/s)exp(-STz) - To/s

the inverse transform, term by term, is

1 1f t>1z
T(z,0) = Ty - 12) - [p gp o0, ]
_ To if t>1z
( 0 if t>tz] * 3 sl

This result moy be interpreted by remembering
t=1/v
and by reference to Figures 2.la and 2.1b.
In Figure 2.la, t = 0 and the initial temperature is T Ti(t)
will be assumed to be a constant, Ti' In Figure 2.1b, t = t1 and for all
z>t v, T=T

v, T = To’ while for z°t This means that the temperature

1 1 i’
at any position z is the same as it was at z = 0 a time t = z/v in the
past where the time t is simply the transit time for the fluid. This

solution is valid for 'l‘i equal to any function of time. In the follow-

ing chapter this result will be compared with results from the models

presented in the next two sections of this chapter.

2.2 Ordinary Differential Equat? 1 Model (PIPE)

This method of solution involves dividin, he pipe into a finite
numoer of regions and writing an ordinary differential equation to de-
scribe the transient behavior of each region. Physical properties are
assumed to be uniform within a region and the model is called a lumped
parameter model because of this. There are many methods of deriving
the region equations and the reader is referred to Appendix A for

comparisons.

787031
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The method presented here is to start with the partial differ-

ential eq. (2.2) repeated below,

T aT

and discretize the spatial derivative using a general alpha finite dif-
ference approximation. This leads to an ordinary differential equation

for the nth region,
dT, [aTn st -0 Tn] - [aTn +R=a) T _ l]
dt Az

2.14
In this »quation alpha is a parameter assigned a value between zero and
one. If alpha = O the finite difference approximation is known as a
"backwards difference", alpha = 1 is a "forward difference", and alpha
= ).5 is a "central difference".

This equation is applied to each of the N regions in the pipe,
and the resulting set of coupled differential equations is integrated to
provide the system response. The temperature in the Nth region is the
outlet temperature from the pipe. The rwo end regions are treated sep-
arately due to their special nature.

The first region, n = 1 is bounded on the left by a "ghost" re-
gion, n = 0. The temperature in this zone is considered to be the exit
temperature of the component flowing into the pipe. The last region of
the pipe, n = N, is treated in a similar manner. A "ghost" region,
n=N+ 1, has its temperature defined so the difference approximation
for the last zone is reduced to a "backwards difference'" approximation.

These equations are the core of the PIPE model. Other equations

were used to calculate error terms used for choosing an optimum value

' &' 7033




10
of alpha for use in the model. These equations are essntially energy
balance equa*ions for the pipe as a whole and are presented here.

-

t L] ' ' L
Ep(t) = Bp(d) - fo Em(t ) dt - J‘o Eout(t ) dt

2.16
this is to say that the energy in the pipe is equal to the initial
energy plus the total energy that has fiowed in minus the total energy
that has flowed out. The energy in the pipe may also be represented by

N

E(t)= I mC_ T 2.17
P h=1 D POD

where,

m = mass of the nth region

Cpn = specific heat of the nth region,

and a measure of the. accuracy of a model is the ratio of these two dif-
ferent calculations. 1If this ratio is much different from one, the

method is not conserving energy well.

2.3 PDELAY
This method of solution was based on the realization that the
desired behavior of a pipe subroutine was similar to the benavior of a
delay operator that already existed in the DARE P library. PDELAY was
designed to operate in the same manner, with one exception. The delay

time in PDELAY is designed to be a function of time to enable variable

flow rates to be mode’ed.
PDELAY is a FUNCTION subroutine and is called with the expres-
sion |

TOUT = PDELAY (TIN. TAU, I, TINI),

vitf'?{)zst;




R e

e CIT

11
where
TOUT = outlet temperature
TIN = inlet temperature
TAU = transit time for the fluid

