

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Tidewater, Inc. February 1, 2019 3761 Attucks Drive

Powell, OH 43065

ATTN: Mr. Ryan Wensink, PE

SUBJECT: Phase 1 RI OU2 Great Kills Park, Data Validation

Dear Mr. Wensink,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on December 13, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #43996:

SDG # Fraction

1810475, 1810637 Uranium, Gross Alpha Beta, Radium-226, Radium-228

The data validation was performed under Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York, September 2018
- Final Radionuclide Data Quality Evaluation Guidance, September 2008
- Multi Agency Radiological Laboratory Analytical Protocols, MARLAP, Manual, July 2004
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Doc SDG# PATE Color Diss. Gross Pate Color Col
Walter/Soil W S W <th< td=""></th<>
1810637 12/13/18 01/09/19 6 0 6 0 6 0 6 0 6 0 6 1
1810637 12/13/18 01/09/19 2 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
Total J/PG 8 0 1 0 9 0 9 0 9 0 9 0 0 0 0 0 0 0 0

Attachment 1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Uranium

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810475

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-SW001	1810475-1	Water	10/18/18
OU2-1-SW003	1810475-2	Water	10/18/18
OU2-1-SW004	1810475-3	Water	10/18/18
REF-1-SW001	1810475-4	Water	10/18/18
OU1-1-SW005	1810475-5	Water	10/19/18
OU2-1-SW002	1810475-6	Water	10/19/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Uranium by Environmental Protection Agency (EPA) Method 200.8

All sample results were subjected to Level IV evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Uranium - Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Uranium - Laboratory Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Uranium - Field Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

LDC #: 43996A4a 1810475 SDG #:

VALIDATION COMPLETENESS WORKSHEET

Level IV

000			
Laborat	ory: Al	S Envir	ronmenta

Reviewer: MG 2nd Reviewer:

METHOD: Uranium (EPA Method 200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	Α	
11.	ICP/MS Tune	Α	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	Α	
VI.	Field Blanks	7	
VII.	Matrix Spike/Matrix Spike Duplicates	7	client specified
VIII.	Duplicate sample analysis	N	•
IX.	Serial Dilution	N	not performed
X.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	N	·
XII.	Internal Standard (ICP-MS)	Α	
XIII.	Sample Result Verification	A	
_XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	OU2-1-SW001	1810475-1	Water	10/18/18
2	OU2-1-SW003	1810475-2	Water	10/18/18
3	OU2-1-SW004	1810475-3	Water	10/18/18
4	REF-1-SW001	1810475-4	Water	10/18/18
5	OU1-1-SW005	1810475-5	Water	10/19/18
6	OU2-1-SW002	1810475-6	Water	10/19/18
7				
8				
9				
10				
11				
12	PBW			

Notes:			 			

	Page:_	Î	of 2
	Reviewer:		MG
2nd	Reviewer:		h
			7

Method: Metals (EPA SW 846 Method 6010/7000/6020)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	1			
Cooler temperature criteria was met.	/			
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	/			
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration				
Were all instruments calibrated daily, each set-up time?	V			
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits?	/			
Were all initial calibration correlation coefficients > 0.995?	/			
IV. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?	/			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil /(Water)		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/	
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.			✓	
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	V			
Was an LCS analyzed per extraction batch?	V			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

LDC #: 43996 A4a

VALIDATION FINDINGS CHECKLIST

Page: $\frac{2}{2}$ of $\frac{2}{3}$ Reviewer: $\frac{\sqrt{3}}{2}$ 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)				
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/			
If the %Rs were outside the criteria, was a reanalysis performed?			/	
IX. ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?		/		
Were all percent differences (%Ds) < 10%?			/	
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.			/	
X. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XI. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XII. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			/	
XIII. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			1	

LDC# 43996 A4a

VALIDATION FINDINGS WORKSHEET

Initial and Continuing Calibration Calculation Verification

Reviewer: MG Page:

2nd Reviewer:

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 $%R = \frac{Found}{True} \times 100$

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Low Level calibration)						
	ICP/MS (Low Level calibration)						
	ICP (Initial calibration)		:				
1030 ICV	ICP/MS (Initial calibration)	2	1,9948	2	00)	00/	>
	CVAA (Initial calibration)						Land
	ICP (Continuing calibration)						
1539 CC V9	ICP/MS (Continuing calibration)	2	1.0317		103	103	>
	CVAA (Continuing calibration)						

ICP-MS TUNE	Calculation	Mass	Actual (Mean Counts / Axis)	Required (Counts / Axis)	Recalculated %RSD	Acceptable (Y/N)
QCTUNE Mass Axis	Mass Axis	308	208.00	± 0.1 AMU	NA	>-
->	%RSD	96	0.99	≤ 5% RSD	0.99	→

Comments:

LDC# 43996A4a

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Reviewer: MG Page: / of (2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100

Where, Found = Concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

Where, S = Original sample concentration
D = Duplicate sample concentration RPD = $|S-D|_X \times 100$ (S+D)/2

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = [I-SDR] x 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	%R/RPD/%D	Acceptable (Y/N)
1053 1053	ICP interference check	ス	0.0010303(mg/L) 0.001 (mg/L)	0.001 (mg/L)	102	102	>
1554 1554	Laboratory control sample	٦	9.930 (mg/L) 10	10 (mg/L)	66	44	>
1	Matrix spike		(SSR-SR)	1	١	١	
١	Duplicate	l	١		l		
	ICP serial dilution	١			١		· ·

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 43996A4a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	Lof_[
Reviewer:_	MG
2nd reviewer:_	
	q

METH	IOD: Trace Metals (EPA	A SW 846 Meti	nod 6010/6020/	7000)			,
Please YN YN YN	e see qualifications belowed by the see that	been reported	and calculated ited range of th	correctly?	icable questions are		
Detect equati	ted analyte results for _ on:	#1, U			were recalcu	lated and verified	using the following
Concen	tration = $\frac{(RD)(FV)(Dil)}{(In. Vol.)}$			ecalculation:			
RD =V	= Raw data conce = Final volume (m	ntration	(0.0535	Mg/2)(0.050 L)((10) = 0.	535 Mg/L
n. Vol. Dil	= Initial volume (m = Dilution factor	il) or weight (G)		0.050			
#	Sample ID		Analyte		Reported Concentration (Mg/L)	Calculated Concentration (Mg/L)	Acceptable (Y/N)
1	1		Ш		0.53	0.54	Y
2	2		и		0.41	0.41	
3	3		u		0.21	0.21	
4	Ч		U		0.36	0.36	
5	5		и		0.58	0.58	
6	6		u		0.25	0.25	\downarrow
· .							
			***************************************		Alaba e de la companya de la company		
Note:_							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Gross Alpha & Beta

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810475

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-SW001	1810475-1	Water	10/18/18
OU2-1-SW003	1810475-2	Water	10/18/18
OU2-1-SW004	1810475-3	Water	10/18/18
REF-1-SW001	1810475-4	Water	10/18/18
OU1-1-SW005	1810475-5	Water	10/19/18
OU2-1-SW002	1810475-6	Water	10/19/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gross Alpha and Beta by PAI 724 Rev. 13

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL) with the following exceptions:

Sample	Isotope	MDC	RL
OU2-1-SW001	Gross alpha	3.7 pCi/L	3 pCi/L
OU2-1-SW003	Gross alpha Gross beta	6.8 pCi/L 6.9 pCi/L	3 pCi/L 4 pCi/L
OU2-1-SW002	Gross alpha	3.1 pCi/L	3 pCi/L

The MDC was greater than the RL as listed above.

XI. Sample Result Verification

All sample result verifications were acceptable.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Laboratory Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Field Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

LDC	#:	43996A22

VALIDATION COMPLETENESS WORKSHEET

Level IV

SDG #: 1810475 Laboratory: ALS Environmental

METHOD: Gross Alpha & Beta (EPA Method 900.0) PAI 724 Rev 13

Page: Lof Reviewer: M 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	Α	
H.	Initial calibration	A	
III.	Calibration verification	A	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	client specified
VII.	Duplicates	N	ly gs.
VIII.	Laboratory control samples	Α	LCS
IX.	Field duplicates	7	
X.	Minimum detectable activity (MDA)	3w	
XI.	Sample result verification	Α	
XIL	Overall assessment of data	I A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	OU2-1-SW001	1810475-1	Water	10/18/18
2	OU2-1-SW003	1810475-2	Water	10/18/18
3	OU2-1-SW004	1810475-3	Water	10/18/18
4	REF-1-SW001	1810475-4	Water	10/18/18
5	OU1-1-SW005	1810475-5	Water	10/19/18
6	OU2-1-SW002	1810475-6	Water	10/19/18
7				
8				
9				
10				
11				
12				
13				
14	PBW			

Notes:			

LDC#: 43996A22

VALIDATION FINDINGS CHECKLIST

		1 of 2
) ה הו	Reviewer:	
zna	Reviewer:	

PAI 774 Rev 13

Method:Radiochemistry(EPA Method)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	1			
II. Calibration				
Were all instruments and detectors calibration as required?	/			
Were NIST traceable standards used for all calibrations?	/			
Was the check source identified by activity and radionuclide?	/			
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	/			
III. Blanks				
Were blank analyses performed as required?	/			
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spikes and Duplicates				
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil /(Water.)		V		
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			V	
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?		1		
Were all duplicate sample duplicate error rations (DER) ≤1.42?.			/	
V. Laboratory control samples				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/			
VI. Sample Chemical/Carrier Recovery				
Was a tracer/carrier added to each sample?		/		
Were tracer/carrier recoveries within the QC limits?			/	
VII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?			/	
VIII. Sample Result Verification			•	
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	V			
Were the Minimum Detectable Activities (MDA) < RL?		V		

LDC#: 43996A22

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer: 4-

Validation Area	Yes	No	NA	Findings/Comments
IX. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
X. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			/	
XI. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			/	

LDC# 43996A22

VALIDATION FINDINGS WORKSHEET Minimum Detectable Activities

Page: Lof L Reviewer: MG 2nd Reviewer:

METHOD: Radiochemistry (Method: PAI 734 Rev 13 MDC
The following sample MBAs are above the RDL:

Qualifications	+ex+																
Dilution																·	
MDC MBA (units)	3.7 (PCI/L)		() 8'9	() 6.9	3.1 (1)												
RDL (units)	3 (pci/L)	t-	3 ()	() h	(↑) દ												
Isotope	Gross Alpha	•	Gross Alpha	Gross Beta	Gross Alpha												
Sample ID	4		B	→	9												
#	· ·		Cq		ç												

Comments: MDC= Minimum Detectable Concentration

LDC# 43996A33

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: Lof L Reviewer: MG 2nd Reviewer: A

METHOD: Radiochemistry (Method: PAI 734 Rev. 13

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = activity of each analyte <u>measured</u> in the analysis of the sample. True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

Where, S = Original sample activity
D = Duplicate sample activity

Acceptable (Y/N)			> -	(
Reported	%R or RPD		51	١)		1
Recalculated	%R or RPD		611			1			1
	True/D (units)	(/;/a) (/;/a)	333.4 (1-1/4)		1		1		ı
	Found/S (units)	(/i)d) rro	411 (1-1/4)						1
	Analyte	Gress	Alpha		ı)		١
	Type of Analysis	Laboratory control sample		Matrix spike sample		Duplicate RPD		Chemical recovery	
	Sample ID		708)		- and the		١

Comments:

LDC#: 43996A22

SA = Self-absorbance factor Vol = Volume of sample

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:_	of
Reviewer:	MG
2nd reviewer:	1~
	7

METHOD: Radiochemistry (Method: PAI 774 Rev 13

Please see qualifications below for all c	4:	Nist such is side successions	:- £!£: ! \
Pipace coe di laliticatione neigw for all c	Heetione angwered ivi	INOT SAMICSALE GUESTION	s are identified as IN/A
rease see qualifications below for all c	acononio anovicica iv.	140t applicable question	saic identifica as 14// (.

(Y) N N/A Have results been reported and calculated correctly? <u>Y) N N/A</u> Are results within the calibrated range of the instruments?

Analyte results for #1, Gross Beta reported with a positive detect were recalculated and verified using the following equation: Recalculation: Concentration = $\frac{(1.982 \text{ cpm}) - (1.500 \text{ cpm}) - (0.0089 \text{ cpm})}{(3.33)(0.4440)(0.060 \text{ L})(0.939)} = 8.519 \text{ PCi/L}$ (cpm - background)_ 2.22 x E x SA x Vol E = Counter Efficiency

#	Sample ID	Analyte	Reported Concentration (pCi/L)	Calculated Concentration (pci/L)	Acceptable (Y/N)
ı	1	Gross Beta	8.5	8.5	Y
2	2	Gross Alpha	10.2	10.1	
3	3	A	7 7	7.3	
	7	Gross Beta	7.3	1. 5	
4	4	Gross Alpha	3.4	3.4	
5	5	Gross Beta	5.1	5.1	
6	6	Gross Alpha	3.5	3.5	V
		·			

Note:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Radium-226

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810475

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-SW001	1810475-1	Water	10/18/18
OU2-1-SW003	1810475-2	Water	10/18/18
OU2-1-SW004	1810475-3	Water	10/18/18
REF-1-SW001	1810475-4	Water	10/18/18
OU1-1-SW005	1810475-5	Water	10/19/18
OU2-1-SW002	1810475-6	Water	10/19/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Radium-226 by Environmental Protection Agency (EPA) Method 903.1

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL).

XI. Sample Result Verification

All sample result verifications were acceptable.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Radium-226 - Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-226 - Laboratory Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-226 - Field Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

LDC #: 43996A29a SDG #: 1810475

VALIDATION COMPLETENESS WORKSHEET

Level IV

Laboratory: ALS Environmental

METHOD: Radium 226 (EPA Method 903.1)

Date: 1-3-19 Page: Lof Reviewer: MG 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	Initial calibration	Α	
111.	Calibration verification	Α	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	client specified
VII.	Duplicates	N	Eg Uy
VIII.	Laboratory control samples	Α	LCS/LCSD
IX.	Field duplicates	N	
X.	Carrier recovery	Α	
XI.	Minimum detectable activity (MDA)	A	
XII.	Sample result verification	A	
XIII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	OU2-1-SW001	1810475-1	Water	10/18/18
2	OU2-1-SW003	1810475-2	Water	10/18/18
3	OU2-1-SW004	1810475-3	Water	10/18/18
4	REF-1-SW001	1810475-4	Water	10/18/18
5	OU1-1-SW005	1810475-5	Water	10/19/18
6	OU2-1-SW002	1810475-6	Water	10/19/18
7				
8				
9				
10				
11				
12				
13	PBW			

Notes:_					

Page: 1 of 2
Reviewer: MG
2nd Reviewer: 1

Method:Radiochemistry(EPA Method 903. (

Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times							
All technical holding times were met.	/						
II. Calibration							
Were all instruments and detectors calibration as required?	/						
Were NIST traceable standards used for all calibrations?	/						
Was the check source identified by activity and radionuclide?	V						
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	V						
III. Blanks							
Were blank analyses performed as required?	V						
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/					
IV. Matrix spikes and Duplicates							
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil (Water)		V					
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/				
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?		/					
Were all duplicate sample duplicate error rations (DER) ≤1.42?.			/				
V. Laboratory control samples							
Was an LCS analyzed per analytical batch?	/						
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	V						
VI. Sample Chemical/Carrier Recovery							
Was a tracer/carrier added to each sample?	V						
Were tracer/carrier recoveries within the QC limits?	/						
VII. Regional Quality Assurance and Quality Control							
Were performance evaluation (PE) samples performed?		V					
Were the performance evaluation (PE) samples within the acceptance limits?			/				
VIII. Sample Result Verification							
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/						
Were the Minimum Detectable Activities (MDA) < RL?	/						

LDC#: 43996A29a

VALIDATION FINDINGS CHECKLIST

Page: 2of 2 Reviewer: M.G 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments			
IX. Overall assessment of data							
Overall assessment of data was found to be acceptable.	V	1					
X. Field duplicates							
Field duplicate pairs were identified in this SDG.		V					
Target analytes were detected in the field duplicates.			/				
XI. Field blanks							
Field blanks were identified in this SDG.		/					
Target analytes were detected in the field blanks.			/				

LDC# 43996A399

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: 2nd Reviewer:_ Reviewer:

METHOD: Radiochemistry (Method: 903.1

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Found = activity of each analyte $\underline{\text{measured}}$ in the analysis of the sample. True = activity of each analyte in the source. Where,

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

Where, S = Original sample activity
D = Duplicate sample activity

	Acceptable (Y/N)	>-	l		>
Reported	%R or RPD	911	1	l.	83.5
Recalculated	%R or RPD	911			83.5
	True/D (units)	47.87 (Pci/L)	l	١	17610 (Mg)
	Found/S (units)	55.75 (PCih) 47.87 (PCih))	l	14530 (Mg) 17610 (Mg)
	Analyte	Ra-336	l	l	රිය
	Type of Analysis	Laboratory control sample	Matrix spike sample	Duplicate RPD	Chemical recovery
	Sample ID	527	l	١	- Manager

Comments:

TOTCLC.35

LDC #: 43996 A 29a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:	MG
2nd reviewer:	0~
	Y

METHOD: Radiochemistry (Method	903.1
iii ii	

Hease see qualifications	below for all quest	tions answered "N". Not	t applicable questions	are identified as "N/A".

YN N/A Have results been reported and calculated correctly?

YN N/A Are results within the calibrated range of the instruments?

