

RESUBMISSION

Gamma Spectroscopy

Case Narrative

Tidewater, Inc.

Phase 1 RI OU2 Great Kills Park – 2016-007

Work Order Number: 1810627

- 1. This data is being resubmitted in order to accommodate a change in the gamma library.
- 2. This report consists of analytical results and supporting documentation for 22 soil samples and seven sediment received by ALS on 10/30/2018.
- 3. These samples were prepared according to the current revision of SOP 739. The samples were sealed in steel cans on 11/05/2018 and stored for at least 29 days to allow ²²²Rn to approach secular equilibrium with its parent, ²²⁶Ra. The degree of ingrowth achieved prior to analysis is at least 99.48%. Conservatively assuming a radon emanation efficiency of approximately 50%, the effective radon progeny ingrowth for these samples would be greater than 99.74%.
- 4. The samples were analyzed for the presence of gamma emitting radionuclides according to the current revision of SOP713. The analyses were completed on 12/06/2018.
- 5. The analysis results for these samples are reported on a "Dry Weight" basis in units of pCi/gram.
- 6. Activity concentrations above the calculated MDC are reported in some instances where minimum nuclide identification criteria are not met. Such tentative identifications result when the software attempts to calculate net activity concentrations for analytes where either one or both of the following criteria are not satisfied: the 'diagnostic' peak for a nuclide must be identified above the critical level, or the minimum library peak abundance must be attained. Nuclides not meeting these requirements have been flagged with a "TI" qualifier.
- 7. In cases where there are no peaks found in the peak search routine, the software performs a net quantification. This indicates that nuclides are not detected or supported at any level above the reported MDC. Consequently, these nuclides are flagged with an "NQ" qualifier on the final reports. Please refer to the Technical Bulletin Addendum in section 5 of this report.

- 8. ALS has found there to be a significant low bias to ²¹⁴Pb and ²¹⁴Bi results when using a mixed nuclide gamma source for efficiency calibrations. The magnitude of this bias has been determined to be approximately 32% for ²¹⁴Bi, and 23% for ²¹⁴Pb. Therefore, any reported results for ²¹⁴Pb and ²¹⁴Bi are flagged with a "J" qualifier, indicating the activity values to be an estimated value. Results are reported without further qualification.
- 9. The gamma emission energy of ²¹⁰Pb falls below the minimum calibrated value of 59.54 keV at 46.5 keV. The reported activity should be considered an estimated value. Results are reported without further qualification. Therefore, any reported results for ²¹⁰Pb are flagged with a "J" qualifier, indicating the activity values to be an estimated value. Results are reported without further qualification.
- 10. Radium-226 quantification based on the 186.21 keV photon suffers from interference with the 185.72 keV photon emitted by ²³⁵U. Due to the high abundance of this photon in ²³⁵U emissions, even small amounts of ²³⁵U may bias the ²²⁶Ra results high. Thus, any measured activity for ²²⁶Ra has been flagged with an "SI" qualifier, denoting spectral interference.
- 11. There are cases where the sample density is less or greater than the associated calibration standard density. Cases that exceed the limit of +/- 15% of the density of the calibration standard are flagged with a 'G', denoting a significant density difference between the sample and calibration standard. Consequently, the results may be biased high for the flagged results where sample density is less than the standard density, and low where sample density is greater than the standard density. If requested, ALS can perform a transmission spike in order to estimate a magnitude of this bias. The results are reported without further qualification.
- 12. Technical considerations made in the creation of the gamma spectroscopy library used in this analysis are detailed in the document "Technical Comments Regarding Gamma Spectroscopy Libraries" found in Section 5.
- 13. The requested MDC for/or ²¹⁴Bi and ²¹⁴Pb were not met for some samples. The reported activity exceeds the achieved MDC. The samples were counted for a maximum count time of 1000 minutes. The results are flagged with an "M3" flag on the final reports.
- 14. There are cases where the magnitude of negative activity is greater than the 2σ TPU. Under typical conditions, where background data is normally distributed and analyzed by paired observations, this event is likely to occur at least 2.5% of the time. Review of the data does not indicate a problem with the instrument or reporting systems and results are reported without further qualification.
- 15. No further problems were encountered with either the client samples or the associated quality control samples. All remaining quality control criteria were met.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Pik Yee Yuen
Pik Yee Yuen
Padiochemistry Pimary Data Reviewer

1/8/19
Date

1/8/18

Radiochemistry Final Data Reviewer

Date

Section 1

CHAIN OF CUSTODY

ALS -- Fort Collins

Sample Number(s) Cross-Reference Table

OrderNum: 1810627

Client Name: Tidewater, Inc.

Client Project Name: Phase 1 RI OU2 Great Kills Park

Client Project Number: 2016-007

Client PO Number:

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
OU2-1-SE001	1810627-1		SEDIMEN	22-Oct-18	9:00
OU2-1-SE002	1810627-2		SEDIMEN	22-Oct-18	10:10
OU2-1-SE004	1810627-3		SEDIMEN	22-Oct-18	11:30
OU2-1-SE004-DUP	1810627-4		SEDIMEN	22-Oct-18	11:30
OU2-1-SE003	1810627-5		SEDIMEN	22-Oct-18	14:35
OU1-1-SE005	1810627-6		SEDIMEN	23-Oct-18	8:35
REF-1-SE001	1810627-7		SEDIMEN	23-Oct-18	9:10
OU2-1-SS007	1810627-8		SOIL	23-Oct-18	10:45
OU2-1-SS003	1810627-9		SOIL	23-Oct-18	11:05
OU2-1-SS001	1810627-10		SOIL	23-Oct-18	11:20
OU2-1-SS005	1810627-11		SOIL	23-Oct-18	11:45
OU2-1-SS005-DUP	1810627-12		SOIL	23-Oct-18	11:45
OU2-1-SS004	1810627-13		SOIL	24-Oct-18	9:15
OU2-1-SS006	1810627-14		SOIL	24-Oct-18	9:50
OU2-1-SS002	1810627-15		SOIL	24-Oct-18	10:45
OU2-1-SS008	1810627-16		SOIL	24-Oct-18	11:30
OU2-1-SU002-07	1810627-17		SOIL	25-Oct-18	11:10
OU2-1-SU004-10	1810627-18		SOIL	25-Oct-18	14:30
OU2-1-SU004-16	1810627-19		SOIL	25-Oct-18	15:10
OU2-1-SU004-29	1810627-20		SOIL	25-Oct-18	15:45
OU2-1-SU005-01	1810627-21		SOIL	26-Oct-18	9:20
OU2-1-SU005-01-DUP	1810627-22		SOIL	26-Oct-18	9:20
OU2-1-SU005-14	1810627-23		SOIL	26-Oct-18	11:00
OU2-1-SU006-10	1810627-24		SOIL	26-Oct-18	14:45
OU2-1-SU006-13	1810627-25		SOIL	26-Oct-18	15:30
OU2-1-SU008-03	1810627-26		SOIL	26-Oct-18	16:35
OU2-1-SU001-08	1810627-27		SOIL	29-Oct-18	10:10
OU2-1-SU003-09	1810627-28		SOIL	29-Oct-18	11:35
OU2-1-SU007-08	1810627-29		SOIL	29-Oct-18	12:45

7
ū
\equiv
40.
=
_⊱
Ξ
_
9
.=
5
7
Ш
m
Ų
4
-

225 Commerce Drive, Fort Collins, Colorado 80524 TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522

Chain-of-Custody

Turnaround time for samples received after 2 p.m. will be calculated beginning from the next business day.

Turnaround time for samples received Saturday will be calculated beginning from the next business day.

470781

ALS WORKORDER#

						,	,						2)]
(ALS)		TURNAROUND TIME	D TIME		SAMPLER	LER JOHN	hr C	Se	hre	Schreder		P/	PAGE	/	of	Ŋ	
PROJECT NAME	GKP Phase 1 RI OUZ	63	SITE ID									DISF	DISPOSAL	BY LAB	B or	RETURN	N.
PROJECT No.	2016-007	EDD FORMAT	_	contact Ry	Run Wensin	ensink			_	ARAME	TERVINE	PARAMETER/METHOD REQUEST FOR ANALYSIS	EQUEST	FOR AN	ALYSIS		
		PURCHASE ORDER		l '				∢	Ura	ranjum - 238	n - 2	38	/	,		٠.	
COMPANY NAME	Tideuntar	BILL TO COMPANY	L	Tidewoter				8	Rai	Radism-226	- 2	26	11	PH	106	100	
SEND REPORT TO	<u> </u>	INVOICE ATTN TO	<u> </u>	Ryan Wensin	nsink			၁	Th .	horium-	2-7	252					
ADDRESS	Deron Chicoine (AEcom)		ADDRESS 37	161 AH	Attocks 1	Irive		۵					•				
CITY / STATE / ZIP	devon. chicoine & accom. com	M CITY/STATE/ZIP		BWell,		3065		ш									
PHONE	703-966-54		PHONE 6	614-384.	-6251			ш									
FAX	Colleen Scott		FAX					ပ									
E-MAIL	collean.		E-MAL (/ /	ryun. wensinketideh	usinke		20.net	Ξ									
								-									
								7									
LABID	FIELD ID	MATRIX	SAMPLE	SAMPLE TIME	# OF BOTTLES	PRESERVATIVE	မွ	<		ပ	۵	ш	ø	I	- -	SEE NOTES SECTION	TES TON
	0U2-1-5E001	Sed : ment 102218	102218	0060	1			×	×	X							
2	002-1-5£002	52 di ment 10221	8/2201	0/0/	1			X	ス	X							
\sim	002-1-SE004	sed meal vozz	102218	1130	3		ms/ins	メ	义	×							
5	002-1-SEOU4-DUP	5ed; men \$ 10221	8/2201	1/30	1		igh	乂	X	メ							
5	002-1-5E003	sediment 10221	812201	1435	1			X	X	X							
و	001-1-5E005	61570 From pos	81870	2880	/			X	X	×							
t	REF-1-5E001	sedimento2318	01870	0410	/			×	×	×							
(V)	002-1-55007	1:05	8/270/	Shar	/			×	×	χ							
5	042-1-55003	50.	812701	5011	1			×	×	x							
0/	002-1-55001) 105	A2318	0211	1			X	X	X							
	002-1-55005) ^१ थ	102313	5/11	1			X	X	メ							
15	002-1-55005-008	1:05	102318	1145	/		de	X	X	×							
*Time Zone (Circle):	*Time Zone (Circle): EST CST MST PST Matrix: O = oil S = soil NS = non-soil solid W = water L = liquid E = extract F = filter	soil solid W = wat	er L = liquid E	= extract F = filt	ter			Ī							-		
	NOTES		For	Form 202r9		SIGNATURE				PRINT	PRINTED NAME			DATE		TIME	

liquid E = extract	Form 202r9	RELINQUISHE	RECEIVED	RELINQUISHE	RECEIVED	RELINQUISHE
ime Zone (Circle): EST CST MST PST Matrix: O = oil S = soil NS = non-soil solid W = water L = liquid E = extract		REPORT LEVEL / QC REQUIRED	Summary (Standard QC)	(Standard QC)	LEVEL III (Std QC + forms)	LEVEL IV (Std QC + forms + raw
S = non-s		REP				
S = soil N						
O = oil						
Matrix:						
PST	S					
MST	NOTES					
CST						
EST						
(Circle):						
ime Zone			6	of	62	4

1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaOH/ZnAcetate 6-NaHSO4 7-4°C 8-Other

PRESERVATION KEY

Form 202r9	SIGNATURE	PRINTED NAME	DATE	TIME
RELINQUISHED BY	Milde	John C Schroeda 10/29/	10/29/11	C08/
RECEIVED BY	Fed Ex	Fed Fx	1429/13	c08/
RELINQUISHED BY		FED EX	31.95.01	1580
RECEIVED BY		KELI-JEAN CHIT. 16	10.3018	1580
RELINQUISHED BY				
RECEIVED BY				

_
_
-
_
-
_
_
ш
40
ഗ
_
•
-

onmental

TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522 225 Commerce Drive, Fort Collins, Colorado 80524

Chain-of-Custody

ALS WORKORDER #

Turnaround time for samples received after 2 p.m. will be calculated beginning from the next business day.

Turnaround time for samples received Saturday will be calculated beginning from the next business day.

SEE NOTES SECTION RETURN 901.1m PARAMETER/METHOD REQUEST FOR ANALYSIS BY LAB I O DISPOSAL PAGE ш Uranium - 238 Radium - 226 Thorium - 232 ш ۵ John CSchroeder X X X K ပ × X X X X X X X X 8 X X X X × X ပ X × G ٥ ш I ⋖ CKW/SW ryan. wensink # tideh 20. net ဗ **PRESERVATIVE** Kyun Wansia 3761 Attacks Arive 5908h Ho 614-389-625 SAMPLER # OF BOTTLES Kyan Wensin M Tidewater Matrix: O = oil S = soil NS = non-soil solid W = water L = liquid E = extract F = filter SAMPLE TIME 5,51 815201 102618 0920 1430 Shol 102618 3920 7445 0450 5160 1130 1110 1100 istact 015/18/15/201 Dowell 1026/8 132618 015701 814701 81/7201 815ZQ Alhzo/ SAMPLE DATE 81/201 TURNAROUND TIME E-MAIL SITE ID **EDD FORMAT** BILL TO COMPANY INVOICE ATTN TO PHONE ξ ADDRESS PURCHASE ORDER CITY / STATE / ZIP MATRIX Sei 107 105 101 201 101 Sol 561 105 201 8 50, colleen. scott @accom.com devon. Nicoine & accom, com Tidewater 002-1-50005-01-DUP (A Ecom, 002-1-50004-10 07-1-20004-16 002-1-50004-29 CKP Mare IRIOUZ 002-1-50006-10 002-1-50002-0 10-50005-1-200 P1-50005-1-200 103-976-501 FIELD ID Avon Chiccine (002-1-55004 072-1-55002 8005-1-5008 Kyan Wansink 002-1-55006 Collect Scott Tidewater 2016-00 CST COMPANY NAME FAX PROJECT NAME SEND REPORT TO **ADDRESS** E-MAIL CITY / STATE / ZIP PHONE PROJECT No. Time Zone (Circle): LAB ID 2

Summary
(Standard QC)
LEVEL II
(Standard QC)
LEVEL III (Std
QC + forms)
LEVEL IV (Std
QC + forms + raw REPORT LEVEL / QC REQUIRED NOTES 7 of 624

1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaOH/ZnAcetate 6-NaHSO4 7-4°C 8-Other

PRESERVATION KEY

Form 202r9	SIGNATURE	PRINTED NAME	DATE	TIME
RELINQUISHED BY	(John Lot	John Cshroen was alla	8//2/01	008/
RECEIVED BY	, fed Ex	Fed Ex	0//52/01	008/
RELINQUISHED BY		TROBY	8105.01	1530
RECEIVED BY		KELI-JEAN SHITH	9.08.01,	15.81
RELINQUISHED BY	J			
RECEIVED BY				

_
ta
5
a
Ε
0
¥
Ш
S
7
⋖
-

225 Commerce Drive, Fort Collins, Colorado 80524 TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522

Chain-of-Custody

ALS WORKORDER#

Turnaround time for samples received after 2 p.m. will be calculated beginning from the next business day.

Turnaround time for samples received Saturday will be calculated beginning from the next business day.

				_													
/		TURN	TURNAROUND TIME	ш		SAMPLER		John	5	C Schroeden	se ale	1		PAGE	·	8	² W
PROJECT NAME	CKP Phuse 1 RI OUZ		SITEID	0									٥	DISPOSAL	á	BY LAB	or RETURN
PROJECT No.	2016-007		EDD FORMAT		contact		Ryan Wensinf	·nf		$ \bar{} $	ARAMI	TER/M	ЕТНОБ	PARAMETER/METHOD REQUEST FOR ANALYSIS	ST FOR	ANALY	SIS
		PURC	PURCHASE ORDER	~		/			٧	5	ranion		-238	88	~		
COMPANY NAME	Tobuder	BILL	BILL TO COMPANY	×	dewaster	er			8	Pa	dion	ر ا	22	9	7	the	901.1m
SEND REPORT TO	Ryan Wensink (Tidewater)		INVOICE ATTN TO	0	van b	Dens,	10		ပ	h	1 3	3	232	2			
ADDRESS	Deven Chicsing (ACCOM)	Z.	ADDRESS	M	761 A	9+4Jch	is, doing		۵								
CITY / STATE / ZIP	devon chicoine dascom. com	ı	CITY / STATE / ZIP	d	Buch,	HO	59081		ш								
PHONE	HBHS-996-20L		PHONE		E, -H19	3-628	152		ш				:				
FAX	Collean Scott		FAX	_					ပ								
E-MAIL	colleen, scott Baccom. com	1. Com	E-MAIL	<u> </u>	rvan. Wensink	min	1 the	20, m	₹								
									-								
									7								
LAB ID	FIELD ID	MA	MATRIX S.	SAMPLE DATE	SAMPLE TIME	# OF BOTTLES	PRESERVATIVE	8	⋖	80	ပ		ш		I	_	SEE J NOTES SECTION
35	002-1-50006-13) 105		8/9201	1530	\			×	×	X						
7.0	042-1-54008-03	. eS	1026	8/22	1635	_			X	X	X			_			
27	80-10005-1-200	205		A16201	1010	_			×	\	2						
28	002-1-50003-09): 0X	(1029	2918	1135	_			X	×	X						
79	002-1-50001-08	102	1029	2418	1245	/			×	X	×						
			111	1													
		/		3	2	1											
						16-3	a,										
												$/\!\!\!/$					
*Time Zone (Circle):	EST CST MST PST Matrix: O = oil S = soil NS =	S = soil NS = non-soil solid W = water L = liquid E = extract F = filter	W = water L =	= liquid E =	extract F = filt	ier											
	NOTES			Form 202r9	202r9		SIGNATURE			Ì	PRINT	PRINTED NAME	_		DATE		TIME
		REPORT LEVEL / QC REQUIRED	D / J	RELIN	RELINQUISHED BY	20/	(Jah	ì		70,	John C.S. hove	5.6	•	1	10/24	81/1	008/

81/42/01 10.30.1 John C. S. hove color KELT-JEAN SNITH RELINQUISHED BY RELINQUISHED BY RELINQUISHED BY RECEIVED BY RECEIVED BY Summary
(Standard QC)
LEVEL II
(Standard QC)
LEVEL III (Std QC + forms)
LEVEL IV (Std QC + forms + raw REPORT LEVEL / QC REQUIRED

RECEIVED BY

PRESERVATION KEY 1-HCI 2-HN03 3-H2SO4 4-NaOH 5-NaOH/ZnAcetate 6-NaHSO4 74°C 8-Other

8 of 624

1800 1580 1580

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

	,	Client:	MJEW	ATEIL	Work	order No:	(81	062	7	
	Project N	Manager:	LRS	-	Initials	: (Or	Date:	10-30	2.18	_
1. Are	e airbills	/ shipping	documents present	and/or removal	ole?	0		DROP OFF	YES	NO
			shipping containers					NONE	(YES)	NO
3. Are	e custod	y seals on s	sample containers i	ntact?				NONE	YES	NO
4. Is t	here a C	OC (chain	-of-custody) preser	it?					(YES) NO
15		in agreem uested ana	ent with samples re lyses, etc.)	ceived? (IDs, da	ites, times, # o	f samples, #	of conta	ainers,	YES	NO
6. Are	e short-h	old sample	es present?						YES	(NO)
7. Are	e all sam	ples within	n holding times for	the requested ar	nalyses?				YES	NO
8. We	ere all sa	mple conta	ainers received inta	ct? (not broken	or leaking)				YES	NO
9. Is t	here suf	ficient sam	ple for the requeste	ed analyses?					YES	NO
10. Are	e all sam	ples in the	proper containers	for the requested	d analyses?				YES	NO
11. Are	e all aqu	eous samp	les preserved corre	etly, if required?	excluding v	volatiles)		(N/A)	YES	NO
12. Are	e all aqu	eous non-p	reserved samples p	H 4-9?				N/A	YES	NO
Are of b	e all sam	ples requii > 6 mm (1.	ring no headspace (/4 inch) diameter? (VOC, GRO, RS	K/MEE, Rx	CN/S, radon) free	N/A	YES	NO
14. We	ere the sa	amples ship	oped on ice?						YES	(NO)
15. We	ere coole	r temperat	ures measured at 0.	1-6.0°C? IR use	gun ed*: #1	#3	#4	RAD ONLY	YES	NO
Acces	Survey/ ptance mation	Ext Backgr	Cooler #: Temperature (°C): tody seals on cooler: ternal µR/hr reading: round µR/hr reading:	2 /\\ /\(0\)						
			≤ two times background a Please provide details h						noted:	
				<u> </u>						
					1 /.1 ***	4.7.0.1.1	, , ,			
					t bottle ID's	vs ALS lat	o ID's d			y: / } e
If appli	icable, was	s the client co	ontacted? YES / NO / N	A Contact:		/ / -		_ Date/Tin	ne:	
Projec	ct Manag	ger Signatu	re / Date:		(0)	31/18				

Form 201r26.xls (06/29/2018)

*IR Gun #1, VWR SN 170560549 *IR Gun #3, VWR SN 170647571 *IR Gun #4, Oakton, SN 2372220101-0002

Fedex.

ORIGIN ID:LDJA (614) 389-6251 RYAN WENSINK TIDEWATER 6625 SELNICK DR STE A

ELKRIDGE, MD 21075 UNITED STATES US

225 COMMERCE DR

SHIP DATE: 290CT18 ACTWGT: 58.60 LB CAD: 6997897/SSF01922 DIMS: 26x14x14 IN

FedEx Express

TRK# 7834 9646 8949

NA FTCA

TUE - 30 OCT 10:30A **AHS**

80524

co-us DEN

Section 2

SAMPLE RESULTS SUMMARY

Due to the nature of gamma spectroscopy data, a summary report is not provided.

Please refer to the individual sample results in Section 4.

Section 3

QC RESULTS SUMMARY

PAI 713 Rev 14 Method Blank Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

Library: TIDEWATER_G

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Lab ID: GS181103-1MB

Sample Matrix: SOIL
Prep SOP: PAI 739 Rev 12

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Date Collected: 03-Nov-18

Prep Batch: GS181103-1 **QCBatchID:** GS181103-1-2

Run ID: GS181103-1B Count Time: 1000 minutes

Final Aliquot: 215 g Result Units: pCi/g File Name: 182694d04

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.072 +/- 0.048	0.075		NA	U
13966-02-4	Be-7	-0.063 +/- 0.084	0.146		NA	U
14913-49-6	Bi-212	0.015 +/- 0.092	0.156		NA	U
14733-03-0	Bi-214	0.056 +/- 0.029	0.048	0.2	NA	NQ,J
14694-69-0	Ir-192	0.0014 +/- 0.0088	0.0148		NA	U
13966-00-2	K-40	0.11 +/- 0.36	0.61		NA	U
13966-32-0	Na-22	0.001 +/- 0.014	0.025		NA	U
15100-28-4	Pa-234	0.006 +/- 0.063	0.108		NA	U
14255-04-0	Pb-210	0.8 +/- 3.4	5.6		NA	U,J
15092-94-1	Pb-212	0.007 +/- 0.028	0.046		NA	U
15067-28-4	Pb-214	0.005 +/- 0.051	0.085	0.2	NA	U,J
15623-45-7	Ra-223	0.019 +/- 0.072	0.118		NA	U
13233-32-4	Ra-224	-0.05 +/- 0.19	0.32		NA	U
13982-63-3	Ra-226	-0.19 +/- 0.38	0.64		NA	U,SI

Comments:

Qualifiers/Flags:

 $\ensuremath{\mathsf{U}}\xspace$ - Result is less than the sample specific MDC or less than the associated TP

Y1 - Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.

Y2 - Chemical Yield outside default limits.

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

M - Requested MDC not met.

B - Analyte concentration greater than MDC.

B3 - Analyte concentration greater than MDC but less than Requested MDC.

DL - Decision Level

Abbreviations:

TPU - Total Propagated Uncertainty

MDC - Sample specific Minimum Detectable Concentration

BDL - Below Detection Limit

PAI 713 Rev 14 Method Blank Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

Library: TIDEWATER_G

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Lab ID: GS181103-1MB

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 03-Nov-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B

Count Time: 1000 minutes

Final Aliquot: 215 g Result Units: pCi/g

File Name: 182694d04

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
15262-20-1	Ra-228	0.072 +/- 0.048	0.075		NA	U
13967-63-0	Sc-46	0.003 +/- 0.012	0.020		NA	U
15064-65-0	TL-201	0.061 +/- 0.034	0.052		NA	NQ
14913-50-9	TI-208	0.011 +/- 0.012	0.019		NA	U
13966-01-3	TL-210	-0.001 +/- 0.011	0.019		NA	U
15117-96-1	U-235	0.052 +/- 0.053	0.086		NA	U
7440-61-1	U-238	0.06 +/- 0.34	0.57		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- M Requested MDC not met.
- B Analyte concentration greater than MDC.
- B3 Analyte concentration greater than MDC but less than Requested MDC.
- DL Decision Level

Data Package ID: GSS1810627-2

Abbreviations:

TPU - Total Propagated Uncertainty

MDC - Sample specific Minimum Detectable Concentration

BDL - Below Detection Limit

ALS -- Fort Collins Page 2 of 4 Date Printed: Tuesday, January 08, 2019

PAI 713 Rev 14 Method Blank Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Lab ID: GS181103-2MB

Sample Matrix: SOIL
Prep SOP: PAI 739 Rev 12

Library: TIDEWATER_G Date Collected: 03-Nov-18
Date Prepared: 03-Nov-18
Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes

Final Aliquot: 215 g Result Units: pCi/g File Name: 181830d09

CASNO Target Nuclide Result +/- 2 s TPU Requested DL **MDC** Lab **MDC** Qualifier 14331-83-0 0.088 +/- 0.068 U Ac-228 0.138 NA 13966-02-4 Be-7 -0.09 +/- 0.11 0.19 NA U 14913-49-6 Bi-212 -0.01 +/- 0.14 0.24 U NA 14733-03-0 Bi-214 0.041 +/- 0.064 0.133 0.2 NA U.J 14694-69-0 Ir-192 -0.001 +/- 0.012 0.021 NA U 13966-00-2 K-40 0.14 +/- 0.55 0.92 NA U 13966-32-0 Na-22 0.008 +/- 0.018 0.030 NA U 15100-28-4 Pa-234 -0.034 +/- 0.080 0.141 NA U 14255-04-0 -0.12 +/- 0.67 Pb-210 1.12 NA U,J Pb-212 NA U 15092-94-1 0.083 0.004 +/- 0.050 U,J 15067-28-4 Pb-214 0.001 +/- 0.070 0.117 0.2 NA 15623-45-7 Ra-223 NA U -0.05 +/- 0.15 0.26 13233-32-4 Ra-224 -0.15 +/- 0.25 0.42 NA U Ra-226 13982-63-3 -0.05 +/- 0.56 0.94 NA U.SI

Comments:

Qualifiers/Flags:

 $\ensuremath{\mathsf{U}}\xspace$ - Result is less than the sample specific MDC or less than the associated TP

Y1 - Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.

Y2 - Chemical Yield outside default limits.