I

an index number

TINI

initial temperature of the fluil in the pipe.
PDELAY works by saving values in two linear arrays. The values
are a state variable, such as temperature, and the time when that value
of the state variable will exist at the exit of the pipe. Variable flow
rates are modeled by adjusting the tiwe the state variable is expected
to exit the pipe. The FORTRAN expression that does this is
TEXIT = [ (TEXIT - T)/TAUL]* TAU + T.
In this expression
T = simulator time
TEXIT = fluid exit time
TAUL = previous transit time
TAU = current transit time.
The expression in square brackets is the fraction of the pipe left to be
traveled by a particular fluid element. This quantity is multiplied by
the new transit time and then added to the system time to define the new
exit time for the fluid element in question. This method of solution is
essentially a way to reproduce the analytic solution by numeric means.
For a constant flow rate the output of PDELAY is identical to the input

delayed by a time TAU.
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CHAPTER 3

RESULTS

In this chapter the results from the models are presented. In
the first section the results from PDELAY and PIPE for three different
input functions, a step, a ramp, and a sine wave are presented. Since
the PDELAY function is the same as an analytic colution, only PDELAY and
PIPE outputs are presented. In the secoud section, optimum values of
alpha for the PIPE model are discussed. 1In the third sectio’ the models
are incorporated in the CRBRP model, BRENDA, and results from BRENDA are
presented.

It is worth noting that there are actually an infinite number of
PIPE models. This is due to two factors; first, the parameter N, the
number of regions, may be set to any positive integer value amu second,
the parameter alpha may vary between zero and one. For this reascn mul-

tiple results for the PIPE model are presented.

3.1 PDELAY and PIPE Results

Thz results for the PDELAY and PIPE models are presented in
Figurcs 3.1 through 3.4. Three inlet functions were used to drive the
models, a step, a ramp, and a sine wave.

Figure 3.1 is the response of PDELAY and PIPE (alpha - 0.0,
alpha = 0.5) to a step, as is expected. The two PIPE outputs share the
common characteristic that they do not agree with the analytic solution.

12
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17
The solution for alpha = 0.5 has a further characteristic; it oscillates.
This behavior is very nonphysica! in that fluid flows out of the pipe at
a higher temperature than it ever flows in.

Figure 3.2 is the r.sponse of PIPE to a sctep at time zero, with
alpha = 0.75. This modei is unstable. Since the system of equations in
PIPE are linear, the stability of the system is determined by the eigen-
values of the system. Furthermore, the stability of the system is inde-
pendent of the type of the inlet function. Thus, the PIPE model will
always be unstable with alpha = 0.75, independert of the inlet function.
The value ¢ alpha that is the boundary between stability and instabil-
ity is a practical limit for alpha. This value will be investigated in
the next section.

Figure 3.3 is the response of PDELAY and PIPE (alpha = 0.0,
alpha = 0.5) to a ramp inlet. Again PDELAY is essentially the analytic
solution. The PIPE model (alpha = 0.5) exhibits oscillatory behavior,
as the model did for the step inlet. This is expected because the os-
cillatory behavior results from the fact that some eigenvalues of the
system are complex for alpha = 0.5.

Figure 3.4 is the response of PDELAY and PIPE (alpha =
alpha = 0.5) to a sinc wave inlet. Once more PDELAY is the analytic so-
lution. The PIPE model with alpha = 0.5 seems to be a much better rop-
resentation than thL> PIPE model with alpha = 0.0. This topic will be
pursued further in the next section.

These results point to the basic question addressed in the next
section, the choice of alpha to be used in PIPE when it is incorporated

in the CRBRP simulator, BRENDA.
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3.2 Optimum Values of Alpha

There are two basic issues involved in choosing alpha: stability
and accuracy. The question of stability will be discussed first, fol-
lowed by a discussion of the accuracy of the model.

It was indicated in the previous section that the stability of
the PIPE model was determin . by the eigenvalues, and the eigenvalues
are determined by the choice of alpha. For any value of alpha it is
possitle to write the coefficient matrix for the system of equations.
The eigenvalues are the roots of the characteristic equation, formed by
the operation

det(A - A\T) = 0
where,

A = the coefficient matrix

b

= the eigenvalu ' vcctor

Ll

= the identity matrix.