Analyte results for # 2, Ra- 226 reported with a positive detect were recalculated and verified using the following equation:

Concentration =

Recalculation:

(cpm - background) 2.22 x E x SA x Vol

$$\frac{(28 \text{ c+s/}_{15 \text{ min}}) - (2 \text{ c+s/}_{15 \text{ min}})}{(2.22)(1.5502)(0.995 L)(0.912)} \times \frac{1}{0.752} \times \frac{1}{0.970} \times 1.001 = 0.762 \frac{pCi}{L}$$

E = Counter Efficiency SA = Self-absorbance factor Vol = Volume of sample

#	Sample ID	Analyte	Reported Concentration (PCI/L)	Calculated Concentration (pCi/L)	Acceptable (Y/N)
Ì	2	Ra-226	0.76	0.76	Y
					ľ
2	5	Ra-226	0.47	0.47	
3	6	Ra-226	0.81	0.81	↓
					·
					· · · · · · · · · · · · · · · · · · ·
			1		

Note:	samples	1,3 and 4 ar	e N.D.		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Radium-228

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810475

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-SW001	1810475-1	Water	10/18/18
OU2-1-SW003	1810475-2	Water	10/18/18
OU2-1-SW004	1810475-3	Water	10/18/18
REF-1-SW001	1810475-4	Water	10/18/18
OU1-1-SW005	1810475-5	Water	10/19/18
OU2-1-SW002	1810475-6	Water	10/19/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Radium-228 by PAI 724 Rev. 13

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL) with the following exceptions:

Sample	Isotope	MDC	RL
OU2-1-SW001	Radium-228	3.3 pCi/L	1 pCi/L
OU2-1-SW003	Radium-228	3.2 pCi/L	1 pCi/L
OU2-1-SW004	Radium-228	3.0 pCi/L	1 pCi/L
REF-1-SW001	Radium-228	3.0 pCi/L	1 pCi/L
OU1-1-SW005	Radium-228	3.3 pCi/L	1 pCi/L
OU2-1-SW002	Radium-228	3.0 pCi/L	1 pCi/L

The MDC was greater than the RL as listed above.

XI. Sample Result Verification

All sample result verifications were acceptable.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Radium-228 - Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-228 - Laboratory Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-228 - Field Blank Data Qualification Summary - SDG 1810475

No Sample Data Qualified in this SDG

LDC #: 43996A29b SDG #: 1810475

VALIDATION COMPLETENESS WORKSHEET

Level IV

Laboratory: ALS Environmental

PAI 724 Rev. 13

	Date:	1-1	4-19
2nd	Page:_ Reviewer: Reviewer:	M	[] []
			ſ

METHOD: Radium 228 (EPA Method 904:0)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
H.	Initial calibration	Α	
111.	Calibration verification	A	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	client specified
VII.	Duplicates	7	11 11
VIII.	Laboratory control samples	A	LCS/LCSD
IX.	Field duplicates	N	
X.	Carrier recovery	A	
XI.	Minimum detectable activity (MDA)	SW	
XII.	Sample result verification	A	
XIII	Overall assessment of data	A	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Date **Client ID** Lab ID Matrix OU2-1-SW001 Water 1810475-1 10/18/18 OU2-1-SW003 1810475-2 Water 10/18/18 OU2-1-SW004 1810475-3 Water 10/18/18 REF-1-SW001 Water 10/18/18 1810475-4 OU1-1-SW005 1810475-5 Water 10/19/18 OU2-1-SW002 1810475-6 Water 10/19/18 8 10 11 PBW

Notes:		

VALIDATION FINDINGS CHECKLIST

PAI 724 Rev. 13

Method:Radiochemistry(EPA Method

Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times							
All technical holding times were met.	V						
II. Calibration							
Were all instruments and detectors calibration as required?	V						
Were NIST traceable standards used for all calibrations?	✓						
Was the check source identified by activity and radionuclide?	V						
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	/						
III. Blanks							
Were blank analyses performed as required?	V						
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/					
IV. Matrix spikes and Duplicates							
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil /(Water.)		/					
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			1				
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?		/					
Were all duplicate sample duplicate error rations (DER) ≤1.42?.			/				
V. Laboratory control samples							
Was an LCS analyzed per analytical batch?	1						
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/						
VI. Sample Chemical/Carrier Recovery							
Was a tracer/carrier added to each sample?	V						
Were tracer/carrier recoveries within the QC limits?	/						
VII. Regional Quality Assurance and Quality Control							
Were performance evaluation (PE) samples performed?		/					
Were the performance evaluation (PE) samples within the acceptance limits?			V				
VIII. Sample Result Verification							
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1						
Were the Minimum Detectable Activities (MDA) < RL2							

LDC#: 43996A296

VALIDATION FINDINGS CHECKLIST

Page: 2of 2
Reviewer: MG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX. Overall assessment of data				
Overall assessment of data was found to be acceptable.	1			
X. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			/	
XI. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			✓	

LDC# 43996 A396

VALIDATION FINDINGS WORKSHEET Minimum Detectable Activities

Reviewer: MG Page: of 2nd Reviewer:_

METHOD: Radiochemistry (Method: PAI 734 Rev. i3 MでC
The following sample MBAs are above the RDL:

7
;-
\mathcal{O}
ď

Qualifications	text						→									
Dilution																
MDC (units)	3.3		3.2	3.0	3.0	3.3	3.0									
RDL (units)	1	-					~		-							
Isotope	Ra- 238						A									
Sample ID			6	3	1	5	9									
#	_		6	e	7	R	و									

MDC = Minimum Detectable Concentration Comments:__

LDC# 43996 A 396

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

2nd Reviewer:_

METHOD: Radiochemistry (Method: PAI 734 Rev 13

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = activity of each analyte <u>measured</u> in the analysis of the sample. True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

Where,

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

S = Original sample activity D = Duplicate sample activity

					Recalculated	Popular	
Sample ID	Type of Analysis	Analyte	Found/S (units)	True/D (units)	%R or RPD	%R or RPD	Acceptable (Y/N)
	Laboratory control sample	Ra-338	9.234 (pci/j)	,334 (pci/L) 8.615 (pci/L)	107	T0/	>
	Matrix spike sample	١	1	١	l		1
	Duplicate RPD	١	1	l	l	1	
	Chemical recovery	Ba	37770(mg) 31370 (mg)	31370 (43)	88.8	88.8	>

Comments:

LDC#: 43996A29b

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

of_ [
MG
n

METHOD: Radiochemistry (Method: PAI 724 Rev 13

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (Y) N N/A Have results been reported and calculated correctly? \bigcirc N N/A Are results within the calibrated range of the instruments? #4, Ra-228 Analyte results for ___ reported with a positive detect were recalculated and verified using the following equation: Concentration = Recalculation: decay (7.627 cpm) - (2.042 cpm) (2.22)(0.4506)(0.249 L)(0.965) (cpm - background) -x 1.266 = 29.416 PCi/L 2.22 x E x SA x Vol

SA = Self-absorbance factor Vol = Volume of sample

E = Counter Efficiency

#	Sample ID	Analyte	Reported Concentration (ア ^C i/L)	Calculated Concentration (P ^C i/L)	Acceptable (Y/N)
l	4	Ra-228	29.8	29.4	Y
				_	

Note:	samples	1,2,3,5 and	16 are	N.D.	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Uranium

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810637

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-MW008I	1810637-1	Water	10/30/18
OU2EB103018-001	1810637-3	Water	10/30/18
OU2-1-MW008IMS	1810637-1MS	Water	10/30/18
OU2-1-MW008IMSD	1810637-1MSD	Water	10/30/18
OU2-1-MW008I-F	1810637-2F	Water	10/30/18
OU2-1-MW008I-FMS	1810637-2FMS	Water	10/30/18
OU2-1-MW008I-FMSD	1810637-2FMSD	Water	10/30/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Uranium by Environmental Protection Agency (EPA) Method 200.8

All sample results were subjected to Level IV evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample OU2EB103018-001 was identified as an equipment blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Uranium - Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Uranium - Laboratory Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Uranium - Field Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 43996B4a SDG #: 1810637

Level IV

Date:	1-4-19
Page:_ Reviewer:	MG
2nd Reviewer:	

Laboratory: ALS Environmental

METHOD: Uranium (EPA Method 200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	Å	
II.	ICP/MS Tune	A	
III.	Instrument Calibration	Α	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	Α	
VI.	Field Blanks	ND	EB = 2
VII.	Matrix Spike/Matrix Spike Duplicates	Α	MS/MSD
VIII.	Duplicate sample analysis	7	
IX.	Serial Dilution	Α	SD: 1,5
X.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	A	
XIII.	Sample Result Verification	Α	
XIV	Overall Assessment of Data	A	

Note: A = Acceptable ND = No compounds detected

R = Rinsate

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

N = Not provided/applicable SW = See worksheet

FB = Field blank


Samples appended with "F" were analyzed as dissolved

	Client ID	Lab ID	Matrix	Date
1	OU2-1-MW008I	1810637-1	Water	10/30/18
2	OU2EB103018-001	1810637-3	Water	10/30/18
3	OU2-1-MW008IMS	1810637-1MS	Water	10/30/18
4	OU2-1-MW008IMSD	1810637-1MSD	Water	10/30/18
5	OU2-1-MW008I-F	1810637-2F	Water	10/30/18
6	OU2-1-MW008I-FMS	1810637-2FMS	Water	10/30/18
7	OU2-1-MW008I-FMSD	1810637-2FMSD	Water	10/30/18
8				
9				
10				
11				
12	PBW			

I VOLCO.	 		 		
_					

LDC #: 43996B4a

VALIDATION FINDINGS CHECKLIST

Method: Metals (EPA SW 846 Method 6010/7000/6020)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
Cooler temperature criteria was met.	/			
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	/			
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration				
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits?	/			
Were all initial calibration correlation coefficients > 0.995?	/			
IV. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?	/			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	/			
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	V			
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

LDC #: 43996B4a

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments				
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)	VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)							
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/							
If the %Rs were outside the criteria, was a reanalysis performed?			V					
IX. ICP Serial Dilution								
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	/							
Were all percent differences (%Ds) < 10%?	V							
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		/						
X. Sample Result Verification								
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/							
XI. Overall assessment of data								
Overall assessment of data was found to be acceptable.	/							
XII. Field duplicates								
Field duplicate pairs were identified in this SDG.		/						
Target analytes were detected in the field duplicates.			/					
XIII. Field blanks								
Field blanks were identified in this SDG.	/							
Target analytes were detected in the field blanks.		1						

LDC # 43996 B4a

Initial and Continuing Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Reviewer: MG Page: of [2nd Reviewer:

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 $%R = Found \times 100$

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Low Level calibration)						
	ICP/MS (Low Level calibration)		-				
	ICP (Initial calibration)						
1030 ICV	ICP/MS (Initial calibration)	Ŋ	1.9948	3	001	100	
	CVAA (Initial calibration)						
	ICP (Continuing calibration)						
16.34 05.V.22	ICP/MS (Continuing calibration)	n	1.0147).	101	101	
	CVAA (Continuing calibration)						

ICP-MS TUNE	Calculation	Mass	Actual (Mean Counts / Axis)	Required (Counts / Axis)	Recalculated %RSD	Acceptable (Y/N)
QC TU NE	Mass Axis	59	59.00	± 0.1 AMU	NA	>
→	%RSD	115	0.44	≥ 5% RSD	0.44	→

Comments:

LDC# 43996B4a

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: __of_ 2nd Reviewer: Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

S = Original sample concentration D = Duplicate sample concentration Where,

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = [I-SDR] × 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

							Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	11	True / D / SDR (units)	(units)	%R/RPD/%D	%R/RPD/%D	Acceptable (Y/N)
1052 ICSAB)	ICP interference check	3	0.0010303 (mg/L) 0.001 (mg/L)	(7/Bw)	0.001	(mg /L)	601	E01	>
1554 1554	Laboratory control sample	א	9.930	(mg h.)	01 (78m) 0c6	(mg /L)	99	66	<u> </u>
1651 3	Matrix spike	7	(SSR-SR)	(78m)	(mg/r) 10 (mg/r)	(7/ BM)	101	101	
1651/1654	Duplicate	3	11.52	(mg h_)	52 (4gh) 11.63 (4gh)	(4g h)	0.1	reported	
1645/1648 1	ICP serial dilution	n	0.00146 (mg/L) 0.00132 (mg/L)	(mg/L)	0.00133	(7/Bun)	10	10	•

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

100 m

LDC#: 43996B4a

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page:_	ofl	
Reviewer:	MG	
2nd reviewer:	4	
-		

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

(Y)N N (Y)N N (Y)N N	<u>/A</u> Have results <u>/A</u> Are results w <u>/A</u> Are all detect	ow for all questions answered "N". Nobeen reported and calculated correlithin the calibrated range of the institution limits below the CRDL?	ctly?		
Detecte equation	d analyte results for _ n:	#1, U	were recalc	ulated and verified	using the followir
Concentra	eation = $\frac{(RD)(FV)(Dil)}{(In. Vol.)}$	Recalcula			
FV In. Vol.	= Raw data conce = Final volume (m = Initial volume (m = Dilution factor	ntration (0.1455 M	19/L)(0.050L) 0.050L	(10) = 1.	455 Mg/L
#	Sample ID	Analyte	Reported Concentration ()	Calculated Concentration (Mg/L)	Acceptable (Y/N)
İ	Ĺ	Ч	1.4	1.5	Y
2	5	Ч	1.4	1.4	V
					1
	- Property and the second seco				
					•

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Gross Alpha & Beta

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810637

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-MW008I	1810637-1	Water	10/30/18
OU2-1-MW008I-F	1810637-2	Water	10/30/18
OU2EB103018-001	1810637-3	Water	10/30/18
OU2-1-MW008IMS	1810637-1MS	Water	10/30/18
OU2-1-MW008IDUP	1810637-1DUP	Water	10/30/18
OU2-1-MW008I-FMS	1810637-2MS	Water	10/30/18
OU2-1-MW008I-FDUP	1810637-2DUP	Water	10/30/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gross Alpha and Beta by PAI 724 Rev. 13

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

Sample OU2EB103018-001 was identified as an equipment blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Isotope	%R (Limits)	Flag	A or P
OU2-1-MW008IMS (OU2-1-MW008I OU2EB103018-001)	Gross alpha Gross beta	70.1 (72-130) 85.8 (86-115)	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	А
OU2-1-MW008I-FMS (OU2-1-MW008I-F)	Gross alpha Gross beta	59.9 (72-130) 80.8 (86-115)	J- (all detects) J- (all detects)	A

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL) with the following exceptions:

Sample	Isotope	MDC	RL
OU2-1-MW008I	Gross alpha	3.1 pCi/L	3 pCi/L
OU2-1-MW008I-F	Gross alpha	3.4 pCi/L	3 pCi/L

The MDC was greater than the RL as listed above.

XI. Sample Result Verification

All sample result verifications were acceptable.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS %R, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Data Qualification Summary - SDG 1810637

Sample	Isotope	Flag	A or P	Reason
OU2-1-MW008I OU2-1-MW008I-F OU2EB103018-001	Gross alpha Gross beta	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Laboratory Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Field Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

LDC #: 43996B22 SDG #: 1810637

VALIDATION COMPLETENESS WORKSHEET

Level IV

Laboratory: ALS Environmental

PAI 724 Rev. 13

METHOD: Gross Alpha & Beta (EPA Method 900.0)

m4

Date: 1-4-19
Page: 1 of 1
Reviewer: MG
2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A	
11.	Initial calibration	A	
III.	Calibration verification	A	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	EB= 3
VI.	Matrix Spike/Matrix Spike Duplicates	SW	MS
VII.	Duplicates	A	DUP
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
X.	Minimum detectable activity (MDA)	SW	
XI.	Sample result verification	À	
XII	Overall assessment of data	A	

Note:

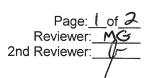
A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank


OTHER:

F		T	I	
	Client ID	Lab ID	Matrix	Date
1	OU2-1-MW008I	1810637-1	Water	10/30/18
2	OU2-1-MW008I-F	1810637-2	Water	10/30/18
3	OU2EB103018-001	1810637-3	Water	10/30/18
4	OU2-1-MW008IMS	1810637-1MS	Water	10/30/18
5	OU2-1-MW008IDUP	1810637-1DUP	Water	10/30/18
6	OU2-1-MW008I-FMS	1810637-2MS	Water	10/30/18
7	OU2-1-MW008I-FDUP	1810637-2DUP	Water	10/30/18
8				
9				
10				
11				
12				
13				
14	PBW			

Notes:				

LDC#: 43996B22

VALIDATION FINDINGS CHECKLIST

PAI 734 Rev 13

Method:Radiochemistry(EPA Method)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
II. Calibration				
Were all instruments and detectors calibration as required?	/			
Were NIST traceable standards used for all calibrations?	/	·		
Was the check source identified by activity and radionuclide?	V			
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	/			
III. Blanks				
Were blank analyses performed as required?	V			
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spikes and Duplicates				
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		/		
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?	/			
Were all duplicate sample duplicate error rations (DER) ≤1.42?.	/			
V. Laboratory control samples				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/			
VI. Sample Chemical/Carrier Recovery				
Was a tracer/carrier added to each sample?		/		
Were tracer/carrier recoveries within the QC limits?			/	
VII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?			/	
VIII. Sample Result Verification			,	
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were the Minimum Detectable Activities (MDA) < RL?		V		

LDC#: 43996B22

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer: 4

Validation Area	Yes	No	NA	Findings/Comments
IX. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
X. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			/	
XI. Field blanks				
Field blanks were identified in this SDG.	/			
Target analytes were detected in the field blanks.		/		

4
10
Ø,
9
2
3
7
#
\circ

1

SDG#:

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

	MG	4
Page:	Reviewer:_	2nd Reviewer:

METHOD: Radiochemistry (Method: PAI 734 Rev 13

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YN N/A Was a matrix spike analyzed at the required frequency in this SDG?

? If the sample concentration exceeded the spike concentration by a factor Were matrix spike percent recoveries (%R) within the control limits of of 4 or more, no action was taken. (N)N/A

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Date	Matrix Spike ID	Matrix	Analyte	%B	Associated Samples	Qualifications	
51000		7	Water	Gross Alpha	70.1 (1,3	3-105/A (det & ND)	
		~ >	4	Gross Beta	85.8 (86-115)	→		
6		٩		Gross Alpha	59.9 (73-130)	7	(det)	
		→	-	Gross Beta	Gross Beta 80.8(86-115)	->		
					,			
								Г
								Π
Colliments	nents.							