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

M - Requested MDC not met.

B - Analyte concentration greater than MDC.

B3 - Analyte concentration greater than MDC but less than Requested MDC.

DL - Decision Level

Data Package ID: GSS1810627-2

Abbreviations:

TPU - Total Propagated Uncertainty

MDC - Sample specific Minimum Detectable Concentration

BDL - Below Detection Limit

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 3 of 4

PAI 713 Rev 14 Method Blank Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Lab ID: GS181103-2MB

Sample Matrix: SOIL Prep SOP: PAI 739 Rev 12 Prep Batch: GS181103-2 QCBatchID: GS181103-2-1 Run ID: GS181103-2B Final Aliquot: 215 g Result Units: pCi/g File Name: 181830d09

Library: TIDEWATER_G

Date Collected: 03-Nov-18

Date Prepared: 03-Nov-18

Count Time: 1000 minutes

Date Analyzed: 06-Dec-18

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
15262-20-1	Ra-228	0.088 +/- 0.068	0.138		NA	U
13967-63-0	Sc-46	0.003 +/- 0.017	0.028		NA	U
15064-65-0	TL-201	0.001 +/- 0.021	0.035		NA	U
14913-50-9	Tl-208	0.033 +/- 0.018	0.028		NA	NQ
13966-01-3	TL-210	-0.009 +/- 0.017	0.030		NA	U
15117-96-1	U-235	0.15 +/- 0.12	0.19		NA	U
7440-61-1	U-238	0.32 +/- 0.43	0.71		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- M Requested MDC not met.
- B Analyte concentration greater than MDC.
- B3 Analyte concentration greater than MDC but less than Requested MDC.
- DL Decision Level

Abbreviations:

TPU - Total Propagated Uncertainty

MDC - Sample specific Minimum Detectable Concentration

BDL - Below Detection Limit

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 4 of 4

PAI 713 Rev 14

Laboratory Control Sample(s)

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Lab ID: GS181103-1LCS

Sample Matrix: SOIL

Date Analyzed: 26-Nov-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2 Final Aliquot: 215 g Result Units: pCi/g

File Name: 181752d09

Library: ANALYTICAL.LI

Prep SOP: PAI 739 Rev 12 Date Collected: 03-Nov-18 Date Prepared: 03-Nov-18

Count Time: 30 minutes

Run ID: GS181103-1B

CASNO	Target Nuclide	Results +/- 2s TPU	MDC	Spike Added		Contro I Limits	Lab Qualifier
14596-10-2	Am-241	471 +/- 55	2	469.1	100	85 - 115	Р
10198-40-0	Co-60	187 +/- 22	1	187.7	99.4	85 - 115	Р
10045-97-3	Cs-137	181 +/- 21	1	177.9	102	85 - 115	P,M3

Comments:

Qualifiers/Flags:

Abbreviations: U - Result is less than the sample specific MDC or less than the associated TP TPU - Total Propagated Uncertainty

11 Y1 - Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.

MDC - Minimum Detectable Concentration

Y2 - Chemical Yield outside default limits.

L - LCS Recovery below lower control limit.

SQ - Spectral quality prevents accurate quantitation. SI - Nuclide identification and/or quantitation is tentative.

H - LCS Recovery above upper control limit. P - LCS Recovery within control limits.

TI - Nuclide identification is tentative.

M - The requested MDC was not met.

M3 - The requested MDC was not met, but thereported activity is greater than the reported MDC.

R - Nuclide has exceeded 8 halflives.

Data Package ID: GSS1810627-2

Page 1 of 2 Date Printed: Tuesday, January 08, 2019 **ALS -- Fort Collins**

PAI 713 Rev 14

Laboratory Control Sample(s)

1

1

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Lab ID: GS181103-2LCS

10198-40-0

10045-97-3

Sample Matrix: SOIL Prep SOP: PAI 739 Rev 12

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1 Run ID: GS181103-2B

Final Aliquot: 215 g Result Units: pCi/g File Name: 181935d10

85 - 115

85 - 115

99.9

104

Lab Qualifier

Ρ

P,M3

Library: ANALYTICAL.LI

Co-60

Cs-137

Date Collected: 03-Nov-18 Date Prepared: 03-Nov-18 Date Analyzed: 27-Nov-18

> 188 +/-22

> 184 +/-22

Count Time: 30 minutes

187.6

177.9

CASNO	Target Nuclide	Results +/- 2s TPU	MDC	Spike Added	% Rec	Contro I Limits
14596-10-2	Am-241	473 +/- 56	4	469.1	101	85 - 115

Comments: Qualifiers/Flags:

U - Result is less than the sample specific MDC or less than the associated TP

11 Y1 - Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.

TPU - Total Propagated Uncertainty

Abbreviations:

MDC - Minimum Detectable Concentration

Y2 - Chemical Yield outside default limits.

L - LCS Recovery below lower control limit.

SQ - Spectral quality prevents accurate quantitation. H - LCS Recovery above upper control limit. SI - Nuclide identification and/or quantitation is tentative.

P - LCS Recovery within control limits. M - The requested MDC was not met.

TI - Nuclide identification is tentative.

M3 - The requested MDC was not met, but thereported activity is greater than the reported MDC.

R - Nuclide has exceeded 8 halflives

Data Package ID: GSS1810627-2

Page 2 of 2 Date Printed: Tuesday, January 08, 2019 **ALS -- Fort Collins**

PAI 713 Rev 14

Duplicate Sample Results (DER)

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004

Lab ID: 1810627-3DUP

Library: TIDEWATER_G

Sample Matrix: SEDIMENT Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18
Date Prepared: 03-Nov-18
Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 **QCBatchID:** GS181103-1-1

Run ID: GS181103-1B Count Time: 75 minutes Report Basis: Dry Weight Final Aliquot: 218 g
Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 181952d08

CASNO		Sampl	<u></u>		Duplic	ate		DER	DER
	Analyte	Result +/- 2 s TPU	MDC	Flags	Result +/- 2 s TPU	MDC	Flags		Lim
14331-83-0	Ac-228	0.39 +/- 0.14	0.24		0.39 +/- 0.17	0.27	TI	0.024	2.13
13966-02-4	Be-7	-0.06 +/- 0.59	1.05	U	-0.04 +/- 0.54	0.99	U	0.0233	2.13
14913-49-6	Bi-212	0.38 +/- 0.32	0.50	U	0.03 +/- 0.36	0.64	U	0.736	2.13
14733-03-0	Bi-214	0.31 +/- 0.12	0.18	TI,J	0.35 +/- 0.14	0.19	TI,J	0.246	2.13
14694-69-0	lr-192	0.027 +/- 0.062	0.106	U	-0.006 +/- 0.056	0.100	U	0.394	2.13
13966-00-2	K-40	7.8 +/- 1.5	1.2		7.1 +/- 1.5	1.0		0.35	2.13
13966-32-0	Na-22	0.015 +/- 0.042	0.074	U	-0.037 +/- 0.049	0.103	U	0.811	2.13
15100-28-4	Pa-234	-0.16 +/- 0.19	0.38	U	0.03 +/- 0.23	0.41	U	0.653	2.13
14255-04-0	Pb-210	-48 +/- 50	92	U,J	0.8 +/- 1.3	2.2	U,J	0.979	2.13
15092-94-1	Pb-212	0.351 +/- 0.098	0.121		0.42 +/- 0.12	0.14		0.427	2.13
15067-28-4	Pb-214	0.34 +/- 0.11	0.20	J	0.37 +/- 0.12	0.19	J	0.163	2.13
15623-45-7	Ra-223	0.10 +/- 0.21	0.36	U	0.14 +/- 0.22	0.37	U	0.152	2.13
13233-32-4	Ra-224	1.93 +/- 0.77	1.04	NQ	1.7 +/- 1.3	2.0	U	0.173	2.13
13982-63-3	Ra-226	0.06 +/- 0.76	1.31	U,SI	0.54 +/- 0.69	1.12	U,SI	0.465	2.13
15262-20-1	Ra-228	0.39 +/- 0.14	0.24		0.39 +/- 0.17	0.27	TI	0.024	2.13
13967-63-0	Sc-46	-0.049 +/- 0.063	0.120	U	0.009 +/- 0.063	0.114	U	0.661	2.13
15064-65-0	TL-201	2200 +/- 3700	6100	U	-50 +/- 890	1550	U	0.602	2.13

Comments:

Duplicate Qualifiers/Flags:

- U Result is less than the sample specific MDC.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- $\ensuremath{\mathsf{W}}$ DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13
- LT Result is less than Request MDC, greater than sample specific MDC
- M Requested MDC not met
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- L LCS Recovery below lower control limit.
- H LCS Recovery above upper control limit.
- P LCS, Matrix Spike Recovery within control limits.
- N Matrix Spike Recovery outside control limits

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- \mbox{G} Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Abbreviations:

TPU - Total Propagated Uncertainty

DER - Duplicate Error Ratio

BDL - Below Detection Limit

NR - Not Reported

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 1 of 6

PAI 713 Rev 14

Duplicate Sample Results (DER)

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004

Lab ID: 1810627-3DUP

Library: TIDEWATER G

Sample Matrix: SEDIMENT Prep SOP: PAI 739 Rev 12 Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18
Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 75 minutes Report Basis: Dry Weight Final Aliquot: 218 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181952d08

CASNO	Analysta	Sample	e		Duplicate			DER	DER
	Analyte	Result +/- 2 s TPU	MDC	Flags	Result +/- 2 s TPU	MDC	Flags		Lim
14913-50-9	TI-208	0.138 +/- 0.054	0.072		0.090 +/- 0.063	0.096	U	0.579	2.13
13966-01-3	TL-210	0.012 +/- 0.037	0.064	U	0.037 +/- 0.043	0.069	U	0.436	2.13
15117-96-1	U-235	-0.03 +/- 0.22	0.39	U	-0.20 +/- 0.22	0.41	U	0.561	2.13
7440-61-1	U-238	-0.13 +/- 0.81	1.41	U	0.25 +/- 0.57	0.95	U	0.38	2.13

Comments:

Duplicate Qualifiers/Flags:

U - Result is less than the sample specific MDC.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

W - DER is greater than Warning Limit of 1.42

D - DER is greater than Control Limit of 2.13

LT - Result is less than Request MDC, greater than sample specific MDC

M - Requested MDC not met.

M3 - The requested MDC was not met, but the reported activity is greater than the reported MDC.

L - LCS Recovery below lower control limit.

H - LCS Recovery above upper control limit.

P - LCS, Matrix Spike Recovery within control limits.

N - Matrix Spike Recovery outside control limits

DER - Du

TPU - Total Propagated Uncertainty DER - Duplicate Error Ratio BDL - Below Detection Limit

NR - Not Reported

Abbreviations:

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

G - Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 2 of 6

PAI 713 Rev 14

Duplicate Sample Results (DER)

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS006

Lab ID: 1810627-14DUP

Library: TIDEWATER G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B

Count Time: 1000 minutes **Report Basis:** Dry Weight

Final Aliquot: 152 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182672d03

CASNO		Sample	^		Duplica	nto		DER	DER
CASNO	Analyte	Result +/- 2 s TPU	MDC	Flags	Result +/- 2 s TPU	MDC	Flags	DEK	Lim
14331-83-0	Ac-228	1.64 +/- 0.21	0.18	G	1.71 +/- 0.23	0.24	G	0.221	2.13
13966-02-4	Be-7	0.03 +/- 0.26	0.43	U,G	-0.05 +/- 0.28	0.48	U,G	0.231	2.13
14913-49-6	Bi-212	1.07 +/- 0.22	0.27	G	1.11 +/- 0.27	0.34	G,TI	0.122	2.13
14733-03-0	Bi-214	1.49 +/- 0.19	0.14	G,J	1.44 +/- 0.19	0.16	G,J	0.161	2.13
14694-69-0	lr-192	-0.007 +/- 0.024	0.040	U,G	0.012 +/- 0.025	0.042	U,G	0.558	2.13
13966-00-2	K-40	7.5 +/- 1.1	0.8	G	8.0 +/- 1.2	1.0	G	0.258	2.13
13966-32-0	Na-22	0.001 +/- 0.021	0.036	U,G	-0.016 +/- 0.031	0.053	U,G	0.461	2.13
15100-28-4	Pa-234	0.066 +/- 0.088	0.151	U,G	0 +/- 0.11	0.20	U,G	0.468	2.13
14255-04-0	Pb-210	8 +/- 57	95	U,G,J	4 +/- 11	18	U,G,J	0.0678	2.13
15092-94-1	Pb-212	1.89 +/- 0.24	0.11	G	2.05 +/- 0.25	0.10	G	0.464	2.13
15067-28-4	Pb-214	1.53 +/- 0.20	0.13	G,J	1.55 +/- 0.21	0.14	G,J	0.0589	2.13
15623-45-7	Ra-223	0.44 +/- 0.11	0.18	G	0.40 +/- 0.11	0.18	G	0.244	2.13
13233-32-4	Ra-224	2.1 +/- 3.0	0.7	G	1.5 +/- 5.0	1.3	G	0.107	2.13
13982-63-3	Ra-226	2.63 +/- 0.78	1.16	G,SI	2.95 +/- 0.92	1.37	G,SI	0.265	2.13
15262-20-1	Ra-228	1.64 +/- 0.21	0.18	G	1.71 +/- 0.23	0.24	G	0.221	2.13
13967-63-0	Sc-46	-0.011 +/- 0.024	0.042	U,G	-0.006 +/- 0.034	0.058	U,G	0.119	2.13
15064-65-0	TL-201	700 +/- 5800	9600	U,G	-200 +/- 1700	2900	U,G	0.145	2.13

Comments:

Duplicate Qualifiers/Flags:

- U Result is less than the sample specific MDC.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- $\ensuremath{\mathsf{W}}$ DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13
- LT Result is less than Request MDC, greater than sample specific MDC
- M Requested MDC not met
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- L LCS Recovery below lower control limit.
- H LCS Recovery above upper control limit.
- P LCS, Matrix Spike Recovery within control limits.
- N Matrix Spike Recovery outside control limits

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

Abbreviations:

TPU - Total Propagated Uncertainty

DER - Duplicate Error Ratio

BDL - Below Detection Limit

NR - Not Reported

ALS -- Fort Collins Page 3 of 6

PAI 713 Rev 14

Duplicate Sample Results (DER)

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS006

Lab ID: 1810627-14DUP

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18
Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 152 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g

File Name: 182672d03

CASNO	Analysta	Sample	<u>е</u>		Duplica	ate		DER	DER
	Analyte	Result +/- 2 s TPU	MDC	Flags	Result +/- 2 s TPU	MDC	Flags		Lim
14913-50-9	TI-208	0.553 +/- 0.075	0.052	G	0.583 +/- 0.088	0.088	G	0.258	2.13
13966-01-3	TL-210	0.061 +/- 0.019	0.027	G	0.071 +/- 0.023	0.032	G	0.336	2.13
15117-96-1	U-235	0.27 +/- 0.16	0.25	G,TI	0.15 +/- 0.14	0.23	U,G	0.579	2.13
7440-61-1	U-238	2.43 +/- 0.77	1.16	G	2.26 +/- 0.65	0.94	G,TI	0.175	2.13

Comments:

Duplicate Qualifiers/Flags:

- U Result is less than the sample specific MDC.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- $\ensuremath{\mathsf{W}}$ DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13
- LT Result is less than Request MDC, greater than sample specific MDC
- M Requested MDC not met.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- L LCS Recovery below lower control limit.
- H LCS Recovery above upper control limit.
 P LCS, Matrix Spike Recovery within control limits.
- N Matrix Spike Recovery outside control limits

- SQ Spectral quality prevents accurate quantitation.

 SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- \mbox{G} Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Abbreviations:

TPU - Total Propagated Uncertainty

DER - Duplicate Error Ratio

BDL - Below Detection Limit

NR - Not Reported

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 4 of 6

PAI 713 Rev 14

Duplicate Sample Results (DER)

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU007-08

Lab ID: 1810627-29DUP

Library: TIDEWATER G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18
Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 161 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182032d07

CASNO		Sample	ρ.		Duplica	ate		DER	DER
0710110	Analyte	Result +/- 2 s TPU	MDC	Flags	Result +/- 2 s TPU	MDC	Flags	DER	Lim
14331-83-0	Ac-228	2.37 +/- 0.30	0.18	G	2.32 +/- 0.30	0.23	G	0.129	2.13
13966-02-4	Be-7	-0.06 +/- 0.29	0.48	U,G	0.01 +/- 0.29	0.49	U,G	0.177	2.13
14913-49-6	Bi-212	1.24 +/- 0.62	1.23	G	1.38 +/- 0.36	0.54	G	0.201	2.13
14733-03-0	Bi-214	2.23 +/- 0.28	0.14	G,J	2.41 +/- 0.32	0.27	M3,G,J	0.408	2.13
14694-69-0	lr-192	0.007 +/- 0.031	0.052	U,G	-0.006 +/- 0.026	0.044	U,G	0.301	2.13
13966-00-2	K-40	12.3 +/- 1.6	0.9	G	10.9 +/- 1.5	0.9	G	0.646	2.13
13966-32-0	Na-22	-0.001 +/- 0.024	0.040	U,G	0.024 +/- 0.035	0.056	U,G	0.587	2.13
15100-28-4	Pa-234	0.082 +/- 0.055	0.141	U,G	0.08 +/- 0.11	0.18	U,G	0.0268	2.13
14255-04-0	Pb-210	12 +/- 27	44	U,G,J	-21 +/- 87	145	U,G,J	0.364	2.13
15092-94-1	Pb-212	2.89 +/- 0.35	0.09	G	2.72 +/- 0.33	0.11	G	0.353	2.13
15067-28-4	Pb-214	2.83 +/- 0.34	0.12	G,J	2.47 +/- 0.30	0.13	G,J	0.776	2.13
15623-45-7	Ra-223	0.75 +/- 0.15	0.21	G	0.74 +/- 0.17	0.22	G,TI	0.0667	2.13
13233-32-4	Ra-224	1.8 +/- 3.3	0.7	G	2.7 +/- 4.1	1.0	G	0.175	2.13
13982-63-3	Ra-226	4.26 +/- 0.83	1.04	G,SI	4.98 +/- 0.99	1.25	G,SI	0.561	2.13
15262-20-1	Ra-228	2.37 +/- 0.30	0.18	G	2.32 +/- 0.30	0.23	G	0.129	2.13
13967-63-0	Sc-46	0.003 +/- 0.028	0.047	U,G	0.023 +/- 0.030	0.049	U,G	0.488	2.13
15064-65-0	TL-201	540 +/- 860	1410	U,G	-200 +/- 1300	2200	U,G	0.5	2.13

Comments:

Duplicate Qualifiers/Flags:

- U Result is less than the sample specific MDC.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- $\ensuremath{\mathsf{W}}$ DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13
- $\ensuremath{\mathsf{LT}}$ Result is less than Request MDC, greater than sample specific MDC
- M Requested MDC not met
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- L LCS Recovery below lower control limit.
- H LCS Recovery above upper control limit.
- P LCS, Matrix Spike Recovery within control limits.
- N Matrix Spike Recovery outside control limits

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Abbreviations:

TPU - Total Propagated Uncertainty

DER - Duplicate Error Ratio

BDL - Below Detection Limit

NR - Not Reported

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 5 of 6

PAI 713 Rev 14

Duplicate Sample Results (DER)

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU007-08

Lab ID: 1810627-29DUP

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18
Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 161 g
Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 182032d07

CASNO	Analysta	Sampl	<u>е</u>		Duplica	ate		DER	DER
	Analyte	Result +/- 2 s TPU	MDC	Flags	Result +/- 2 s TPU	MDC	Flags		Lim
14913-50-9	TI-208	0.79 +/- 0.10	0.05	G	0.77 +/- 0.11	0.08	G	0.129	2.13
13966-01-3	TL-210	0.083 +/- 0.023	0.032	G,TI	0.116 +/- 0.028	0.035	G,TI	0.912	2.13
15117-96-1	U-235	0.22 +/- 0.14	0.23	U,G	0.16 +/- 0.16	0.27	U,G	0.28	2.13
7440-61-1	U-238	3.88 +/- 0.85	1.13	G,TI	4.3 +/- 1.0	1.4	G,TI	0.304	2.13

Comments:

Duplicate Qualifiers/Flags:

- U Result is less than the sample specific MDC.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- $\ensuremath{\mathsf{W}}$ DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13
- LT Result is less than Request MDC, greater than sample specific MDC
- M Requested MDC not met.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- L LCS Recovery below lower control limit.
- H LCS Recovery above upper control limit.
- P LCS, Matrix Spike Recovery within control limits.
- N Matrix Spike Recovery outside control limits

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Abbreviations:

TPU - Total Propagated Uncertainty

DER - Duplicate Error Ratio

BDL - Below Detection Limit

NR - Not Reported

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 6 of 6

Section 4

INDIVIDUAL SAMPLE RESULTS

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE001 Lab ID: 1810627-1

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 155 minutes

Report Basis: Dry Weight

Final Aliquot: 225 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182668d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.65 +/- 0.17	0.34		NA	
13966-02-4	Be-7	0.04 +/- 0.47	0.82		NA	U
14913-49-6	Bi-212	0.47 +/- 0.35	0.55		NA	U
14733-03-0	Bi-214	0.61 +/- 0.15	0.20	0.2	NA	J
14694-69-0	Ir-192	0 +/- 0.040	0.068		NA	U
13966-00-2	K-40	11.6 +/- 1.9	1.1		NA	
13966-32-0	Na-22	0.003 +/- 0.057	0.100		NA	U
15100-28-4	Pa-234	-0.09 +/- 0.20	0.36		NA	U
14255-04-0	Pb-210	3 +/- 17	29		NA	U,J
15092-94-1	Pb-212	0.77 +/- 0.13	0.11		NA	
15067-28-4	Pb-214	0.61 +/- 0.12	0.15	0.2	NA	J
15623-45-7	Ra-223	0.08 +/- 0.17	0.28		NA	U
13233-32-4	Ra-224	0.4 +/- 5.6	1.5		NA	U
13982-63-3	Ra-226	1.40 +/- 0.97	1.54		NA	U,SI
15262-20-1	Ra-228	0.65 +/- 0.17	0.34		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE001 Lab ID: 1810627-1

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-1 Run ID: GS181103-1B Count Time: 155 minutes

Report Basis: Dry Weight

Final Aliquot: 225 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182668d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.046 +/- 0.062	0.115		NA	U
15064-65-0	TL-201	-2000 +/- 2500	4300		NA	U
14913-50-9	TI-208	0.223 +/- 0.065	0.083		NA	
13966-01-3	TL-210	0.025 +/- 0.039	0.065		NA	U
15117-96-1	U-235	-0.01 +/- 0.21	0.35		NA	U
7440-61-1	U-238	0.80 +/- 0.74	1.20		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE002 Lab ID: 1810627-2

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 400 minutes Final Aliquot: 160 g
Prep Basis: Dry Weight
Moisture(%): NA
Result Units: pCi/q

Date Analyzed: 04-Dec-18 Report Basis: Dry Weight File Name: 182685d04

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.84 +/- 0.15	0.19		NA	G
13966-02-4	Be-7	0.08 +/- 0.40	0.68		NA	U,G
14913-49-6	Bi-212	0.48 +/- 0.32	0.50		NA	U,G
14733-03-0	Bi-214	0.81 +/- 0.14	0.19	0.2	NA	G,J
14694-69-0	Ir-192	-0.007 +/- 0.035	0.060		NA	U,G
13966-00-2	K-40	10.5 +/- 1.6	1.0		NA	G
13966-32-0	Na-22	-0.018 +/- 0.044	0.077		NA	U,G
15100-28-4	Pa-234	0.06 +/- 0.12	0.26		NA	U,G
14255-04-0	Pb-210	9.0 +/- 9.7	15.8		NA	U,G,J
15092-94-1	Pb-212	1.06 +/- 0.15	0.09		NA	G
15067-28-4	Pb-214	0.84 +/- 0.13	0.14	0.2	NA	G,J
15623-45-7	Ra-223	0.25 +/- 0.15	0.24		NA	G,TI
13233-32-4	Ra-224	1.0 +/- 3.6	0.9		NA	G
13982-63-3	Ra-226	1.39 +/- 0.74	1.16		NA	G,SI
15262-20-1	Ra-228	0.84 +/- 0.15	0.19		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE002 Lab ID: 1810627-2

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 400 minutes Report Basis: Dry Weight Final Aliquot: 160 g
Prep Basis: Dry We

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182685d04

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.021 +/- 0.045	0.075		NA	U,G
15064-65-0	TL-201	1100 +/- 1500	2500		NA	U,G
14913-50-9	TI-208	0.272 +/- 0.059	0.071		NA	G
13966-01-3	TL-210	0.047 +/- 0.031	0.048		NA	U,G
15117-96-1	U-235	0.10 +/- 0.16	0.26		NA	U,G
7440-61-1	U-238	1.21 +/- 0.71	1.13		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 4 of 58

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004 Lab ID: 1810627-3

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 90 minutes

Report Basis: Dry Weight

Final Aliquot: 209 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181897d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.39 +/- 0.14	0.24		NA	
13966-02-4	Be-7	-0.06 +/- 0.59	1.05		NA	U
14913-49-6	Bi-212	0.38 +/- 0.32	0.50		NA	U
14733-03-0	Bi-214	0.31 +/- 0.12	0.18	0.2	NA	TI,J
14694-69-0	Ir-192	0.027 +/- 0.062	0.106		NA	U
13966-00-2	K-40	7.8 +/- 1.5	1.2		NA	
13966-32-0	Na-22	0.015 +/- 0.042	0.074		NA	U
15100-28-4	Pa-234	-0.16 +/- 0.19	0.38		NA	U
14255-04-0	Pb-210	-48 +/- 50	92		NA	U,J
15092-94-1	Pb-212	0.351 +/- 0.098	0.121		NA	
15067-28-4	Pb-214	0.34 +/- 0.11	0.20	0.2	NA	J
15623-45-7	Ra-223	0.10 +/- 0.21	0.36		NA	U
13233-32-4	Ra-224	1.93 +/- 0.77	1.04		NA	NQ
13982-63-3	Ra-226	0.06 +/- 0.76	1.31		NA	U,SI
15262-20-1	Ra-228	0.39 +/- 0.14	0.24		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004

Lab ID: 1810627-3

Library: TIDEWATER_G

Sample Matrix: SEDIMENT Prep SOP: PAI 739 Rev 12

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-1 Run ID: GS181103-1B Count Time: 90 minutes Report Basis: Dry Weight Final Aliquot: 209 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181897d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.049 +/- 0.063	0.120		NA	U
15064-65-0	TL-201	2200 +/- 3700	6100		NA	U
14913-50-9	TI-208	0.138 +/- 0.054	0.072		NA	
13966-01-3	TL-210	0.012 +/- 0.037	0.064		NA	U
15117-96-1	U-235	-0.03 +/- 0.22	0.39		NA	U
7440-61-1	U-238	-0.13 +/- 0.81	1.41		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14

Sample Duplicate Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004

Lab ID: 1810627-3DUP

Library: TIDEWATER_G

Sample Matrix: SEDIMENT Prep SOP: PAI 739 Rev 12 Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 04-Dec-18 Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 75 minutes Report Basis: Dry Weight Final Aliquot: 218 g
Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 181952d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.39 +/- 0.17	0.27		NA	TI
13966-02-4	Be-7	-0.04 +/- 0.54	0.99		NA	U
14913-49-6	Bi-212	0.03 +/- 0.36	0.64		NA	U
14733-03-0	Bi-214	0.35 +/- 0.14	0.19	0.2	NA	TI,J
14694-69-0	lr-192	-0.006 +/- 0.056	0.100		NA	U
13966-00-2	K-40	7.1 +/- 1.5	1.0		NA	
13966-32-0	Na-22	-0.037 +/- 0.049	0.103		NA	U
15100-28-4	Pa-234	0.03 +/- 0.23	0.41		NA	U
14255-04-0	Pb-210	0.8 +/- 1.3	2.2		NA	U,J
15092-94-1	Pb-212	0.42 +/- 0.12	0.14		NA	
15067-28-4	Pb-214	0.37 +/- 0.12	0.19	0.2	NA	J
15623-45-7	Ra-223	0.14 +/- 0.22	0.37		NA	U
13233-32-4	Ra-224	1.7 +/- 1.3	2.0		NA	U

Comments:

Qualifiers/Flags:

U - Result is less than the sample specific MDC or less than the associated TPU.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

M - The requested MDC was not met.