Stability of the system depends on the real parts of all eigen-
values being negative. Thus examining the signs of the real parts of
the eigenvalues as a function of alpha determines the limit of stability.
Except for the cases alpha = 0.0, alpha = 1.0 and the case alpha = 0.5,
N ==, finding the eigenvalues is a difficult analytic problem, so a
numerical approach was used.

Figure 3.5 is a root locus plot for the PTPE model, with N = 5
and alpha varying between zero and one. For alpha equal to zero there

are five identical negative real roots. As alpha is increased the roots

'8 ¢04R
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20
move toward the imaginary axis as one real root and two complex
conjugate pairs. At the point where they cross the imaginary axis into
the right half plane, the PIPE model becomes uns:able.

Using an iterative procedure this value was found to be alpha
equal to 0.537. This was then repeated for various values of N. Fig-
ure 3.6 is ;s plot of the "critical" alpha vs. N. For stability alvha
must be less than this "critical" salue. As N goes to infinity the
Jacobian metrix for alpha equal to one-half is skew-symmetric. The
eigenvalues for a skew-symmetric matrix are always purely imaginary.
Thus as N goes to infinity the "critical" value of alpha approaches one-
half. This defines the acceptable range of valies on the basis of sta-
bility and it is this range of values that can be examined with respect
to accuracy. An important consequence of this stability analysis has a
direct application in power plant simulation. When flow reversal occurs
in a flow path the spatial finite difference must be reversed to reflect
this fact. Thus the difference approximation changes as the flow direc-
tion changes so that the system stability may be maintained.

Two criteria are used in this paper to judge the accuracy of a
particular method. First a common measure of accuracy is applied to the
outlet of the pipe. The total error is defined as

- Thit, z 2. 114
Err(t) [tfo(Tout Tan) " ]

The error is equal to the square root of the average square of the dif-
ference between the outlet temperature and the analytic solution, at an

arbitrary time t during the simulation.
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For the purposes of comparison the inlet function is a sine wave
one period in length, and the time of the simulation is constant for all |
values of alpha. The results of this error analysis are presented in
Figure 3.7. It can be seen that the error increases as alpha decreases
with the upper curve being for alpha equal to zero. The value of Err(t)
can be interpreted as the time integrated error in temperature averaged
over the length of the simulation.

The second measure of error employed is the degree to which a
model conserves energy. Referring to eqs. (2.16) and (2.17), the _nergy
conservation ability of a2 method may be judged by ~omparing values from
these two equations. This rat'o is plotted in Figure 3.8.

The model that conserves cnergy the best is the model with alpha
equal to zero. As alpha increases, the energy conservation gets worse.
This revult is slightly surprising bHecause it mneans the method that con-
serves energy the best does the worst job of predicting outlet tempera-
tures. It should be noted that all of the methods conserve energy to a
high degree.

The next section will present revults obtained from BRENDA when

these models were used.

3.3 BRENDA Resul's

Two models were implemented in BRENDz for comparison. The
PDELAY model was used throughout in one simula or and in the second sim-
ulator the PIPE model was used in all of the sodium pipes. The BRENDA
with PDELAY is a fifty-seventh order system. BRENDA with PIPE models

in the sodium pipes is a hundred and forcy-first order system. The

| '8 7046
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25
region sizes in the PIPE models were chosen such that the time constant,
tau, for a region was approximately one second. The two models were
then run for various transients. Results are shown in Figure 3.9.
for a ten cent reactivity step at time zero. In these figures the
dotted line is BRENDA with the PIPE models in the sodium loops and the
solid line is BRENDA with the PDELAY model throughout. It can be seen
that the differences in the resuits from the two models are very small.
The most significant difference is seen in Figure 3.9a. 1In the graph
of TS9 the PIPE models have a damping effect on the temperature. This
is a result of the PIPE model that can be minimized by increasing the
number of regions.