LDC# 43996B33

VALIDATION FINDINGS WORKSHEET Minimum Detectable Activities

Page: of Reviewer: M

2nd Reviewer:

METHOD: Radiochemistry (Method: PAI 734 Rev. 13
MDC

The following sample MDAs are above the RDL:

-(pci/L)-

Qualifications	+																
Dilution													7		4		
MDC (units)	3.1	3.4	0	3.3						-							
RDL (units)	3			-													
Isotope	Gross Alpha	Gruss Alpha		Gross Alpha													
Sample ID		C	ı														
#		Ç		3													

Comments:

LDC# 43996 B32

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

2nd Reviewer:_ Reviewer:

METHOD: Radiochemistry (Method: PAI 734 Rev, 13

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = activity of each analyte measured in the analysis of the sample. True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

S = Original sample activity D = Duplicate sample activity

Where, RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

-										
		Acceptable (Y/N)		>				\rightarrow		ı
	Reported	%R or RPD		98.4	101	2.0	DER	94400.0		l
	Recalculated	%R or RPD		7.86		o S	Der	8060.0		l
		True/D (units)	(198)	408.4 (-1/2) 411.8 (-1/2)	26,17 (PCi/,) 519 (PCi/,)	2.	18.4 (pci/) 18.3 (pci/)	+ 3.4		1
		Found/S (units)	(1:00)	408.4 التارير	2677 (PCi/)	2000	18.4 (pc://)	+ 3.4		ı
		Analyte	Gross	Beta	Gross	Alpha	Gross	Beta		1
		Type of Analysis	Laboratory control sample		Matrix spike sample		Duplicate RPD		Chemical recovery	
		Sample ID		LCS		7		2		ļ

Comments:

LDC #: 43996B22

Vol = Volume of sample

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	<u>l</u> of <u>l</u>
Reviewer:	MG
2nd reviewer:	
	Ų

METHOD: Radiochemistry (Method: PAI 724 Rev. 13

Please see qua	palifications below for all questions answered "N". Not applicable questions are identified as "N/A".	
WN N/A	Have results been reported and calculated correctly?	
<u> </u>	Are results within the calibrated range of the instruments?	

Analyte results for #1, Gross Alpha reported with a positive detect were recalculated and verified using the following equation:

Concentration = Recalculation: $\frac{\text{(cpm - background)}}{2.22 \times E \times SA \times Vol} = \frac{(0.334 \text{ cpm}) - (0.163 \text{ cpm}) - (0.004 \text{ cpm})}{(0.233)(0.090 \text{ L})(0.457)} = 3.337 \text{ pCi/L}$ E = Counter Efficiency SA = Self-absorbance factor

#	Sample ID	Analyte	Reported Concentration (P ^C 1/L)	Calculated Concentration (pCi / ட)	Acceptable (Y/N)
Î		Gross Alpha	3,3	3.3	Y
2	2	Gross Beta	20.7	20.7	J
	-	,			
		<u> </u>			
ļ					·

Note:	Sample	3	ìs	N.D.		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Radium-226

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810637

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-MW008I	1810637-1	Water	10/30/18
OU2-1-MW008I-F	1810637-2	Water	10/30/18
OU2EB103018-001	1810637-3	Water	10/30/18
OU2-1-MW008IDUP	1810637-1DUP	Water	10/30/18
OU2-1-MW008I-FDUP	1810637-2DUP	Water	10/30/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Radium-226 by Environmental Protection Agency (EPA) Method 903.1

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

Sample OU2EB103018-001 was identified as an equipment blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL).

XI. Sample Result Verification

All sample result verifications were acceptable.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Radium-226 - Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-226 - Laboratory Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-226 - Field Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

LDC #: 43996B29a SDG #: 1810637

VALIDATION COMPLETENESS WORKSHEET

Level IV

	Page:_	L
	Reviewer:	
0	D	

2nd Reviewer

Laboratory: ALS Environmental

METHOD: Radium 226 (EPA Method 903.1)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A	
11.	Initial calibration	A	
III.	Calibration verification	Α	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	EB= 3
VI.	Matrix Spike/Matrix Spike Duplicates	1	client specified
VII.	Duplicates	A	DUP
VIII.	Laboratory control samples	Α	LCS
IX.	Field duplicates	7	
X.	Carrier recovery	A	,
XI.	Minimum detectable activity (MDA)	A	
XII.	Sample result verification	Α	
XIII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

Client ID Lab ID Matrix Date OU2-1-MW008I Water 1810637-1 10/30/18 OU2-1-MW008I-F 1810637-2 Water 10/30/18 Water 10/30/18 3 OU2EB103018-001 1810637-3 10/30/18 OU2-1-MW008IDUP 1810637-1DUP Water 1810637-2DUP OU2-1-MW008I-FDUP Water 10/30/18 5 6 8 10 11 12 PBW

Notes:			

LDC#: 439961329a

VALIDATION FINDINGS CHECKLIST

Page: 1 of 3 Reviewer: MG 2nd Reviewer:

Method:Radiochemistry(EPA Method 903.()

Validation Area	Yes	No	NA	Findings/Comments				
I. Technical holding times								
All technical holding times were met.	V							
II. Calibration								
Were all instruments and detectors calibration as required?	V							
Were NIST traceable standards used for all calibrations?	/							
Was the check source identified by activity and radionuclide?	V							
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	/							
III. Blanks								
Were blank analyses performed as required?	1							
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/						
IV. Matrix spikes and Duplicates								
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil (Water)		/						
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/					
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?	/							
Were all duplicate sample duplicate error rations (DER) ≤1.42?.	/							
V. Laboratory control samples								
Was an LCS analyzed per analytical batch?	/							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/							
VI. Sample Chemical/Carrier Recovery								
Was a tracer/carrier added to each sample?	1							
Were tracer/carrier recoveries within the QC limits?	V							
VII. Regional Quality Assurance and Quality Control								
Were performance evaluation (PE) samples performed?		V						
Were the performance evaluation (PE) samples within the acceptance limits?			/					
VIII. Sample Result Verification								
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	V							
Were the Minimum Detectable Activities (MDA) < RL?	/							

LDC#: 43996B29a

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer: 4

Validation Area	Yes	No	NA	Findings/Comments				
IX. Overall assessment of data								
Overall assessment of data was found to be acceptable.	V							
X. Field duplicates								
Field duplicate pairs were identified in this SDG.		/						
Target analytes were detected in the field duplicates.			1					
XI. Field blanks								
Field blanks were identified in this SDG.	/							
Target analytes were detected in the field blanks.		V						

LDC#: 43966 B39a

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: 1 of 1 Reviewer: MG

METHOD: Radiochemistry (Method: 903,1

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = \frac{Found \times 100}{True}$

Where, Found = activity of each analyte measured in the analysis of the sample. True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula: S = Original sample activity D = Duplicate sample activity Where, RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

	Acceptable (Y/N)		<i>></i>		1		> -		
Reported	%R or RPD		109		١	DER	0.366		43.0
Recalculated	%R or RPD		109		1	DER	0.357		93.0
	True/D (units)		47.87 (PC:/L)		l	15 (PCi/) 1.36 (PCi/)	+ 0.63		(fm) 05441 (fm) 060
	Found/S (units)		52.13 (PCIL) 47.87 (PCIL)		1	1.15 (PCi/L)	+ 0.52		(ga) apo 81
	Analyte		Ra-336		1		Ra-326		Ba
	Type of Analysis	Laboratory control sample		Matrix spike sample		Duplicate RPD		Chemical recovery	
	Sample ID		507		ı		7		grant of the second of the sec

Comments:

LDC#: 43996 B 29a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:	MG
2nd reviewer:	0~
	y

METHOD: Radiochemistry (Method: 903.1

Ple	ease	see c	qualifications	below for a	II questions	s answered "N	". No	t applicable	questions	are i	dentified	as "N/	/A".
-----	------	-------	----------------	-------------	--------------	---------------	-------	--------------	-----------	-------	-----------	--------	------

✓ N N/A
 ✓ N N/A
 ✓ N N/A
 ✓ N N/A
 Have results been reported and calculated correctly?
 Are results within the calibrated range of the instruments?

Concentration =

Recalculation:

(cpm - background) 2.22 x E x SA x Vol

E = Counter Efficiency
SA = Self-absorbance factor
Vol = Volume of sample

(31 cts/15 min) - (1 cts/15 min) (2.22)(1.5127)(0.995 L)(0.930)		pci
(2.22)(1.5127)(0.995 L)(0.930)	$\overline{0.578} \times \overline{0.970} \times 1.001 = 1.$	149 —

#	Sample ID	Analyte	Reported Concentration (P ^C :/L)	Calculated Concentration (PC i / L)	Acceptable (Y/N)
		Ra-226	1.15	1.15	Y
2	2	Ra-226	0.86	0.86	<u> </u>

Note:	Sample	3 15	N.D.					
-					 			
						 		_

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 7, 2019

Parameters:

Radium-228

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810637

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-MW008I	1810637-1	Water	10/30/18
OU2-1-MW008I-F	1810637-2	Water	10/30/18
OU2EB103018-001	1810637-3	Water	10/30/18
OU2-1-MW008IDUP	1810637-1DUP	Water	10/30/18
OU2-1-MW008I-FDUP	1810637-2DUP	Water	10/30/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Radium-228 by PAI 724 Rev. 13

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

Sample OU2EB103018-001 was identified as an equipment blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL).

XI. Sample Result Verification

All sample result verifications were acceptable.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Radium-228 - Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-228 - Laboratory Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-228 - Field Blank Data Qualification Summary - SDG 1810637

No Sample Data Qualified in this SDG

LDC #: 43996B29b SDG #: 1810637

VALIDATION COMPLETENESS WORKSHEET

Level IV

Laboratory: ALS Environmental

PAI 724 Rev. 13

METHOD: Radium 228 (EPA Method 904.0)

9MH

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A	
II.	Initial calibration	A	
III.	Calibration verification	Α	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	EB = 3
VI.	Matrix Spike/Matrix Spike Duplicates	Ŋ	client specified
VII.	Duplicates	Α	DUP
VIII.	Laboratory control samples	Α	LCS
IX.	Field duplicates	12	
X.	Carrier recovery	Α	
XI.	Minimum detectable activity (MDA)	Α	
XII.	Sample result verification	À	
XIII	Overall assessment of data	Α	

Note:

A = Acceptable

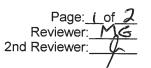
N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

Reviewer:


2nd Reviewer

			T	T
	Client ID	Lab ID	Matrix	Date
1	OU2-1-MW008I	1810637-1	Water	10/30/18
2	OU2-1-MW008I-F	1810637-2	Water	10/30/18
3	OU2EB103018-001	1810637-3	Water	10/30/18
4	OU2-1-MW008IDUP	1810637-1DUP	Water	10/30/18
5	OU2-1-MW008I-FDUP	1810637-2DUP	Water	10/30/18
6				
7				
8				
9				
10				
11				
12				
13	PBW			

Notes:				
	 		*	

LDC#: 43996B296

VALIDATION FINDINGS CHECKLIST

PAI 724 Rev 13 Method: Radiochemistry (EPA Method

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	1			
II. Calibration				
Were all instruments and detectors calibration as required?	1			
Were NIST traceable standards used for all calibrations?	/			
Was the check source identified by activity and radionuclide?	/			
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	/			
III. Blanks				
Were blank analyses performed as required?	/			
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spikes and Duplicates	_	_		
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil /(Water.)		√		
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/	
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?	/			
Were all duplicate sample duplicate error rations (DER) ≤1.42?.	/			
V. Laboratory control samples				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/			
VI. Sample Chemical/Carrier Recovery				
Was a tracer/carrier added to each sample?	/			
Were tracer/carrier recoveries within the QC limits?	/			
VII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		1		
Were the performance evaluation (PE) samples within the acceptance limits?			/	
VIII. Sample Result Verification	,			and the second s
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were the Minimum Detectable Activities (MDA) < RL?	V			

LDC#: 43996B296

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: MG
2nd Reviewer: L

Validation Area	Yes	No	NA	Findings/Comments			
IX. Overall assessment of data							
Overall assessment of data was found to be acceptable.	/						
X. Field duplicates							
Field duplicate pairs were identified in this SDG.		/					
Target analytes were detected in the field duplicates.			/				
XI. Field blanks			,				
Field blanks were identified in this SDG.	/						
Target analytes were detected in the field blanks.		/					

LDC # 43996 B396

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

METHOD: Radiochemistry (Method: PAI 734 Rev 13

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = activity of each analyte measured in the analysis of the sample. True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

S = Original sample activity D = Duplicate sample activity

Where, RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

					Recalculated	Reported	
Sample ID	Type of Analysis	Analyte	Found/S (units)	True/D (units)	%R or RPD	%R or RPD	Acceptable (Y/N)
S	Laboratory control sample	Dn. 228	8.349 (PC:1)	249 (PC:1) 8.618 (PC:1)	25.7	726	
LC3		- 1		,			>
	Matrix spike sample						
)	l	1		- Parameter
	Duplicate RPD		0 TU (PCi/L)	0.74 (PCi/L) 0.86 (PCi/L)	DER	DER	
7		Ra-338	0,40 ±	+ 0.43	0.20H	0.196	>
	Chemical recovery						
**Satisfy		32	(gm) 07005 (gm) 084P6	30070 (mg)	98.0	1.86	

Comments:

LDC #: 43996B296

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:	of
Reviewer:_	MG
2nd reviewer:_	4

METHOD: Radiochemistry (Method: PAI 724 Rev 13)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Have results been reported and calculated correctly? (Y)N N/A Are results within the calibrated range of the instruments?

Analyte results for #1, Ra-228 using the following equation: ____reported with a positive detect were recalculated and verified Recalculation: decay $\frac{(2.413 \text{ cpm}) - (1.866 \text{ cpm})}{(2.22)(0.4652)(0.997 \text{ L})(0.981)} \times 1.356 = 0.734 \text{ PC}i/L$ Concentration = (cpm - background)

E = Counter Efficiency SA = Self-absorbance factor

2.22 x E x SA x Vol

Vol = Volume of sample

#	Sample ID	Analyte	Reported Concentration (だうん)	Calculated Concentration (PCi / L)	Acceptable (Y/N)
Ţ	l	Ra-228	0.74	0.73	Y
2	2	Ra-228	0.76	0.76	
-					
 					

Note:	Sample	3	15	N.D.	

LDC#: 43911

EDD POPULATION COMPLETENESS WORKSHEET

Date D D 4/9
Page: 1 of 1
2nd Reviewer:

The LDC job number listed above was entered by ______.
Entered from Body or Summary

	EDD Process	:	Comments/Action
I.	EDD Completeness	-	
Ia.	- All methods present?	y	
Ib.	- All samples present/match report?	<u>ý</u>	
Ic.	- All reported analytes present?	9	
Id.	-10% or 100% verification of EDD?	9	
1 (2) () 1 () ()			
II.	EDD Preparation/Entry	-	
IIa.	- Carryover U/J?	y	
IIb.	- Reason Codes used? If so, note which codes.	y	cuent
IIc.	- Additional Information QC Level, Validator, Validated Y/N, etc.)	y	
III.	Reasonableness Checks	_	
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	У	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	3	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	Ÿ	
IIId.	-Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?	y ma	
IIIe.	- Do blank concentrations in report match EDD where data was qualified due to blank contamination?	WA	
IIIf.	- Were multiple results reported due to dilutions/reanalysis? If so, were results qualified appropriately?	MA	
IIIg.	-Are there any discrepancies between the data packet and the EDD?	N	

Notes:	*see discrepancy sheet			

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Tidewater, Inc. 3761 Attucks Drive Powell, OH 43065 February 1, 2019

ATTN: Mr. Ryan Wensink, PE

SUBJECT: Phase 1 RI OU2 Great Kills Park, Data Validation

Dear Mr. Wensink,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on January 9, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #44135:

SDG #	<u>Fraction</u>					
1810627, 1811039	Uranium, G Spectroscopy	Alpha	&	Beta,	Radium-226,	Radium-228, Gamma

The data validation was performed under Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York, September 2018
- Final Radionuclide Data Quality Evaluation Guidance, September 2008
- Multi Agency Radiological Laboratory Analytical Protocols, MARLAP, Manual, July 2004
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