M3 - The requested MDC was not met, but thereported activity is greater than the reported MDC.

W - DER is greater than Warning Limit of 1.42

D - DER is greater than Control Limit of 2.13

Abbreviations:

TPU - Total Propagated Uncertainty

MDC - Sample specific Minimum Detectable Concentration

BDL - Below Detection Limit

DL - Decision Level

Data Package ID: GSS1810627-2

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

G - Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

ALS -- Fort Collins

Page 1 of 6

PAI 713 Rev 14

Sample Duplicate Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004 Lab ID: 1810627-3DUP

Library: TIDEWATER_G

Sample Matrix: SEDIMENT Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18 Date Prepared: 03-Nov-18 Date Analyzed: 04-Dec-18 Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 75 minutes Report Basis: Dry Weight

Final Aliquot: 218 g Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 181952d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13982-63-3	Ra-226	0.54 +/- 0.69	1.12		NA	U,SI
15262-20-1	Ra-228	0.39 +/- 0.17	0.27		NA	TI
13967-63-0	Sc-46	0.009 +/- 0.063	0.114		NA	U
15064-65-0	TL-201	-50 +/- 890	1550		NA	U
14913-50-9	TI-208	0.090 +/- 0.063	0.096		NA	U
13966-01-3	TL-210	0.037 +/- 0.043	0.069		NA	U
15117-96-1	U-235	-0.20 +/- 0.22	0.41		NA	U
7440-61-1	U-238	0.25 +/- 0.57	0.95		NA	U

Comments:

Qualifiers/Flags:

- U Result is less than the sample specific MDC or less than the associated TPU.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- M The requested MDC was not met.
- M3 The requested MDC was not met, but thereported activity is greater than the reported MDC.
- W DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level
- Data Package ID: GSS1810627-2

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

G - Sample density differs by more than 15% of LCS density.

Date Printed: Tuesday, January 08, 2019

ALS -- Fort Collins LIMS Version: 6.891

Page 2 of 6

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004-DUP Lab ID: 1810627-4

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B
Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 217 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181815d09

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.31 +/- 0.12	0.26		NA	
13966-02-4	Be-7	-0.09 +/- 0.48	0.87		NA	U
14913-49-6	Bi-212	0.42 +/- 0.36	0.56		NA	U
14733-03-0	Bi-214	0.29 +/- 0.12	0.18	0.2	NA	TI,J
14694-69-0	Ir-192	-0.016 +/- 0.047	0.084		NA	U
13966-00-2	K-40	7.9 +/- 1.5	0.9		NA	
13966-32-0	Na-22	-0.008 +/- 0.049	0.092		NA	U
15100-28-4	Pa-234	0.05 +/- 0.19	0.34		NA	U
14255-04-0	Pb-210	0.22 +/- 0.92	1.56		NA	U,J
15092-94-1	Pb-212	0.41 +/- 0.11	0.13		NA	
15067-28-4	Pb-214	0.46 +/- 0.11	0.15	0.2	NA	J
15623-45-7	Ra-223	0.04 +/- 0.22	0.37		NA	U
13233-32-4	Ra-224	0.5 +/- 1.1	1.8		NA	U
13982-63-3	Ra-226	0.8 +/- 1.0	1.7		NA	U,SI
15262-20-1	Ra-228	0.31 +/- 0.12	0.26		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE004-DUP **Lab ID:** 1810627-4

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-1 Run ID: GS181103-1B Count Time: 120 minutes Report Basis: Dry Weight Final Aliquot: 217 g
Prep Basis: Dry Weight

Moisture(%): NA
Result Units: pCi/g
File Name: 181815d09

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.040 +/- 0.050	0.082		NA	U
15064-65-0	TL-201	640 +/- 740	1200		NA	U
14913-50-9	TI-208	0.164 +/- 0.065	0.089		NA	
13966-01-3	TL-210	0.029 +/- 0.040	0.065		NA	U
15117-96-1	U-235	-0.06 +/- 0.18	0.32		NA	U
7440-61-1	U-238	0.27 +/- 0.46	0.77		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE003 Lab ID: 1810627-5

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B
Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 214 g
Prep Basis: Dry Wei

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182187d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.47 +/- 0.14	0.26		NA	
13966-02-4	Be-7	0.09 +/- 0.50	0.87		NA	U
14913-49-6	Bi-212	0.20 +/- 0.31	0.51		NA	U
14733-03-0	Bi-214	0.48 +/- 0.13	0.18	0.2	NA	TI,J
14694-69-0	Ir-192	0.013 +/- 0.048	0.081		NA	U
13966-00-2	K-40	8.3 +/- 1.5	1.1		NA	
13966-32-0	Na-22	-0.011 +/- 0.048	0.087		NA	U
15100-28-4	Pa-234	-0.21 +/- 0.17	0.34		NA	U
14255-04-0	Pb-210	10 +/- 100	180		NA	U,J
15092-94-1	Pb-212	0.67 +/- 0.13	0.14		NA	
15067-28-4	Pb-214	0.56 +/- 0.12	0.16	0.2	NA	J
15623-45-7	Ra-223	0.29 +/- 0.20	0.32		NA	U
13233-32-4	Ra-224	0.2 +/- 5.6	1.5		NA	U
13982-63-3	Ra-226	1.13 +/- 0.86	1.37		NA	U,SI
15262-20-1	Ra-228	0.47 +/- 0.14	0.26		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SE003 Lab ID: 1810627-5

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 22-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 120 minutes Report Basis: Dry Weight Final Aliquot: 214 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182187d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.006 +/- 0.049	0.086		NA	U
15064-65-0	TL-201	2300 +/- 6000	10000		NA	U
14913-50-9	TI-208	0.171 +/- 0.057	0.074		NA	
13966-01-3	TL-210	0.058 +/- 0.033	0.048		NA	TI
15117-96-1	U-235	0.01 +/- 0.22	0.38		NA	U
7440-61-1	U-238	-0.06 +/- 0.90	1.53		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU1-1-SE005 Lab ID: 1810627-6

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 60 minutes

Report Basis: Dry Weight

Final Aliquot: 254 g
Prep Basis: Dry Wei

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181992d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.24 +/- 0.11	0.21		NA	G
13966-02-4	Be-7	0.17 +/- 0.35	0.59		NA	U,G
14913-49-6	Bi-212	0.25 +/- 0.18	0.28		NA	U,G
14733-03-0	Bi-214	0.29 +/- 0.11	0.17	0.2	NA	G,TI,J
14694-69-0	Ir-192	0.009 +/- 0.041	0.069		NA	U,G
13966-00-2	K-40	8.1 +/- 1.3	0.9		NA	G
13966-32-0	Na-22	0.019 +/- 0.035	0.058		NA	U,G
15100-28-4	Pa-234	-0.01 +/- 0.14	0.25		NA	U,G
14255-04-0	Pb-210	-2.4 +/- 6.4	11.1		NA	U,G,J
15092-94-1	Pb-212	0.426 +/- 0.095	0.108		NA	G
15067-28-4	Pb-214	0.343 +/- 0.097	0.157	0.2	NA	G,J
15623-45-7	Ra-223	0.18 +/- 0.17	0.28		NA	U,G
13233-32-4	Ra-224	0.62 +/- 0.67	1.10		NA	U,G
13982-63-3	Ra-226	0.33 +/- 0.77	1.29		NA	U,G,SI
15262-20-1	Ra-228	0.24 +/- 0.11	0.21		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU1-1-SE005 Lab ID: 1810627-6

Library: TIDEWATER_G

Sample Matrix: SEDIMENT Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1-1

Run ID: GS181103-1B

Count Time: 60 minutes

Report Basis: Dry Weight

Final Aliquot: 254 g
Prep Basis: Dry Wei

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181992d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.026 +/- 0.043	0.071		NA	U,G
15064-65-0	TL-201	200 +/- 1400	2300		NA	U,G
14913-50-9	TI-208	0.075 +/- 0.043	0.066		NA	G
13966-01-3	TL-210	0.016 +/- 0.030	0.050		NA	U,G
15117-96-1	U-235	0.03 +/- 0.19	0.32		NA	U,G
7440-61-1	U-238	0.10 +/- 0.51	0.86		NA	U,G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 12 of 58

LIMS Version: 6.891

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: REF-1-SE001 Lab ID: 1810627-7

Library: TIDEWATER_G

Sample Matrix: SEDIMENT Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18
Date Prepared: 03-Nov-18
Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 300 minutes Report Basis: Dry Weight Final Aliquot: 171 g
Prep Basis: Dry Weight
Moisture(%): NA

Result Units: pCi/g File Name: 182018d07

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.49 +/- 0.13	0.26		NA	G
13966-02-4	Be-7	0.04 +/- 0.40	0.68		NA	U,G
14913-49-6	Bi-212	0.29 +/- 0.37	0.61		NA	U,G
14733-03-0	Bi-214	0.51 +/- 0.12	0.19	0.2	NA	G,J
14694-69-0	Ir-192	0 +/- 0.037	0.063		NA	U,G
13966-00-2	K-40	7.3 +/- 1.3	1.1		NA	G
13966-32-0	Na-22	0.003 +/- 0.036	0.063		NA	U,G
15100-28-4	Pa-234	-0.06 +/- 0.15	0.27		NA	U,G
14255-04-0	Pb-210	12 +/- 57	95		NA	U,G,J
15092-94-1	Pb-212	0.64 +/- 0.12	0.12		NA	G
15067-28-4	Pb-214	0.49 +/- 0.10	0.14	0.2	NA	G,J
15623-45-7	Ra-223	0.22 +/- 0.19	0.30		NA	U,G
13233-32-4	Ra-224	0.9 +/- 4.9	1.3		NA	U,G
13982-63-3	Ra-226	1.13 +/- 0.94	1.51		NA	U,G,SI
15262-20-1	Ra-228	0.49 +/- 0.13	0.26		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: REF-1-SE001 **Lab ID:** 1810627-7

Library: TIDEWATER_G

Sample Matrix: SEDIMENT

Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-1

Run ID: GS181103-1B Count Time: 300 minutes

Report Basis: Dry Weight

Final Aliquot: 171 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182018d07

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.051 +/- 0.047	0.087		NA	U,G
15064-65-0	TL-201	3000 +/- 2500	3900		NA	U,G
14913-50-9	TI-208	0.146 +/- 0.061	0.092		NA	G
13966-01-3	TL-210	0.040 +/- 0.032	0.050		NA	U,G
15117-96-1	U-235	0.13 +/- 0.15	0.25		NA	U,G
7440-61-1	U-238	0.47 +/- 0.88	1.46		NA	U,G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 14 of 58

LIMS Version: 6.891

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS007 Lab ID: 1810627-8

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 90 minutes

Report Basis: Dry Weight

Final Aliquot: 258 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182154d01

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.26 +/- 0.16	0.30		NA	U,G
13966-02-4	Be-7	-0.19 +/- 0.52	0.95		NA	U,G
14913-49-6	Bi-212	0.25 +/- 0.32	0.52		NA	U,G
14733-03-0	Bi-214	0.33 +/- 0.13	0.17	0.2	NA	G,TI,J
14694-69-0	Ir-192	-0.005 +/- 0.047	0.084		NA	U,G
13966-00-2	K-40	7.2 +/- 1.5	1.3		NA	G
13966-32-0	Na-22	0.015 +/- 0.051	0.090		NA	U,G
15100-28-4	Pa-234	0.01 +/- 0.17	0.32		NA	U,G
14255-04-0	Pb-210	-42 +/- 39	73		NA	U,G,J
15092-94-1	Pb-212	0.261 +/- 0.097	0.133		NA	G
15067-28-4	Pb-214	0.25 +/- 0.12	0.18	0.2	NA	G,J
15623-45-7	Ra-223	-0.02 +/- 0.19	0.33		NA	U,G
13233-32-4	Ra-224	2.0 +/- 1.2	1.7		NA	G,NQ
13982-63-3	Ra-226	0.9 +/- 1.0	1.6		NA	U,G,SI
15262-20-1	Ra-228	0.26 +/- 0.16	0.30		NA	U,G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS007 Lab ID: 1810627-8

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 04-Dec-18 Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 90 minutes

Report Basis: Dry Weight

Final Aliquot: 258 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/q File Name: 182154d01

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.004 +/- 0.047	0.086		NA	U,G
15064-65-0	TL-201	500 +/- 2600	4500		NA	U,G
14913-50-9	TI-208	0.142 +/- 0.059	0.078		NA	G
13966-01-3	TL-210	0.003 +/- 0.035	0.064		NA	U,G
15117-96-1	U-235	0.05 +/- 0.18	0.31		NA	U,G
7440-61-1	U-238	0.35 +/- 0.67	1.13		NA	U,G

Comments:

Qualifiers/Flags:

- U Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS003 Lab ID: 1810627-9

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 75 minutes

Report Basis: Dry Weight

Final Aliquot: 241 g
Prep Basis: Dry Wei

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181953d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.34 +/- 0.16	0.26		NA	TI
13966-02-4	Be-7	0.08 +/- 0.48	0.85		NA	U
14913-49-6	Bi-212	0.36 +/- 0.40	0.65		NA	U
14733-03-0	Bi-214	0.27 +/- 0.13	0.19	0.2	NA	TI,J
14694-69-0	Ir-192	-0.014 +/- 0.049	0.089		NA	U
13966-00-2	K-40	7.0 +/- 1.4	0.9		NA	
13966-32-0	Na-22	-0.008 +/- 0.054	0.101		NA	U
15100-28-4	Pa-234	-0.14 +/- 0.21	0.42		NA	U
14255-04-0	Pb-210	1.1 +/- 1.0	1.7		NA	U,J
15092-94-1	Pb-212	0.369 +/- 0.097	0.110		NA	
15067-28-4	Pb-214	0.37 +/- 0.10	0.14	0.2	NA	J
15623-45-7	Ra-223	0 +/- 0.19	0.33		NA	U
13233-32-4	Ra-224	0.6 +/- 6.1	1.6		NA	U
13982-63-3	Ra-226	0.85 +/- 0.95	1.55		NA	U,SI
15262-20-1	Ra-228	0.34 +/- 0.16	0.26		NA	TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS003 Lab ID: 1810627-9

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 04-Dec-18 Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 75 minutes

Report Basis: Dry Weight

Final Aliquot: 241 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181953d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.013 +/- 0.062	0.110		NA	U
15064-65-0	TL-201	30 +/- 660	1140		NA	U
14913-50-9	TI-208	0.099 +/- 0.058	0.084		NA	
13966-01-3	TL-210	0.033 +/- 0.039	0.063		NA	U
15117-96-1	U-235	0.14 +/- 0.19	0.31		NA	U
7440-61-1	U-238	0.52 +/- 0.48	0.78		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS001 Lab ID: 1810627-10

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 60 minutes

Report Basis: Dry Weight

Final Aliquot: 273 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181993d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.23 +/- 0.12	0.20		NA	G,TI
13966-02-4	Be-7	0.12 +/- 0.32	0.55		NA	U,G
14913-49-6	Bi-212	0.21 +/- 0.21	0.35		NA	U,G
14733-03-0	Bi-214	0.193 +/- 0.094	0.151	0.2	NA	G,TI,J
14694-69-0	Ir-192	-0.035 +/- 0.035	0.064		NA	U,G
13966-00-2	K-40	8.2 +/- 1.3	0.8		NA	G
13966-32-0	Na-22	-0.016 +/- 0.035	0.065		NA	U,G
15100-28-4	Pa-234	0.02 +/- 0.15	0.25		NA	U,G
14255-04-0	Pb-210	-1.2 +/- 6.1	10.4		NA	U,G,J
15092-94-1	Pb-212	0.280 +/- 0.077	0.101		NA	G
15067-28-4	Pb-214	0.24 +/- 0.10	0.15	0.2	NA	G,J
15623-45-7	Ra-223	0.15 +/- 0.15	0.25		NA	U,G
13233-32-4	Ra-224	0.35 +/- 0.61	1.02		NA	U,G
13982-63-3	Ra-226	0.15 +/- 0.62	1.04		NA	U,G,SI
15262-20-1	Ra-228	0.23 +/- 0.12	0.20		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS001 Lab ID: 1810627-10

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12
Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 60 minutes Report Basis: Dry Weight Final Aliquot: 273 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181993d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.019 +/- 0.037	0.062		NA	U,G
15064-65-0	TL-201	-1800 +/- 1300	2300		NA	U,G
14913-50-9	TI-208	0.055 +/- 0.034	0.053		NA	G
13966-01-3	TL-210	-0.002 +/- 0.026	0.046		NA	U,G
15117-96-1	U-235	-0.04 +/- 0.19	0.32		NA	U,G
7440-61-1	U-238	0.03 +/- 0.62	1.05		NA	U,G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 20 of 58

LIMS Version: 6.891

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS005 Lab ID: 1810627-11

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 400 minutes Report Basis: Dry Weight Final Aliquot: 211 g
Prep Basis: Dry Weight

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182669d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.69 +/- 0.14	0.24		NA	
13966-02-4	Be-7	0.27 +/- 0.30	0.49		NA	U
14913-49-6	Bi-212	0.37 +/- 0.21	0.31		NA	
14733-03-0	Bi-214	0.70 +/- 0.12	0.14	0.2	NA	TI,J
14694-69-0	Ir-192	0.004 +/- 0.027	0.046		NA	U
13966-00-2	K-40	9.5 +/- 1.4	0.9		NA	
13966-32-0	Na-22	-0.007 +/- 0.035	0.060		NA	U
15100-28-4	Pa-234	-0.11 +/- 0.14	0.24		NA	U
14255-04-0	Pb-210	8 +/- 11	19		NA	U,J
15092-94-1	Pb-212	0.96 +/- 0.13	0.08		NA	
15067-28-4	Pb-214	0.80 +/- 0.12	0.13	0.2	NA	J
15623-45-7	Ra-223	0.24 +/- 0.16	0.26		NA	U
13233-32-4	Ra-224	0.7 +/- 4.1	1.1		NA	U
13982-63-3	Ra-226	1.44 +/- 0.74	1.17		NA	
15262-20-1	Ra-228	0.69 +/- 0.14	0.24		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS005 Lab ID: 1810627-11

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 400 minutes

Report Basis: Dry Weight

Final Aliquot: 211 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182669d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.017 +/- 0.036	0.063		NA	U
15064-65-0	TL-201	-500 +/- 1500	2600		NA	U
14913-50-9	TI-208	0.261 +/- 0.055	0.070		NA	
13966-01-3	TL-210	0.044 +/- 0.025	0.038		NA	TI
15117-96-1	U-235	0.05 +/- 0.14	0.23		NA	U
7440-61-1	U-238	1.04 +/- 0.57	0.89		NA	TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS005-DUP Lab ID: 1810627-12

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 300 minutes

Report Basis: Dry Weight

Final Aliquot: 202 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181899d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.67 +/- 0.13	0.17		NA	
13966-02-4	Be-7	0.01 +/- 0.34	0.58		NA	U
14913-49-6	Bi-212	0.63 +/- 0.23	0.31		NA	TI
14733-03-0	Bi-214	0.68 +/- 0.12	0.13	0.2	NA	TI,J
14694-69-0	Ir-192	-0.006 +/- 0.038	0.065		NA	U
13966-00-2	K-40	9.5 +/- 1.4	0.8		NA	
13966-32-0	Na-22	-0.010 +/- 0.030	0.053		NA	U
15100-28-4	Pa-234	0.07 +/- 0.12	0.20		NA	U
14255-04-0	Pb-210	5 +/- 30	51		NA	U,J
15092-94-1	Pb-212	0.87 +/- 0.12	0.08		NA	
15067-28-4	Pb-214	0.92 +/- 0.13	0.13	0.2	NA	J
15623-45-7	Ra-223	0.22 +/- 0.13	0.20		NA	TI
13233-32-4	Ra-224	0.4 +/- 3.4	0.8		NA	U
13982-63-3	Ra-226	1.35 +/- 0.62	0.96		NA	SI
15262-20-1	Ra-228	0.67 +/- 0.13	0.17		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

LIMS Version: 6.891

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS005-DUP

Lab ID: 1810627-12

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 23-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 04-Dec-18 Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 300 minutes

Report Basis: Dry Weight

Final Aliquot: 202 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181899d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.012 +/- 0.032	0.055		NA	U
15064-65-0	TL-201	0 +/- 2000	3400		NA	U
14913-50-9	TI-208	0.253 +/- 0.048	0.050		NA	
13966-01-3	TL-210	0.029 +/- 0.020	0.031		NA	U
15117-96-1	U-235	0.10 +/- 0.13	0.23		NA	U
7440-61-1	U-238	0.72 +/- 0.68	1.11		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS004 Lab ID: 1810627-13

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 300 minutes

Report Basis: Dry Weight

Final Aliquot: 186 g
Prep Basis: Dry Weight

Moisture(%): NA
Result Units: pCi/g
File Name: 182189d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.78 +/- 0.14	0.21		NA	
13966-02-4	Be-7	0.13 +/- 0.37	0.62		NA	U
14913-49-6	Bi-212	0.45 +/- 0.25	0.37		NA	TI
14733-03-0	Bi-214	0.71 +/- 0.12	0.15	0.2	NA	J
14694-69-0	Ir-192	0.005 +/- 0.033	0.055		NA	U
13966-00-2	K-40	7.7 +/- 1.2	0.9		NA	
13966-32-0	Na-22	-0.013 +/- 0.032	0.057		NA	U
15100-28-4	Pa-234	0.059 +/- 0.082	0.170		NA	U
14255-04-0	Pb-210	7 +/- 80	135		NA	U,J
15092-94-1	Pb-212	0.90 +/- 0.14	0.11		NA	
15067-28-4	Pb-214	0.73 +/- 0.12	0.13	0.2	NA	J
15623-45-7	Ra-223	0.29 +/- 0.15	0.24		NA	TI
13233-32-4	Ra-224	0.9 +/- 3.8	0.9		NA	
13982-63-3	Ra-226	0.91 +/- 0.75	1.21		NA	U
15262-20-1	Ra-228	0.78 +/- 0.14	0.21		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS004

Lab ID: 1810627-13

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 300 minutes Report Basis: Dry Weight Final Aliquot: 186 g
Prep Basis: Dry We

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182189d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.025 +/- 0.035	0.063		NA	U
15064-65-0	TL-201	300 +/- 2900	4900		NA	U
14913-50-9	TI-208	0.266 +/- 0.056	0.065		NA	
13966-01-3	TL-210	0.011 +/- 0.027	0.046		NA	U
15117-96-1	U-235	-0.05 +/- 0.17	0.29		NA	U
7440-61-1	U-238	0.7 +/- 4.8	1.3		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS006 Lab ID: 1810627-14

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 155 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182195d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	1.64 +/- 0.21	0.18		NA	G
13966-02-4	Be-7	0.03 +/- 0.26	0.43		NA	U,G
14913-49-6	Bi-212	1.07 +/- 0.22	0.27		NA	G
14733-03-0	Bi-214	1.49 +/- 0.19	0.14	0.2	NA	G,J
14694-69-0	Ir-192	-0.007 +/- 0.024	0.040		NA	U,G
13966-00-2	K-40	7.5 +/- 1.1	0.8		NA	G
13966-32-0	Na-22	0.001 +/- 0.021	0.036		NA	U,G
15100-28-4	Pa-234	0.066 +/- 0.088	0.151		NA	U,G
14255-04-0	Pb-210	8 +/- 57	95		NA	U,G,J
15092-94-1	Pb-212	1.89 +/- 0.24	0.11		NA	G
15067-28-4	Pb-214	1.53 +/- 0.20	0.13	0.2	NA	G,J
15623-45-7	Ra-223	0.44 +/- 0.11	0.18		NA	G
13233-32-4	Ra-224	2.1 +/- 3.0	0.7		NA	G
13982-63-3	Ra-226	2.63 +/- 0.78	1.16		NA	G,SI
15262-20-1	Ra-228	1.64 +/- 0.21	0.18		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS006 Lab ID: 1810627-14

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 24-Oct-18 Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 1000 minutes Report Basis: Dry Weight

Final Aliquot: 155 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/q File Name: 182195d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.011 +/- 0.024	0.042		NA	U,G
15064-65-0	TL-201	700 +/- 5800	9600		NA	U,G
14913-50-9	TI-208	0.553 +/- 0.075	0.052		NA	G
13966-01-3	TL-210	0.061 +/- 0.019	0.027		NA	G
15117-96-1	U-235	0.27 +/- 0.16	0.25		NA	G,TI
7440-61-1	U-238	2.43 +/- 0.77	1.16		NA	G

Comments:

Qualifiers/Flags:

- U Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14

Sample Duplicate Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS006

Lab ID: 1810627-14DUP

Library: TIDEWATER_G

Sample Matrix: SOIL

Date Analyzed: 05-Dec-18

Prep SOP: PAI 739 Rev 12

Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18

Prep Batch: GS181103-1 **QCBatchID:** GS181103-1-2

Run ID: GS181103-1B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 152 g
Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 182672d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	1.71 +/- 0.23	0.24		NA	G
13966-02-4	Be-7	-0.05 +/- 0.28	0.48		NA	U,G
14913-49-6	Bi-212	1.11 +/- 0.27	0.34		NA	G,TI
14733-03-0	Bi-214	1.44 +/- 0.19	0.16	0.2	NA	G,J
14694-69-0	lr-192	0.012 +/- 0.025	0.042		NA	U,G
13966-00-2	K-40	8.0 +/- 1.2	1.0		NA	G
13966-32-0	Na-22	-0.016 +/- 0.031	0.053		NA	U,G
15100-28-4	Pa-234	0 +/- 0.11	0.20		NA	U,G
14255-04-0	Pb-210	4 +/- 11	18		NA	U,G,J
15092-94-1	Pb-212	2.05 +/- 0.25	0.10		NA	G
15067-28-4	Pb-214	1.55 +/- 0.21	0.14	0.2	NA	G,J
15623-45-7	Ra-223	0.40 +/- 0.11	0.18		NA	G
13233-32-4	Ra-224	1.5 +/- 5.0	1.3		NA	G

Comments:

Qualifiers/Flags:

U - Result is less than the sample specific MDC or less than the associated TPU.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

M - The requested MDC was not met.