The two models were both integrated with a Runge-Kutta-Merson
variable step method with a simulation time of one hundred seconds and
with an implicit method, EPISODE, with a simulation time of twenty sec-
onds. Execution times for the models on a CYBER 175 are summarized in
Table 3.1. As is expected the difference in execution times is greater

with the implicit method than with the explicit method.
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Figure 3.9 - Response of BRENDA to a Ten Cent Reactivity Step
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Table 3.1 Comparative Execution Times on the CYBER 175, in Seconds

30

Integration RUNGE-KUTTA EPISODE
Method MERSON
(Modc1) TMAX=100 TMAX=20
BRENDA-PDELAY 76.3 138.6
BRENDA-PIPE 86.0 353.5




CHAPTER 4

CONCLL3IONS AND SUMMARY

The intent of this paper was to show thrz¢ PDELAY could be
implemented in a low order power plant simulator with little change in
accuracy, and a significant savings in execution time. Results showing
that this was the case were presented in Chapter 3. 1t should be empha-
sized that the savings in execution time is a conservative estimate. If
all of the PDELAY operators had been replaced with PIPE models instead
of only those for the sodium pipes, a greater difference would have been
seen. Another advantage of using PDELAY in a simulator is the savings
in core storage. The PDELAY simulator required three quarters of the
core that the PIPE simulator required.

These are the major conclusions of this paper and they reflect
the primary goals. However, during the cours:z of this research other
conclusions were reached that affected the method of solution used in
“he PIPE model.

The finite difference method used for the pipes in BRENDA was
the method with alpha equal to zero, or a backwerds difference approxi-
mation. There is one major reason why this approximation was used: the
solution does not oscillate. There are three reasons why this behavior
is undesirable. First, it is not phys.cally reasonable to expect the

exit temperature to be higher than the inlet temperature. Second, this

31
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behavior would be interpreted by the controllers as real and they would
act accordingly. Thus, the model would initiate a controller action
which would be 2ntirely unreal. Third, to introduce a nonphysical be-
havior into a simulator may cause unpredictable results.

These fa~ts, plus the fact that the average increase in error is
on the order of only 4% when alpha is zero as opposed to one-half, make

the backwards difference model the most desirable.
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APPENDIX A
ALTERNATE DERIVATIONS

There are, of course, many ways to derive the equations used '»
PIPE. There are so many, in fact, that equatini the many approaches
taken in the literature is sometimes a non-trivial task. This appendix
is intended to illustrate how some derivations are special cases of the
general alpha difference presented in Chapter 2, and how others are
equivalent to it.

The most common derivation is one based on a control volume with
an inlet and an exit. The rate of change of internal energy is equal to
the energy flow in minus the energy flow out. Referring to Figure A.1l
this can be written as

dTn

va rra = meTn -y ® meTn F P

where the variables are defined as usual except
Tn = the average temperature in region n.
Tn -1 = the inlet temperature to region n.
Tn = the exit temperature from region n.
Again assuming invompressibility, and defining
T - G.S(Tn +T)

eq. (A.1) may be written

e

—dtﬂ - ;—,}[o.sin +q - 95T - 1] A.
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This is exactly the same result that can be obtained from eq. (2.14) by
using alpha = 0.5, remembering that in eq. (2.14) the T's are region
cemperatures, not boundary temperatures. This is the central difference
approximation. This type of analysis is sometimes carried one step fur-
ther by assuming the rate of change of the outlet temperature is equal
to the rate of change of the average temperature, or
dt dt ’
Realizing that n is simply a reference variable and using eq. (A.5),
eq. (A.1) may be rewritten as
8.V L -1], A.6
dt AZ3" n n
This result can be obtained from eq. (2.15) by using alpha = 0, and is
the backward difference approximation.
Another approach (Agrawal et al., 1977, p. 488) which leads to
a result similar to that in Chapter 2, is to define an average tempera-
ture.
1 .n

T =35 7/y - T(®)a8 A.7

The average temperature is then the state variable in the equation

n -V
dt Z_{Tn “Th-1

3 A.8
They then define the average temperature to be a linear combination of
the end point values,

T - = aTn -1 + (1 - a)Tn A.9
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This approach is also equivalent to that presented in Chapter 2,
differing only in point of view. 1In Chapter 2 the position of the time
derivative is fixed, and the position of the space derivative is varied.
Here, the space derivative is fixed, and the position of thc time deriv-
ative is varied.

There are other ways to derive the differential equations, but

these three illustrate how some common approaches are related.
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