L:\Tidewater\Great Kills Park\44135ST.wpd

Attachment 1

1,333 pages-CD

		ഗ	$\overline{}$		П			Т		П		$\overline{}$		$\overline{}$					$\overline{}$	П	$\overline{}$		$\overline{}$	$\overline{}$	П			П	T	61
	5	>	\dashv		Н	_		Н	\vdash	Н	H			_	Н	Н	-		Н	Н	\dashv	-	\dashv		Н	Н	-	\dashv	$\overline{}$	
		\neg	\dashv		Н			H	_		H			_			_		Н	Н	-		\dashv			_	_	\dashv	-	
	5	S						H		H	H			H	_				Н	Н	\dashv	_	\dashv	_		H	_	\dashv	\dashv	
		≯			-			H			_						_		Н	H	\dashv	_	\dashv	_	H	_	_	\dashv	-	
		S						L											Ц	Ш			_					_	+	
		>	_		_			L			L					_			Ш	Ш	Ц		_						4	
	9	S	_																Ш	Ш									4	
		≯						L											Ш	Ш	Ц		_			Ц		4		
		S																												0
		≯						L															╝							
Ş		S																												0
Park)		8																												0
S P		S																												0
I≅I		>																	П				╗					\Box	\Box	
at I		S	\Box		П														П	П	\Box		寸					\dashv	\top	0
Great Kills	1	>			П			Г	Г		П	П				П			П	П	П		寸		П	П		\dashv	十	0
		S	\exists					Т	\vdash	Г		Г		2					П	П	\exists		\dashv		П			\dashv	\top	
OU2		>	\exists					H		Н				Н	П		_		Н	П	\exists		\dashv		Н		_	\dashv	\top	
2		S	\exists					H		Н						-			Н	Н			\dashv		П			\dashv	\top	
-		>				=		H		H						=	=		H	H	\exists	=	\dashv		H	-	=		_	
ase		S	\dashv					H	\vdash					H	Н				Н		\dashv		\dashv	_	Н			\dashv	\dashv	
Ph	3	» >	\dashv		-			H	\vdash		H			_		_			Н	Н	\dashv		\dashv			Н		\dashv	_	
🛨	a . (S	29	_			_		\vdash	H	H			_	_		_	_	Н	Н	\dashv	_	\dashv	_	H	H	_	\dashv	_	59 (
ō	amır Spec 13R1	×	0		Н			\vdash	\vdash	\vdash	\vdash	H		_	Н		Н	_	Н	Н	\dashv	_	\dashv	_	Н	Н	Н	\dashv	\rightarrow	-11
eII,	8 8 3)(7	\vdash	\dashv		_			┝	H	H	H	H		H	Н	_	_	_	Н	Н	\dashv	_	\dashv	_	H	H	_	\dashv	\dashv	
>	Gamma Ra-228 Spec. (724R13)(713R14)	S /		0	-			H			_						_		Н		-	_	\dashv			_	_	\dashv	\dashv	
F.	3 R	>		8	=	_		H			H	H				-	_			H	\dashv	_	\dashv		H	_	=	\dashv	-	∞
ate	Ra-226 (903.1)	S		0	H			H			L			L	_		_		Н		-	_	\dashv	_	H	H	_	\dashv	-	
LDC #44135 (Tidewater-Powell, OH / Phase	3) (9)	≯		8	Н			┞	L	L	L			_	Н				Н	Ш	-		\dashv	_		H		\dashv	_	∞
_ide	Gross α&β (724R13)	S		0		_	_		L	L	L				Ш		_	_	Н	Ш	-		\dashv	_	L	L	_	\dashv	-	
2 (1	α (72	≯		8	Ш			L	L		L			_	Ш				Щ	Ц	Ц		\dashv		Ш	Ш		_	_	∞
13	Diss. U (200.8)	S	_'	0					L		L				Ш				Ц	Ш	Ц		4		Ш	Ш		\dashv	-	
#44		≯	_'	4			L	-			L								Ш	Ц			_	_		_		\dashv	\rightarrow	4
S	U (200.8)	S	_'	0				L															4					4	_	0
	(20	>	_'	4					_					_					Ц	Ц			_					\perp	4	4
	(3) DATE DUE		0/19	0/19																										
	DA D		01/30/19	01/30/19																										
	ë O									П									П				コ					ヿ	Т	7
	DATE REC'D		01/09/19	01/09/19																										
		nent	0	0	Н			\vdash	\vdash	\vdash	\vdash			_	Н		-		Н	Н	\dashv		\dashv	_	Н	Н	-	\dashv	+	\dashv
		Sedii		_																										
>	SDG#	Soil-	1810627	1811039																										T/PG
Level IV]S	Water/Soil-Sediment	181	181																										
Le																														
	LDC	Matrix:		~	H			\vdash	\vdash		\vdash		Н	Н	H				Н	Н	\dashv		\dashv			\vdash		\dashv	+	Ial
		Ž	⋖	В													ļ.,,					L,					ļ.,,		<u> </u>	Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 28, 2019

Parameters:

Gamma Spectroscopy

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1810627

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OU2-1-SE001	1810627-1	Sediment	10/22/18
OU2-1-SE002	1810627-2	Sediment	10/22/18
OU2-1-SE004	1810627-3	Sediment	10/22/18
OU2-1-SE004-DUP	1810627-4	Sediment	10/22/18
OU2-1-SE003	1810627-5	Sediment	10/22/18
OU1-1-SE005	1810627-6	Sediment	10/23/18
REF-1-SE001	1810627-7	Sediment	10/23/18
OU2-1-SS007	1810627-8	Soil	10/23/18
OU2-1-SS003	1810627-9	Soil	10/23/18
OU2-1-SS001	1810627-10	Soil	10/23/18
OU2-1-SS005	1810627-11	Soil	10/23/18
OU2-1-SS005-DUP	1810627-12	Soil	10/23/18
OU2-1-SS004	1810627-13	Soil	10/24/18
OU2-1-SS006	1810627-14	Soil	10/24/18
OU2-1-SS002	1810627-15	Soil	10/24/18
OU2-1-SS008	1810627-16	Soil	10/24/18
OU2-1-SU002-07	1810627-17	Soil	10/25/18
OU2-1-SU004-10	1810627-18	Soil	10/25/18
OU2-1-SU004-16	1810627-19	Soil	10/25/18
OU2-1-SU004-29	1810627-20	Soil	10/25/18
OU2-1-SU005-01	1810627-21	Soil	10/26/18
OU2-1-SU005-01-DUP	1810627-22	Soil	10/26/18
OU2-1-SU005-14	1810627-23	Soil	10/26/18
OU2-1-SU006-10	1810627-24	Soil	10/26/18
OU2-1-SU006-13	1810627-25	Soil	10/26/18
OU2-1-SU008-03	1810627-26	Soil	10/26/18

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OU2-1-SU001-08	1810627-27	Soil	10/29/18
OU2-1-SU003-09	1810627-28	Soil	10/29/18
OU2-1-SU007-08	1810627-29	Soil	10/29/18
OU2-1-SE004DUP	1810627-3DUP	Sediment	10/22/18
OU2-1-SS006DUP	1810627-14DUP	Soil	10/24/18
OU2-1-SU007-08DUP	1810627-29DUP	Soil	10/29/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gamma Spectroscopy by PAI 713 Rev. 14

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analysis were not required by the method.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples OU2-1-SE004 and OU2-1-SE004-DUP, samples OU2-1-SS005 and OU2-1-SS005-DUP, and samples OU2-1-SU005-01 and OU2-1-SU005-01-DUP were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Activity	(pCi/L)			
Isotope	OU2-1-SE004	OU2-1-SE004-DUP	RPD (Limits)	Flag	A or P
Actinium-228	0.39	0.31	23 (≤50)	-	-
Bismuth-214	0.31	0.29	7 (≤50)	. <u>-</u>	-
Potassium-40	7.8	7.9	1 (≤50)	-	-
Lead-212	0.351	0.41	16 (≤50)	-	-
Lead-214	0.34	0.46	30 (≤50)	-	-
Radium-228	0.39	0.31	23 (≤50)	-	-
Thallium-208	0.138	0.164	17 (≤50)	-	-

	Activity	(pCi/L)			
Isotope	OU2-1-SS005	OU2-1-SS005-DUP	RPD (Limits)	Flag	A or P
Actinium-228	0.69	0.67	3 (≤50)	. •	-
Bismuth-212	0.37	0.63	52 (≤50)	J (all detects)	А
Bismuth-214	0.70	0.68	3 (≤50)	-	-
Potassium-40	9.5	9.5	0 (≤50)	-	-
Lead-212	0.96	0.87	10 (≤50)	-	-
Lead-214	0.80	0.92	14 (≤50)	-	
Ra-223	0.24U	0.22	9 (≤50)	-	-
Radium-226	1.44	1.35	6 (≤50)	-	-
Radium-228	0.69	0.67	3 (≤50)	-	_

	Activity (pCi/L)				, 11
Isotope	OU2-1-SS005	OU2-1-SS005-DUP	RPD (Limits)	Flag	A or P
Thallium-208	0.261	0.253	3 (≤50)	- -	-
Thallium-210	0.044	0.029U	41 (≤50)	-	-
Uranium-238	1.04	0.72U	36 (≤50)	-	-

	Activity (pCi/L)				
Isotope	OU2-1-SU005-01	OU2-1-SU005-01-DUP	RPD (Limits)	Flag	A or P
Actinium-228	0.49	0.70	35 (≤50)	-	-
Bismuth-212	0.40U	0.66	49 (≤50)	-	· -
Bismuth-214	0.63	0.79	23 (≤50)	-	-
Potassium-40	9.1	9.7	6 (≤50)	<u>-</u>	-
Lead-212	0.76	0.93	20 (≤50)	-	-
Lead-214	0.66	0.91	32 (≤50)	-	-
Radium-223	0.24U	0.28	15 (≤50)	-	-
Radium-226	0.99U	1.53	43 (≤50)	-	-
Radium-228	0.49	0.70	35 (≤50)	-	-
Thallium-208	0.253	0.240	5 (≤50)	-	-
Uranium-238	1.00	0.86U	15 (≤50)	-	-

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL) with the following exceptions:

Sample	Isotope	MDC	RL
OU2-1-SS008	Bismuth-214	0.24 pci/g	0.2 pci/g
	Lead-214	0.23 pci/g	0.2 pci/g

Sample	Isotope	MDC	RL
OU2-1-SU006-10	Bismuth-214	0.41 pci/g	0.2 pci/g
OU2-1-SU006-13	Bismuth-214	0.29 pci/g	0.2 pci/g
OU2-1-SU008-03	Bismuth-214	0.32 pci/g	0.2 pci/g
OU2-1-SU007-08DUP	Bismuth-214	0.27 pci/g	0.2 pci/g

The MDC was greater than the RL as listed above.

XI. Sample Result Verification

All sample result verification met validation criteria with the following exceptions:

Sample	Isotope	Finding	Flag	A or P
OU2-1-SE002 REF-1-SE001 OU2-1-SS006 OU2-1-SS002 OU2-1-SS008 OU2-1-SU004-10 OU2-1-SU005-14 OU2-1-SU006-10 OU2-1-SU006-13 OU2-1-SU008-03 OU2-1-SU003-09 OU2-1-SU007-08	All isotopes	The sample density is greater than ±15% the density of the calibration standard samples are less dense.	J+ (all detects)	A
OU1-1-SE005 OU2-1-SS007 OU2-1-SS001	All isotopes	The sample density is greater than ±15% the density of the calibration standard samples are more dense.	J- (all detects) UJ (all non-detects)	А

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to field duplicates RPD and sample density, data were qualified as estimated in seventeen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Gamma Spectroscopy - Data Qualification Summary - SDG 1810627

Sample	Isotope	Flag	A or P	Reason
OU2-1-SS005 OU2-1-SS005-DUP	Bismuth-212	J (all detects)	А	Field duplicates (RPD)
OU2-1-SE002 REF-1-SE001 OU2-1-SS006 OU2-1-SS002 OU2-1-SS008 OU2-1-SU004-10 OU2-1-SU005-14 OU2-1-SU006-10 OU2-1-SU006-13 OU2-1-SU006-13 OU2-1-SU008-03 OU2-1-SU003-09 OU2-1-SU007-08	All isotopes	J+ (all detects)	A	Sample result verification (sample density)
OU1-1-SE005 OU2-1-SS007 OU2-1-SS001	All isotopes	J- (all detects) UJ (all non-detects)	А	Sample result verification (sample density)

Phase 1 RI OU2 Great Kills Park
Gamma Spectroscopy - Laboratory Blank Data Qualification Summary - SDG
1810627

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park
Gamma Spectroscopy - Field Blank Data Qualification Summary - SDG 1810627

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 44135A35

SDG #: 1810627 Laboratory: ALS Environmental Level IV

Date: 1-24-19 Page:_[of Reviewer: 2nd Reviewer:

METHOD: Gamma Spectroscopy (PAI 713 Rev 14)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	Α	
II.	Initial calibration	A	
III.	Calibration verification	Α	
IV.	Laboratory Blanks	Α	
V.	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	7	not required
VII.	Duplicates	A	DUP
VIII.	Laboratory control samples	Α	LCS
IX.	Field duplicates	SW	D=3+4 D=11+12 D=21+22
X.	Minimum detectable activity (MDA)	SW	, and the second
XI.	Sample result verification	SW	
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

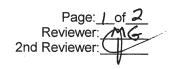
TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 1	OU2-1-SE001	1810627-1	Sediment	10/22/18
2 1	OU2-1-SE002	1810627-2	Sediment	10/22/18
3 1	OU2-1-SE004	1810627-3	Sediment	10/22/18
4 l	OU2-1-SE004-DUP	1810627-4	Sediment	10/22/18
5 l	OU2-1-SE003	1810627-5	Sediment	10/22/18
6 l	OU1-1-SE005	1810627-6	Sediment	10/23/18
71	REF-1-SE001	1810627-7	Sediment	10/23/18
8 l	OU2-1-SS007	1810627-8	Soil	10/23/18
₉ l	OU2-1-SS003	1810627-9	Soil	10/23/18
10	OU2-1-SS001	1810627-10	Soil	10/23/18
111	OU2-1-SS005	1810627-11	Soil	10/23/18
₁₂ 1	OU2-1-SS005-DUP	1810627-12	Soil	10/23/18
13	OU2-1-SS004	1810627-13	Soil	10/24/18
14	OU2-1-SS006	1810627-14	Soil	10/24/18
15	OU2-1-SS002	1810627-15	Soil	10/24/18
16 l	OU2-1-SS008	1810627-16	Soil	10/24/18
17 l	OU2-1-SU002-07	1810627-17	Soil	10/25/18

LDC #:	44135A35
	771007100

VALIDATION COMPLETENESS WORKSHEET

SDG #: 1810627 Laboratory: ALS Environmental Level IV


Page: 2 of 2 Reviewer: 2nd Reviewer

Date: 1-24-19

METHOD: Gamma Spectroscopy (PAI 713 Rev 14)

	Olivert ID	LabilD	NA -4-i	l _{B-4-}
\vdash	Client ID	Lab ID	Matrix	Date
18	OU2-1-SU004-10	1810627-18	Soil	10/25/18
19	OU2-1-SU004-16	1810627-19	Soil	10/25/18
₂₀ l	OU2-1-SU004-29	1810627-20	Soil	10/25/18
₂₁ 2	OU2-1-SU005-01	1810627-21	Soil	10/26/18
22	OU2-1-SU005-01-DUP	1810627-22	Soil	10/26/18
23 2	OU2-1-SU005-14	1810627-23	Soil	10/26/18
242	OU2-1-SU006-10	1810627-24	Soil	10/26/18
252	OU2-1-SU006-13	1810627-25	Soil	10/26/18
262	OU2-1-SU008-03	1810627-26	Soil	10/26/18
₂₇ 2		1810627-27	Soil	10/29/18
₂₈ 2	OU2-1-SU003-09	1810627-28	Soil	10/29/18
₂₉ 2	OU2-1-SU007-08	1810627-29	Soil	10/29/18
₃₀ l	OU2-1-SE004DUP	1810627-3DUP	Sediment	10/22/18
31	OU2-1-SS006DUP	1810627-14DUP	Soil	10/24/18
₃₂ J	OU2-1-SU007-08DUP	1810627-29DUP	Soil	10/29/18
33				
34_				
35_				
₃₆ l	PBSI			
₃₇ ð	PBSA			
Votes				

Notes:	 	 	 	 	 	

PAI 713 Rev. 14

	INT (C)
Method: Radiochemistry	/(E PA Metho d

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
II. Calibration				
Were all instruments and detectors calibration as required?	/			
Were NIST traceable standards used for all calibrations?	/			
Was the check source identified by activity and radionuclide?	/			
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	/			
III. Blanks				
Were blank analyses performed as required?	/			
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spikes and Duplicates				
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP Soil Water.		/		
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/	
Was a duplicate sample analyzed at the required frequency of 5% in this SDG?	/			
Were all duplicate sample duplicate error rations (DER) ≤1.42?.	V			
V. Laboratory control samples				
Was an LCS analyzed per analytical batch?	V			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/			
VI. Sample Chemical/Carrier Recovery				
Was a tracer/carrier added to each sample?		/		
Were tracer/carrier recoveries within the QC limits?			/	
VII. Regional Quality Assurance and Quality Control	,			
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?			V	
VIII. Sample Result Verification				
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were the Minimum Detectable Activities (MDA) < RL?		V		

LDC #: 44135A35

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: AG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments				
IX. Overall assessment of data								
Overall assessment of data was found to be acceptable.	/							
X. Field duplicates	X. Field duplicates							
Field duplicate pairs were identified in this SDG.	/							
Target analytes were detected in the field duplicates.								
XI. Field blanks								
Field blanks were identified in this SDG.		/						
Target analytes were detected in the field blanks.			/					

LDC# 44135A35

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 2
Reviewer: AG
2nd Reviewer: 1

Radiochemistry, Method PAI 713 Rev. 14

	Activ	ity (pCi/g)		
Isotope	3	4	RPD (≤50)	
Ac-228	0.39	0.31	23	
Bi-214	0.31	0.29	7	
K-40	7.8	7.9	1	
Pb-212	0.351	0.41	16	
Pb-214	0.34	0.46	30	
Ra-228	0.39	0.31	, 23	
TI-208	0.138	0.164	17	

V:\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2019\44135A35.wpd

	Activity	(pCi/g)	RPD	
Isotope	11			
Ac-228	0.69	0.67	3	3
Bi-212	0.37	0.63	52	Jets/K
Bi-214	0.70	0.68	3	/ /
K-40	9.5	9.5	0	
Pb-212	0.96	0.87	10	
Pb-214	0.80	0.92	14	
Ra-223	0.24U	0.22	9	NQ
Ra-226	1.44	1.35	6	
Ra-228	0.69	0.67	3	
TI-208	0.261	0.253	3	
TI-210	0.044	0.029U	41	NQ
U-238	1.04	0.72U	36	NQ

V:\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2019\44135A35.wpd

	Activity	/ (pCi/g)		
Isotope	21	22	RPD (≤50)	
Ac-228	0.49	0.70	35	
Bi-212	0.40U	0.66	49	NQ
Bi-214	0.63	0.79	23	

LDC# 44135A35

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: 2 of 2
Reviewer: MG
2nd Reviewer:

Radiochemistry, Method PAI 713 Rev. 14

	Activity	(pCi/g)		
Isotope	21	22	RPD (≤50)	
K-40	9.1	9.7	6	
Pb-212	0.76	0.93	20	
Pb-214	0.66	0.91	32	
Ra-223	0.24U	0.28	15	NQ
Ra-226	0.99U	1.53	43	NQ
Ra-228	0.49	0.70	35	
TI-208	0.253	0.240	5	
U-238	1.00	0.86U	15	NQ

V:\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2019\44135A35.wpd

LDC# 44135A35

VALIDATION FINDINGS WORKSHEET Minimum Detectable Activities

Page: of Reviewer:_ 2nd Reviewer:_

METHOD: Radiochemistry (Method: PAI 713 Rev. 14

MDC
The following sample MDAs are above the RDL:

(PCi/g)

			-	 	 				_						 		<u></u>	 	
	Qualifications	+ex+					>	^											
	Dilution												·			·			
9	MDC MBA (units)	he.o	€6.0	14.0	0.29	Ç.	0.52	0.97											
	RDL (units)	6.0	6.0	0.2	6.2		0.9	0.2											
	Isotope	Bi- 214	416-99	Bi-314	Bi-314		151-214	131-314											
	Sample ID	9/	^	he	35		96	32											
	#			76	3		7	5											

Detectable Concentration Minimum MDC = Comments:

LDC#: 44135A35

VALIDATION FINDINGS WORKSHEET Sample Result Verification

МЕТНОD:Radiochemistry Method: РАІ 713 Rev I4

# Sample ID	Sotope	Finding	Qualifications
1 2,7, 14 > 16.		lensity is	J+dets/A (dets & ND)
18,19,23-36		the calibration 5td. Sample	
oc 16 hp ap			
		The sample density is greater than + 15% the	J-/UJ/A (dors & ND)
2 6,8,10	>	density of the calibration std. Samples are more dense.	
	-		

Comments:

LDC# 44135 A35

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: Reviewer: 2nd Reviewer:

METHOD: Radiochemistry (Method: PAI 713 Rev 14

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = activity of each analyte <u>measured</u> in the analysis of the sample. True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

S = Original sample activity D = Duplicate sample activity Where,

ptable

₹

	Accep. (Y/I		> -		\		>		1	
Reported	%R or RPD		100		l	DER	2eh-0		١	
Recalculated	%R or RPD		001		١	DER	0.445		١	
	True/D (units)		471 (Pci/g) 469.1 (Pci/g)		1	0.351 (pci/4) 0.430 (pci/4)	+ 0.12		1	
	Found/S (units)		471 (Pciz)		١	0.351 (pc:/4)	+ 0.098			
	Analyte		Am-241		l		PS-312		١	
	Type of Analysis	Laboratory control sample		Matrix spike sample		Duplicate RPD		Chemical recovery		
	Sample ID		5 2 7		}		30		١	

Comments:

LDC#: 44135 A35

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1 df 2
Reviewer:	MG
2nd reviewer:	\checkmark

METHOD: Radiochemistry (Method: PAI 713 Rev. 14

Plea	se see qualifications l	below for all question	is answered "N"	. Not applicable	questions are	identified as "N/A	١".
------	-------------------------	------------------------	-----------------	------------------	---------------	--------------------	-----

Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments?