M3 - The requested MDC was not met, but thereported activity is greater than the reported MDC.

W - DER is greater than Warning Limit of 1.42

D - DER is greater than Control Limit of 2.13

Abbreviations:

TPU - Total Propagated Uncertainty

MDC - Sample specific Minimum Detectable Concentration

BDL - Below Detection Limit

DL - Decision Level

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

G - Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

ALS -- Fort Collins

Page 3 of 6

LIMS Version: 6.891

PAI 713 Rev 14

Sample Duplicate Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS006 Lab ID: 1810627-14DUP

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 24-Oct-18 Date Prepared: 03-Nov-18 Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 1000 minutes Report Basis: Dry Weight

Final Aliquot: 152 g Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 182672d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13982-63-3	Ra-226	2.95 +/- 0.92	1.37		NA	G,SI
15262-20-1	Ra-228	1.71 +/- 0.23	0.24		NA	G
13967-63-0	Sc-46	-0.006 +/- 0.034	0.058		NA	U,G
15064-65-0	TL-201	-200 +/- 1700	2900		NA	U,G
14913-50-9	TI-208	0.583 +/- 0.088	0.088		NA	G
13966-01-3	TL-210	0.071 +/- 0.023	0.032		NA	G
15117-96-1	U-235	0.15 +/- 0.14	0.23		NA	U,G
7440-61-1	U-238	2.26 +/- 0.65	0.94		NA	G,TI

Comments:

Qualifiers/Flags:

- U Result is less than the sample specific MDC or less than the associated TPU.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- M The requested MDC was not met.
- M3 The requested MDC was not met, but thereported activity is greater than the reported MDC.
- W DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level
- Data Package ID: GSS1810627-2

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

G - Sample density differs by more than 15% of LCS density.

Date Printed: Tuesday, January 08, 2019

ALS -- Fort Collins LIMS Version: 6.891

Page 4 of 6

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS002 Lab ID: 1810627-15

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18
Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B
Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 180 g Prep Basis: Dry Weig

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181997d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.72 +/- 0.15	0.23		NA	G
13966-02-4	Be-7	0.09 +/- 0.39	0.65		NA	U,G
14913-49-6	Bi-212	0.51 +/- 0.26	0.40		NA	G,TI
14733-03-0	Bi-214	0.76 +/- 0.15	0.19	0.2	NA	G,J
14694-69-0	Ir-192	0.011 +/- 0.040	0.068		NA	U,G
13966-00-2	K-40	9.3 +/- 1.4	0.8		NA	G
13966-32-0	Na-22	0.005 +/- 0.037	0.064		NA	U,G
15100-28-4	Pa-234	0.04 +/- 0.15	0.26		NA	U,G
14255-04-0	Pb-210	5.5 +/- 5.7	9.2		NA	U,G,J
15092-94-1	Pb-212	0.91 +/- 0.14	0.12		NA	G
15067-28-4	Pb-214	1.02 +/- 0.16	0.18	0.2	NA	G,J
15623-45-7	Ra-223	0.21 +/- 0.20	0.33		NA	U,G
13233-32-4	Ra-224	1.89 +/- 0.84	1.28		NA	G
13982-63-3	Ra-226	1.14 +/- 0.88	1.42		NA	U,G,SI
15262-20-1	Ra-228	0.72 +/- 0.15	0.23		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS002 Lab ID: 1810627-15

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 120 minutes Report Basis: Dry Weight Final Aliquot: 180 g
Prep Basis: Dry Weight
Moisture(%): NA

Moisture(%): NA Result Units: pCi/g File Name: 181997d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.012 +/- 0.044	0.077		NA	U,G
15064-65-0	TL-201	900 +/- 1400	2300		NA	U,G
14913-50-9	TI-208	0.235 +/- 0.056	0.068		NA	G
13966-01-3	TL-210	0.045 +/- 0.030	0.047		NA	U,G
15117-96-1	U-235	0.12 +/- 0.23	0.39		NA	U,G
7440-61-1	U-238	1.36 +/- 0.76	1.26		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS008 Lab ID: 1810627-16

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 05-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B
Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 82.9 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182000d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.66 +/- 0.15	0.28		NA	G
13966-02-4	Be-7	0.04 +/- 0.26	0.44		NA	U,G
14913-49-6	Bi-212	0.64 +/- 0.21	0.31		NA	G
14733-03-0	Bi-214	1.83 +/- 0.25	0.24	0.2	NA	M3,G,J
14694-69-0	Ir-192	0.009 +/- 0.027	0.045		NA	U,G
13966-00-2	K-40	7.2 +/- 1.1	1.1		NA	G
13966-32-0	Na-22	-0.015 +/- 0.026	0.044		NA	U,G
15100-28-4	Pa-234	-0.08 +/- 0.11	0.19		NA	U,G
14255-04-0	Pb-210	9.0 +/- 4.1	6.4		NA	G,NQ,J
15092-94-1	Pb-212	0.78 +/- 0.13	0.14		NA	G
15067-28-4	Pb-214	2.10 +/- 0.29	0.23	0.2	NA	M3,G,J
15623-45-7	Ra-223	0.18 +/- 0.21	0.34		NA	U,G
13233-32-4	Ra-224	0.5 +/- 5.8	1.5		NA	U,G
13982-63-3	Ra-226	3.6 +/- 1.2	1.8		NA	G,SI
15262-20-1	Ra-228	0.66 +/- 0.15	0.28		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SS008 Lab ID: 1810627-16

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 24-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 05-Dec-18 Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B

Count Time: 1000 minutes Report Basis: Dry Weight

Final Aliquot: 82.9 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182000d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.016 +/- 0.030	0.050		NA	U,G
15064-65-0	TL-201	3400 +/- 1700	2600		NA	G,NQ
14913-50-9	TI-208	0.189 +/- 0.058	0.089		NA	G
13966-01-3	TL-210	0.035 +/- 0.016	0.025		NA	G
15117-96-1	U-235	0.25 +/- 0.22	0.47		NA	U,G
7440-61-1	U-238	3.10 +/- 0.91	1.35		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 32 of 58

LIMS Version: 6.891

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU002-07

Lab ID: 1810627-17

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B
Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 213 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181902d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.85 +/- 0.18	0.22		NA	
13966-02-4	Be-7	-0.31 +/- 0.49	0.88		NA	U
14913-49-6	Bi-212	0.59 +/- 0.27	0.37		NA	TI
14733-03-0	Bi-214	0.82 +/- 0.15	0.16	0.2	NA	J
14694-69-0	Ir-192	0.015 +/- 0.059	0.101		NA	U
13966-00-2	K-40	9.4 +/- 1.6	1.1		NA	
13966-32-0	Na-22	-0.024 +/- 0.043	0.082		NA	U
15100-28-4	Pa-234	-0.06 +/- 0.18	0.34		NA	U
14255-04-0	Pb-210	6 +/- 49	84		NA	U,J
15092-94-1	Pb-212	1.02 +/- 0.15	0.10		NA	
15067-28-4	Pb-214	1.05 +/- 0.17	0.17	0.2	NA	J
15623-45-7	Ra-223	0.28 +/- 0.17	0.25		NA	TI
13233-32-4	Ra-224	0.5 +/- 5.8	1.5		NA	U
13982-63-3	Ra-226	0.94 +/- 0.71	1.13		NA	U,SI
15262-20-1	Ra-228	0.85 +/- 0.18	0.22		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU002-07

Lab ID: 1810627-17

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18
Date Analyzed: 05-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 213 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181902d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.007 +/- 0.055	0.097		NA	U
15064-65-0	TL-201	-400 +/- 2200	3800		NA	U
14913-50-9	TI-208	0.237 +/- 0.059	0.067		NA	
13966-01-3	TL-210	0.004 +/- 0.037	0.065		NA	U
15117-96-1	U-235	0.03 +/- 0.22	0.37		NA	U
7440-61-1	U-238	1.4 +/- 1.0	1.7		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU004-10

Lab ID: 1810627-18

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 300 minutes

Report Basis: Dry Weight

Final Aliquot: 182 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182159d01

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.88 +/- 0.17	0.29		NA	G
13966-02-4	Be-7	-0.12 +/- 0.39	0.68		NA	U,G
14913-49-6	Bi-212	0.38 +/- 0.28	0.43		NA	U,G
14733-03-0	Bi-214	0.97 +/- 0.15	0.15	0.2	NA	G,J
14694-69-0	Ir-192	0.024 +/- 0.038	0.063		NA	U,G
13966-00-2	K-40	5.6 +/- 1.1	1.1		NA	G
13966-32-0	Na-22	0.014 +/- 0.031	0.053		NA	U,G
15100-28-4	Pa-234	-0.02 +/- 0.16	0.27		NA	U,G
14255-04-0	Pb-210	14 +/- 33	54		NA	U,G,J
15092-94-1	Pb-212	1.13 +/- 0.17	0.13		NA	G
15067-28-4	Pb-214	1.09 +/- 0.17	0.17	0.2	NA	G,J
15623-45-7	Ra-223	0.37 +/- 0.22	0.34		NA	G,TI
13233-32-4	Ra-224	1.3 +/- 5.7	1.4		NA	U,G
13982-63-3	Ra-226	2.88 +/- 0.99	1.45		NA	G,SI
15262-20-1	Ra-228	0.88 +/- 0.17	0.29		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU004-10
Lab ID: 1810627-18

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 300 minutes Report Basis: Dry Weight Final Aliquot: 182 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182159d01

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.028 +/- 0.040	0.066		NA	U,G
15064-65-0	TL-201	800 +/- 1700	2900		NA	U,G
14913-50-9	TI-208	0.337 +/- 0.072	0.084		NA	G
13966-01-3	TL-210	0.012 +/- 0.031	0.052		NA	U,G
15117-96-1	U-235	0.15 +/- 0.16	0.26		NA	U,G
7440-61-1	U-238	2.14 +/- 0.86	1.30		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU004-16

Lab ID: 1810627-19

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 05-Dec-18

Prep Batch: GS181103-1 QCBatchID: GS181103-1-2

Run ID: GS181103-1B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 160 g
Prep Basis: Dry Weight
Moisture(%): NA

Result Units: pCi/g File Name: 181905d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	1.35 +/- 0.18	0.15		NA	G
13966-02-4	Be-7	-0.25 +/- 0.25	0.42		NA	U,G
14913-49-6	Bi-212	0.84 +/- 0.19	0.24		NA	G
14733-03-0	Bi-214	1.26 +/- 0.17	0.13	0.2	NA	G,J
14694-69-0	Ir-192	-0.005 +/- 0.026	0.044		NA	U,G
13966-00-2	K-40	7.7 +/- 1.1	0.8		NA	G
13966-32-0	Na-22	0.001 +/- 0.021	0.035		NA	U,G
15100-28-4	Pa-234	0.086 +/- 0.076	0.134		NA	U,G
14255-04-0	Pb-210	9 +/- 22	36		NA	U,G,J
15092-94-1	Pb-212	1.65 +/- 0.20	0.08		NA	G
15067-28-4	Pb-214	1.74 +/- 0.22	0.12	0.2	NA	G,J
15623-45-7	Ra-223	0.341 +/- 0.097	0.163		NA	G
13233-32-4	Ra-224	0.4 +/- 2.6	0.6	1	NA	U,G
13982-63-3	Ra-226	2.52 +/- 0.68	0.97		NA	G,SI
15262-20-1	Ra-228	1.35 +/- 0.18	0.15		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU004-16

Lab ID: 1810627-19

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 05-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B

Count Time: 1000 minutes Report Basis: Dry Weight

Final Aliquot: 160 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181905d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.006 +/- 0.024	0.041		NA	U,G
15064-65-0	TL-201	1000 +/- 1500	2400		NA	U,G
14913-50-9	TI-208	0.422 +/- 0.060	0.046		NA	G
13966-01-3	TL-210	0.045 +/- 0.015	0.022		NA	G,TI
15117-96-1	U-235	0.14 +/- 0.11	0.18		NA	U,G
7440-61-1	U-238	1.1 +/- 4.4	1.0		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 38 of 58

LIMS Version: 6.891

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU004-29

Lab ID: 1810627-20

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 300 minutes

Report Basis: Dry Weight

Final Aliquot: 218 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181816d09

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.86 +/- 0.15	0.21		NA	
13966-02-4	Be-7	0.21 +/- 0.32	0.52		NA	U
14913-49-6	Bi-212	0.64 +/- 0.27	0.38		NA	TI
14733-03-0	Bi-214	0.82 +/- 0.13	0.13	0.2	NA	J
14694-69-0	Ir-192	0.027 +/- 0.032	0.052		NA	U
13966-00-2	K-40	11.1 +/- 1.6	0.8		NA	
13966-32-0	Na-22	0.013 +/- 0.031	0.053		NA	U
15100-28-4	Pa-234	0.062 +/- 0.095	0.217		NA	U
14255-04-0	Pb-210	0.75 +/- 0.84	1.38		NA	U,J
15092-94-1	Pb-212	1.08 +/- 0.15	0.09		NA	
15067-28-4	Pb-214	0.90 +/- 0.14	0.12	0.2	NA	J
15623-45-7	Ra-223	0.27 +/- 0.21	0.33		NA	U
13233-32-4	Ra-224	1.0 +/- 4.4	1.1		NA	U
13982-63-3	Ra-226	1.43 +/- 0.63	0.95		NA	SI
15262-20-1	Ra-228	0.86 +/- 0.15	0.21		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU004-29

Lab ID: 1810627-20

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 25-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 04-Dec-18

Prep Batch: GS181103-1

QCBatchID: GS181103-1-2 Run ID: GS181103-1B Count Time: 300 minutes Report Basis: Dry Weight Final Aliquot: 218 g
Prep Basis: Dry Weight
Moisture(%): NA
Result Units: pCi/q

File Name: 181816d09

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.007 +/- 0.036	0.064		NA	U
15064-65-0	TL-201	-20 +/- 310	520		NA	U
14913-50-9	TI-208	0.321 +/- 0.062	0.068		NA	
13966-01-3	TL-210	0.032 +/- 0.024	0.038		NA	U
15117-96-1	U-235	-0.06 +/- 0.15	0.26		NA	U
7440-61-1	U-238	1.00 +/- 0.50	0.82		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU005-01 Lab ID: 1810627-21

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 234 g
Prep Basis: Dry We

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181957d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.49 +/- 0.15	0.28		NA	
13966-02-4	Be-7	0.03 +/- 0.41	0.71		NA	U
14913-49-6	Bi-212	0.40 +/- 0.38	0.61		NA	U
14733-03-0	Bi-214	0.63 +/- 0.14	0.16	0.2	NA	J
14694-69-0	Ir-192	0.002 +/- 0.042	0.073		NA	U
13966-00-2	K-40	9.1 +/- 1.5	0.9		NA	
13966-32-0	Na-22	0.003 +/- 0.042	0.075		NA	U
15100-28-4	Pa-234	0.04 +/- 0.17	0.31		NA	U
14255-04-0	Pb-210	0.82 +/- 0.69	1.09		NA	U,J
15092-94-1	Pb-212	0.76 +/- 0.13	0.10		NA	
15067-28-4	Pb-214	0.66 +/- 0.12	0.13	0.2	NA	J
15623-45-7	Ra-223	0.24 +/- 0.16	0.25		NA	U
13233-32-4	Ra-224	0.9 +/- 5.1	1.3		NA	U
13982-63-3	Ra-226	0.99 +/- 0.79	1.26		NA	U,SI
15262-20-1	Ra-228	0.49 +/- 0.15	0.28		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU005-01

Lab ID: 1810627-21

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 05-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 234 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181957d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0 +/- 0.049	0.087		NA	U
15064-65-0	TL-201	60 +/- 390	650		NA	U
14913-50-9	TI-208	0.253 +/- 0.068	0.081		NA	
13966-01-3	TL-210	0.028 +/- 0.025	0.039		NA	U
15117-96-1	U-235	0 +/- 0.18	0.31		NA	U
7440-61-1	U-238	1.00 +/- 0.51	0.77		NA	TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU005-01-DUP

Lab ID: 1810627-22

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 06-Dec-18 Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 210 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/q File Name: 182002d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.70 +/- 0.13	0.18		NA	
13966-02-4	Be-7	-0.23 +/- 0.33	0.58		NA	U
14913-49-6	Bi-212	0.66 +/- 0.26	0.38		NA	
14733-03-0	Bi-214	0.79 +/- 0.14	0.16	0.2	NA	J
14694-69-0	Ir-192	-0.010 +/- 0.034	0.058		NA	U
13966-00-2	K-40	9.7 +/- 1.4	0.8		NA	
13966-32-0	Na-22	0.017 +/- 0.033	0.055		NA	U
15100-28-4	Pa-234	0.12 +/- 0.13	0.22		NA	U
14255-04-0	Pb-210	2.2 +/- 6.5	10.8		NA	U,J
15092-94-1	Pb-212	0.93 +/- 0.14	0.10		NA	
15067-28-4	Pb-214	0.91 +/- 0.14	0.15	0.2	NA	J
15623-45-7	Ra-223	0.28 +/- 0.16	0.25		NA	TI
13233-32-4	Ra-224	0.9 +/- 5.1	1.3		NA	U
13982-63-3	Ra-226	1.53 +/- 0.80	1.24		NA	SI
15262-20-1	Ra-228	0.70 +/- 0.13	0.18		NA	

Comments:

Qualifiers/Flags:

- U Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

ALS -- Fort Collins Page 43 of 58

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627 Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU005-01-DUP Lab ID: 1810627-22

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 06-Dec-18 Prep Batch: GS181103-2

QCBatchID: GS181103-2-1 Run ID: GS181103-2B Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 210 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/q File Name: 182002d10

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.025 +/- 0.035	0.063		NA	U
15064-65-0	TL-201	110 +/- 990	1650		NA	U
14913-50-9	TI-208	0.240 +/- 0.050	0.059		NA	
13966-01-3	TL-210	-0.024 +/- 0.028	0.049		NA	U
15117-96-1	U-235	0.05 +/- 0.18	0.30		NA	U
7440-61-1	U-238	0.86 +/- 0.65	1.04		NA	U

Comments:

Qualifiers/Flags:

- U Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU005-14 Lab ID: 1810627-23

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 05-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 169 g
Prep Basis: Dry Weight
Moisture(%): NA

Result Units: pCi/g File Name: 182023d07

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	1.32 +/- 0.18	0.20		NA	G
13966-02-4	Be-7	-0.11 +/- 0.26	0.44		NA	U,G
14913-49-6	Bi-212	0.67 +/- 0.29	0.46		NA	G
14733-03-0	Bi-214	1.36 +/- 0.18	0.16	0.2	NA	G,J
14694-69-0	Ir-192	-0.001 +/- 0.023	0.039		NA	U,G
13966-00-2	K-40	7.9 +/- 1.1	0.9		NA	G
13966-32-0	Na-22	-0.012 +/- 0.021	0.036		NA	U,G
15100-28-4	Pa-234	0.075 +/- 0.089	0.146		NA	U,G
14255-04-0	Pb-210	40 +/- 37	60		NA	U,G,J
15092-94-1	Pb-212	1.54 +/- 0.20	0.10		NA	G
15067-28-4	Pb-214	1.43 +/- 0.18	0.12	0.2	NA	G,J
15623-45-7	Ra-223	0.36 +/- 0.11	0.19		NA	G
13233-32-4	Ra-224	1.4 +/- 3.1	0.7		NA	G
13982-63-3	Ra-226	2.70 +/- 0.77	1.11		NA	G,SI
15262-20-1	Ra-228	1.32 +/- 0.18	0.20		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU005-14

Lab ID: 1810627-23

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-2

QCBatchID: GS181103-2-1 Run ID: GS181103-2B Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 169 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182023d07

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.024 +/- 0.026	0.045		NA	U,G
15064-65-0	TL-201	500 +/- 1800	3100		NA	U,G
14913-50-9	TI-208	0.448 +/- 0.073	0.077		NA	G
13966-01-3	TL-210	0.046 +/- 0.022	0.033		NA	G,TI
15117-96-1	U-235	0.15 +/- 0.12	0.19		NA	U,G
7440-61-1	U-238	2.58 +/- 0.82	1.23		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 46 of 58

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU006-10 Lab ID: 1810627-24

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 05-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B
Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 135 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181959d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	1.07 +/- 0.16	0.19		NA	G
13966-02-4	Be-7	0.18 +/- 0.24	0.39		NA	U,G
14913-49-6	Bi-212	0.71 +/- 0.18	0.24		NA	G
14733-03-0	Bi-214	1.03 +/- 0.19	0.41	0.2	NA	M3,G,J
14694-69-0	Ir-192	0.004 +/- 0.024	0.040		NA	U,G
13966-00-2	K-40	5.51 +/- 0.90	0.87		NA	G
13966-32-0	Na-22	0.003 +/- 0.022	0.037		NA	U,G
15100-28-4	Pa-234	0.011 +/- 0.090	0.162		NA	U,G
14255-04-0	Pb-210	0.84 +/- 0.79	1.29		NA	U,G,J
15092-94-1	Pb-212	1.19 +/- 0.16	0.10		NA	G
15067-28-4	Pb-214	1.20 +/- 0.16	0.12	0.2	NA	G,J
15623-45-7	Ra-223	0.277 +/- 0.089	0.181		NA	G
13233-32-4	Ra-224	1.3 +/- 2.8	0.6		NA	G
13982-63-3	Ra-226	2.48 +/- 0.66	0.93		NA	G,SI
15262-20-1	Ra-228	1.07 +/- 0.16	0.19		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative.
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU006-10
Lab ID: 1810627-24

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-2

QCBatchID: GS181103-2-1 Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 135 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181959d08

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.021 +/- 0.027	0.048		NA	U,G
15064-65-0	TL-201	-420 +/- 390	650		NA	U,G
14913-50-9	TI-208	0.353 +/- 0.064	0.077		NA	G
13966-01-3	TL-210	0.045 +/- 0.019	0.027		NA	G,TI
15117-96-1	U-235	0.151 +/- 0.088	0.139		NA	G,NQ
7440-61-1	U-238	1.68 +/- 0.39	0.63		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 48 of 58

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU006-13

Lab ID: 1810627-25

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 121 g
Prep Basis: Dry Weight

Moisture(%): NA
Result Units: pCi/g
File Name: 181821d09

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	1.15 +/- 0.17	0.23		NA	G
13966-02-4	Be-7	0.08 +/- 0.29	0.49		NA	U,G
14913-49-6	Bi-212	0.71 +/- 0.21	0.28		NA	G,TI
14733-03-0	Bi-214	1.23 +/- 0.21	0.29	0.2	NA	M3,G,J
14694-69-0	Ir-192	0.030 +/- 0.029	0.047		NA	U,G
13966-00-2	K-40	6.2 +/- 1.1	1.1		NA	G
13966-32-0	Na-22	-0.004 +/- 0.028	0.048		NA	U,G
15100-28-4	Pa-234	0.051 +/- 0.043	0.086		NA	U,G
14255-04-0	Pb-210	1.2 +/- 1.1	1.8		NA	U,G,J
15092-94-1	Pb-212	1.43 +/- 0.19	0.12		NA	G
15067-28-4	Pb-214	1.46 +/- 0.20	0.16	0.2	NA	G,J
15623-45-7	Ra-223	0.21 +/- 0.14	0.27		NA	U,G
13233-32-4	Ra-224	1.2 +/- 4.0	1.0		NA	G
13982-63-3	Ra-226	2.62 +/- 0.85	1.27		NA	G,SI
15262-20-1	Ra-228	1.15 +/- 0.17	0.23		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU006-13 Lab ID: 1810627-25

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18 Date Analyzed: 05-Dec-18 Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 121 g
Prep Basis: Dry Weight

Moisture(%): NA
Result Units: pCi/g
File Name: 181821d09

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.007 +/- 0.032	0.054		NA	U,G
15064-65-0	TL-201	460 +/- 430	690		NA	U,G
14913-50-9	TI-208	0.403 +/- 0.075	0.089		NA	G
13966-01-3	TL-210	0.045 +/- 0.022	0.032		NA	G
15117-96-1	U-235	0.10 +/- 0.11	0.19		NA	U,G
7440-61-1	U-238	2.11 +/- 0.47	0.74		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU008-03 Lab ID: 1810627-26

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 156 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182683d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.85 +/- 0.14	0.22		NA	G
13966-02-4	Be-7	0.20 +/- 0.25	0.40		NA	U,G
14913-49-6	Bi-212	0.62 +/- 0.20	0.28		NA	G,TI
14733-03-0	Bi-214	1.00 +/- 0.19	0.32	0.2	NA	M3,G,J
14694-69-0	Ir-192	0.008 +/- 0.022	0.037		NA	U,G
13966-00-2	K-40	5.99 +/- 0.97	0.93		NA	G
13966-32-0	Na-22	0.002 +/- 0.026	0.044		NA	U,G
15100-28-4	Pa-234	-0.01 +/- 0.11	0.19		NA	U,G
14255-04-0	Pb-210	-3.5 +/- 9.1	15.2		NA	U,G,J
15092-94-1	Pb-212	1.10 +/- 0.14	0.09		NA	G
15067-28-4	Pb-214	1.03 +/- 0.15	0.13	0.2	NA	G,J
15623-45-7	Ra-223	0.33 +/- 0.13	0.19		NA	G,TI
13233-32-4	Ra-224	0.9 +/- 4.4	1.2		NA	U,G
13982-63-3	Ra-226	1.59 +/- 0.80	1.27		NA	G,SI
15262-20-1	Ra-228	0.85 +/- 0.14	0.22		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU008-03 Lab ID: 1810627-26

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 26-Oct-18

Date Prepared: 03-Nov-18
Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B
Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 156 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182683d03

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.002 +/- 0.030	0.051		NA	U,G
15064-65-0	TL-201	-400 +/- 1300	2100		NA	U,G
14913-50-9	TI-208	0.329 +/- 0.064	0.083		NA	G
13966-01-3	TL-210	0.014 +/- 0.017	0.028		NA	U,G
15117-96-1	U-235	0.01 +/- 0.11	0.18		NA	U,G
7440-61-1	U-238	1.70 +/- 0.61	0.94		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits.
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 52 of 58

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU001-08

Lab ID: 1810627-27

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 05-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 120 minutes

Report Basis: Dry Weight

Final Aliquot: 236 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182192d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	0.70 +/- 0.15	0.22		NA	
13966-02-4	Be-7	0.05 +/- 0.47	0.81		NA	U
14913-49-6	Bi-212	0.52 +/- 0.29	0.41		NA	TI
14733-03-0	Bi-214	0.69 +/- 0.14	0.16	0.2	NA	J
14694-69-0	Ir-192	0.005 +/- 0.040	0.069		NA	U
13966-00-2	K-40	10.2 +/- 1.6	0.9		NA	
13966-32-0	Na-22	-0.015 +/- 0.047	0.085		NA	U
15100-28-4	Pa-234	-0.13 +/- 0.17	0.33		NA	U
14255-04-0	Pb-210	40 +/- 110	180		NA	U,J
15092-94-1	Pb-212	1.02 +/- 0.16	0.12		NA	
15067-28-4	Pb-214	0.69 +/- 0.12	0.15	0.2	NA	J
15623-45-7	Ra-223	0.30 +/- 0.22	0.36		NA	U
13233-32-4	Ra-224	0.9 +/- 5.0	1.2		NA	U
13982-63-3	Ra-226	0.65 +/- 0.74	1.21		NA	U,SI
15262-20-1	Ra-228	0.70 +/- 0.15	0.22		NA	