Analyte results forusing the following ed	# 1, quation:	K-40		reported with	a positive det	tect were recalc	ulated and verified
Concentration = (cpm - background)		454 cts	Recalculation:				
2.22 x E x SA x Vol			' 155 min		11 (4	oCi/-	
E = Counter Efficiency SA = Self-absorbance fact Vol = Volume of sample	tor (2.6	2)(0.0047	1)(225g)(0.	1070)	11.64	F5:/g	

#	Sample ID	Analyte	Reported Concentration (PCi/q)	Calculated Concentration (PCI/q)	Acceptable (Y/N)
		K-40	11.6	11.6	Y
2	2	Bi- 214	0.81	0.81	1
3	3	Ac-278	0.39	0.40	
4	4	Pb - 212	0.41	0.41	
5	5	Pb - 914	0.56	0.56	
6	6	Ra-228	0.24	0.24	
7	7	T1-208	0.146	0.15	
8	8	K-40	7.2	7.2	
9	9	Pb - 212	0.369	0.37	
10	10	Pb- 214	0.24	0.24	
11	П	Bi-212	0.37	0.37	
12	12	Ra-223	0.22	0.22	
13	13	Ra-224	0.9	0.94	
14	14	Ra-226	2.63	2.63	
15	15	U - 238	1.36	1.36	
16	16	T1-210	0.035	0.034	
17	17	Ac- 228	0.85	0.85	
18	18	Bi-214	0.97	0.97	
19	19	К- 40	7.7	7.6	
90	Jo	Pb-212	1.08	1.08	1

Note:	

LDC#: 44135A35

SA = Self-absorbance factor Vol = Volume of sample

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1	_of	
Reviewer:		MG	
2nd reviewer:			

METHOD: Radiochemistry (Method: PAI 713 Rev. 14

D		licable questions are identified as "N/A".
Diagra caa diiglificatione halow/tor all	allections onewered "N" Not one	dicable directions are identified as "NI/A"
Flease see qualifications below to all	JUESTIONS GUSWEIEG IN INCHAUL	meable obesidors are rocumed as INA

(Y)N N/A Have results been reported and calculated correctly? ♥N N/A Are results within the calibrated range of the instruments?

Analyte results for ___#_ 21 _____reported with a positive detect were recalculated and verified using the following equation: Concentration = Recalculation: $\frac{121 \text{ cts}/120 \text{ min}}{(2.22)(0.0345)(234g)(0.0557)} = 1.010 \text{ pCi/g}$ (cpm - background) 2.22 x E x SA x Vol E = Counter Efficiency

#	Sample ID	Analyte	Reported Concentration (P ^C ;/4)	Calculated Concentration (pCi/q)	Acceptable (Y/N)
21	21	U-238	1.00	1.01	Y
22	72	Bi-212	0.66	0.66	
23	23	Ra-224	1.4	1.4	
24	24	K -40	5.51	5.51	
25	25	Ra-226	2.62	2.62	
26	26	Ra-228	0.85	0.85	
27	<i>9</i> 7	Pb-212	1.02	1.02	
28	28	T1-208	0.499	0.50	
29	99	Bi-214	2.23	2.23	

Note:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 28, 2019

Parameters:

Uranium

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1811039

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OU2-1-MW010	1811039-1	Water	10/29/18
OU2-1-MW010-F	1811039-2	Water	10/29/18
OU2-1-MW008WT	1811039-3	Water	10/31/18
OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
OU2-1-MW008WT-F	1811039-5	Water	10/31/18
OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
OU2-1-MW009WT	1811039-7	Water	10/31/18
OU2-1-MW009WT-F	1811039-8	Water	10/31/18
OU2-1-MW010MS	1811039-1MS	Water	10/29/18
OU2-1-MW010MSD	1811039-1MSD	Water	10/29/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Uranium by Environmental Protection Agency (EPA) Method 200.8

All sample results were subjected to Level IV evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples OU2-1-MW008WT and OU2-1-MW008WT-DUP and samples OU2-1-MW008WT-F and OU2-1-MW008WT-F-DUP were identified as field duplicates. No results were detected in any of the samples.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Uranium - Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Uranium - Laboratory Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Uranium - Field Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

LDC #: 44135B4a SDG #: 1811039

VALIDATION COMPLETENESS WORKSHEET

Level IV

	Date:	1-25-	19
	Page:_	Lof	
	Reviewer:	MG	/
2nd	Reviewer.		

Laboratory: ALS Environmental

METHOD: Uranium (EPA Method 200.8)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A	
11.	ICP/MS Tune	A	
III.	Instrument Calibration	Α	
IV.	ICP Interference Check Sample (ICS) Analysis	Α	
V.	Laboratory Blanks	Α	
VI.	Field Blanks	7	
VII.	Matrix Spike/Matrix Spike Duplicates	Α	MS/MSD
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	A	SD: 1
X.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	ND	D=3+4 D=5+6
XII.	Internal Standard (ICP-MS)	A	
XIII.	Sample Result Verification	A	
ΧIV	Overall Assessment of Data	Α	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	OU2-1-MW010	1811039-1	Water	10/29/18
2	OU2-1-MW010-F	1811039-2	Water	10/29/18
3	OU2-1-MW008WT	1811039-3	Water	10/31/18
4	OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
5	OU2-1-MW008WT-F	1811039-5	Water	10/31/18
6	OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
7	OU2-1-MW009WT	1811039-7	Water	10/31/18
3	OU2-1-MW009WT-F	1811039-8	Water	10/31/18
9	OU2-1-MW010MS	1811039-1 M S	Water	10/29/18
10	OU2-1-MW010MSD	1811039-1MSD	Water	10/29/18
11				
12				
13	PBW			

Notes		 		

LDC #: 44135B4a

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: MG
2nd Reviewer:

Method: Metals (EPA SW 846 Method 6010/7000/6020)

motificativetais (EFF) eve equivalented de 16/1/000/0020)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
Cooler temperature criteria was met.	/			
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	/			
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration				·
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits?	/			
Were all initial calibration correlation coefficients > 0.995?	/			
IV. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?	/			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	V			
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	V	-		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

VALIDATION FINDINGS CHECKLIST

Page: 2 of 7
Reviewer: 2 of 2

Validation Area	Yes	No	NA	Findings/Comments
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)				
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?	/			
If the %Rs were outside the criteria, was a reanalysis performed?			V	
IX. ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?	/			
Were all percent differences (%Ds) < 10%?	V			
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		/		
X. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XI. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XII. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.		/		
XIII. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			/	

LDC#. 44135 B4a

Initial and Continuing Calibration Calculation Verification **VALIDATION FINDINGS WORKSHEET**

Page: 1 of 1

Reviewer; 2nd Reviewer

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source $%R = Found \times 100$ True

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Low Level calibration)						
	ICP/MS (Low Level calibration)						
	ICP (Initial calibration)						
o7:5e ICV	ICP/MS (Initial calibration)	7	1.9042	2	95	95	>
	CVAA (Initial çalibration)						
	ICP (Continuing calibration)						
08:17 CCV (ICP/MS (Continuing calibration)	7	0.9454		95	44	
	CVAA (Continuing calibration)						

ICP-MS TUNE	Calculation	Mass	Actual (Mean Counts / Axis)	Required (Counts / Axis)	Recalculated %RSD	Acceptable (Y/N)
tune	Mass Axis	308	J08.00	± 0.1 AMU	۸۸	>
~	%RSD	59	1.86	≤ 5% RSD	1.86	>

Comments:

44135B4a LDC #:

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $|S-D|_X \times 100$ (S+D)/2

S = Original sample concentration D = Duplicate sample concentration Where,

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = [I-SDR] × 100

Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

						Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	(units)	%R/RPD/%D	%R/RPD/%D	Acceptable (Y/N)
08:11 ICSAB	ICP interference check	מ	(7/bm) 100'0 (1/bm) re6000'0	(7) 0.001	(7/bm)	98	8	>
08:29 LCS	Laboratory control sample	n	9.292 (mg/	.292 (Mg/L) 10 (Mg/L)	(mg (r)	93	93	
6 0h;80	Matrix spike	ゴ	(SSR-SR) (Mg/L)	(7/6m) 01 (7)	(7/61/	26	26	
01/6 6/10	Duplicate	7	11.39 (mg/	1.39 (mg/L) 11.52 (mg/L)	(7) bm)	1.1	not reported	
1 0835/88:37	ICP serial dilution	2	0.00165 (mg/L) 0.00154 (mg/L)	(2) 0.00154	(Ty Bun)	7	9	>

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

2000 Sec. 11

THE PROPERTY OF THE PROPERTY O

LDC#: 44135 B4a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>of</u> _
Reviewer:_	MG
2nd reviewer:_	Y

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qua YN N/A YN N/A YN N/A	Have results been reporte	stions answered "N". Not applicable questions are identified as "N/A". d and calculated correctly? rated range of the instruments and within the linear range of the ICP? bw the CRDL?	
Detected analytequation:	te results for#,	were recalculated and verified using the follo	win
Concentration =	(RD)(FV)(Dil) (In. Vol.) Raw data concentration	Recalculation: $(0.1653 \text{ Mg/L})(0.050 \text{ L})(10) = 1.653 \text{ Mg/L}$	
r. Vol. = Dil =	Final volume (ml) Initial volume (ml) or weight (G) Dilution factor	0.050 L	

Sample ID	Analyte	Reported Concentration (Mg/L)	Calculated Concentration (Mg / L)	Acceptable (Y/N)
	u	1.6	1.7	Y
2	U	1.6	1.6	
		:		
7	Ч	1.1		
0				
8	<u>U</u>		1.0	
	Sample ID 2 7 8	1 U U 7 U	Sample ID Analyte Concentration (Mg/L)	Sample ID Analyte Concentration (Mg/L) Concentration (Mg/L)

Note:	Samples	#_	$3\rightarrow 6$	are	N.D.	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 28, 2019

Parameters:

Gross Alpha & Beta

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1811039

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OU2-1-MW010	1811039-1	Water	10/29/18
OU2-1-MW010-F	1811039-2	Water	10/29/18
OU2-1-MW008WT	1811039-3	Water	10/31/18
OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
OU2-1-MW008WT-F	1811039-5	Water	10/31/18
OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
OU2-1-MW009WT	1811039-7	Water	10/31/18
OU2-1-MW009WT-F	1811039-8	Water	10/31/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gross Alpha and Beta by PAI 724 Rev. 13

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples OU2-1-MW008WT and OU2-1-MW008WT-DUP and samples OU2-1-MW008WT-F and OU2-1-MW008WT-F-DUP were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Activity	(pCi/L)	·		
Isotope	OU2-1-MW008WT	OU2-1-MW008WT-DUP	RPD (Limits)	Flag	A or P
Gross alpha	3.3U	8.2	85 (≤20)	NQ	-
Gross beta	18.5	18.7	1 (≤20)	-	-

	Activity	(pCi/L)			
Isotope	OU2-1-MW008WT-F	OU2-1-MW008WT-F-DUP	RPD (Limits)	Flag	A or P
Gross alpha	10.8	10.5	3 (≤20)	-	-
Gross beta	18.9	17.2	9 (≤20)	-	-

NQ = One or both results were less than the limit of quantitation, therefore no data were qualified.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL) with the following exceptions:

Sample	Isotope	MDC	RL
OU2-1-MW010	Gross alpha	4.7 pCi/L	3 pCi/L
	Gross beta	4.4 pCi/L	4 pCi/L
OU2-1-MW010-F	Gross alpha	4.6 pCi/L	3 pCi/L
	Gross beta	5.5 pCi/L	4 pCi/L
OU2-1-MW008WT	Gross alpha	4.3 pCi/L	3 pCi/L
	Gross beta	4.2 pCi/L	4 pCi/L
OU2-1-MW008WT-DUP	Gross alpha	4.3 pCi/L	3 pCi/L
OU2-1-MW008WT-F	Gross alpha	3.6 pCi/L	3 pCi/L
OU2-1-MW008WT-F-DUP	Gross alpha	5.8 pCi/L	3 pCi/L
	Gross beta	5.5 pCi/L	4 pCi/L

XI. Sample Result Verification

All sample result verifications were acceptable.

The results for the dissolved metals sample analysis were greater than the total metals sample analysis as follows:

	Concentr	ation (pCi/L)
Analyte	Dissolved	Total
Gross alpha	10.8	3.3U

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Laboratory Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Gross Alpha & Beta - Field Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

LDC #: 44135B22 SDG #:___1811039

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date:	1- 4	フ	_
Page:_	<u>l</u> of	1	
Reviewer:	M	7.	_

Laboratory: ALS Environmental

METHOD: Gross Alpha & Beta (PAI 724 Rev 13)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	Α	
II.	Initial calibration	Α	
III.	Calibration verification	Α	
IV.	Laboratory Blanks	Α	
V.	Field blanks	7	
VI.	Matrix Spike/Matrix Spike Duplicates	N	client specified
VII.	Duplicates	N	n n
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	SW	D=3+4 D=5+6
X.	Minimum detectable activity (MDA)	SW	
XI.	Sample result verification	SW	
XII	Overall assessment of data	A_	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

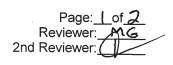
ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank


OTHER:

	Client ID	Lab ID	Matrix	Date
1	OU2-1-MW010	1811039-1	Water	10/29/18
2	OU2-1-MW010-F	1811039-2	Water	10/29/18
3	OU2-1-MW008WT	1811039-3	Water	10/31/18
4	OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
5	OU2-1-MW008WT-F	1811039-5	Water	10/31/18
3	OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
7	OU2-1-MW009WT	1811039-7	Water	10/31/18
8	OU2-1-MW009WT-F	1811039-8	Water	10/31/18
9				
10				
11				
12				
13				
14	PBW			

Notes:					
·			····-		

LDC#: 44135B22

VALIDATION FINDINGS CHECKLIST

PAI 724 Rev. 13
Method:Radiochemistry(EPA Method

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				·
All technical holding times were met.	/			
II. Calibration				
Were all instruments and detectors calibration as required?	V			
Were NIST traceable standards used for all calibrations?	V			
Was the check source identified by activity and radionuclide?	V			
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	/			
III. Blanks				
Were blank analyses performed as required?	/			
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spikes and Duplicates				
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil /Water.		V		
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/	
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?		/		
Were all duplicate sample duplicate error rations (DER) ≤1.42?.			/	
V. Laboratory control samples				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/			
VI. Sample Chemical/Carrier Recovery		•		
Was a tracer/carrier added to each sample?		/		
Were tracer/carrier recoveries within the QC limits?			V	
VII. Regional Quality Assurance and Quality Control			,	
Were performance evaluation (PE) samples performed?		V		
Were the performance evaluation (PE) samples within the acceptance limits?			/	
VIII. Sample Result Verification				
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
 Were the Minimum Detectable Activities (MDA) < RL?		V		

LDC#: 44135B22

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
X. Field duplicates			,	
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.	/			
XI. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			/	

LDC#<u>44135B22</u>

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page:	_of
Reviewer:	MG
nd Reviewer.	

Radiochemistry, Method PAI 724 Rev. 13

	Activity	y (pCi/L)		
Isotope	3	4	RPD (≤20)	
Gross Alpha	3.3U	8.2	85	NQ
Gross Beta	18.5	18.7	1	

V:\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2019\44135B22.wpd

	Activity	r (pCi/L)		
Isotope	5	6	RPD (≤20)	
Gross Alpha	10.8	10.5	3	
Gross Beta	18.9	17.2	9	

V:\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2019\44135B22.wpd

NR - one or both results < LOR

LDC# 44135 B32

VALIDATION FINDINGS WORKSHEET Minimum Detectable Activities

Page: __of_ Reviewer:_ 2nd Reviewer:

METHOD: Radiochemistry (Method: PAI 734 Rev. 13

Μος The following sample MBAs are above the RDL:

(PC: /L)

Qualifications	+ex+										7								
Dilution												-		ē.		-			
MDC MBA (units)	4.7	4.4	4.6	5.5		4.3	4.2	4.3	3.6	5.8	5,5								
RDL (units)	3	7	3	ᠴ	-	3	4	3	3	3	ל								
Isotope	Gross Alpha	Gross Beta	 Gross Alpha	Gross Beta		Gross Alpha	Gross Beta	Gross Alpha	Gross Alpha	Gross Alpha	Gross Beta								
Sample ID		7	4	7		3	1	4	5	9	-								
#			رد			3		4	5	و									

Detectable Concentration Rini man MDC = Comments:

LDC# 44135 B22

VALIDATION FINDINGS WORKSHEET Sample Result Verification

Page: Lof L Reviewer: MG 2nd Reviewer

METHOD: Radiochemistry Method:

- (bci/r) -

Qualifications	tex+														
Finding	dissolved > total														
total	3.3 U						-								
dissolved	8.01														-
Isotope	Gross Alpha		-												
Sample ID	3/5														
#															

Comments:

LDC# 44135 B22

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: 1 of Reviewer: 2nd Reviewer.

METHOD: Radiochemistry (Method: PAI 734 Rev. 13

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

%R = Found x 100 True

Found = activity of each analyte measured in the analysis of the sample. True = activity of each analyte in the source. Where,

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

S = Original sample activity D = Duplicate sample activity Where,

	Acceptable (Y/N)	•	>		I		•		(
Reported	%R or RPD		611		l				I
Recalculated	%R or RPD		611		ı		l		l
	True/D (units)		277 (PC:/L) 232.9 (PC:/L)		ı		1		ı
	Found/S (units)		377 (PCi/L)		1		1)
	Analyte	Gross	Alpha)				١
	Type of Analysis	Laboratory control sample		Matrix spike sample		Duplicate RPD		Chemical recovery	
	Sample ID		7		l		1)

Comments:

LDC#: 44135 B22

SA = Self-absorbance factor Vol = Volume of sample

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of[/
Reviewer:_	MO
2nd reviewer:_	

METHOD: Radiochemistry (Method: PAI 724 Rev. 13)

P	Lease	e see	qualifications	below for a	II questions	answered "N".	Not applicable qu	uestions are identified a	s "N/A".

YN N/A Have results been reported and calculated correctly?
Are results within the calibrated range of the instruments?

Analyte results for## using the following equation		reported with a positive detect were recalculated and verified
Concentration =	Recalculation	
(cpm - background) 2.22 x E x SA x Vol	(2.951 cpm)-(1.66	04 cpm) - (0.0179 cpm)
E = Counter Efficiency SA = Self-absorbance factor	(2.22)(0.4214)	(0.050 L)(0.938) = 28.93 PCi/L

#	Sample ID	Analyte	Reported Concentration (PC/L)	Calculated Concentration (ρCi/L)	Acceptable (Y/N)
		Gross Beta	28.9	98.9	Y
2	2	Gross Beta	20.6	20.6	
3	3	Gross Betg	18.5	18.5	
4	ч	Gross Alpha	8.2	8.2	
5	5	Gross Alpha	10.8	10.8	
6	6	Gross Alpha	10.5	10.5	
7	7	Gross Alpha	1.9	1.9	
8	8	Gross Beta	4.8	4.8	

Note:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 28, 2019

Parameters:

Radium-226

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1811039

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
OU2-1-MW010	1811039-1	Water	10/29/18
OU2-1-MW010-F	1811039-2	Water	10/29/18
OU2-1-MW008WT	1811039-3	Water	10/31/18
OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
OU2-1-MW008WT-F	1811039-5	Water	10/31/18
OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
OU2-1-MW009WT	1811039-7	Water	10/31/18
OU2-1-MW009WT-F	1811039-8	Water	10/31/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Radium-226 by Environmental Protection Agency (EPA) Method 903.1

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

No field duplicates were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples OU2-1-MW008WT and OU2-1-MW008WT-DUP and OU2-1-MW008WT-F and OU2-1-MW008WT-F-DUP were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Activity	(pCi/L)			
Isotope	OU2-1-MW008WT	OU2-1-MW008WT-DUP	RPD (Limits)	Flag	A or P
Ra-226	3.3	3.4	3 (≤20)	-	-

	Activity	(pCi/L)			
Isotope	OU2-1-MW008WT-F	OU2-1-MW008WT-F-DUP	RPD (Limits)	Flag	A or P
Ra-226	4.9	3.6	31 (≤20)	-	-

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL).

XI. Sample Result Verification

All sample result verifications were acceptable.

The results for the dissolved metals sample analysis were greater than the total metals sample analysis as follows:

	Concentration (pCi/L)					
Analyte	Dissolved	Total				
Radium-226	1.62	0.71				
Radium-226	4.9	3.3				

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Radium-226 - Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-226 - Laboratory Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-226 - Field Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

LDC #: 44135B29a SDG #: 1811039

VALIDATION COMPLETENESS WORKSHEET

Level IV

Page: lof l Reviewer: 2nd Reviewer:

Laboratory: ALS Environmental

METHOD: Radium 226 (EPA Method 903.1)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	Initial calibration	Α	
III.	Calibration verification	Α	
IV.	Laboratory Blanks	Α	
V.	Field blanks	7	
VI.	Matrix Spike/Matrix Spike Duplicates	7	client specified
VII.	Duplicates	7	tı u
VIII.	Laboratory control samples	Α	LCS/LCSD
IX.	Field duplicates	SW	D= 3+4 D=5+6
X.	Carrier recovery	Α	
XI.	Minimum detectable activity (MDA)	Α	
XII.	Sample result verification	SW	
XIII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

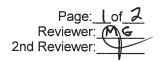
ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank


EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	OU2-1-MW010	1811039-1	Water	10/29/18
2	OU2-1-MW010-F	1811039-2	Water	10/29/18
3	OU2-1-MW008WT	1811039-3	Water	10/31/18
4	OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
5	OU2-1-MW008WT-F	1811039-5	Water	10/31/18
6	OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
7.	OU2-1-MW009WT	1811039-7	Water	10/31/18
8	OU2-1-MW009WT-F	1811039-8	Water	10/31/18
9				
10	·			
11		. :		
12				
13				
14_	PBW			

		 	 	 	 	 	·	 	 	
เเลเ	-00									
V()	tes:									

Method:Radiochemistry(EPA Method 903.1)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	V			
II. Calibration				
Were all instruments and detectors calibration as required?	V			
Were NIST traceable standards used for all calibrations?	V			
Was the check source identified by activity and radionuclide?	/			
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	✓			
III. Blanks				
Were blank analyses performed as required?	V			
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spikes and Duplicates				
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil /(Water)		/		
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			✓	
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?		/		
Were all duplicate sample duplicate error rations (DER) ≤1.42?.			V	
V. Laboratory control samples				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/			
VI. Sample Chemical/Carrier Recovery				
Was a tracer/carrier added to each sample?	/			
Were tracer/carrier recoveries within the QC limits?	/			
VII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?			/	
VIII. Sample Result Verification				
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were the Minimum Detectable Activities (MDA) < RL?	V			

LDC#: 44135B29a

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: AG
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
X. Field duplicates				
Field duplicate pairs were identified in this SDG.	/			
Target analytes were detected in the field duplicates.	/			
XI. Field blanks				·
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			/	

LDC#_44135B29a_

VALIDATION FINDINGS WORKSHEET Field Duplicates

	Page:_	1	of [
	Reviewer:	٨	10	/
nd	Reviewer:			

Radiochemistry, Method 903.1

	Activity	r (pCi/L)		
Isotope	3	4	RPD (≤20)	
Ra-226	3.3	3.4	3	

V:\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2019\44135B29a.wpd

	Activity	(pCi/L)		
Isotope	5	6	RPD (≤20)	
Ra-226	4.9	3.6	31	

V:\FIELD DUPLICATES\Field Duplicates\FD_inorganic\2019\44135B29a.wpd

LDC# 44135B39a

VALIDATION FINDINGS WORKSHEET Sample Result Verification

Page: Lof L Reviewer: MG 2nd Reviewer

METHOD:Radiochemistry Method: 903.1

- (pci/L) -

_				,	_	 _	,	 _	_	_		_					_			77
Qualifications	tex+		•											,						
	dissolved > total		•																	
+0+4 Finding		66																		
dissolved	1.62	6 7	•									,	- :							
Isotope	Ra-226	0 4-331	9														-	:		
Sample ID	(/3	3/5																		
#			8																	

Comments:

SRV.SW4.wpd

LDC# 44135 B39a

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

MG Page: [of [Reviewer:_

2nd Reviewer.

903.1 METHOD: Radiochemistry (Method:_ Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Found = activity of each analyte $\underline{\text{measured}}$ in the analysis of the sample. True = activity of each analyte in the source.

Where,

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

Where,

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

S = Original sample activity D = Duplicate sample activity

Type of Analysis Laboratory control sample		Analyte	Found/S (units)	True/D (units)	Recalculated %R or RPD	Reported %R or RPD	Acceptable (Y/N)
Ra-336		72	0.0 (PCi/)	50.0 (PC:/) 47.87 (Pc:/)	h0)	105	>
Matrix spike sample	ı		1	I	ı		١
Duplicate RPD	1		1			ı	١
Chemical recovery Ba 16		9	(المه) ۱۹۵	16130 (mg) 18730 (mg)	86.1	86.1	>

Comments:

TOTCLC.35

LDC#: 44135B29a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of
Reviewer:_	MG
2nd reviewer:	

METHOD: Radiochemistry	(Method: 903.1)	2nd reviewer:
YN N/A Have result	s been reported and	answered "N". Not applicable que calculated correctly? range of the instruments?	estions are identified as "N/A".
Analyte results for # using the following equation		reported with a	positive detect were recalculated and verified
Concentration =		Recalculation:	
(anna haakaraund)	22 000 44 /	1 /1 /	

(cpm - background) 2.22 x E x SA x Vol	(23.000 cts/15 min) - (1 cts/15 min)	PC
E = Counter Efficiency SA = Self-absorbance factor Vol = Volume of sample	(2.22)(1.6061)(0.876 L)(0.861) × 0.796 × 0.970 × 1.001	= 0.707 L

#	Sample ID	Analyte	Reported Concentration (PCi/L)	Calculated Concentration (pCi/ㄴ)	Acceptable (Y/N)
Ш	ı	Ra- 226	0.71	0.71	Y
2	2	Ra-226	1.62	1.62	
3	3	Ra-226	3.3	3.3	
4	Ч	Ra-226	3.4	3.4	
5	5	Ra-226	4.9	4.9	
6	6	Ra-226	3.6	3.6	
7	7	Ra-226	1.04	1.04	

Note:	sample	牛	8	is	N.D.	·			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Phase 1 RI OU2 Great Kills Park

LDC Report Date:

January 28, 2019

Parameters:

Radium-228

Validation Level:

Level IV

Laboratory:

ALS Environmental

Sample Delivery Group (SDG): 1811039

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OU2-1-MW010	1811039-1	Water	10/29/18
OU2-1-MW010-F	1811039-2	Water	10/29/18
OU2-1-MW008WT	1811039-3	Water	10/31/18
OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
OU2-1-MW008WT-F	1811039-5	Water	10/31/18
OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
OU2-1-MW009WT	1811039-7	Water	10/31/18
OU2-1-MW009WT-F	1811039-8	Water	10/31/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for the Phase 1 Remedial Investigation for Operable Unit 2, Gateway National Recreation Area, New York (September 2018), the Final Radionuclide Data Quality Evaluation Guidance (September 2008), the Multi Agency Radiological Laboratory Analytical Protocols (MARLAP) Manual (July 2004), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Radium-228 by PAI 724 Rev. 13

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

Counting and detector efficiency were determined for each detector and each radionuclide.

III. Continuing Calibration

Continuing calibration and background determination were performed at the required frequencies. Results were within laboratory control limits.

IV. Blanks

Laboratory blanks were analyzed as required by the method. Blank results contained less than the minimum detectable concentrations (MDC).

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples OU2-1-MW008WT OU2-1-MW008WT-DUP and samples OU2-1-MW008WT-F and OU2-1-MW008WT-F-DUP were identified as field duplicates. No results were detected in any of the samples.

X. Minimum Detectable Concentrations

All minimum detectable concentrations (MDC) met reporting limits (RL).

XI. Sample Result Verification

All sample result verifications were acceptable.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Phase 1 RI OU2 Great Kills Park Radium-228 - Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-228 - Laboratory Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

Phase 1 RI OU2 Great Kills Park Radium-228 - Field Blank Data Qualification Summary - SDG 1811039

No Sample Data Qualified in this SDG

LDC #: 44135B29b SDG #: 1811039

VALIDATION COMPLETENESS WORKSHEET

Level IV

ENESS WORKSHEET	Date
l IV	Page:
	Reviewer
	2nd Paviewer

Laboratory: ALS Environmental

METHOD: Radium 228 (PAI 724 Rev 13)

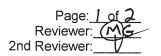
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	Α	
II.	Initial calibration	A	
Ш.	Calibration verification	Α	
IV.	Laboratory Blanks	Α	
V.	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	client specified
VII.	Duplicates	7	11 11
VIII.	Laboratory control samples	Α	LCS/LCSD
IX.	Field duplicates	ND	D=3+4 D=5+6
X.	Carrier recovery	A	
XI.	Minimum detectable activity (MDA)	Α	
XII.	Sample result verification	Α	
XIII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected


R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	OU2-1-MW010	1811039-1	Water	10/29/18
2	OU2-1-MW010-F	1811039-2	Water	10/29/18
3	OU2-1-MW008WT	1811039-3	Water	10/31/18
4	OU2-1-MW008WT-DUP	1811039-4	Water	10/31/18
5	OU2-1-MW008WT-F	1811039-5	Water	10/31/18
6	OU2-1-MW008WT-F-DUP	1811039-6	Water	10/31/18
7	OU2-1-MW009WT	1811039-7	Water	10/31/18
8	OU2-1-MW009WT-F	1811039-8	Water	10/31/18
9				
10_				
11_				
12				
13	PBW			

Notes:	 		

PAI 724 Rev. 13

Method:Radiochemistry(EPA Method

Validation Area	Yes	No	NA	Findings/Comments		
I. Technical holding times						
All technical holding times were met.	/					
II. Calibration						
Were all instruments and detectors calibration as required?	/					
Were NIST traceable standards used for all calibrations?	V					
Was the check source identified by activity and radionuclide?	V					
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	V					
III. Blanks						
Were blank analyses performed as required?	✓					
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/				
IV. Matrix spikes and Duplicates						
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil (Water.)		/				
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/			
Was a duplicate sample anaylzed at the required frequency of 5% in this SDG?		/				
Were all duplicate sample duplicate error rations (DER) ≤1.42?.			/			
V. Laboratory control samples						
Was an LCS analyzed per analytical batch?	V					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/					
VI. Sample Chemical/Carrier Recovery						
Was a tracer/carrier added to each sample?	/					
Were tracer/carrier recoveries within the QC limits?	/					
VII. Regional Quality Assurance and Quality Control						
Were performance evaluation (PE) samples performed?		/				
Were the performance evaluation (PE) samples within the acceptance limits?			/			
VIII. Sample Result Verification						
Were activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/					
Were the Minimum Detectable Activities (MDA) < RL?	/					

LDC #: 44135B296

VALIDATION FINDINGS CHECKLIST

	Page:	2 of 2
	Reviewer:	MG
2nd	Reviewer:	7

Validation Area	Yes	No	NA	Findings/Comments	
IX. Overall assessment of data					
Overall assessment of data was found to be acceptable.	/				
X. Field duplicates					
Field duplicate pairs were identified in this SDG.	/				
Target analytes were detected in the field duplicates.		/			
XI. Field blanks					
Field blanks were identified in this SDG.		/			
Target analytes were detected in the field blanks.			/		

LDC# 44135 B396

VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Page: of Reviewer:_ 2nd Reviewer:_

METHOD: Radiochemistry (Method: PAL 734 Rev. 13

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = activity of each analyte <u>measured</u> in the analysis of the sample. True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

Where, S = Original sample activity
D = Duplicate sample activity

RPD = $\frac{|S-D|}{(S+D)/2} \times 100$

					Recalculated	Reported	
Sample ID	Type of Analysis	Analyte	Found/S (units)	True/D (units)	%R or RPD	%R or RPD	Acceptable (Y/N)
	Laboratory control sample						
527		Ra-338	9.4 (PCi/L)	9.4 (PCi/) 8.595 (PCi/)	109	110	\rightarrow
	Matrix spike sample						
1		•	-	1)	J	ı
	Duplicate RPD						
١		١)	١	J	1	å
	Chemical recovery						
		Ba	30030 (mg)	30030 (mg) 33530 (mg)	93.3	93.3	>-

Comments:

LDC # 44135 B296

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:_	MG
2nd reviewer:_	\leq

METHOD: Radiochemistry (Method: PAI 724 Rev. 13)

<u>Y)n</u>	N N/A Have results been reported and calculated correctly? N N/A Are results within the calibrated range of the instruments?							
Analy	te results for <u>all</u> s	samples =	N.D.	reper	ted with a positive	detect were recal	culated and verific	
_	itration =	i. 	Recalculation:					
(cpm 2.22	ı - background) x E x SA x Vol							
SA = S	unter Efficiency elf-absorbance factor olume of sample					and the same		
#	Sample ID		Analyte		Reported Concentration (PCi/L)	Calculated Concentration	Acceptable (Y/N)	
					:			
	:							
				-				
			,		:			
Note:				······································				

LDC# 44135

EDD POPULATION COMPLETENESS WORKSHEET

Date: 01/30/10 Page: 1 of 1 2nd Reviewer:

The LDC job number listed above was entered by
Entered from Body or Summary

	EDD Process			Con	nments/Action	
I.	EDD Completeness	-				
Ia.	- All methods present?	y				
Ib.	- All samples present/match report?	ý	Extra IDU) Sample	not valid	lated
Ic.	- All reported analytes present?	9				· · · · · · · · · · · · · · · · · · ·
Id.	10% or 100% verification of EDD?	9				
			The second secon			
II.	EDD Preparation/Entry	-		· .	· .	
IIa.	- Carryover U/J?	y				
IIb.	- Reason Codes used? If so, note which codes.	ÿ	AECOM			
IIc.	- Additional Information (QC Level, Validator Validated Y/N, etc.)	y				
	Vinitude (1714, ptc.)		Allerando Alexande			
III.	Reasonableness Checks	· -		·		
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	4			:	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	y		: :		
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	y				
IIId.	-Does the detect flag require changing for blank qualifier? If so, are all U results marked ND?	y MA	· · · · · · · · · · · · · · · · · · ·			
IIIe.	- Do blank concentrations in report match EDD where data was qualified due to blank contamination?	WA			:	
IIIf.	- Were multiple results reported due to dilutions/reanalysis? If so, were results qualified appropriately?	N/WA	. :			
IIIg.	-Are there any discrepancies between the data packet and the EDD?	N				

Notes:	*see discrepancy sheet	-	· · · · · · · · · · · · · · · · · · ·

DATA VALIDATION REPORT - Level II Review

SDG No.:	TID07	Analysis:	Herbicides, Metals, PCDD/PCDF
Laboratory:	Eurofins Lancaster	Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	November 20th, 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None

Minor

Anomalies:

<u>VOCs</u> - Trip blank OU2TB102218-001 displayed detections for chloromethane at 0.06 ug/L. The associated field sample results that displayed detections at levels approximate to those found in the blank were qualified U,bl and elevated to the limit of quantitation (LOQ) or the concentration in the blank, as appropriate.