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU001-08

Lab ID: 1810627-27

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 05-Dec-18

Prep Batch: GS181103-2

QCBatchID: GS181103-2-1 Run ID: GS181103-2B Count Time: 120 minutes Report Basis: Dry Weight Final Aliquot: 236 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182192d02

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.015 +/- 0.046	0.080		NA	U
15064-65-0	TL-201	-800 +/- 1500	2500		NA	U
14913-50-9	TI-208	0.274 +/- 0.062	0.062		NA	
13966-01-3	TL-210	0.038 +/- 0.037	0.060		NA	U
15117-96-1	U-235	0.21 +/- 0.23	0.37		NA	U
7440-61-1	U-238	0.46 +/- 0.70	1.16		NA	U

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU003-09 Lab ID: 1810627-28

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 172 g
Prep Basis: Dry Weight
Mointure(%): NA

Moisture(%): NA Result Units: pCi/g File Name: 182732d04

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	1.48 +/- 0.19	0.13		NA	G
13966-02-4	Be-7	0.03 +/- 0.26	0.44		NA	U,G
14913-49-6	Bi-212	0.81 +/- 0.20	0.25		NA	G,TI
14733-03-0	Bi-214	1.54 +/- 0.20	0.14	0.2	NA	G,J
14694-69-0	Ir-192	-0.015 +/- 0.023	0.038		NA	U,G
13966-00-2	K-40	15.5 +/- 2.0	0.8		NA	G
13966-32-0	Na-22	0.010 +/- 0.030	0.051		NA	U,G
15100-28-4	Pa-234	-0.04 +/- 0.12	0.20		NA	U,G
14255-04-0	Pb-210	2.2 +/- 6.7	11.0		NA	U,G,J
15092-94-1	Pb-212	1.88 +/- 0.23	0.07		NA	G
15067-28-4	Pb-214	1.77 +/- 0.22	0.12	0.2	NA	G,J
15623-45-7	Ra-223	0.46 +/- 0.12	0.19		NA	G
13233-32-4	Ra-224	1.8 +/- 2.9	0.7		NA	G
13982-63-3	Ra-226	2.58 +/- 0.65	0.91		NA	G,SI
15262-20-1	Ra-228	1.48 +/- 0.19	0.13		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU003-09 Lab ID: 1810627-28

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 172 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 182732d04

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	-0.014 +/- 0.028	0.049		NA	U,G
15064-65-0	TL-201	820 +/- 400	620		NA	G,NQ
14913-50-9	TI-208	0.499 +/- 0.072	0.061		NA	G
13966-01-3	TL-210	0.065 +/- 0.024	0.035		NA	G,TI
15117-96-1	U-235	0.17 +/- 0.15	0.25		NA	U,G
7440-61-1	U-238	1.80 +/- 0.57	0.85		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 56 of 58

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU007-08 Lab ID: 1810627-29

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18

Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B
Count Time: 1000 minutes

Report Basis: Dry Weight

Final Aliquot: 149 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181914d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	2.37 +/- 0.30	0.18		NA	G
13966-02-4	Be-7	-0.06 +/- 0.29	0.48		NA	U,G
14913-49-6	Bi-212	1.24 +/- 0.62	1.23		NA	G
14733-03-0	Bi-214	2.23 +/- 0.28	0.14	0.2	NA	G,J
14694-69-0	Ir-192	0.007 +/- 0.031	0.052		NA	U,G
13966-00-2	K-40	12.3 +/- 1.6	0.9		NA	G
13966-32-0	Na-22	-0.001 +/- 0.024	0.040		NA	U,G
15100-28-4	Pa-234	0.082 +/- 0.055	0.141		NA	U,G
14255-04-0	Pb-210	12 +/- 27	44		NA	U,G,J
15092-94-1	Pb-212	2.89 +/- 0.35	0.09		NA	G
15067-28-4	Pb-214	2.83 +/- 0.34	0.12	0.2	NA	G,J
15623-45-7	Ra-223	0.75 +/- 0.15	0.21		NA	G
13233-32-4	Ra-224	1.8 +/- 3.3	0.7		NA	G
13982-63-3	Ra-226	4.26 +/- 0.83	1.04		NA	G,SI
15262-20-1	Ra-228	2.37 +/- 0.30	0.18		NA	G

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019

PAI 713 Rev 14 Sample Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU007-08

Lab ID: 1810627-29

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12

Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18 **Date Analyzed:** 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 149 g

Prep Basis: Dry Weight Moisture(%): NA Result Units: pCi/g File Name: 181914d05

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13967-63-0	Sc-46	0.003 +/- 0.028	0.047		NA	U,G
15064-65-0	TL-201	540 +/- 860	1410		NA	U,G
14913-50-9	TI-208	0.79 +/- 0.10	0.05		NA	G
13966-01-3	TL-210	0.083 +/- 0.023	0.032		NA	G,TI
15117-96-1	U-235	0.22 +/- 0.14	0.23		NA	U,G
7440-61-1	U-238	3.88 +/- 0.85	1.13		NA	G,TI

Comments:

Qualifiers/Flags:

- $\ensuremath{\mathsf{U}}\xspace$ Result is less than the sample specific MDC or less than the associated TP
- Y1 Chemical Yield is in control at 100-110%. Quantitative Yield is assumed.
- Y2 Chemical Yield outside default limits
- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- M The requested MDC was not met.

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level

- SQ Spectral quality prevents accurate quantitation.
- SI Nuclide identification and/or quantitation is tentative.
- TI Nuclide identification is tentative
- R Nuclide has exceeded 8 halflives.
- G Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Date Printed: Tuesday, January 08, 2019 ALS -- Fort Collins Page 58 of 58

PAI 713 Rev 14

Sample Duplicate Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU007-08

Lab ID: 1810627-29DUP

Library: TIDEWATER_G

Sample Matrix: SOIL

Date Analyzed: 06-Dec-18

Prep SOP: PAI 739 Rev 12

Date Collected: 29-Oct-18

Date Prepared: 03-Nov-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 161 g
Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 182032d07

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
14331-83-0	Ac-228	2.32 +/- 0.30	0.23		NA	G
13966-02-4	Be-7	0.01 +/- 0.29	0.49		NA	U,G
14913-49-6	Bi-212	1.38 +/- 0.36	0.54		NA	G
14733-03-0	Bi-214	2.41 +/- 0.32	0.27	0.2	NA	M3,G,J
14694-69-0	lr-192	-0.006 +/- 0.026	0.044		NA	U,G
13966-00-2	K-40	10.9 +/- 1.5	0.9		NA	G
13966-32-0	Na-22	0.024 +/- 0.035	0.056		NA	U,G
15100-28-4	Pa-234	0.08 +/- 0.11	0.18		NA	U,G
14255-04-0	Pb-210	-21 +/- 87	145		NA	U,G,J
15092-94-1	Pb-212	2.72 +/- 0.33	0.11		NA	G
15067-28-4	Pb-214	2.47 +/- 0.30	0.13	0.2	NA	G,J
15623-45-7	Ra-223	0.74 +/- 0.17	0.22		NA	G,TI
13233-32-4	Ra-224	2.7 +/- 4.1	1.0		NA	G

Comments:

Qualifiers/Flags:

U - Result is less than the sample specific MDC or less than the associated TPU.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

M - The requested MDC was not met.

M3 - The requested MDC was not met, but thereported activity is greater than the reported MDC.

W - DER is greater than Warning Limit of 1.42

D - DER is greater than Control Limit of 2.13

Abbreviations:

TPU - Total Propagated Uncertainty

MDC - Sample specific Minimum Detectable Concentration

BDL - Below Detection Limit

DL - Decision Level

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

G - Sample density differs by more than 15% of LCS density.

Data Package ID: GSS1810627-2

Tuesday, January 08, 2019

Date Printed:

ALS -- Fort Collins

Page 5 of 6

PAI 713 Rev 14

Sample Duplicate Results

Lab Name: ALS -- Fort Collins

Work Order Number: 1810627

Client Name: Tidewater, Inc.

ClientProject ID: Phase 1 RI OU2 Great Kills Park 2016-007

Field ID: OU2-1-SU007-08

Lab ID: 1810627-29DUP

Library: TIDEWATER_G

Sample Matrix: SOIL

Prep SOP: PAI 739 Rev 12 Date Collected: 29-Oct-18 Date Prepared: 03-Nov-18

Date Analyzed: 06-Dec-18

Prep Batch: GS181103-2 QCBatchID: GS181103-2-1

Run ID: GS181103-2B Count Time: 1000 minutes Report Basis: Dry Weight Final Aliquot: 161 g
Prep Basis: Dry Weight

Moisture(%): NA Result Units: pCi/g File Name: 182032d07

CASNO	Target Nuclide	Result +/- 2 s TPU	MDC	Requested MDC	DL	Lab Qualifier
13982-63-3	Ra-226	4.98 +/- 0.99	1.25		NA	G,SI
15262-20-1	Ra-228	2.32 +/- 0.30	0.23		NA	G
13967-63-0	Sc-46	0.023 +/- 0.030	0.049		NA	U,G
15064-65-0	TL-201	-200 +/- 1300	2200		NA	U,G
14913-50-9	TI-208	0.77 +/- 0.11	0.08		NA	G
13966-01-3	TL-210	0.116 +/- 0.028	0.035		NA	G,TI
15117-96-1	U-235	0.16 +/- 0.16	0.27		NA	U,G
7440-61-1	U-238	4.3 +/- 1.0	1.4		NA	G,TI

Comments:

Qualifiers/Flags:

- U Result is less than the sample specific MDC or less than the associated TPU.
- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- M The requested MDC was not met.
- M3 The requested MDC was not met, but thereported activity is greater than the reported MDC.
- W DER is greater than Warning Limit of 1.42
- D DER is greater than Control Limit of 2.13

Abbreviations:

- TPU Total Propagated Uncertainty
- MDC Sample specific Minimum Detectable Concentration
- BDL Below Detection Limit
- DL Decision Level
- Data Package ID: GSS1810627-2

SQ - Spectral quality prevents accurate quantitation.

SI - Nuclide identification and/or quantitation is tentative.

TI - Nuclide identification is tentative.

R - Nuclide has exceeded 8 halflives.

G - Sample density differs by more than 15% of LCS density.

Date Printed: Tuesday, January 08, 2019

ALS -- Fort Collins

Page 6 of 6

Section 5

RAW DATA

5

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-1 GS181103-1

Page 001

SEEKER

Sampling Start: 10/22/2018 12:00:00	Counting Start: 12/04/2018 10:18:05
Sampling Stop: 10/22/2018 12:00:00	Decay Time 1.03E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 9300 Sec
Sample Size 2.25E+002 g	Real Time 9460 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 3 (Detector 3)

Energy(keV) = -1.37 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/04/2018 FWHM(keV) = 0.79 + 0.012*En + 1.05E-03*En² + 0.00E+00*En³ 11/01/2018 Where En = Sgrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1				30				a NET< CL
2	74.83	151.99	129	59	45	343	1.18	a
3	77.00	156.31	159	55	40	294	0.99	b
4	92.87	187.95	118	58	44	334	1.17	a
5	185.85	373.42	144	57	43	270	1.52	a
6	198.57	398.78	68	67	53	346	1.94	a Wide Pk
7	209.18	419.94	57	48	37	241	1.40	a
8	238.57	478.57	577	63	33	204	1.25	a
9	241.59	484.59	110	52	39	255	1.56	b
10	277.38	555.98	24	31	24	126	0.96	a NET< CL
11	295.13	591.39	224	47	30	156	1.55	a
12	299.70	600.50	69	49	38	209	1.91	b
13	338.14	677.16	101	41	30	154	1.45	a
14	351.78	704.38	297	48	27	128	1.55	a
15	463.01	926.22	53	38	29	130	2.22	a
16	511.07	1022.08	254	52	34	155	2.79	a Wide Pk
17	583.12	1165.78	178	36	20	76	1.72	a
18	609.32	1218.05	248	48	30	140	2.07	a
19	911.47	1820.70	121	34	21	71	2.62	a
20	968.62	1934.68	57	26	18	57	1.91	a
21	1119.89	2236.39	37	34	26	90	3.61	a

182668D03.SPC Analyzed by

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG	
	1460.72 1764.84		479 32	47 20	15 14	30 23	3.30		

182668D03.SPC Analyzed by

ALS Laboratory Group - Fort Collins

Background File: DET031128.BKG (112818-3 LONG BKG CAL)

Bkg.File Detector #: 3

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN- OLD NEW NET NEW UN-NEW PK# (keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG 63.36 31 NET<CL 77.00 92.87 185.85 198.57 60 NET<CL 238.57 241.59 295.13 338.14 351.78 511.07 53 NET<CL 583.12 609.32 911.47 22 1460.72 23 1764.84

182668D03.SPC Analyzed by

SEEKER FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-1 GS181103-1

Page 004

Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

Detector #: 3 (Detector 3)

Efficiency File: (D03)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-8.15E+01 +1.04E+02*L +-4.49E+01*L^2 +6.40E+00*L^3] 11/01/2018

Eff.=10^[-2.02E-01 +-3.44E-01*L +-1.27E-01*L^2 +7.29E-03*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

N						
ENERGY E	Concent	ration		Critical	Halflife	
186.10	1.40E+00 +	9.55E-01	1.54E+00	7.50E-01	1.40E+07	
Average:x	7.74E-01 +	9.39E-02			5.04E+04	
238.63	7.69E-01 +	9.43E-02	1.14E-01	5.53E-02	5.04E+04	
300.09	1.45E+00 +	1.02E+00	1.64E+00	7.90E-01	5.04E+04	
Average:x	6.09E-01 +	9.71E-02			1.40E+07	
295.21	7.50E-01 +	- 1.88E-01	2.67E-01	1.29E-01	1.40E+07	
351.92	5.58E-01 +	- 1.13E-01	1.53E-01	7.37E-02	1.40E+07	
241.98	I.D.				1.40E+07	
Average:x	6.49E-01 +	1.53E-01			5.04E+04	
338.40	6.09E-01 +	2.85E-01	4.39E-01	2.11E-01	5.04E+04	
911.07	6.94E-01 +	2.34E-01	3.36E-01	1.59E-01	5.04E+04	
968.90	6.21E-01 +	2.86E-01	4.14E-01	1.92E-01	5.04E+04	
583.14	2.24E-01 +	5.96E-02	8.25E-02	3.93E-02	5.04E+04	
Average:x	6.08E-01 +	1.32E-01			1.40E+07	
609.31	6.21E-01 +	1.42E-01	1.98E-01	9.52E-02	1.40E+07	
1120.29	5.33E-01 +	4.96E-01	8.02E-01	3.81E-01	1.40E+07	
1764.49	5.38E-01 +	4.72E-01	7.52E-01	3.47E-01	1.40E+07	
1460.75	1.16E+01 +	1.25E+00	1.08E+00	5.06E-01	1.12E+13	
241.00	3.99E-01 +	5.61E+00	1.48E+00	7.17E-01	5.04E+04	
46.52 N	3.42E+00 +	- 1.74E+01	2.94E+01	1.42E+01	1.79E+05	
	ENERGY E (keV) T 92.60 186.10 Average:x 238.63 300.09 Average:x 295.21 351.92 241.98 Average:x 338.40 911.07 968.90 583.14 Average:x 609.31 1120.29 1764.49 1460.75 241.00	ENERGY E Concent (keV) T (pCi/g	ENERGY E Concentration (keV) T (pCi/g) 92.60 7.95E-01 +- 7.35E-01 186.10 1.40E+00 +- 9.55E-01 Average:x 7.74E-01 +- 9.39E-02 238.63 7.69E-01 +- 9.43E-02 300.09 1.45E+00 +- 1.02E+00 Average:x 6.09E-01 +- 9.71E-02 295.21 7.50E-01 +- 1.88E-01 351.92 5.58E-01 +- 1.13E-01 241.98 I.D Average:x 6.49E-01 +- 1.53E-01 338.40 6.09E-01 +- 2.85E-01 911.07 6.94E-01 +- 2.34E-01 968.90 6.21E-01 +- 2.34E-01 583.14 2.24E-01 +- 5.96E-02 Average:x 6.08E-01 +- 1.32E-01 120.29 5.33E-01 +- 4.96E-01 1764.49 5.38E-01 +- 4.72E-01 1460.75 1.16E+01 +- 1.25E+00 241.00 3.99E-01 +- 5.61E+00	ENERGY E Concentration (keV) T (pCi/g) MDA 92.60 7.95E-01 +- 7.35E-01 1.20E+00 186.10 1.40E+00 +- 9.55E-01 1.54E+00 Average:x 7.74E-01 +- 9.39E-02 238.63 7.69E-01 +- 9.43E-02 1.14E-01 300.09 1.45E+00 +- 1.02E+00 1.64E+00 Average:x 6.09E-01 +- 9.71E-02 295.21 7.50E-01 +- 1.88E-01 2.67E-01 351.92 5.58E-01 +- 1.13E-01 1.53E-01 241.98 I.D Average:x 6.49E-01 +- 1.53E-01 338.40 6.09E-01 +- 2.85E-01 4.39E-01 911.07 6.94E-01 +- 2.86E-01 4.39E-01 968.90 6.21E-01 +- 2.86E-01 4.14E-01 583.14 2.24E-01 +- 5.96E-02 8.25E-02 Average:x 6.08E-01 +- 1.32E-01 609.31 6.21E-01 +- 1.42E-01 1.98E-01 1120.29 5.33E-01 +- 4.96E-01 8.02E-01 1764.49 5.38E-01 +- 4.72E-01 7.52E-01 1460.75 1.16E+01 +- 1.25E+00 1.08E+00	ENERGY E Concentration Critical (keV) T (pCi/g) MDA Level 92.60 7.95E-01 +- 7.35E-01 1.20E+00 5.84E-01 186.10 1.40E+00 +- 9.55E-01 1.54E+00 7.50E-01 Average:x 7.74E-01 +- 9.39E-02	ENERGY E Concentration (keV) T (pCi/g) MDA Level (hrs) 92.60 7.95E-01 +- 7.35E-01 1.20E+00 5.84E-01 3.92E+13 186.10 1.40E+00 +- 9.55E-01 1.54E+00 7.50E-01 1.40E+07 Average:x 7.74E-01 +- 9.39E-02 5.04E+04 238.63 7.69E-01 +- 9.43E-02 1.14E-01 5.53E-02 5.04E+04 300.09 1.45E+00 +- 1.02E+00 1.64E+00 7.90E-01 5.04E+04 Average:x 6.09E-01 +- 9.71E-02 1.40E+07 295.21 7.50E-01 +- 1.88E-01 2.67E-01 1.29E-01 1.40E+07 351.92 5.58E-01 +- 1.13E-01 1.53E-01 7.37E-02 1.40E+07 241.98 I.D 5.04E+04 338.40 6.09E-01 +- 2.85E-01 4.39E-01 2.11E-01 5.04E+04 911.07 6.94E-01 +- 2.34E-01 3.36E-01 1.59E-01 5.04E+04 968.90 6.21E-01 +- 2.86E-01 4.14E-01 1.92E-01 5.04E+04 968.90 6.21E-01 +- 1.32E-01 1.40E+07 609.31 6.21E-01 +- 1.42E-01 1.98E-01 9.52E-02 1.40E+07 1120.29 5.33E-01 +- 4.96E-01 8.02E-01 3.81E-01 1.40E+07 1164.49 5.38E-01 +- 4.72E-01 7.52E-01 3.47E-01 1.40E+07 1166.75 1.16E+01 +- 1.25E+00 1.08E+00 5.06E-01 1.12E+13 241.00 3.99E-01 +- 5.61E+00 1.48E+00 7.17E-01 5.04E+04

182668D03.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

		N				
	ENERGY	E Concent	ration		Critical	Halflife
Nuclide	(keV)	T (pCi/g)	MDA	Level	(hrs)
T1-201	70.82	N-1.98E+03 +	- 2.45E+03	4.27E+03B	2.07E+03	7.35E+01
U-235	143.76	N-1.39E-02 +	- 2.07E-01	3.54E-01	1.71E-01	3.33E+10
Ra-223	269.39	N 8.13E-02 +	- 1.69E-01	2.84E-01	1.35E-01	2.87E+08
Ir-192	316.49	N 0.00E+00 +	- 3.96E-02	6.84E-02	3.25E-02	1.78E+03
Be-7	477.56	N 3.59E-02 +	- 4.73E-01	8.20E-01	3.87E-01	1.28E+03
Bi-212	727.17	N 4.70E-01 +	- 3.50E-01	5.52E-01	2.59E-01	5.04E+04
T1-210	795.00	N 2.52E-02 +	- 3.92E-02	6.52E-02	3.05E-02	1.40E+07
Sc-46	889.26	N-4.58E-02 +	- 6.21E-02	1.15E-01	5.40E-02	2.01E+03
Pa-234	946.00	N-8.84E-02 +	- 1.97E-01	3.63E-01	1.69E-01	3.95E+13
Na-22	1274.54	N 3.33E-03 +	- 5.68E-02	9.97E-02	4.64E-02	2.28E+04

MEASURED TOTAL: 2.11E+01 +- 2.76E+01 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	63.36	129.10	8	38	31	139	0.52	Deleted
2	74.83	151.99	129	59	45	343	1.18	Unknown
3	77.00	156.31	149	61	46	294	0.99	Unknown
6	198.57	398.78	33	74	60	346	1.94	Deleted
7	209.18	419.94	57	48	37	241	1.40	Unknown
9	241.59	484.59	100	59	45	255	1.56	SPLIT
10	277.38	555.98	24	31	24	126	0.96	Deleted
15	463.01	926.22	53	38	29	130	2.22	Unknown
16	511.07	1022.08	14	65	53	155	2.79	Deleted

c:\SEEKER\BIN\182668d03.res Analysis Results Saved.

182685D04.SPC Analyzed by

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-2 GS181103-1

Detector #: 4 (Detector 4)

Energy(keV) = -1.47 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/04/2018 FWHM(keV) = 0.82 + 0.019*En + 7.17E-04*En² + 0.00E+00*En³ 09/25/2018 Where En = Sgrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)			UN- CERTAINTY				FLAG
1	63.19	129.04	84	65	52	539	0.83	a
2	74.88	152.35	335	81	59	648	0.99	a
3	77.01	156.60	565	86	59	648	0.90	b
4	84.00	170.56	106	76	61	625	1.16	a
5	87.10	176.75	239	72	54	536	0.98	b
6	89.92	182.36	140	70	54	536	0.97	C
7	92.65	187.82	439	99	74	804	1.45	đ
8	99.24	200.96	49	63	50	470	0.93	a NET< CL
9	105.63	213.73	43	55	44	387	0.88	a NET< CL
10	115.40	233.21	49	77	62	615	1.39	a NET< CL
11	130.15	262.65	124	132	107	1163	2.57	a Wide Pk
12	143.76	289.82	67	55	44	383	0.74	a
13	185.88	373.87	346	73	51	518	1.16	a
14	209.27	420.55	104	62	48	461	1.12	a
15	238.60	479.08	1447	94	46	411	1.20	a
16	241.52	484.92	307	71	50	470	1.37	b
17	270.11	541.96	97	58	45	368	1.39	a
18	277.28	556.28	37	35	27	186	0.67	a
19	295.25	592.13	467	68	43	348	1.29	a
20	300.33	602.27	83	51	39	305	1.08	b
21	327.95	657.40	25	33	26	171	0.70	a NET< CL
		D 001						

182685D04.SPC Analyzed by

PEAK SEARCH RESULTS

	ENERGY (keV)	CHANNEL		CERTAINTY	C.L. COUNTS		(keV)	FLAG
22					39			a.
23	351.88	705.14	725	70	37	270	1.19	a .
24	463.17	927.23	90	45	34	219	1.49	a .
25	510.94	1022.57	642	78	49	344	2.69	a Wide Pk
26	558.85	1118.18	52	32	24	130	0.94	a .
27	583.18	1166.74	370	52	28	166	1.36	a
28	600.21	1200.71	49	52	41	303	1.83	a.
29	609.39	1219.03	535	66	38	256	1.83	a
30	661.58	1323.20	48	41	32	185	1.68	a
31	663.10	1326.22	-1	27	22	111	0.96	b NET< CL
32	694.38	1388.64	49	43	33	193	1.79	a
33	727.30	1454.35	68	45	35	196	2.49	a
34	768.48	1536.53	54	29	21	100	1.21	a.
35	794.99	1589.43	53	34	26	126	1.76	a .
36	860.85	1720.86	36	28	21	95	1.44	a
37	911.37	1821.67	254	44	25	118	1.91	a.
38	969.11	1936.91	91	36	26	132	1.70	a .
39	1120.36		92	34	23	105	1.87	a .
40	1238.77	2475.05	54	32	24	100	2.12	a.
41	1460.95	2918.44	765	60	19	56	2.62	a
42	1765.00	3525.21	86	28	17	43	3.07	a.