<u>SVOCs</u> - The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
18297WAF026	Hexachlorocyclopentadiene	10-	
10201 11/1020	Hexachlorocyclopentadiene	117	9

The field sample results associated with the negative biases were non-detect and were qualified UJ,1.

Field sample OU1-1SW005 displayed surrogate recoveries outside the QC limits:

Surrogate	QC Limits (%)	Recovery (%)
2-Fluorophenol	19-119	18
2,4,6-Tribromophenol	43-140	41
Nitrobenzene-d5	44-120	30

The field sample results associated with the negative biases were non-detect and were qualified UJ,s. The positive field sample results associated with a negative bias were qualified J-,s.

<u>PAHs</u> – The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

	Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
ı	18297WAF026	Phenanthrene	53-115	120

The positive field sample results associated with a positive bias were qualified J+,l.

Method blank 18297WAF026 displayed detections for 1,4-dioxane at 0.2 ug/L. The associated field sample results that displayed detections at levels approximate to those found in the blank were qualified U,bl and elevated to the limit of quantitation (LOQ) or the concentration in the blank, as appropriate.

<u>Pesticides</u> – Field samples OU2-1-SW004 displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a negative bias were qualified J-,s.

Method blank 182980006A displayed detections for 4,4-DDT at 0.0081 ug/l. The associated field sample results that displayed detections at levels approximate to those found in the blank were qualified U,bl and elevated to the limit of quantitation (LOQ) or the concentration in the blank, as appropriate.

The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
182980006A	Endosulfan I	62- 126	56

The field sample results associated with the negative biases were qualified J- for the detects or UJ,l for the nondetects .

<u>Herbicides</u> - The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

	Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
I	182950006a	Dinoseb	19-133	17

The field sample results associated with the negative biases were non-detect and were qualified UJ,l.

PCBs - None

Metals: Method blank 182951063904A displayed detections for nickel at 0.0020 mg/l. The associated field sample results that displayed detections at levels approximate to those found in the blank were qualified U,bl and elevated to the limit of quantitation (LOQ) or the concentration in the blank, as appropriate.

Dioxin/Furan: None

Comments:

On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were within acceptable limits.

DATA VALIDATION REPORT - Level II Review

SDG No.:	TID08	Analysis:	Herbicides, Metals, PCDD/PCDF
Laboratory:	Eurofins Lancaster	Project:	Great Kills Park
Reviewer:	Victoria Kirkpatrick	Date:	December 12th, 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review*, EPA-540-R-2017-002, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies:

During the herbicides analysis, the matrix spike duplicate (MSD) performed on parent sample OU002-1-SE004, performed in quality control (QC) batch 183090033A, displayed a percent recovery for dinoseb at 0%. The associated parent sample result was non-detect and was qualified R,m.

Minor

Anomalies:

During the volatile organic compound (VOC) analysis, trip blank OU2TB102218-001, prepared in QC batch H183041AA, displayed a detection for chloromethane greater than the detection limit (DL) at 0.06 µg/L. The associated field sample results were non-detect; no data qualifying action was required. The matrix spike pair (MS/MSD), performed on parent sample OU002-1-SE004, prepared in QC batch B182991AA, displayed percent recoveries outside the QC limits and/or relative percent differences (RPDs) greater than the upper QC limit of 20% for the following:

Analyte	QC Limits		MSD Recovery	
-	(%)	(%)	(%)	(%)
1,1,2,2-Tetrachloroethane	70-124	111	152	31
1,2,4-Trichlorobenzene	67-129	75	51	39
2-Butanone	51-148	124	161	25
Acetone	36-164	173	285	45
Freon-113	66-136	135	139	2
Styrene	76-124	99	76	27
Toluene	77-121	98	222	69

The field sample results associated with percent recoveries that were greater than the upper QC limits were positive and were qualified J+,m, while non-detects associated with negative biases were qualified UJ,m. The field sample results associated with the remaining percent recoveries were positive and were qualified J-,m. Field sample OU002-1-SE002 displayed a surrogate percent recovery for toluene-d₈ greater than the upper QC limit of 116% at 126% and a surrogate percent recovery for 4-bromofluorobenzene less than the lower QC limit of 79% at 69%. The field sample results associated with the positive bias were non-detect; no data qualifying action was required. The field sample results associated with the negative bias were non-detect and were qualified UJ,s.

During the semi-volatile organic compound (SVOC) analysis, the method blank prepared in batch 18302SLE026 displayed a detection for bis(2-ethylhexyl)phthalate greater than the DL at 0.010 µg/L. The associated field sample results that displayed positive results less than five times the concentration found in the blank were qualified U,bl. When appropriate, the limits of detection (LOD) and limits of quantitation were elevated to the concentration detected or the concentration detected was elevated to the LOD. The laboratory control spike (LCS) prepared in QC batch 18302SLC026 displayed a percent recovery for pyridine less than the lower QC limit of 57% at 56%. The associated field sample results were non-detect and were qualified UJ,l. The MS/MSD, performed on parent sample OU002-1-SE004, prepared in QC batch 18302SLC026, displayed percent recoveries less than the lower QC limits and/or RPDs greater than the upper QC limit of 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
3,3'-Dichlorobenzidine	22-121	11	22	69
4-Chloroaniline	17-106	18	31	54
Aniline	44-123	14	23	52
Hexachlorocyclopentadiene	37-161	35	43	18
Pyridine	57-96	58	52	12

The field sample results associated with RPD anomalies were non-detect; no data qualifying action was required. The field sample results associated with the negative biases were qualified UJ,m, unless previously qualified due to a LCS percent recovery anomaly. Field sample OU002-1-SE002 exceeded the linear range of the instrument for bis(2-ethylhexyl)phthalate. The associated sample result was qualified J,q.

During the polyaromatic hydrocarbon (PAH) analysis, the LCS prepared in QC batch 18302SLE026 displayed a percent recovery for 1,4-dioxane less than the lower QC limit of 70% at 59%. The associated field sample results were positive and were qualified J,l. The MS/MSD, performed on parent sample OU002-1-SE004, prepared in QC batch 18302SLE026, displayed percent recoveries outside the QC limits and/or RPDs greater than the upper QC limit of 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
1,4-Dioxane	70-130	62	67	7
Anthracene	50-114	139	84	48
Benzo(a)pyrene	50-125	115	87	23
Benzo(b)fluoranthene	53-128	133	117	10
Bis(2- ethylhexyl)phthalate	67-150	169	98	40
Chyrsene	57-118	123	99	18
Fluoranthene	55-119	149	114	21
Fluorene	47-114	121	91	28
Naphthalene	38-111	199	103	59
Phenanthrene	49-113	185	121	37
Pyrene	55-119	135	100	24

The field sample results associated with percent recoveries that were greater than the upper QC limits were positive and were qualified J+,m. The field sample results associated with RPD anomalies were positive and were qualified J,ld. The field sample results associated with the negative biases were positive and were qualified J-,m, unless previously qualified due to a method blank or LCS percent recovery anomaly.

TID08 Page: 3 of 4

During the herbicides analysis, the MS/MSD performed on parent sample OU002-1-SE004, prepared in QC batch 183090033AA, displayed a RPD for dalapon greater than the upper QC limit of 20% at 37%. The associated parent sample result was non-detect; no data qualifying action was required.

During the pesticides analysis, the field samples prepared in QC batch 182980035A displayed surrogate percent recoveries greater than the upper QC limit of 129% for the following:

Field Sample	Surrogate	Recovery (%)
OU002-1-SE001	Tetrachloro-m-	143
OU002-1-SE002	xylene-d₁	130
OU002-1-SE003	Tetrachloro-m- xylene-d ₂	133

The positive field sample results were qualified J+,s.

During the metals analysis, the following MS/MSDs performed on parent sample OU002-1-SE004 displayed percent recoveries outside the QC limits and/or RPDs greater than the upper QC limit of 20% for the following:

QC Batch	Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
182931063702	Thorium	75-125	113	110	25
	Aluminum	78-124	383*	131*	15
	Antimony	72-124	53	92	44
	Arsenic	82-118	81	121	32
	Beryllium	80-120	97	102	26
	Cadmium	84-116	96	120	31
	Chromium	83-119	120	150	25
	Cobalt	84-115	101	96	22
	Copper	84-119	-30*	235	56
	Iron	81-124	-48*	375*	11
182971063702A	Lead	84-118	-211*	426*	55*
	Magnesium	80-123	134*	105	1
	Manganese	85-116	92*	129*	11
	Nickel	84-119	108	130	16
	Silver	83-118	101	101	27
	Sodium	79-125	110	116	33
	Thallium	83-118	92	109	36
	Uranium	75-125	103	99	22
	Vanadium	82-116	93	141	26
	Zinc	82-119	160	246	34
1020710627020	Calcium	86-118	125	136	21
182971063702B	Selenium	80-119	97	106	33
182971063702D	Barium	86-116	63*	179	29

^{*}The unspiked parent sample result was more than four times the spike added; no data qualifying action was required

The field sample results associated with percent recoveries that were greater than the upper QC limits were positive and were qualified J+,m. The field sample results associated with the remaining percent recoveries were positive and were qualified J-,m. The positive field sample results associated with RPD anomalies were qualified J,ld. The field duplicate pair performed on field sample OU002-1-SE004 displayed a RPD for lead

greater than the upper QC limit of 50% at 64.8%. The positive associated field sample result was qualified J,fd. The laboratory duplicate performed on parent sample OU002-1-SE004 displayed RPDs greater than the upper QC limit for the following:

QC Batch	Analyte	RPD (%)
	Chromium	21
182971063702A	Lead	70
10291 1003102A	Vanadium	27
	Zinc	53
182971063702D	Barium	27

The positive associated field sample results were previously qualified due to MS/MSD percent recovery or RPD anomalies; no data qualifying action was required. The field duplicate pair performed on field sample OU002-1-SE004 displayed a delta for silver greater than two times the LOQ. The positive associated field sample results were qualified J,fd.

During the dioxin and furan analysis, the method blank prepared in QC batch 18297009 displayed detections greater than the DL for the following:

Analyte	Concentration (mg/kg)	
123478-HxCDD	0.000000258	
123678-HxCDD	0.000000286	
1234678-HpCDD	0.000000276	
12378-PeCDF	0.000000350	
23478-PeCDF	0.000000291	
123478-HxCDF	0.00000300	
123789-HxCDF	0.00000395	
234678-HxCDF	0.000000279	
1234678-HpCDF	0.000000263	
1234789-HpCDF	0.00000335	
OCDF	0.000000591	

The positive associated field sample results that were less than ten times the concentrations found in the blanks were qualified U,bl, and elevated to the LOD. The field duplicate pair performed on field sample OU002-1-SE004 displayed a RPD for OCDD greater than the upper QC limit of 50% at 52.7%. The positive associated field sample results were qualified J,fd.

Correctable Anomalies:

None.

Comments:

On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were within acceptable limits. Except for those flagged "R", all data are usable, as qualified, for their intended purpose based on the data reviewed.

Signed:

Victoria Kirkpatrick

DATA VALIDATION REPORT - Level II Review

VOC SVOC DAIL Docticides

SDG No.:	TID09	Analysis:	Herbicides, Metals, PCDD/PCDF
Laboratory:	Eurofins Lancaster	Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	November 19 th , 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None

Minor

Anomalies:

<u>VOCs</u> - The LCS/LCSD analyzed in QC batch B183022AA displayed a relative percent difference greater than the QC limit of 20% for 1,2-dibromo-3-chloropropane and 2-hexanone at 23% and 1,2-4-trichlorobenzene at 22%. The positive associated field sample result was qualified J,ld.

SVOCs - The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
	2,2'-oxybis(1-		
18302SLC026	chloropropane	68-112	65
	Pyridine	57-96	56

The field sample results associated with the negative biases were non-detect and were qualified UJ,l.

<u>PAHs</u> – The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
18302SLE026	1,4-Dioxane	70-130	59

The field sample results associated with the negative biases were non-detect and were qualified UJ,l. The positive field sample results associated with a negative bias were qualified J-,l.

Method blank 18302SLE026 displayed detections for bis(2-ethylhexyl)phthalate at 0.010 ug/Kg. The associated field sample results that displayed detections at levels

approximate to those found in the blank were qualified U,bl and elevated to the limit of quantitation (LOQ) or the concentration in the blank, as appropriate.

<u>Pesticides</u> – Field samples OU2-1-SS003, OU2-1-SS005, and OU2-1SS005-DUP displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

The field duplicate pair performed on field sample OU2-1-SS005 displayed several RPD greater than the QC limit of 50% (4,4'-DDT, beta-BHC, alpha-BHC, and endosulfan I). The positive field sample results were qualified J,fd.

<u>PCBs</u> - Field samples OU2-1-SS003, OU2-1-SS005, and OU2-1SS005-DUP displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>Metals:</u> Thorium CCV RSDs were > 5%. The acceptance limits: < 5%. The positive field sample results associated with positive biases were qualified J,c.

The field duplicate pair performed on field sample OU2-1-SS005 displayed several RPD greater than the QC limit of 50% (manganese, chromium, lead, thallium, and iron). The positive field sample results were qualified J,fd.

Comments:

On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were within acceptable limits.

SDG No.:	TID10	Analysis:	Herbicides, Metals, PCDD/PCDF
Laboratory:	Eurofins Lancaster	Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	December 10 th , 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies:

SVOCs- The MS/MSD performed on field sample OU002-2-SS006 displayed recoveries outside the QC limits and/or relative percent differences (RPDs) greater than 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
Aniline	44-113	0	0	0
2-Chloronaphthalene	41-114	75	102	32
3,3'-Dichlorobenzidine	22-121	0	0	0
Hexachlorocylcopentadie				0
ne	37-161	0	0	
Hexachloroethane	28-117	18	46	88
2-Nitroaniline	44-127	64	81	24
3-Nitroaniline	33-119	0	0	0
4-Nitroaniline	54-103	0	0	0
Pyridine	57-96	48	47	4

The field sample results associated with the 0% recoveries were non-detect and were qualified R,m. The parent sample results associated with the high biases were qualified J+,m. The parent sample result associated with one high bias and one low bias and was qualified J,m. The parent sample results associated with the low biases were qualified J-,m. The parent sample results associated with the high RPDs (2-chloronaphthalene) were qualified J,ld.

Herbicides- The MS/MSD performed on field sample OU002-2-SS006 displayed recoveries outside the QC limits and/or relative percent differences (RPDs) greater than 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
Dalapon	15-115	0	0	0
Dicamba	38-132	0	0	0
Dinoseb	10-115	0	0	0

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
MCPA	28-135	0	0	0
MCPP	35-143	0	0	0

The field sample results associated with the 0% recoveries were non-detect and were qualified R,m.

Minor

Anomalies:

<u>VOCs</u> – Field sample OU2-1-SS002 and OU2-1-SS004 recovery for the internal standard was outside the QC acceptance limits. The samples were re-analyzed and the QC was again outside the acceptance limits, indicating a matrix effect. The data was reported from the initial trial.

Field sample OU2-1-SS004, OU2-1-SS006, OU2-1-SS002, and OU2-1-SS008 displayed surrogate percent recoveries for toluene-D8 greater than the QC limits. The positive associated field sample result was qualified J+,s.

The MS/MSD performed on field sample OU002-2-SS006 displayed recoveries outside the QC limits and/or relative percent differences (RPDs) greater than 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
Acetone	36-164	457	228	67
Bromoform	67-132	48	60	19
2-Butanone	51-148	184	118	46
Chlorobenzene	79-120	72	79	6
1,2-Dibromo-3-				44
chloropropane	61-132	53	86	
1,2-Dibromoethane	78-122	76	89	13
1,2-Dichlorobenzene	78-121	64	76	14
1,3-Dichlorobenzene	77-121	69	77	8
1,4-Dichlorobenzene	75-120	68	76	8
cis-1,3-Dichloropropene	74-126	41	59	32
Trans-1,3-				20
Dichloropropene	71-130	54	68	
Freon 113	66-136	138	142	0
2-Hexanone	53-145	39	69	52
2-methyl-2-pentanone	65-135	57	69	52
Methylcyclohexane	66-133	63	72	11
Styrene	76-124	47	53	8
1,1,2,2-Tetrachloroethane	70-124	125	153	17
1,2,4-Trichlorobenzene	67-129	0	30	200
Trichloroethene	77-123	74	81	7
Xylene (total)	78-124	76	84	7

The parent sample results associated with the high biases were qualified J+,m. The parent sample result associated with one high bias and one low bias and was qualified J,m. The parent sample result associated with the remaining percent recoveries were non-detect and were qualified UJ,m.

TID10 Page: 3 of 5

<u>SVOCs</u> - Method blank 18302SLI026 displayed detections for 2-methylnaphthalene at 0.012 mg/Kg. The sample was re-extracted outside method holding time and the QC was compliant. The data was reported from the initial trial (OU2-1-SS002, OU2-1-SS004, OU2-1-SS006, and OU2-1-SS008) except for 2-methylnaphthalene which was used from the reanalysis trial.