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET041128.BKG (112818-4 LONG BKG CAL)

Bkg.File Detector #: 4

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
1	63.19	84	65	52	11	96	78 1	NET <cl< td=""></cl<>
4	84.00	106	76	61	79	94	76	
7	92.65	439	99	74	212	122	97	
12	143.76	67	55	44	43	70	56 1	NET <cl< td=""></cl<>
13	185.88	346	73	51	182	95	75	
15	238.60	1447	94	46	1403	102	57	
19	295.25	467	68	43	435	84	60	
23	351.88	725	70	37	674	87	57	
25	510.94	642	78	49	120	121	98	
26	558.85	52	32	24	-13	56	46 1	NET <cl< td=""></cl<>
27	583.18	370	52	28	351	65	44	
28	600.21	49	52	41	17	72	59 1	NET <cl< td=""></cl<>
29	609.39	535	66	38	489	84	58	
32	694.38	49	43	33	22	62	50 1	NET <cl< td=""></cl<>
41	1460.95	765	60	19	709	67	33	

182685D04.SPC Analyzed by

************************** SEEKER FINAL ACTIVITY REPORT

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-2 GS181103-1

------Sampling Start: 10/22/2018 12:00:00 | Counting Start: 12/04/2018 10:18:14 Sampling Stop: 10/22/2018 12:00:00 | Decay Time. 1.03e+003 Hrs Buildup Time. 0.00e+000 Hrs | Live Time Sample Size 1.60e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

______ Detector #: 4 (Detector 4)

Efficiency File: (D04)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-7.41E+01 +9.43E+01*L +-4.05E+01*L^2 +5.76E+00*L^3] 09/25/2018

Eff.=10^[-8.67E+00 +8.41E+00*L +-3.13E+00*L^2 +3.49E-01*L^3] Above 300.00 keV

Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concen	tration		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
U-238	92.60	1.21E+00	+- 6.95E-01	1.13E+00	5.55E-01	3.92E+13	
Pa-234	Average:x	6.09E-02	+- 1.16E-01			3.95E+13	
	131.28	1.47E-01	+- 1.57E-01	2.57E-01	1.27E-01	3.95E+13	
	946.00 N	-4.36E-02	+- 1.73E-01	3.02E-01	1.44E-01	3.95E+13	
U-235	143.76 N	9.65E-02	+- 1.57E-01	2.60E-01	1.27E-01	3.33E+10	
Ra-226	186.10	1.39E+00	+- 7.23E-01	1.16E+00	5.70E-01	1.40E+07	
Pb-212	Average:x	1.06E+00	+- 7.69E-02			5.04E+04	
	238.63	1.06E+00	+- 7.75E-02	8.88E-02	4.34E-02	5.04E+04	
	300.09	1.01E+00	+- 6.20E-01	9.86E-01	4.77E-01	5.04E+04	
Ra-223	269.39	2.49E-01	+- 1.49E-01	2.37E-01	1.15E-01	2.87E+08	
T1-208	Average:x	2.72E-01	+- 4.94E-02			5.04E+04	
	277.36	2.07E-01	+- 1.98E-01	3.21E-01	1.53E-01	5.04E+04	
	583.14	2.76E-01	+- 5.11E-02	7.09E-02	3.44E-02	5.04E+04	
	860.47	2.72E-01	+- 6.57E-01	8.83E-01	4.30E-01	5.04E+04	
Pb-214	Average:x	8.38E-01	+- 8.99E-02			1.40E+07	
	295.21	8.70E-01	+- 1.69E-01	2.46E-01	1.21E-01	1.40E+07	
	351.92	8.25E-01	+- 1.06E-01	1.44E-01	7.01E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	8.36E-01	+- 1.09E-01			5.04E+04	
	338.40	9.50E-01	+- 2.06E-01	2.90E-01	1.40E-01	5.04E+04	
	911.07	8.99E-01	+- 1.56E-01	1.88E-01	8.93E-02	5.04E+04	
	Page (004					100 64

100 of 624

Version 2.2.1

MEASURED or MDA CONCENTRATIONS ------

	N					
	ENERGY E		ration		Critical	Halflife
Nuclide		(pCi/g		MDA		
	968.90	5.65E-01 +	- 2.27E-01	3.35E-01	1.59E-01	5.04E+04
Bi-214	Average:x	8.06E-01 +	- 1.08E-01			1.40E+07
	609.31	7.57E-01 +	- 1.30E-01	1.85E-01	9.06E-02	1.40E+07
	768.36	9.67E-01 +	- 5.21E-01	7.89E-01	3.70E-01	1.40E+07
	1120.29	7.64E-01 +	- 2.84E-01	4.10E-01	1.94E-01	1.40E+07
	1238.11	1.24E+00 +	- 7.46E-01	1.16E+00	5.47E-01	1.40E+07
	1764.49	1.05E+00 +	- 3.42E-01	4.54E-01	2.11E-01	1.40E+07
Bi-212	727.17	4.78E-01 +	- 3.17E-01	5.04E-01	2.43E-01	5.04E+04
T1-210	Average:x	4.71E-02 +	- 3.04E-02			1.40E+07
	795.00	4.71E-02 +	- 3.04E-02	4.77E-02	2.27E-02	1.40E+07
	860.00	2.80E-02 +	- 2.35E+00	6.17E-01	2.90E-01	1.40E+07
K-40	1460.75	1.05E+01 +	- 9.81E-01	1.01E+00	4.83E-01	1.12E+13
Ra-224	241.00	9.64E-01 +	- 3.64E+00	8.74E-01	4.25E-01	5.04E+04
Pb-210	46.52 N	9.02E+00 +	- 9.61E+00	1.57E+01	7.68E+00	1.79E+05
T1-201	70.82 N	1.14E+03 +	- 1.53E+03	2.52E+03B	1.23E+03	7.35E+01
Ir-192	316.49 N	-6.97E-03 +	- 3.50E-02	5.98E-02	2.90E-02	1.78E+03
Be-7	477.56 N	7.60E-02 +	- 4.02E-01	6.81E-01	3.28E-01	1.28E+03
Sc-46	889.26 N	2.12E-02 +	- 4.45E-02	7.48E-02	3.55E-02	2.01E+03
Na-22	1274.54 N	-1.79E-02 +	- 4.35E-02	7.73E-02	3.67E-02	2.28E+04

MEASURED TOTAL: 1.16E+03 +- 1.54E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	63.19	129.04	11	96	78	539	0.83	Deleted
2	74.88	152.35	335	81	59	648	0.99	Unknown
3	77.01	156.60	565	86	59	648	0.90	Unknown
4	84.00	170.56	79	94	76	625	1.16	Unknown
5	87.10	176.75	239	72	54	536	0.98	Unknown
6	89.92	182.36	140	70	54	536	0.97	Unknown
8	99.24	200.96	49	63	50	470	0.93	Deleted
9	105.63	213.73	43	55	44	387	0.88	Deleted
10	115.40	233.21	49	77	62	615	1.39	Deleted
14	209.27	420.55	104	62	48	461	1.12	Unknown
16	241.52	484.92	307	71	50	470	1.37	SPLIT
21	327.95	657.40	25	33	26	171	0.70	Deleted
24	463.17	927.23	90	45	34	219	1.49	Unknown
25	510.94	1022.57	120	121	98	344	2.69	Unknown
26	558.85	1118.18	-13	56	46	130	0.94	Deleted
28	600.21	1200.71	17	72	59	303	1.83	Deleted
30	661.58	1323.20	48	41	32	185	1.68	Unknown
31	663.10	1326.22	-1	27	22	111	0.96	Deleted
		Page 005						

Page 005

182685D04.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
32		1388.64	22	62	50	193	1.79	Deleted
36		1720.86	36	28	21	95	1.44	SPLIT

c:\SEEKER\BIN\182685d04.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins

Geo 17/26

Sample ID: 1810627-3 GS181103-1

SEEKER

Sampling Start: 10/22/2018 12:00:00	Counting Start: 12/04/2018 10:18:20
Sampling Stop: 10/22/2018 12:00:00	Decay Time 1.03E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 5400 Sec
Sample Size 2.09E+002 g	Real Time 5409 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 5 (Detector 5)

Energy(keV) = -0.61 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/04/2018 FWHM(keV) = 0.65 + -0.002*En + 2.17E-03*En² +-2.42E-05*En³ 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	-	ADDRESS CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
1						79		
2	185.76	372.32	29	29	22	102	0.89	a
3	198.41	397.58	24	21	15	56	0.50	a
4	209.12	418.98	22	27	21	90	0.90	a
5	238.51	477.69	180	39	23	110	0.88	a
6	277.55	555.67	28	31	24	93	1.37	a
7	295.25	591.05	49	26	18	65	0.80	a
8	337.99	676.43	43	28	20	81	1.15	a
9	351.81	704.02	127	33	20	74	1.30	a
10	510.92	1021.87	126	39	26	94	2.10	a
11	583.01	1165.89	77	25	15	42	1.66	a
12	609.14	1218.09	98	30	18	66	1.48	a
13	661.70	1323.09	68	24	14	41	1.28	a
14	911.16	1821.43	55	20	11	28	1.39	a
15	969.09	1937.17	26	15	10	22	1.12	a
16	1461.04	2919.93	273	36	11	22	2.34	a
17	1765.37	3527.88	14	11	6	9	1.31	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET051128.BKG (112818-5 LONG BKG CAL)

Bkg.File Detector #: 5

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL FLAG
2	185.76	29	29	22	3	33	27 NET <cl< td=""></cl<>
3	198.41	24	21	15	0	25	21 NET <cl< td=""></cl<>
5	238.51	180	39	23	162	41	27
7	295.25	49	26	18	42	28	21
8	337.99	43	28	20	38	30	23
9	351.81	127	33	20	111	35	23
10	510.92	126	39	26	-30	45	38 NET <cl< td=""></cl<>
11	583.01	77	25	15	69	27	17
12	609.14	98	30	18	81	33	23
14	911.16	55	20	11	49	21	13
15	969.09	26	15	10	24	18	12
16	1461.04	273	36	11	234	37	17
17	1765.37	14	11	6	10	12	8

181897D05.SPC Analyzed by

ALS Laboratory Group - Fort Collins

Geo 17/26

Sample ID: 1810627-3 GS181103-1

Sampling Start: 10/22/2018 12:00:00	Counting Start: 12/04/2018 10:18:20
Sampling Stop: 10/22/2018 12:00:00	Decay Time 1.03e+003 Hrs
Buildup Time 0.00e+000 Hrs	Live Time 5400 Sec
Sample Size 2.09e+002 g	Real Time 5409 Sec
Collection Efficiency 1.0000	Spectrum File
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval: 95 %
Detector #: 5	(Detector 5)
Efficiency File: (D05)(Sh17).EFF (Geo 17	' Eff Cal)
Eff=10^[-1.03E+02 +1.32E+02*L +-5.73E+0)1*L^2 +8.21E+00*L^3] 05/17/2018
Eff.=10^[-4.57E+01 +4.54E+01*L +-1.54E+0)1*L^2 +1.70E+00*L^3] Above 300.00 keV
Library File: TIDEWATER_GREATKILLS. (Ti	dewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E						
	(keV) T	(pCi/g)		Level		
		6.33E-02 +-	7.59E-01				
Pb-212	238.63	3.51E-01 +-	8.92E-02	1.21E-01	5.78E-02	5.04E+04	
T1-208	Average:x	1.38E-01 +-	5.16E-02			5.04E+04	
	277.36	4.20E-01 +-	4.77E-01	7.81E-01	3.70E-01	5.04E+04	
	583.14	1.34E-01 +-	5.20E-02	7.24E-02	3.36E-02	5.04E+04	
Pb-214	Average:x	3.41E-01 +-	1.03E-01			1.40E+07	
	295.21	2.21E-01 +-	1.50E-01	2.34E-01	1.10E-01	1.40E+07	
	351.92	4.47E-01 +-	1.41E-01	1.95E-01	9.22E-02	1.40E+07	
Ac-228	Average:x	3.95E-01 +-	1.35E-01			5.04E+04	
	338.40	4.63E-01 +-	3.70E-01	5.91E-01	2.79E-01	5.04E+04	
	911.07	4.04E-01 +-	1.76E-01	2.41E-01	1.09E-01	5.04E+04	
	968.90	3.43E-01 +-	2.53E-01	3.87E-01	1.74E-01	5.04E+04	
Bi-214	Average:x	3.05E-01 +-	1.16E-01			1.40E+07	
	609.31	3.09E-01 +-	1.25E-01	1.83E-01	8.64E-02	1.40E+07	
	1764.49	2.80E-01 +-	3.18E-01	5.12E-01	2.20E-01	1.40E+07	
K-40	1460.75	7.83E+00 +-	1.24E+00	1.25E+00	5.79E-01	1.12E+13	
Pb-210	46.52 N-	4.80E+01 +-	4.95E+01	9.23E+01	4.36E+01	1.79E+05	
T1-201	70.82 N	2.22E+03 +-	3.66E+03	6.10E+03	2.89E+03	7.35E+01	
U-238	92.60 N-	1.28E-01 +-	8.11E-01	1.41E+00	6.73E-01	3.92E+13	
U-235	143.76 N-	2.86E-02 +-	2.24E-01	3.91E-01	1.86E-01	3.33E+10	
Ra-224	241.00 N	1.93E+00 +-	7.34E-01	1.04E+00b	4.88E-01	5.04E+04	
	Page 0	03					105 of

105 of 624

181897D05.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

Nuclide	ENERGY (keV)		entration	MDA	Critical Level	Halflife (hrs)	
			, 		Tever	(111.5)	
Ra-223	269.39	N 9.50E-0	2 +- 2.12E-01	3.57E-01	1.69E-01	2.87E+08	
Ir-192	316.49	N 2.69E-0	2 +- 6.24E-02	1.06E-01	4.94E-02	1.78E+03	
Be-7	477.56	N-5.70E-0	2 +- 5.92E-01	1.05E+00	4.91E-01	1.28E+03	
Bi-212	727.17	N 3.83E-0	L +- 3.18E-01	4.97E-01	2.26E-01	5.04E+04	
T1-210	795.00	N 1.23E-0	2 +- 3.68E-02	6.38E-02	2.91E-02	1.40E+07	
Sc-46	889.26	N-4.93E-0	2 +- 6.27E-02	1.20E-01	5.57E-02	2.01E+03	
Pa-234	946.00	N-1.59E-0	L +- 1.91E-01	3.78E-01	1.73E-01	3.95E+13	
Na-22	1274.54	N 1.54E-0	2 +- 4.18E-02	7.36E-02	3.23E-02	2.28E+04	

MEASURED TOTAL: 2.23E+03 +- 3.67E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG	
1	77.18	155.40	53	26	18	79	0.43	Unknown	_
3	198.41	397.58	0	25	21	57	0.50	Deleted	
4	209.12	418.98	22	27	21	90	0.90	Unknown	
10	510.92	1021.87	-30	45	38	94	2.10	Deleted	
13	661.70	1323.09	68	24	14	41	1.28	Unknown	

c:\SEEKER\BIN\181897d05.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins

Geo 17/26

Sample ID: 1810627-3D GS181103-1

Sampling Start: 10/22/2018 12:00:00	Counting Start: 12/04/2018 10:18:29
Sampling Stop: 10/22/2018 12:00:00	Decay Time 1.03E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 4500 Sec
Sample Size 2.18E+002 g	Real Time 4547 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 8 (Detector 8)

Energy(keV) = -2.27 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018 FWHM(keV) = 0.65 + 0.012*En + 6.79E-04*En^2 + 0.00E+00*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

				UN-			FWHM	
#				CERTAINTY				
1				34				
2	63.23	130.61	59	25	16	65	0.46	a
3	74.84	153.78	85	32	22	94	0.83	a
4	77.01	158.10	140	35	22	94	0.77	0
5	87.23	178.48	28	20	14	56	0.41	1
6	92.62	189.23	76	37	27	138	1.00	a
7	185.76	374.96	43	22	15	47	0.70	a
8	208.90	421.12	27	26	19	70	1.05	a
9	238.58	480.29	177	37	21	89	0.81	3.
10	295.14	593.10	51	26	18	57	1.19	a
11	338.66	679.88	40	24	17	50	1.19	3.
12	351.97	706.42	105	30	18	54	1.23	a
13	511.03	1023.62	125	34	22	69	2.01	a
14	558.77	1118.83	24	18	12	29	1.20	9.
15	583.36	1167.87	40	20	13	34	1.07	a
16	609.63	1220.25	79	23	12	28	1.21	a
17	661.97	1324.63	52	21	13	33	1.12	a
18	911.47	1822.18	37	15	8	12	1.42	a
19	1460.64	2917.34	168	27	5	4	2.09	a

181952D08.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET081128.BKG (112818-8 LONG BKG CAL)

19 1460.64 168 27 5 153

Bkg.File Detector #: 8

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEL	FLAG
1	46.57	48	34	25	22	36	28 1	NET <cl< td=""></cl<>
_								
2	63.23	59	25	16		29		NET <cl< td=""></cl<>
3	74.84	85	32	22	65	34	24	
4	77.01	140	35	22	120	37	25	
5	87.23	28	20	14	22	23	17	
6	92.62	76	37	27	17	40	32 1	NET <cl< td=""></cl<>
7	185.76	43	22	15	19	24	19	
9	238.58	177	37	21	151	39	25	
10	295.14	51	26	18	40	28	21	
11	338.66	40	24	17	35	26	19	
12	351.97	105	30	18	90	31	20	
13	511.03	125	35	22	-7	39	33 1	NET <cl< td=""></cl<>
14	558.77	24	18	12	6	20	16 1	NET <cl< td=""></cl<>
15	583.36	40	20	13	32	22	16	
16	609.63	79	23	12	64	25	16	
18	911.47	37	15	8	31	16	10	

27 10

SEEKER FINAL ACTIVITY REPORT

Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-3D GS181103-1

Page 003

Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

Detector #: 8 (Detector 8)

Efficiency File: (D08)(Sh17).EFF (Geo 17 Eff Cal)

Eff.=1/[5.03E-02*En^-2.20E+00 + 1.32E+02*En^8.10E-01] 05/17/2018

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concentr	ation		Critical	Halflife	
		(pCi/g		MDA			
		8.35E-01 +-					
U-238	92.60 N	2.48E-01 +-	5.69E-01	9.55E-01	4.58E-01	3.92E+13	
Ra-226	186.10	5.39E-01 +-	6.83E-01	1.12E+00	5.24E-01	1.40E+07	
Pb-212	238.63	4.17E-01 +-	1.07E-01	1.44E-01	6.81E-02	5.04E+04	
Pb-214	Average:x	3.68E-01 +-	1.15E-01			1.40E+07	
	295.21	2.99E-01 +-	2.11E-01	3.31E-01	1.55E-01	1.40E+07	
	351.92	3.97E-01 +-	1.37E-01	1.90E-01	8.91E-02	1.40E+07	
Ac-228	Average:x	3.89E-01 +-	1.68E-01			5.04E+04	
	338.40	4.53E-01 +-	3.37E-01	5.30E-01	2.47E-01	5.04E+04	
	911.07	3.68E-01 +-	1.94E-01	2.69E-01	1.18E-01	5.04E+04	
T1-208	583.14	8.98E-02 +-	6.20E-02	9.57E-02	4.41E-02	5.04E+04	
Bi-214	609.31	3.52E-01 +-	1.38E-01	1.92E-01	8.84E-02	1.40E+07	
K-40	1460.75	7.08E+00 +-	1.26E+00	1.01E+00	4.43E-01	1.12E+13	
T1-201	70.82 N	-5.37E+01 +-	8.89E+02	1.55E+03	7.34E+02	7.35E+01	
บ-235	143.76 N	-2.05E-01 +-	2.19E-01	4.06E-01	1.92E-01	3.33E+10	
Ra-224	241.00 N	1.66E+00 +-	1.31E+00	1.96E+00r	9.39E-01	5.04E+04	
Ra-223	269.39 N	1.42E-01 +-	2.23E-01	3.72E-01	1.73E-01	2.87E+08	
		-6.24E-03 +-					
Be-7	477.56 N	-3.84E-02 +-	5.41E-01	9.90E-01	4.49E-01	1.28E+03	
Bi-212	727.17 N	3.03E-02 +-	3.56E-01	6.44E-01	2.89E-01	5.04E+04	
T1-210	795.00 N	3.70E-02 +-	4.28E-02	6.94E-02	3.06E-02	1.40E+07	
Sc-46	889.26 N	9.47E-03 +-	6.28E-02	1.14E-01	5.05E-02	2.01E+03	

109 of 624

MEASURED or MDA CONCENTRATIONS

		N					
	ENERGY	E Concen	tration		Critical	Halflife	
Nuclide	(keV)	T (pCi/g)	MDA	Level	(hrs)	
Pa-234 Na-22			+- 2.27E-01 +- 4.85E-02				

MEASURED TOTAL: 1.22E+01 +- 6.67E+00 pCi/g

UNKNOWN, SUM OR ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	63.23	130.61	16	29	23	65	0.46	Deleted
3	74.84	153.78	65	34	24	94	0.83	Unknown
4	77.01	158.10	120	37	25	94	0.77	Unknown
5	87.23	178.48	22	23	17	56	0.41	Unknown
8	208.90	421.12	27	26	19	70	1.05	Unknown
13	511.03	1023.62	-7	39	33	69	2.01	Deleted
14	558.77	1118.83	6	20	16	29	1.20	Deleted
17	661.97	1324.63	52	21	13	33	1.12	Unknown

c:\SEEKER\BIN\181952d08.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-4 GS181103-1

SEEKER

Detector #: 9 (Detector 9)

Energy(keV) = -2.19 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/04/2018 FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En² + 0.00E+00*En³ 11/01/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	-	CERTAINTY			FWHM (keV)	FLAG
1		96.98	49	30	22	106	0.62	a
2	63.15	130.34	56	33	24	130	0.67	a
3	74.69	153.35	142	44	31	176	0.93	2
4	77.02	158.01	209	44	27	147	0.81	b
5	87.21	178.34	39	47	37	238	1.09	a
6	92.71	189.32	101	43	31	177	1.05	a
7	186.03	375.46	75	49	37	182	1.87	a Wide Pk
8	238.63	480.40	230	44	26	122	0.98	9.
9	295.11	593.05	80	30	20	71	0.92	a
10	338.40	679.40	38	19	12	35	0.56	a
11	352.03	706.61	166	34	18	54	1.14	a
12	510.61	1022.94	120	36	23	84	1.73	a
13	512.07	1025.84	79	35	25	92	2.03	b
14	583.47	1168.28	92	28	16	44	1.58	a.
15	609.36	1219.92	81	28	18	58	1.28	9.
16	661.85	1324.63	76	28	18	59	1.43	a .
17	803.27	1606.75	26	15	9	18	1.17	а.
18	911.26	1822.16	38	18	11	24	1.40	a .
19	969.13	1937.59	21	13	8	16	0.85	а.
20	1460.55	2917.90	239	32	6	6	1.75	a.
21	1763.65	3522.52	21	14	9	13	2.45	a
		Dage 001						

****************** SEEKER

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

GammaScan ******************************

Background File: DET091128.BKG (112818-9 LONG BKG CAL)

Bkg.File Detector #: 9

BACKGROUND SUBTRACT RESULTS ______

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEL	FLAG
1	46.42	49	30	22	9	37	30 N	ET <cl< td=""></cl<>
2	63.15	56	33	24	16	39	31 N	ET <cl< td=""></cl<>
3	74.69	142	44	31	119	47	35	
4	77.02	209	44	27	184	48	32	
5	87.21	39	47	37	28	50	40 N	ET <cl< td=""></cl<>
6	92.71	101	43	31	28	47	38 N	ET <cl< td=""></cl<>
7	186.03	75	49	37	39	51	41 N	ET <cl< td=""></cl<>
8	238.63	230	44	26	199	46	30	
9	295.11	80	30	20	70	33	23	
10	338.40	38	19	12	34	21	14	
11	352.03	166	34	18	145	36	22	
12	510.61	120	36	23	-66	46	40 N	ET <cl< td=""></cl<>
14	583.47	92	28	16	80	30	20	
15	609.36	81	28	18	68	31	21	
17	803.27	26	15	9	16	18	13	
18	911.26	38	18	11	31	19	13	
20	1460.55	239	32	6	221	33	12	
21	1763.65	21	14	9	17	16	11	

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-4 GS181103-1

-----Buildup Time. 0.00e+000 Hrs | Live Time 7200 Sec Sample Size 2.17e+002 g | Real Time Collection Efficiency . . . 1.0000 | Spectrum File 181815D09.SPC Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % _____ Detector #: 9 (Detector 9) Efficiency File: (D09)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-1.47E+01 +1.58E+01*L +-5.94E+00*L^2 +6.70E-01*L^3] 11/06/2018 Eff.=10^[-4.97E+00 +4.67E+00*L +-1.91E+00*L^2 +2.19E-01*L^3] Above 300.00 keV _____ Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills) ______ MEASURED or MDA CONCENTRATIONS ______

	N					
	ENERGY E	Concent	ration		Critical	Halflife
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)
		0 175 01 .				
			- 9.19E-01			
			- 4.61E-01		3.70E-01	
Ra-226	186.10 N	7.71E-01 +	- 1.02E+00	1.68E+00	8.11E-01	1.40E+07
Pb-212	238.63	4.12E-01 +	- 9.63E-02	1.32E-01	6.30E-02	5.04E+04
Pb-214	Average:x	4.59E-01 +	- 1.01E-01			1.40E+07
	295.21	4.32E-01 +	- 2.01E-01	3.00E-01	1.42E-01	1.40E+07
	351.92	4.68E-01 +	- 1.17E-01	1.53E-01	7.22E-02	1.40E+07
Ac-228	Average:x	3.07E-01 +	- 1.11E-01			5.04E+04
	338.40	3.21E-01 +	- 1.99E-01	2.99E-01	1.36E-01	5.04E+04
	911.07	2.79E-01 +	- 1.74E-01	2.60E-01	1.18E-01	5.04E+04
	968.90	3.31E-01 +	- 2.11E-01	2.95E-01	1.26E-01	5.04E+04
T1-208	583.14	1.64E-01 +	- 6.25E-02	8.88E-02	4.16E-02	5.04E+04
Bi-214	Average:x	2.90E-01 +	- 1.19E-01			1.40E+07
	609.31	2.76E-01 +	- 1.24E-01	1.82E-01	8.57E-02	1.40E+07
	1764.49	4.77E-01 +	- 4.60E-01	7.33E-01	3.28E-01	1.40E+07
K-40	1460.75	7.88E+00 +	- 1.17E+00	9.36E-01	4.20E-01	1.12E+13
T1-201	70.82 N	6.37E+02 +	- 7.35E+02	1.20E+03B	5.74E+02	7.35E+01
บ-235	143.76 N-	-5.90E-02 +	- 1.83E-01	3.22E-01	1.54E-01	3.33E+10
Ra-224	241.00 N	4.86E-01 +	- 1.13E+00	1.85E+00r	8.92E-01	5.04E+04
Ra-223	269.39 N	3.72E-02 +	- 2.18E-01	3.75E-01	1.77E-01	2.87E+08
Ir-192	316.49 N-	-1.55E-02 +	- 4.70E-02	8.42E-02	3.96E-02	1.78E+03
	Page (003				

Page 003

181815D09.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

Nuclide	ENERGY (keV)	_	Concen pCi/g	tra	ation)	MDA	Critical Level	Halflife (hrs)	
Be-7	477.56	N-9.3	38E-02	+-	4.78E-01	8.70E-01	4.01E-01	1.28E+03	
Bi-212	727.17	N 4.3	19E-01	+-	3.57E-01	5.62E-01	2.57E-01	5.04E+04	
T1-210	795.00	N 2.9	90E-02	+-	3.94E-02	6.52E-02	2.95E-02	1.40E+07	
Sc-46	889.26	N 4.0	01E-02	+-	5.00E-02	8.19E-02	3.61E-02	2.01E+03	
Pa-234	946.00	N 5.3	30E-02	+-	1.91E-01	3.38E-01	1.51E-01	3.95E+13	
Na-22	1274.54	N-7.7	74E-03	+-	4.91E-02	9.20E-02	4.13E-02	2.28E+04	

MEASURED TOTAL: 6.48E+02 +- 7.41E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
2	63.15	130.34	16	39	31	130	0.67	Deleted
3	74.69	153.35	119	47	35	176	0.93	Unknown
4	77.02	158.01	184	48	32	147	0.81	Unknown
5	87.21	178.34	28	50	40	238	1.09	Deleted
12	510.61	1022.94	-66	46	40	84	1.73	Deleted
13	512.07	1025.84	79	35	25	92	2.03	Unknown
16	661.85	1324.63	76	28	18	59	1.43	Unknown
17	803.27	1606.75	16	18	13	18	1.17	Unknown

c:\SEEKER\BIN\181815d09.res Analysis Results Saved.

SEEKER

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-5 GS181103-1

Sampling Start: 10/22/2018 12:00:00	Counting Start: 12/04/2018 10:25:08
	Decay Time 1.03E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time
Sample Size 2.14E+002 g	Real Time
Collection Efficiency 1.0000	Spc. File

Detector #: 2 (Detector 2)

Energy(keV) = $-1.31 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018$ FWHM(keV) = $0.97 + 0.002*En + 9.30E-04*En^2 + 0.00E+00*En^3 07/31/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)				C.L. COUNTS		FWHM (keV)	FLAG
1	66.72	135.79	47	60	48	320	1.67	a NET< CL
2	74.70	151.71	54	33	24	129	0.60	a
3	77.18	156.66	77	34	24	129	0.72	b
4	185.78	373.42	107	41	29	165	1.21	a
5	238.59	478.83	426	56	31	178	1.38	a
6	241.67	484.97	67	48	37	223	1.56	b
7	260.06	521.67	30	32	25	119	1.17	a
8	295.20	591.81	124	37	25	121	1.11	a
9	338.33	677.90	86	35	25	112	1.34	a
10	351.91	705.01	276	45	25	111	1.46	a
11	510.88	1022.31	241	47	30	117	2.35	a
12	583.27	1166.78	127	33	20	79	1.47	a
13	609.43	1219.00	180	40	24	102	1.76	a
14	795.16	1589.69	36	20	13	36	1.27	a
15	911.47	1821.85	66	26	16	52	1.73	a
16	969.31	1937.30	48	23	15	41	1.82	a
17	1460.87	2918.42	374	42	13	26	2.84	a
18	1764.72	3524.89	31	14	7	10	2.18	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET021128.BKG (112818-2 LONG BKG CAL)

Bkg.File Detector #: 2

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL FLAG
1	66.72	47	60	48	12	68	55 NET <cl< td=""></cl<>
2	74.70	54	33	24	26	60	48 NET <cl< td=""></cl<>
4	185.78	107	41	29	62	46	36
5	238.59	426	56	31	387	61	38
8	295.20	124	37	25	115	41	28
10	351.91	276	45	25	248	49	31
11	510.88	241	47	30	44	57	46 NET <cl< td=""></cl<>
12	583.27	127	33	20	114	35	23
13	609.43	180	40	24	162	43	29
15	911.47	66	26	16	56	28	19
17	1460.87	374	42	13	331	44	20
18	1764.72	31	14	7	24	16	11

******************************* SEEKER FINAL ACTIVITY REPORT

Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-5 GS181103-1

______ Sampling Start: 10/22/2018 12:00:00 | Counting Start: 12/04/2018 10:25:08 Sampling Stop: 10/22/2018 12:00:00 | Decay Time. 1.03e+003 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 7200 Sec Sample Size 2.14e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

_____ Detector #: 2 (Detector 2)

Efficiency File: (D02)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-1.25E+02 +1.62E+02*L +-7.06E+01*L^2 +1.02E+01*L^3] 09/06/2018

Eff.=10^[-1.14E+01 +1.13E+01*L +-4.16E+00*L^2 +4.74E-01*L^3] Above 300.00 keV

Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concent	ration		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
Ra-226	186.10	1.13E+00 +	- 8.49E-01	1.36E+00	6.58E-01	1.40E+07	
Pb-212	238.63	6.72E-01 +	- 1.06E-01	1.38E-01	6.67E-02	5.04E+04	
Pb-214	Average:x	5.64E-01 +	- 9.83E-02			1.40E+07	
	295.21	4.70E-01 +	- 1.66E-01	2.44E-01	1.16E-01	1.40E+07	
	351.92	6.14E-01 +	- 1.22E-01	1.61E-01	7.71E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	4.68E-01 +	- 1.26E-01			5.04E+04	
	338.40	6.27E-01 +	- 2.57E-01	3.79E-01	1.80E-01	5.04E+04	
	911.07	3.59E-01 +	- 1.77E-01	2.63E-01	1.23E-01	5.04E+04	
	968.90	5.37E-01 +	- 2.53E-01	3.59E-01	1.64E-01	5.04E+04	
T1-208	583.14	1.71E-01 +	- 5.31E-02	7.36E-02	3.48E-02	5.04E+04	
Bi-214	Average:x	4.78E-01 +	- 1.19E-01			1.40E+07	
	609.31	4.77E-01 +	- 1.28E-01	1.79E-01	8.55E-02	1.40E+07	
	1764.49	4.84E-01 +	- 3.26E-01	4.82E-01	2.14E-01	1.40E+07	
T1-210	795.00	5.84E-02 +	- 3.28E-02	4.79E-02	2.17E-02	1.40E+07	
K-40	1460.75	8.27E+00 +	- 1.09E+00	1.06E+00	4.95E-01	1.12E+13	
Ra-224	241.00	1.85E-01 +	- 5.56E+00	1.47E+00	7.09E-01	5.04E+04	
Pb-210	46.52 N	1.03E+01 +	- 1.04E+02	1.77E+02	8.52E+01	1.79E+05	
T1-201	70.82 N	2.28E+03 +	6.00E+03	1.00E+04	4.87E+03	7.35E+01	
U-238	92.60 N	-6.48E-02 +	8.98E-01	1.53E+00	7.41E-01	3.92E+13	
บ-235	143.76 N	8.34E-03 +	- 2.23E-01	3.82E-01	1.83E-01	3.33E+10	
	Page (003					44- 04
	Page (003					

117 of 624

182187D02.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

Nuclide	ENERGY (keV)		entration)	MDA	Critical Level	Halflife (hrs)	
Ra-223 Ir-192 Be-7 Bi-212 Sc-46 Pa-234	316.49 477.56 727.17 889.26	N 1.28E-02 N 8.57E-02 N 1.96E-03 N 5.56E-03	+- 2.00E-01 2 +- 4.75E-02 2 +- 5.02E-01 4 +- 3.07E-01 3 +- 4.87E-02 4 +- 1.69E-01	8.07E-02 8.66E-01	1.50E-01 3.84E-02 4.08E-01 2.38E-01 3.96E-02	2.87E+08 1.78E+03 1.28E+03 5.04E+04 2.01E+03	
Na-22			2 +- 4.77E-02	00000	4.01E-02	2.28E+04	

MEASURED TOTAL: 2.30E+03 +- 6.11E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	66.72	135.79	12	68	55	320	1.67	Deleted
2	74.70	151.71	26	60	48	129	0.60	Deleted
3	77.18	156.66	77	34	24	129	0.72	Unknown
6	241.67	484.97	67	48	37	223	1.56	SPLIT
7	260.06	521.67	30	32	25	119	1.17	Unknown
11	510.88	1022.31	44	57	46	117	2.35	Deleted

c:\SEEKER\BIN\182187d02.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-6 GS181103-1

ENERGY ADDRESS

PK.

18

19

20

21

-----10/23/2018 12:00:00 | Counting Start: 12/04/2018 10:26:44 Sampling Start: Sampling Stop: 10/23/2018 12:00:00 | Decay Time. 1.01E+003 Hrs Buildup Time. 0.00E+000 Hrs | Live Time Sample Size 2.54E+002 g | Real Time

Detector #: 10 (Detector 10)

Energy(keV) = -2.03 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/04/2018 $FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En^2 + 0.00E+00*En^3 11/15/2018$ Where En = Sqrt(Energy in keV)

NET/MDA UN-

100

265

26

79

______ Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 _____

PEAK SEARCH RESULTS _____

C.L.

23

26

13

17

97

125

38

52

1.63 a

0.92 a

2.07 a

BKG

FWHM

COUNTS CERTAINTY COUNTS # CHANNEL COUNTS (keV) (keV) FLAG _____ 74.76 98 42 276 1.29 a 153.23 54 1 77.01 42 29 173 0.80 b 2 157.71 124 0.55 a86.99 177.63 28 21 114 3 22 92.63 80 39 28 162 0.82 a4 188.90 5 139.61 282.64 35 39 31 159 1.09 a 143.74 290.88 20 38 31 159 1.08 b NET< CL 6 1.31 a 7 185.84 374.89 101 44 32 190 53 37 28 151 1.15 a 8 198.41 399.98 1.29 a 238.63 480.23 52 30 165 9 353 87 38 27 144 1.09 b 10 241.87 486.70 1.27 a 269.78 542.41 41 35 27 132 11 1.33 a 295.21 173 40 109 12 593.15 24 25 1.29 a 13 338.55 679.64 44 33 116 100 1.33 a 14 352.03 706.54 365 47 23 15 433.00 868.10 17 26 20 74 1.32 a NET< CL 298 35 176 2.63 a Wide Pk 16 511.10 1023.96 55 58 29 21 75 1.75 a 17 558.46 1118.46 1.57 a

34

45

19

27

Page 001

583.45 1168.33

609.54 1220.39

727.70 1456.18

911.39 1822.75

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	969.53	1938.76	40	26	19	66	1.78	a
23	1120.89	2240.82	52	27	19	56	2.47	a
24	1460.61	2918.74	540	50	16	38	2.94	a
25	1764.04	3524.22	56	19	10	16	2.34	a

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

Background File: DET101128.BKG (112818-10 LONG BKG CAL)

Bkg.File Detector #: 10

SEEKER

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEL FLAC	3
								-
1	74.76	98	54	42	54	58	47	
2	77.01	124	42	29	68	46	36	
3	86.99	22	28	21	10	31	25 NET <c< td=""><td>Ĺ</td></c<>	Ĺ
4	92.63	80	39	28	8	44	36 NET <c< td=""><td>L</td></c<>	L
5	139.61	35	39	31	5	42	34 NET <c< td=""><td>L</td></c<>	L
6	143.74	20	38	31	11	41	33 NET <c< td=""><td>L</td></c<>	L
7	185.84	101	44	32	21	48	39 NET <c< td=""><td>L</td></c<>	L
8	198.41	53	37	28	-3	40	33 NET <c< td=""><td>L</td></c<>	L
9	238.63	353	52	30	290	55	35	
10	241.87	87	38	27	38	41	32	
11	269.78	41	35	27	38	36	28	
12	295.21	173	40	24	79	43	32	
13	338.55	44	33	25	32	35	27	
14	352.03	365	48	23	177	51	36	
16	511.10	298	55	35	0	61	50 NET <c< td=""><td>L</td></c<>	L
17	558.46	58	29	21	13	32	25 NET <c< td=""><td>L</td></c<>	L
18	583.45	100	34	23	65	37	27	
19	609.54	265	45	26	125	49	36	
21	911.39	79	27	17	55	29	21	
22	969.53	40	26	19	26	27	21	
23	1120.89	52	27	19	17	29	22 NET <c< td=""><td>L</td></c<>	L
24	1460.61	540	50	16	467	52	23	
25	1764.04	56	19	10	24	21	15	

******************************* FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-6 GS181103-1

Sampling Start: 10/23/2018 12:00:00 | Counting Start: 12/04/2018 10:26:44
Sampling Stop: 10/23/2018 12:00:00 | Decay Time. 1.01e+003 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 3600 Sec Sample Size 2.54e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % _____

Detector #: 10 (Detector 10)

Efficiency File: (D10)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-5.73E+01 +7.32E+01*L +-3.17E+01*L^2 +4.54E+00*L^3] 11/20/2018

Eff.=10^[-2.63E+01 +2.68E+01*L +-9.41E+00*L^2 +1.07E+00*L^3] Above 300.00 keV

Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills)

______ MEASURED or MDA CONCENTRATIONS

	N				- 4.4		
	ENERGY E						
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
		9.92E-02 +-			4.16E-01		
Ra-226		3.35E-01 +-			6.22E-01	1.40E+07	
Pb-212		4.26E-01 +-			5.19E-02		
Ra-224		6.20E-01 +-			5.26E-01		
		1.84E-01 +-			1.34E-01		
Pb-214	Average:x	3.43E-01 +-					
	295.21	2.85E-01 +-	1.55E-01	2.42E-01	1.16E-01	1.40E+07	
	351.92	3.71E-01 +-	1.08E-01	1.57E-01	7.57E-02	1.40E+07	
Ac-228	Average:x	2.35E-01 +-	1.03E-01			5.04E+04	
	338.40	2.02E-01 +-	2.18E-01	3.56E-01	1.69E-01	5.04E+04	
	911.07	2.57E-01 +-	1.37E-01	2.08E-01	9.74E-02	5.04E+04	
	968.90	2.12E-01 +-	2.24E-01	3.65E-01	1.71E-01	5.04E+04	
T1-208	583.14	7.51E-02 +-	4.23E-02	6.56E-02	3.12E-02	5.04E+04	
Bi-214	Average:x	2.86E-01 +-	1.02E-01			1.40E+07	
	609.31	2.81E-01 +-	1.10E-01	1.67E-01	8.07E-02	1.40E+07	
	1764.49	3.20E-01 +-	2.80E-01	4.44E-01	2.04E-01	1.40E+07	
Bi-212	727.17	2.53E-01 +-	1.81E-01	2.77E-01	1.25E-01	5.04E+04	
K-40	1460.75	8.15E+00 +-	8.98E-01	8.54E-01	4.03E-01	1.12E+13	
Pb-210	46.52 N	-2.42E+00 +-	6.41E+00	1.11E+01	5.36E+00	1.79E+05	
T1-201	70.82 N	2.26E+02 +-	1.37E+03	2.32E+03B	1.12E+03	7.35E+01	
U-235	143.76 N	2.55E-02 +-	1.89E-01	3.22E-01b	1.54E-01	3.33E+10	
	Page	004					

122 of 624

181992D10.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

	ENERGY	E	Conce	ntr	ation		Critical	Halflife	
Nuclide	(keV)	T	(pCi/g)	MDA	Level	(hrs)	
Ir-192	316.49	N	8.75E-03	+-	4.07E-02	6.94E-02	3.30E-02	1.78E+03	
Be-7	477.56	N	1.73E-01	+-	3.51E-01	5.92E-01	2.77E-01	1.28E+03	
T1-210	795.00	N	1.58E-02	+-	2.97E-02	5.00E-02	2.33E-02	1.40E+07	
Sc-46	889.26	N	2.62E-02	+-	4.24E-02	7.09E-02	3.29E-02	2.01E+03	
Pa-234	946.00	N-	-6.34E-03	+-	1.42E-01	2.53E-01	1.17E-01	3.95E+13	
Na-22	1274.54	N	1.86E-02	+-	3.45E-02	5.83E-02	2.67E-02	2.28E+04	

MEASURED TOTAL: 2.37E+02 +- 1.38E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	74.76	153.23	54	58	47	276	1.29	Unknown
2	77.01	157.71	68	46	36	173	0.80	Unknown
3	86.99	177.63	10	31	25	114	0.55	Deleted
5	139.61	282.64	5	42	34	159	1.09	Deleted
6	143.74	290.88	11	41	33	159	1.08	Deleted
8	198.41	399.98	-3	40	33	151	1.15	Deleted
15	433.00	868.10	17	26	20	74	1.32	Deleted
16	511.10	1023.96	0	61	50	176	2.63	Deleted
17	558.46	1118.46	13	32	25	75	1.75	Deleted
23	1120.89	2240.82	17	29	22	56	2.47	Deleted

c:\SEEKER\BIN\181992d10.res Analysis Results Saved.

SEEKER

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-7 GS181103-1

	Counting Start: 12/04/2018 11:35:17
Sampling Stop: 10/23/2018 12:00:00	Decay Time 1.01E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 18000 Sec
Sample Size 1.71E+002 g	Real Time 18051 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 7 (Detector 7)

Energy (keV) = $-2.42 + 0.502 \text{*Ch} + 0.00 \text{E} + 00 \text{*Ch}^2 + 0.00 \text{E} + 00 \text{*Ch}^3 + 12/04/2018$ $FWHM(keV) = 0.77 + 0.005*En + 8.11E-04*En^2 + 0.00E+00*En^3 09/24/2018$ Where En = Sqrt(Energy in keV)

------Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #				UN- CERTAINTY				FLAG
1	44.73	94.00	13	33	27	174	0.42 8	NET< CL
2	53.97	112.42	51	60	48	393	1.14 8	1
3	66.22	136.83	30	66	54	491	1.21 8	NET< CL
4	70.30	144.98	18	66	54	491	1.11 1	NET< CL
5	74.78	153.90	113	55	42	351	0.80	3
6	76.99	158.31	177	57	42	351	0.88	1
7	87.05	178.36	46	50	40	322	0.80 8	1
8	89.92	184.08	30	36	28	193	0.45 1	o
9	92.60	189.43	150	61	46	386	1.02	2
10	129.02	262.02	53	46	36	263	0.89 8	1
11	144.59	293.08	38	43	34	235	0.81 8	a.
12	185.83	375.29	176	66	50	397	1.27 a	a
13	198.25	400.03	75	45	35			a.
14	238.65	480.58	661	68	37			1
15	241.66	486.58	151	66	50	372	1.47 1	o
16	270.08	543.23	61	52	41			a.
17	277.58	558.18	65	55	44			
18	295.39	593.69	194	50	34			1
19	306.25		31	44	35			NET< CL
20				43				
21		706.57			29			
		D 001	0.0	~-				-

Page 001

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	·	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	462.98	927.78	3	84	69	460	3.73	NET< CL Wide Pk
23	511.36	1024.22	564	71	44	244	2.42	a Wide Pk
24	558.68	1118.54	59	31	22	100	1.06	a
25	583.66	1168.35	183	44	28	137	1.56 8	a
26	609.68	1220.22	306	50	30	163	1.38	3.
27	661.99	1324.49	34	28	21	88	1.14	1
28	803.49	1606.57	33	23	16	61	1.06	1
29	861.04	1721.30	30	26	19	74	1.31	a
30	911.45	1821.79	165	38	23	91	1.98	1
31	969.46	1937.44	59	25	16	57	1.20 8	1
32	1120.70	2238.93	38	26	19	74	1.40 8	a
33	1460.94	2917.18	527	50	17	50	2.33 8	a
34	1764.60	3522.53	69	21	11	20	2.38 8	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET071128.BKG (112818-7 LONG BKG CAL)

Bkg.File Detector #: 7

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN- OLD NEW NET NEW UN- NEW PK# (keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG

PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEI	FLAG
1	44.73	13	33	27	-13	66	55	NET <cl< td=""></cl<>
2	53.97	51	60	48	30	74	60	NET <cl< td=""></cl<>
3	66.22	30	66	54	-25	82	68	NET <cl< td=""></cl<>
4	70.30	18	66	54	7	80	66	NET <cl< td=""></cl<>
5	74.78	113	55	42	71	69	55	
6	76.99	177	57	42	138	79	62	
9	92.60	150	61	46	42	80	65	NET <cl< td=""></cl<>
12	185.83	176	66	50	97	79	63	
13	198.25	75	45	35	-8	66	54	NET <cl< td=""></cl<>
14	238.65	661	68	37	577	80	53	
18	295.39	194	50	34	163	62	46	
20	338.57	104	43	32	93	52	39	
21	352.02	375	52	29	322	63	43	
23	511.36	564	71	44	60	103	84	NET <cl< td=""></cl<>
24	558.68	59	31	22	-6	46	38	NET <cl< td=""></cl<>
25	583.66	183	44	28	137	58	44	
26	609.68	306	50	30	261	64	46	
28	803.49	33	23	16	0	36	29	NET <cl< td=""></cl<>
30	911.45	165	38	23	139	48	34	
33	1460.94	527	50	17	447	58	32	
34	1764.60	69	21	11	56	26	18	

****************************** SEEKER

FINAL ACTIVITY REPORT

Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-7 GS181103-1

-----10/23/2018 12:00:00 | Counting Start: 12/04/2018 11:35:17 Sampling Start: Sampling Start: 10/23/2018 12:00:00 | Counting Start: 12/04/2018 11:35:1/
Sampling Stop: 10/23/2018 12:00:00 | Decay Time. 1.01e+003 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 18000 Sec Sample Size 1.71e+002 g | Real Time

Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

Detector #: 7 (Detector 7)

Efficiency File: (D07)(Sh17).EFF (DET 7 GEO 17 Eff Cal)

Eff=10^[-1.18E+02 +1.52E+02*L +-6.65E+01*L^2 +9.63E+00*L^3] 09/25/2018

Eff.=10^[9.78E-01 +-1.35E+00*L +1.03E-01*L^2 +-1.37E-03*L^3] Above 300.00 keV

______ Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concenti	ation		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
		4.69E-01 +-	. 8 80E-01			3.92E+13	
U-235		1.35E-01 +-			1.21E-01	3.33E+10	
		1.13E+00 +-					
Ra-226							
Pb-212		6.36E-01 +-			5.85E-02		
Ra-223	269.39	2.19E-01 +	· 1.85E-01	3.00E-01	1.45E-01	2.87E+08	
T1-208	Average:x	1.46E-01 +-	5.85E-02			5.04E+04	
	277.36	4.94E-01 +-	4.20E-01	6.81E-01	3.30E-01	5.04E+04	
	583.14	1.39E-01 +-	5.93E-02	9.22E-02	4.47E-02	5.04E+04	
	860.47	1.46E-01 +-	7.26E-01	9.78E-01	4.76E-01	5.04E+04	
Pb-214	Average:x	4.86E-01 +-	8.46E-02			1.40E+07	
	295.21	4.25E-01 +-	1.61E-01	2.48E-01	1.20E-01	1.40E+07	
	351.92	5.09E-01 +-	9.95E-02	1.39E-01	6.73E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	4.90E-01 +-	1.19E-01			5.04E+04	
	338.40	4.29E-01 +-	- 2.39E-01	3.78E-01	1.83E-01	5.04E+04	
	911.07	5.95E-01 +	2.04E-01	3.04E-01	1.46E-01	5.04E+04	
	968.90	4.40E-01 +-	1.86E-01	2.63E-01	1.21E-01	5.04E+04	
Bi-214	Average:x	5.11E-01 +	1.08E-01			1.40E+07	
	609.31	5.19E-01 +	- 1.28E-01	1.87E-01	9.09E-02	1.40E+07	
	1120.29	3.68E-01 +-	2.50E-01	3.88E-01	1.81E-01	1.40E+07	
	1764.49	7.27E-01 +	3.45E-01	5.05E-01	2.35E-01	1.40E+07	
	Page (004					

Page 004

182018D07.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

N ENERGY E Concentration Critical Halflife) MDA Nuclide (keV) T (pCi/g Level (hrs) -----1460.75 7.31E+00 +- 9.42E-01 1.10E+00 5.27E-01 1.12E+13 K-40 T1-210 Average:x 3.97E-02 +- 3.16E-02 1.40E+07 860.00 2.55E-01 +- 2.60E+00 6.83E-01 3.19E-01 1.40E+07795.00 N 3.97E-02 +- 3.16E-02 5.02E-02 2.36E-02 1.40E+07 Ra-224 241.00 8.95E-01 +- 4.86E+00 1.26E+00 6.13E-01 5.04E+04 46.52 N 1.24E+01 +- 5.65E+01 9.54E+01 4.60E+01 1.79E+05 Pb-210 T1-201 70.82 N 3.05E+03 +- 2.43E+03 3.93E+03B 1.90E+03 7.35E+01 Ir-192 316.49 N-4.40E-04 +- 3.66E-02 6.26E-02 3.01E-02 1.78E+03 Be-7 477.56 N 3.68E-02 +- 3.96E-01 6.81E-01 3.24E-01 1.28E+03 Bi-212 727.17 N 2.89E-01 +- 3.70E-01 6.09E-01 2.92E-01 5.04E+04 Sc-46 889.26 N-5.11E-02 +- 4.62E-02 8.66E-02 4.10E-02 2.01E+03 946.00 N-6.30E-02 +- 1.48E-01 2.69E-01 1.26E-01 3.95E+13 Pa-234

MEASURED TOTAL: 3.07E+03 +- 2.50E+03 pCi/g

Na-22

1274.54 N 3.26E-03 +- 3.58E-02 6.27E-02 2.92E-02 2.28E+04

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	44.73	94.00	-13	66	55	174	0.42	Deleted
2	53.97	112.42	30	74	60	393	1.14	Deleted
3	66.22	136.83	-25	82	68	491	1.21	Deleted
4	70.30	144.98	7	80	66	491	1.11	Deleted
5	74.78	153.90	71	69	55	351	0.80	Unknown
6	76.99	158.31	138	79	62	351	0.88	Unknown
7	87.05	178.36	46	50	40	322	0.80	Unknown
8	89.92	184.08	30	36	28	193	0.45	Unknown
10	129.02	262.02	53	46	36	263	0.89	Unknown
13	198.25	400.03	-8	66	54	242	0.87	Deleted
15	241.66	486.58	151	66	50	372	1.47	SPLIT
19	306.25	615.33	31	44	35	214	1.17	Deleted
22	462.98	927.78	3	84	69	460	3.73	Deleted
23	511.36	1024.22	60	103	84	244	2.42	Deleted
24	558.68	1118.54	-6	46	38	100	1.06	Deleted
27	661.99	1324.49	34	28	21	88	1.14	Unknown
28	803.49	1606.57	0	36	29	61	1.06	Deleted
29	861.04	1721.30	30	26	19	74	1.31	SPLIT

c:\SEEKER\BIN\182018d07.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins

Geo 17/26

Sample ID: 1810627-8 GS181103-1

SEEKER

Sampling Start: 10/23/2018 12:00:00	Counting Start: 12/04/2018 10:59:29
Sampling Stop: 10/23/2018 12:00:00	Decay Time 1.01E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 5400 Sec
Sample Size 2.59E+002 g	Real Time 5407 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 1 (Detector 1)

Energy(keV) = -1.89 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018 FWHM(keV) = 0.66 + 0.012*En + 6.94E-04*En^2 + 0.00E+00*En^3 08/21/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	77.16	157.79	28	27	 21	94	0.68	a
2	86.96	177.36	14	21	16	67		a NET< CL
3	185.98	375.01	46	39	30	135	1.44	a.
4	238.61	480.08	123	36	23	101	0.93	a
5	295.14	592.92	59	30	21	69	1.23	a
6	337.86	678.19	35	29	22	72	1.55	a
7	351.91	706.24	86	30	20	65	1.10	a
8	511.13	1024.06	104	33	21	63	2.12	a Wide Pk
9	583.28	1168.09	71	23	13	28	1.46	a
10	609.39	1220.19	86	27	16	50	1.38	a
11	911.43	1823.10	29	18	12	28	1.35	a
12	1461.07	2920.25	233	33	9	16	2.04	a.