<u>PAHs</u> – Method blank 18302SLH026 displayed detections for acenapthene (0.002 mg/Kg), for anthracene (0.0007 mg/Kg), fluorene (0.002 mg/Kg), naphthalene (0.031 mg/Kg), and phenanthrene (0.003 mg/Kg) The samples (OU2-1-SS002, OU2-1-SS004) were re-extracted outside method holding time and the QC was compliant. The associated field sample results that displayed detections at levels approximate to those found in the blank were qualified U,bl and elevated to the limit of quantitation (LOQ) or the concentration in the blank, as appropriate. The initial results were reported except for the analytes that displayed blank contamination. Those analytes were qualified J,h.

The laboratory control spike (LCS) 18302SLH026 displayed percent recoveries less than the lower QC limit for 1,4-dioxane (69%). The associated field sample results were non-detect and were qualified UJ,l.

The MS/MSD performed on field sample OU002-2-SS006 displayed recoveries outside the QC limits and/or relative percent differences (RPDs) greater than 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
Anthracene	50-114	162	131	53
Benzo(a)anthracene	54-122	38	211	32
Benzo(a)pyrene	50-125	13	153	25
Benzo(g,h,i)perylene	49-127	-2	47	20
Benzo(k)fluoranthene	56-123	86	294	31
Chrysene	57-118	49	74	43
Dibenz(a,h)anthracene	50-129	44	62	14
Fluoranthene	55-119	395	593	60
Indeno(1,2,3-cd)pyrene	49-130	5	74	26
Naphthalene	38-111	98	510	45
Phenanthrene	49-113	258	582	79
Pyrene	55-117	-48	379	45

The parent sample results associated with one high and one low percent recovery were positive and were qualified J,m. The positive parent sample results associated with positive biases were qualified J+,m. The positive parent sample result associated with the negative bias for was qualified J-,m.

<u>Herbicides-</u> Field samples OU2-1-SS008 displayed a surrogate percent recovery greater than the upper QC limit. The positive associated field sample result was qualified J+,s.

<u>Pesticides</u> – Field samples OU2-1-SS004, OU2-1-SS006, OU2-1-SS002, and OU2-1-SS008 displayed a surrogate percent recovery greater than the upper QC limit for dechlorobiphenyl. The positive associated field sample result was qualified J+,s.

The MS/MSD performed on field sample OU002-2-SS006 displayed recoveries outside the QC limits and/or relative percent differences (RPDs) greater than 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
Beta-BHC	50-136	255	170	40
4,4-DDD	56-139	53	48	0
4,4-DDT	50-141	-56	29	35
Dieldrin	56-136	98	66	39
Endosulfan II	53-134	0	0	0
Endrin aldehyde	35-137	99	60	50

The field sample results associated with the 0% recoveries were non-detect and were qualified R,m. The positive parent sample result associated with the negative bias was qualified J-,m. The parent sample result associated with the high RPD for was positive and was qualified J,ld.

<u>PCBs</u>- Field samples OU2-1-SS004, OU2-1-SS006, OU2-1-SS002, and OU2-1-SS008 displayed a surrogate percent recovery greater than the upper QC limit for dechlorobiphenyl. The positive associated field sample result was qualified J+,s.

<u>Metals:</u> The following MS/MSDs displayed percent recoveries outside the QC limits for the following:

Parent Sample	Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)
	Aluminum	78-124	3131	231
	Antimony	72-124	-31	-29
	Arsenic	82-118	90	148
	Barium	86-116	-1843	-2633
	Cadmium	84-116	61	19
	Calcium	86-118	-20	81
	Chromium	83-119	75	63
OU002-2-	Copper	84-119	7400	-668
SS006	Iron	81-124	-1863	6147
22000	Lead	84-118	-1050	-2072
	Magnesium	80-123	107	217
	Manganese	85-116	58	4813
	Nickel	84-119	67	44
	Thallium	83-118	74	65
	Vanadium	82-116	78	87
	Zinc	82-119	45	80

The parent sample results associated with one high and one low percent recovery were positive and were qualified J,m. The positive field sample results associated with positive biases were qualified J+,m. The positive field sample results associated with negative biases were qualified J-,m, while non-detects were qualified UJ,m.

Dioxin/Furan:

The following MS/MSDs displayed percent recoveries outside the QC limits:

	Parent Sample	Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)
I	OU002-2-	1,2,3,4,6,7,8-HpCDD	76-125	153	127
	SS006	OCDD	73-135	1600	1742

The positive field sample results associated with positive biases were qualified J+,m.

The result for 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)in field sample OU2-1-SS006 and the result for 2,3,7,8-TCDD in field sample OU2-1-SS002 was reported as the estimated maximum possible concentration of the analyte due to a signal to noise ratio anomaly. The associated field sample result was qualified J,q.

Comments:

On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were within acceptable limits. Except for those flagged "R," all data are usable, as qualified, for their intended purpose based on the data reviewed.

SDG No.:	TID11	_ Analysis:	VOC, SVOC, PAH, Pesticides, Herbicides, Metals, PCDD/PCDF
Laboratory:	Eurofins Lancaster	_ Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	November 28 th , 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None

Minor

Anomalies:

<u>VOCs</u> - The LCS/LCSD analyzed in QC batch B183101AA displayed a relative percent difference greater than the QC limit of 20% for 4-methyl-2-pentanone at 21%. The positive associated field sample result was qualified J,ld.

Field sample OU2-1-SU004-22 displayed surrogate percent recoveries for 1,2-dichloroethane-d4 (68%) and 4-bromofluorobenzene (56%) less than the lower QC limits. The associated field sample results were either qualified J-,s for the detects and non-detects and were qualified UJ,s.

<u>SVOCs</u> - The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
	2,2'-oxybis(1-		
18302SLC026	chloropropane	68-112	65
	Pyridine	57-96	56

The field sample results associated with the negative biases were non-detect and were qualified UJ,l.

<u>PAHs</u> – The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
18302SLE026	1,4-Dioxane	70-130	59

The field sample results associated with the negative biases were non-detect and were qualified UJ,l. The positive field sample results associated with a negative bias were qualified J-,l.

Field samples OU2-1-SU004-09 displayed a surrogate percent recovery greater than the upper QC limit. The positive associated field sample result was qualified J+,s.

<u>Pesticides</u> – Field samples OU2-1-SU002-04, OU2-1-SU004-09, OU2-1-SU004-14, and OU2-1-SU004-22 displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>Herbicides</u> – Field samples OU2-1-SU004-14 and OU2-1-SU004-22 displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>PCBs</u> - Field samples OU2-1-SU002-04 and OU2-1-SU004-22 displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>Metals:</u> Thorium CCV RSDs were > 5%. The acceptance limits: < 5%. The positive field sample results associated with positive biases were qualified J,c.

<u>Dioxin/Furan:</u> Field sample OU2-1-SU004-09, OU2-1-SU004-14, and OU2-1-SU004-22 displayed surrogate percent recoveries less than the lower QC limits. The associated field sample results were either qualified J-,s for the detects and non-detects and were qualified UJ,s.

Comments:

VOC SVOC DAIL Docticides

SDG No.:	TID12	Analysis:	Herbicides, Metals, PCDD/PCDF
Laboratory:	Eurofins Lancaster	Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	November 29 th , 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None

Minor

Anomalies:

<u>VOCs</u> - Field sample OU2-1-SU005-06, OU2-1-SU005-06DUP, OU2-1-SU005-16, OU2-1-SU006-05, and OU2-1-SU006-14 displayed surrogate percent recoveries for less than the lower QC limits. The associated field sample results were either qualified J-,s for the detects and non-detects and were qualified UJ,s. Field sample OU2-1-SU008-02 displayed surrogate percent recoveries for greater than the QC limits. The associated field sample results were either qualified J+,s for the detects.

<u>SVOCs</u> - The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
	2,2'-oxybis(1-		
18303SLC026	chloropropane)	68-112	65
	Pyridine	57-96	55

The field sample results associated with the negative biases were non-detect and were qualified UJ,1.

<u>PAHs</u> – The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
18305SLE026	1.4-Dioxane	70-130	59

The field sample results associated with the negative biases were non-detect and were qualified UJ,l. The positive field sample results associated with a negative bias were qualified J-,l.

The following method blank displayed detections greater than the DL:

Method Blank	Analyte	Concentration (mg/Kg)
18302SLE026	Bis(2-ethylhexyl)phthalate	0.010

The associated field sample results that displayed detections at levels approximate to those found in the blank were qualified U,bl and elevated to the LOQ or the concentration in the blank, as appropriate.

<u>Pesticides</u> – Field samples OU2-1-SU005-06, OU2-1-SU005-06DUP, OU2-1-SU005-16 displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>Herbicides</u> – Field samples OU2-1-SU005-06, OU2-1-SU005-06DUP, OU2-1-SU005-16 displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>PCBs</u> - Field samples OU2-1-SU005-16 and OU2-1-SU006-14 displayed (positive biases) surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>Metals:</u> Thorium CCV RSDs were > 5%. The acceptance limits: < 5%. The positive field sample results associated with positive biases were qualified J,c.

<u>Dioxin/Furan:</u> The result for 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD) and 2,3,7,8-TCDD in field sample OU2-1-SU005-06 and OU2-1-SU008-02 was reported as the estimated maximum possible concentration of the analyte due to a signal to noise ratio anomaly. The associated field sample result was qualified J,q.

Field sample OU2-1-SU005-06, OU2-1-SU005-06DUP, OU2-1-SU005-16, OU2-1-SU006-05, and OU2-1-SU006-14 displayed surrogate percent recoveries for less than the lower QC limits. The associated field sample results were either qualified J-,s for the detects and non-detects and were qualified UJ,s.

Comments:

VOC SVOC DAIL Docticides

SDG No.:	TID13	Analysis:	Herbicides, Metals, PCDD/PCDF
Laboratory:	Eurofins Lancaster	Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	November 28th, 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None

Minor

Anomalies:

<u>VOCs</u> - Field sample OU2-1-SU003-08 and OU2-1-SU007-10 displayed surrogate percent recoveries for less than the lower QC limits. The associated field sample results were either qualified J-,s for the detects and non-detects and were qualified UJ,s.

SVOCs - The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
18305SLE026	Pyridine	57-96	55

The field sample results associated with the negative biases were non-detect and were qualified UJ,1.

<u>PAHs</u> – The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis Batch	Analyte	QC Limits (%)	LCS Recovery (%)
18305SLD026	1,4-Dioxane	70-130	68

The field sample results associated with the negative biases were non-detect and were qualified UJ,l. The positive field sample results associated with a negative bias were qualified J-,l.

Field sample OU2-1-SU001-10 displayed surrogate percent recoveries for less than the lower QC limits. The associated field sample results were either qualified J-,s for the detects and non-detects and were qualified UJ,s.

Method blank 18305SLD026 displayed detections for anthracene at 0.0008 mg/kg, naphthalene at 0.004 mg/Kg and phenanthrene at 0.0008 mg/kg. The associated field sample results that displayed detections at levels approximate to those found in the blank

were qualified U,bl and elevated to the limit of quantitation (LOQ) or the concentration in the blank, as appropriate.

<u>Pesticides</u> – Field samples OU2-1-SU003-08 and OU2-1-SU007-10 displayed surrogate percent recoveries greater than the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>Herbicides</u> – Field samples OU2-1-SU003-08, OU2-1-SU003-08, and OU2-1-SU007-10 displayed surrogate percent recoveries outside the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>PCBs</u> - Field samples OU2-1-SU003-08 and OU2-1-SU007-10 displayed surrogate percent recoveries greater than the QC limits. The positive field sample results associated with a positive bias were qualified J+,s.

<u>Metals:</u> Thorium CCV RSDs were > 5%. The acceptance limits: < 5%. The positive field sample results associated with positive biases were qualified J,c.

<u>Dioxin/Furan:</u> The result for 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)in field sample OU2-1-SU007-10 and OU2-1-SU003-08 was reported as the estimated maximum possible concentration of the analyte due to a signal to noise ratio anomaly. The associated field sample result was qualified J,q.

Comments:

SDG No.:	TID14	Analysis:	VOC, SVOC, PAH, Pesticides, Herbicides, Metals, PCDD/PCDF
Laboratory:	TestAmerica St. Louis	Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	December 12 th , 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None.

Minor

Anomalies: VOCs- Equipment blank OU2EB103018-001 displayed detection above the detection (DL) acetone at 3.8 ug/L, chloroform at 0.1 ug/L, methylene chloride at 0.07 ug/L, and carbon disulfide at 0.2 ug/L. The associated field sample result that displayed a detection approximate to that found in the blank was qualified U,bl and elevated to the limit of quantitation (LOQ).

<u>SVOCs</u> - Field sample OU2-1-MW008I displayed a surrogate percent recovery lower than the QC limit for 2,4,6-tribromophenol at 32%, phenol-d6 at 5%, and 2-fluorophenol at 4%. The positive associated field sample result was qualified J-,s and the nondetects were qualified UJ,s.

The matrix spike pair (MS/MSD) performed on parent sample OU2-1-MW008I displayed percent recoveries less than the lower quality control (QC) limit for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)
2,4-Dichlorophenol	47-121	55	42
Phenol	23-82	30	19

The associated parent sample result were non-detect and qualified UJ,m.

<u>PAHs</u> – Field sample OU2-1-MW010, OU2-1-MW008I displayed a LCS recovery for bis(2-chloroethyl)ether greater than the upper QC limit of 116% at 123%. The positive associated field sample results were qualified J,l.

Method blank 18305WAN026 displayed a detection above the detection limit (DL) for bis(2-ethylhexyl)phthalate at 0.3 ug/L, di-n-butyl phthalate at 0.08 ug/L, benzo(g,h,i)perylene at 0.01 ug/L, and indeno(1,2,3-cd)pyrene at 0.01 ug/L. The associated field sample result that displayed a detection approximate to that found in the blank was qualified U,bl and elevated to the limit of quantitation (LOQ).

The MS/MSD performed on parent sample Sample OU2-1-MW008I displayed percent recoveries not within QC limits for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)
Bis(2-ethylhexyl)phthalate	55-173	46	114

The parent sample result associated with one high bias and one low bias and was qualified J,m.

<u>PCBs</u> – Field sample OU2-1-MW010 displayed high surrogate recovery (140%). The positive associated field sample results were qualified J+,s.

<u>Herbicides</u>- The MS/MSD performed on field sample OU2-1-MW008I displayed recoveries outside the QC limits and/or relative percent differences (RPDs) greater than 20% for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	RPD (%)
Dicamba	50-141	0	0	0
MCPA	35-144	27	21	0
MCPP	33-157	0	0	0
2,4,5-T	42-147	0	0	0
2,4,5-TP	51-134	0	0	0

The field sample results associated with the 0% recoveries were non-detect and were qualified R,m.

Pesticides- Field sample OU2-1-MW010 displayed a surrogate percent recovery lower than the QC limit for decachlorobiphenyl at 23% and tetrachloro-m-xylene at 31%. The positive associated field sample result was qualified J-,s and the nondetects were qualified UJ,s. The following laboratory control spikes (LCS) displayed percent recoveries outside the QC limits:

Analysis		QC	LCS
Batch	Analyte	Limits	Recovery
Dateii		(%)	(%)
		45-	
	Aldrin	134	39
		60-	
	Alpha Chlordane	129	59
		62-	
183050009A	Endosulfan I	126	59
103030009A		62-	
	Endosulfan sulfate	133	61
		54-	
	Heptachlor	130	53
		61-	
	Heptachlor epoxide	133	60

The field sample results associated with the negative biases were non-detect and were qualified UJ,l.

Metals:

The MS/MSD performed on parent sample OU2-1-MW008I displayed percent recoveries not within QC limits for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)
Magnesium	83-118	171	154
Calcium	87-118	151	75
Sodium	85-117	121	111
Nickel	85-117	67	68
Chromium	85-116	16	17

The parent sample results associated with the high biases were qualified J+,m. The parent sample result associated with one high bias and one low bias and was qualified J,m. The parent sample results associated with the low biases were qualified J-,m.

The MS/MSD performed on parent sample OU2-1-MW008I-F displayed percent recoveries not within QC limits for the following:

Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)
Magnesium	87-115	157	135
Barium	86-114	125	157
Calcium	87-118	131	85
Sodium	85-117	228	251
Nickel	85-116	82	83

The parent sample results associated with the high biases were qualified J+,m. The parent sample result associated with one high bias and one low bias and was qualified J,m. The parent sample results associated with the low biases were qualified J-,m.

Comments:

SDG No.:	TID15	Analysis:	VOC, SVOC, PAH, Pesticides, Herbicides, Metals, PCDD/PCDF
Laboratory: _	Eurofins	_ Project:	Great Kills Park
Reviewer:	Devon Chicoine	Date:	December 14th, 2018

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines*, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None.

Minor

Anomalies:

<u>VOCs-</u> Trip blank OU2TB103118-001 displayed a detection above the detection limit (DL) for methylene chloride at 0.07 ug/L. The associated field sample result that displayed a detection approximate to that found in the blank was qualified U,bl and elevated to the limit of quantitation (LOQ).

<u>PAHs</u> – Method blank 160-275374/1-A displayed a detection above the detection limit (DL) for di-n-butylphthalate at 0.1 ug/L and bis(2-ethylhexyl)phthalate at 0.3 ug/L. The associated field sample result that displayed a detection approximate to that found in the blank was qualified U,bl and elevated to the limit of quantitation (LOQ).

The field duplicate pair performed on field sample OU002-1-MW008WT displayed several RPD greater than the QC limit of 25% (benzo(b)fluoranthene, chrysene, benzo(a)anthracene). The positive field sample results were qualified J,fd.

<u>Pesticides</u>- Field sample OU2-1-MW008WT, OU2-1-MW008WTDUP, OU2-1-MW009WT displayed a surrogate percent recovery less than the lower QC limit. The associated field sample results that were detected were qualified J- and non-detect were qualified UJ,s.

<u>Metals:</u> The ICV, CCV RSD is greater than 5% for Thorium. The acceptance limits: < 5%. The positive field sample results associated with positive biases were qualified J,c.

The field duplicate pair performed on field sample OU002-1-MW008WT displayed several RPD greater than the QC limit of 25% (nickel). The positive field sample results were qualified J,fd.

Comments: On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were within acceptable limits. All data are usable, as qualified, for their intended purpose based on the data reviewed.