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

Background File: DET011128.BKG (112818-1 LONG BKG CAL)

Bkg.File Detector #: 1

SEEKER

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
3	185.98	46	39	30	36	41	32	
4	238.61	123	36	23	109	39	27	
5	295.14	59	30	21	56	32	23	
7	351.91	86	30	20	70	33	24	
8	511.13	104	33	21	-15	40	34	NET <cl< td=""></cl<>
9	583.28	71	23	13	64	25	16	
10	609.39	86	27	16	76	29	19	
11	911.43	29	18	12	23	20	14	
12	1461.07	233	33	9	194	34	16	

SEEKER FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-8 GS181103-1

Sampling Start: 10/23/2018 12:00:00	Counting Start: 12/04/2018 10:	59:29
Sampling Stop: 10/23/2018 12:00:00	Decay Time 1.01e+00	3 Hrs
Buildup Time 0.00e+000 Hrs	Live Time 540) Sec
Sample Size 2.59e+002 g	Real Time 540°	7 Sec
Collection Efficiency 1.0000	Spectrum File 182154D0	L.SPC
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval:	95 %

Detector #: 1 (Detector 1)

Efficiency File: (D01)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-1.00E+02 +1.28E+02*L +-5.55E+01*L^2 +7.96E+00*L^3] 09/12/2018

Eff.=10^[-9.85E-01 +4.24E-01*L +-4.07E-01*L^2 +4.46E-02*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concent	ration		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
Ra-226	186.10	8.85E-01 +	- 1.00E+00	1.65E+00	7.91E-01	1.40E+07	
Pb-212	238.63	2.61E-01 +	- 9.18E-02	1.33E-01	6.34E-02	5.04E+04	
Ac-228	Average:x	2.59E-01 +	- 1.59E-01			5.04E+04	
	338.40	3.56E-01 +	- 3.00E-01	4.81E-01	2.27E-01	5.04E+04	
	911.07	2.21E-01 +	- 1.87E-01	2.96E-01	1.35E-01	5.04E+04	
Pb-214	Average:x	2.46E-01 +	- 1.15E-01			1.40E+07	
	351.92	2.46E-01 +	- 1.17E-01	1.77E-01	8.35E-02	1.40E+07	
	295.21	2.46E-01 +	- 5.95E-01	8.26E-01	4.05E-01	1.40E+07	
T1-208	583.14	1.42E-01 +	- 5.63E-02	7.80E-02	3.60E-02	5.04E+04	
Bi-214	609.31	3.31E-01 +	- 1.24E-01	1.73E-01	8.08E-02	1.40E+07	
K-40	1460.75	7.20E+00 +	- 1.25E+00	1.26E+00	5.78E-01	1.12E+13	
T1-210	Average:x	2.92E-03 +	- 3.52E-02			1.40E+07	
	296.00	2.05E-02 +	- 2.90E-01	6.91E-02	3.26E-02	1.40E+07	
	795.00 N	2.65E-03 +	- 3.55E-02	6.43E-02	2.89E-02	1.40E+07	
Pb-210	46.52 N	-4.18E+01 +	- 3.91E+01	7.32E+01	3.46E+01	1.79E+05	
T1-201	70.82 N	4.91E+02 +	- 2.62E+03	4.48E+03	2.13E+03	7.35E+01	
บ-238	92.60 N	3.46E-01 +	- 6.74E-01	1.13E+00	5.35E-01	3.92E+13	
บ-235	143.76 N	4.67E-02 +	- 1.79E-01	3.08E-01	1.44E-01	3.33E+10	
Ra-224	241.00 N	1.96E+00 +	- 1.18E+00	1.71E+00r	8.17E-01	5.04E+04	
Ra-223	269.39 N	-1.59E-02 +	- 1.87E-01	3.31E-01	1.55E-01	2.87E+08	
Ir-192		-5.24E-03 +			3.91E-02	1.78E+03	
	Page						
		• • •					131 of 6

MEASURED or MDA CONCENTRATIONS

	ENERGY	N E	Conce	ntra	ation		Critical	Halflife	
Nuclide	(keV)	T	(pCi/g)	MDA	Level	(hrs)	
Be-7	477.56	N-	1.87E-01	+-	5.16E-01	9.52E-01	4.40E-01	1.28E+03	
Bi-212	727.17	N	2.53E-01	+-	3.18E-01	5.22E-01	2.35E-01	5.04E+04	
Sc-46	889.26	N	3.74E-03	+-	4.67E-02	8.59E-02	3.79E-02	2.01E+03	
Pa-234	946.00	N	1.39E-02	+-	1.74E-01	3.20E-01	1.41E-01	3.95E+13	
Na-22	1274.54	N	1.46E-02	+-	5.07E-02	8.97E-02	3.99E-02	2.28E+04	

MEASURED TOTAL: 5.03E+02 +- 2.63E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	77.16	157.79	28	27	21	94	0.68	Unknown
2	86.96	177.36	14	21	16	67	0.45	Deleted
5	295.14	592.92	56	32	23	69	1.23	SPLIT
8	511.13	1024.06	-15	40	34	63	2.12	Deleted

c:\SEEKER\BIN\182154d01.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-9 GS181103-1

Detector #: 8 (Detector 8)

Energy(keV) = -2.27 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018 FWHM(keV) = 0.65 + 0.012*En + 6.79E-04*En^2 + 0.00E+00*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	46.43	97.12	58	29	20	80	0.84	a
2	63.16	130.48	46	29	21	95	0.65	a
3	74.75	153.58	109	32	20	93	0.65	a
4	77.09	158.25	116	36	24	116	0.87	b
5	84.12	172.27	46	45	35	170	1.68	a Wide Pk
6	87.07	178.16	43	25	18	68	0.68	b
7	89.83	183.67	33	21	14	51	0.44	c
8	92.56	189.11	99	35	23	102	0.91	đ
9	185.98	375.41	57	36	27	98	1.63	a Wide Pk
10	238.65	480.45	174	33	16	53	0.80	a Wide Pk
11	241.77	486.67	47	36	28	107	1.71	b
12	295.40	593.61	59	24	15	43	0.86	a
13	338.37	679.31	24	21	15	43	1.01	a
14	352.01	706.51	112	27	14	34	0.91	a
15	511.15	1023.87	135	37	23	69	2.41	a Wide Pk
16	558.57	1118.44	25	21	15	41	1.46	a
17	583.61	1168.37	47	21	13	32	1.17	a
18	609.77	1220.53	68	24	14	37	1.28	a
19	911.54	1822.33	44	17	9	17	1.30	a
20	1460.61	2917.28	182	28	6	5	2.08	a

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

Background File: DET081128.BKG (112818-8 LONG BKG CAL)

Bkg.File Detector #: 8

SEEKER

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN- OLD NEW NET NEW UN- NEW PK# (keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG 1 46.43 58 29 20 32 31 23

SEEKER FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-9 GS181103-1

Detector #: 8 (Detector 8)

Efficiency File: (D08)(Sh17).EFF (Geo 17 Eff Cal)

Eff.=1/[5.03E-02*En^-2.20E+00 + 1.32E+02*En^8.10E-01] 05/17/2018

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED OF MDA CONCENTRATIONS

8.49E-01 +- 9.45E-01 1.55E+00 7.39E-01

3.69E-01 +- 8.72E-02 1.10E-01 5.16E-02 Pb-212 238.63 5.04E+04 Average:x 3.67E-01 +- 9.38E-02 1.40E+07 Pb-214 295.21 3.27E-01 +- 1.72E-01 2.56E-01 1.19E-01 1.40E+07 3.83E-01 +- 1.12E-01 1.43E-01 6.62E-02 1.40E+07 351.92 241.98 1.40E+07 I.D.

911.07 4.11E-01 +- 1.95E-01 2.64E-01 1.18E-01 5.04E+04

T1-208 583.14 9.92E-02 +- 5.65E-02 8.41E-02 3.87E-02 5.04E+04 Bi-214 609.31 2.67E-01 +- 1.29E-01 1.90E-01 8.81E-02 1.40E+07

K-40 1460.75 6.96E+00 +- 1.19E+00 9.39E-01 4.13E-01 1.12E+13

Ra-224 241.00 5.78E-01 +- 6.10E+00 1.61E+00 7.70E-01 5.04E+04

T1-201 70.82 N 3.15E+01 +- 6.57E+02 1.14E+03 5.39E+02 7.35E+01 U-235 143.76 N 1.38E-01 +- 1.90E-01 3.14E-01 1.47E-01 3.33E+10

U-235 143.76 N 1.38E-01 +- 1.90E-01 3.14E-01 1.47E-01 3.33E+10 Ra-223 269.39 N 0.00E+00 +- 1.87E-01 3.30E-01 1.54E-01 2.87E+08

Ir-192 316.49 N-1.45E-02 +- 4.94E-02 8.94E-02 4.17E-02 1.78E+03

Bi-212 727.17 N 3.60E-01 +- 3.99E-01 6.47E-01 2.94E-01 5.04E+04

T1-210 795.00 N 3.33E-02 +- 3.86E-02 6.25E-02 2.76E-02 1.40E+07

Page 003

Ra-226

186.10

1.40E+07

181953D08.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

»

	ENERGY	E	Conce	ntr	ation			Critica	1	Halflife	
Nuclide	(keV)	T	(pCi/g)		MDA	Level		(hrs)	
Sc-46	889.26	N	 1.27E-02	+-	6.16E-02	1.1	0E-01	4.93E-0	 2	2.01E+03	
Pa-234	946.00	N-	1.42E-01	+-	2.11E-01	4.2	3E-01	1.90E-0	1	3.95E+13	
Na-22	1274.54	N-	8.26E-03	+-	5.35E-02	1.0	1E-01	4.51E-0	2	2.28E+04	

MEASURED TOTAL: 4.35E+01 +- 6.68E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
2	63.16	130.48	3	32	26	95	0.65	Deleted
3	74.75	153.58	90	34	23	93	0.65	Unknown
4	77.09	158.25	96	38	27	116	0.87	Unknown
5	84.12	172.27	32	47	38	170	1.68	Deleted
6	87.07	178.16	37	27	20	68	0.68	Unknown
7	89.83	183.67	33	21	14	51	0.44	Unknown
11	241.77	486.67	47	36	28	107	1.71	SPLIT
15	511.15	1023.87	2	41	34	69	2.41	Deleted
16	558.57	1118.44	7	23	18	41	1.46	Deleted

c:\SEEKER\BIN\181953d08.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-10 GS181103-1

Sampling Start: 10/23/2018 12:00:00	Counting Start: 12/04/2018 12:07:35
Sampling Stop: 10/23/2018 12:00:00	Decay Time 1.01E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time
Sample Size 2.73E+002 g	Real Time
Collection Efficiency 1.0000	Spc. File

Detector #: 10 (Detector 10)

Energy(keV) = -2.03 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018 FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En^2 + 0.00E+00*En^3 11/15/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	CERTAINTY	COUNTS	BKG COUNTS	` '	FLAG
1	66.05	135.84	58	46	35	212	1.19	a .
2	74.66	153.03	86	39	28	161	0.81	a
3	77.03	157.76	130	45	32	193	0.92	b
4	87.05	177.75	18	24	19	87	0.54	a NET< CL
5	90.00	183.64	29	25	19	87	0.54	b
6	92.61	188.86	74	54	42	260	1.51	C
7	139.48	282.38	26	23	17	69	0.57	a
8	185.93	375.07	90	36	25	137	1.05	a
9	198.28	399.73	40	35	27	149	0.94	a
10	238.60	480.18	263	49	30	165	1.34	a
11	241.93	486.83	72	37	27	144	1.20	b
12	269.71	542.26	36	33	25	115	1.33	a
13	295.32	593.35	172	40	25	111	1.32	a
14	300.25	603.19	32	27	20	83	1.04	b
15	338.49	679.51	45	35	27	131	1.32	a
16	352.02	706.51	309	48	26	122	1.42	a
17	511.27	1024.30	331	52	31	133	2.72	a Wide Pk
18	558.85	1119.25	39	25	18	69	1.36	a
19	583.51	1168.46	86	29	18	63	1.52	a.
20	609.57	1220.45	225	42	24	116	1.49	a
21	727.28	1455.36	23	23	18	60	1.55	a .
		Page 001						

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	911.37	1822.71	81	28	18	62	1.74	a
23	1120.77	2240.57	41	23	16	49	1.87	a
24	1460.57	2918.64	580	52	17	41	2.99	a
25	1764.16	3524.47	59	21	12	24	2.55	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET101128.BKG (112818-10 LONG BKG CAL)

Bkg.File Detector #: 10

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
1	66.05	58	46	35	20	49	39	NET <cl< td=""></cl<>
2	74.66	86	39	28	42	44	35	
3	77.03	130	45	32	74	49	38	
4	87.05	18	24	19	6	28	23	NET <cl< td=""></cl<>
6	92.61	74	54	42	3	57	47	NET <cl< td=""></cl<>
7	139.48	26	23	17	-5	27	23	NET <cl< td=""></cl<>
8	185.93	90	36	25	10	42	34	NET <cl< td=""></cl<>
9	198.28	40	35	27	-15	38	32	NET <cl< td=""></cl<>
10	238.60	263	49	30	200	51	35	
11	241.93	72	37	27	23	40	32	NET <cl< td=""></cl<>
12	269.71	36	33	25	33	34	26	
13	295.32	172	40	25	77	43	32	
15	338.49	45	35	27	33	36	28	
16	352.02	309	48	26	121	51	38	
17	511.27	331	52	31	33	58	47	NET <cl< td=""></cl<>
18	558.85	39	25	18	-6	28	24	NET <cl< td=""></cl<>
19	583.51	86	29	18	52	32	23	
20	609.57	225	42	24	85	46	35	
22	911.37	81	28	18	57	30	21	
23	1120.77	41	23	16	7	25	20	NET <cl< td=""></cl<>
24	1460.57	580	52	17	508	53	24	
25	1764.16	59	21	12	27	23	17	

SEEKER FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-10 GS181103-1

Sampling Start: 10/23/2018 12:00:00	Counting Start:	12/04/2018 12:07:35					
Sampling Stop: 10/23/2018 12:00:00	Decay Time	1.01e+003 Hrs					
Buildup Time 0.00e+000 Hrs	Live Time	3600 Sec					
Sample Size 2.73e+002 g	Real Time	3614 Sec					
Collection Efficiency 1.0000	Spectrum File	181993D10.SPC					
Cr. Level Confidence Interval: 95 %	Det. Limit Confider	nce Interval: 95 %					
Detector #: 10	(Detector 10)						
Efficiency File: (D10)(Sh17).EFF (Geo 17	Eff Cal)						
Eff=10^[-5.73E+01 +7.32E+01*L +-3.17E+0	1*L^2 +4.54E+00*L^3	11/20/2018					
Eff.=10^[-2.63E+01 +2.68E+01*L +-9.41E+0							
Library File: TIDEWATER_GREATKILLS. (Ti							
MEASURED or MDA	CONCENTRATIONS						

	MEASURED or MDA CONCENTRATIONS											
=======	=======================================	========		========	========	==========	=====					
	N											
	ENERGY E	Concentr	ation		Critical	Halflife						
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)						
		3.16E-02 +-										
Ra-226	186.10 N	1.49E-01 +-	6.17E-01	1.04E+00	5.02E-01	1.40E+07						
Pb-212	Average:x	2.80E-01 +-	6.98E-02			5.04E+04						
	238.63	2.74E-01 +-	7.04E-02	1.00E-01	4.84E-02	5.04E+04						
	300.09	6.77E-01 +-	5.61E-01	8.93E-01	4.18E-01	5.04E+04						
Ra-224	241.00 N	3.52E-01 +-	6.13E-01	1.02E+00	4.90E-01	5.04E+04						
Ra-223	269.39	1.46E-01 +-	1.51E-01	2.46E-01	1.17E-01	2.87E+08						
Ac-228	Average:x	2.34E-01 +-	1.12E-01			5.04E+04						
	338.40	1.94E-01 +-	2.13E-01	3.49E-01	1.66E-01	5.04E+04						
	911.07	2.49E-01 +-	1.32E-01	2.00E-01	9.39E-02	5.04E+04						
Pb-214	Average:x	2.37E-01 +-	9.81E-02			1.40E+07						
	351.92	2.37E-01 +-	1.00E-01	1.55E-01	7.47E-02	1.40E+07						
	295.21	2.37E-01 +-	4.57E-01	6.37E-01	3.14E-01	1.40E+07						
T1-208	583.14	5.51E-02 +-	3.39E-02	5.26E-02	2.49E-02	5.04E+04						
Bi-214	Average:x	1.93E-01 +-	9.14E-02			1.40E+07						
	609.31	1.78E-01 +-	9.64E-02	1.51E-01	7.28E-02	1.40E+07						

3.32E-01 +- 2.87E-01 4.57E-01 2.12E-01

8.25E+00 +- 8.67E-01 8.10E-01 3.83E-01

5.66E-03 +- 2.22E-01 5.25E-02 2.52E-02 1.40E+07

727.17 2.14E-01 +- 2.13E-01 3.46E-01 1.60E-01 5.04E+04

Average:x-2.16E-03 +- 2.59E-02

Page 004

1764.49

296.00

1460.75

Bi-212

T1-210

K-40

1.40E+07

1.12E+13

1.40E+07

. . . .

181993D10.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

Nuclide	ENERGY (keV)		ation)	MDA	Critical Level	Halflife (hrs)
	795.00	N-2.27E-03 +-	2.60E-02	4.62E-02	2.16E-02	1.40E+07
Pb-210	46.52	N-1.18E+00 +-	6.06E+00	1.04E+01	5.03E+00	1.79E+05
T1-201	70.82	N-1.78E+03 +-	1.26E+03	2.28E+03B	1.10E+03	7.35E+01
U-235	143.76	N-3.95E-02 +-	1.86E-01	3.21E-01	1.54E-01	3.33E+10
Ir-192	316.49	N-3.49E-02 +-	3.47E-02	6.40E-02	3.04E-02	1.78E+03
Be-7	477.56	N 1.18E-01 +-	3.20E-01	5.46E-01	2.55E-01	1.28E+03
Sc-46	889.26	N 1.92E-02 +-	3.68E-02	6.22E-02	2.87E-02	2.01E+03
Pa-234	946.00	N 2.20E-02 +-	1.46E-01	2.54E-01	1.18E-01	3.95E+13
Na-22	1274.54	N-1.65E-02 +-	3.52E-02	6.48E-02	3.02E-02	2.28E+04

MEASURED TOTAL: 1.03E+01 +- 3.99E+00 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	66.05	135.84	20	49	39	212	1.19	Deleted
2	74.66	153.03	42	44	35	161	0.81	Unknown
3	77.03	157.76	74	49	38	193	0.92	Unknown
4	87.05	177.75	6	28	23	87	0.54	Deleted
5	90.00	183.64	29	25	19	87	0.54	Unknown
7	139.48	282.38	-5	27	23	69	0.57	Deleted
9	198.28	399.73	-15	38	32	149	0.94	Deleted
13	295.32	593.35	77	43	32	111	1.32	SPLIT
17	511.27	1024.30	33	58	47	133	2.72	Deleted
18	558.85	1119.25	-6	28	24	69	1.36	Deleted
23	1120.77	2240.57	7	25	20	49	1.87	Deleted

c:\SEEKER\BIN\181993d10.res Analysis Results Saved.

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-11 GS181103-1

Sampling Start: 10/23/2018 12:00:00	Counting Start: 12/04/2018 14:50:12
Sampling Stop: 10/23/2018 12:00:00	Decay Time 1.01E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 24000 Sec
Sample Size 2.11E+002 g	Real Time 24048 Sec
Collection Efficiency 1.0000	Spc. File
Collection Elliciency 1.0000	bpc. rile

Detector #: 3 (Detector 3)

Energy(keV) = $-1.37 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018$ FWHM(keV) = $0.79 + 0.012*En + 1.05E-03*En^2 + 0.00E+00*En^3 11/01/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

				UN- CERTAINTY				FLAG
1		129.40		 49	37		0.57	
2	66.45		57		61			b NET< CL
3	74.92		336		53			a
4	77.04			96	69			
5	84.24			98	78			a
6	86.97			93	71			
7	89.83	181.90	192	83	64			c
8	92.89				71			đ
9	105.73		50		33			a
10	129.25	260.53	82	80	64	693	1.14	a
11	140.03		41		53	525	1.01	a NET< CL
12	185.86		362		65	663		
13	198.52		33	48	39		0.58	a NET< CL
14	209.16	419.92			41			a
15	221.29		54		81	913	2.11	a NET< CL
								Wide Pk
16	238.57	478.58	1724	104	52	491	1.33	a
17	241.64		368		56	552	1.44	b
18	270.49				65			a
19				83				
20		601.40			46		1.30	b
		Dama 001						

Page 001

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY		BKG COUNTS	FWHM (keV)	FLAG
21	328.19	657.31	75	66	53	456	1.70 a	1
22	338.23	677.34	334	72	51	434	1.67 a	a
23	351.85	704.51	991	88	50	413	1.56 8	a.
24	463.17	926.55	82	47	36	247	1.42 8	a
25	511.01	1021.97	687	85	55	449	2.49	1
26	558.82	1117.32	58	37	28	166	1.13 a	1
27	583.23	1166.01	512	62	35	224	1.70 a	a
28	609.27	1217.93	654	73	43	329	1.88 8	1
29	693.17	1385.28	34	40	32	195	1.54	1
30	727.38	1453.53	72	39	29	173	1.48 8	a.
31	795.38	1589.14	67	37	27	146	1.86 8	a.
32	803.14	1604.62	64	39	29	159	1.95 1	•
33	860.48	1719.00	31	26	19	88	1.03 8	1
34	911.36	1820.47	282	48	28	150	2.01 8	a
35	969.26	1935.96	133	47	34	199	2.09 8	1
36	1120.46	2237.53	132	40	27	131	2.20 8	a.
37	1460.90	2916.54	957	70	26	100	3.04	a HiResid
38	1764.14	3521.38	97	39	27	86	4.39	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET031128.BKG (112818-3 LONG BKG CAL)

Bkg.File Detector #: 3

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVE	L FLAG
1	63.51	80	49	37	42	78	63	NET <cl< td=""></cl<>
_								
2		57	76	61		109		NET <cl< td=""></cl<>
4	77.04	576	96	69	551	118	89	
5	84.24	151	98	78	128	113	91	
8	92.89	344	94	71	217	115	91	
11	140.03	41	66	53	-12	103	85	NET <cl< td=""></cl<>
12	185.86	362	87	65	238	120	96	
13	198.52	33	48	39	-57	99	82	NET <cl< td=""></cl<>
15	221.29	54	99	81	40	106	87	NET <cl< td=""></cl<>
16	238.57	1724	104	52	1631	118	71	
17	241.64	368	79	56	342	104	80	
19	295.24	586	83	55	537	98	71	
22	338.23	334	72	51	321	86	64	
23	351.85	991	88	50	891	104	70	
25	511.01	687	85	55	69	131	107	NET <cl< td=""></cl<>
26	558.82	58	37	28	-3	56	46	NET <cl< td=""></cl<>
27	583.23	512	62	35	459	83	58	
28	609.27	654	73	43	590	87	60	
32	803.14	64	39	29	7	60	49	NET <cl< td=""></cl<>
34	911.36	282	48	28	257	64	46	
37	1460.90	957	70	26	892	77	40	
38	1764.14	97	39	27	79	44	34	

FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-11 GS181103-1

Sampling Start: 10/23/2018 12:00:00 | Counting Start: 12/04/2018 14:50:12 Sampling Stop: 10/23/2018 12:00:00 | Decay Time. 1.01e+003 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 24000 Sec Sample Size 2.11e+002 g | Real Time 24048 Sec Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

Detector #: 3 (Detector 3)

Efficiency File: (D03)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-8.15E+01 +1.04E+02*L +-4.49E+01*L^2 +6.40E+00*L^3] 11/01/2018

Eff.=10^[-2.02E-01 +-3.44E-01*L +-1.27E-01*L^2 +7.29E-03*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

______ MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concen	tration		Critical	Halflife	
	(keV) T			MDA			
	92.60		+- 5.53E-01		4.39E-01		
Ra-226	186.10	1.44E+00	+- 7.25E-01	1.17E+00	5.76E-01	1.40E+07	
Pb-212	Average:x	9.57E-01	+- 6.88E-02			5.04E+04	
	238.63	9.60E-01	+- 6.94E-02	8.47E-02	4.16E-02	5.04E+04	
	300.09	7.39E-01	+- 5.17E-01	8.33E-01	4.04E-01	5.04E+04	
Ra-223	269.39	2.44E-01	+- 1.61E-01	2.61E-01	1.28E-01	2.87E+08	
Pb-214	Average:x	8.03E-01	+- 7.89E-02			1.40E+07	
	295.21	8.14E-01	+- 1.49E-01	2.20E-01	1.08E-01	1.40E+07	
	351.92	7.99E-01	+- 9.31E-02	1.28E-01	6.26E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	6.92E-01	+- 1.13E-01			5.04E+04	
	338.40	8.41E-01	+- 2.24E-01	3.42E-01	1.68E-01	5.04E+04	
	911.07	6.65E-01	+- 1.66E-01	2.43E-01	1.18E-01	5.04E+04	
	968.90	6.04E-01	+- 2.12E-01	3.16E-01	1.52E-01	5.04E+04	
T1-208	Average:x	2.61E-01	+- 4.62E-02			5.04E+04	
	583.14	2.69E-01	+- 4.85E-02	6.99E-02	3.42E-02	5.04E+04	
	860.47	1.86E-01	+- 1.51E-01	2.40E-01	1.12E-01	5.04E+04	
Bi-214	Average:x	6.97E-01	+- 9.05E-02			1.40E+07	
	609.31	6.79E-01	+- 1.01E-01	1.41E-01	6.90E-02	1.40E+07	
	1120.29	7.95E-01	+- 2.42E-01	3.44E-01	1.64E-01	1.40E+07	
	1764.49	6.99E-01	+- 3.92E-01	6.16E-01	2.96E-01	1.40E+07	
	Page	004					145 of C

145 of 624

182669D03.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

______ ENERGY E Concentration Critical Halflife (keV) T (pCi/g Nuclide) MDA Level (hrs) ______ Bi-212 727.17 3.73E-01 +- 2.01E-01 3.11E-01 1.48E-01 5.04E+04 T1-210 795.00 4.36E-02 +- 2.43E-02 3.77E-02 1.80E-02 1.40E+07 K-40 1460.75 9.48E+00 +- 8.16E-01 8.71E-01 4.21E-01 1.12E+13 241.00 6.81E-01 +- 4.13E+00 1.07E+00 5.24E-01 5.04E+04 Ra-224 Pb-210 46.52 N 8.19E+00 +- 1.13E+01 1.87E+01 9.14E+00 1.79E+05 T1-201 70.82 N-4.81E+02 +- 1.53E+03 2.58E+03 1.27E+03 7.35E+01 U-235 143.76 N 5.01E-02 +- 1.36E-01 2.27E-01 1.11E-01 3.33E+10 Ir-192 316.49 N 3.51E-03 +- 2.70E-02 4.55E-02 2.21E-02 1.78E+03 Be-7 477.56 N 2.73E-01 +- 2.97E-01 4.86E-01 2.33E-01 1.28E+03 Sc-46 889.26 N-1.72E-02 +- 3.57E-02 6.31E-02 3.02E-02 2.01E+03 946.00 N-1.09E-01 +- 1.35E-01 2.42E-01 1.16E-01 3.95E+13 Pa-234 1274.54 N-6.90E-03 +- 3.46E-02 6.04E-02 2.88E-02 2.28E+04 Na-22

MEASURED TOTAL: 2.52E+01 +- 1.88E+01 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	63.51	129.40	42	78	63	343	0.57	Deleted
2	66.45	135.28	-34	109	90	685	1.02	Deleted
3	74.92	152.16	336	75	53	575	0.89	Unknown
4	77.04	156.39	551	118	89	805	1.10	Unknown
5	84.24	170.74	128	113	91	906	1.53	Unknown
6	86.97	176.19	295	93	71	805	1.36	Unknown
7	89.83	181.90	192	83	64	705	1.21	Unknown
9	105.73	213.61	50	42	33	261	0.51	Unknown
10	129.25	260.53	82	80	64	693	1.14	Unknown
11	140.03	282.03	-12	103	85	525	1.01	Deleted
13	198.52	398.68	-57	99	82	332	0.58	Deleted
14	209.16	419.92	105	54	41	377	0.87	Unknown
15	221.29	444.10	40	106	87	913	2.11	Deleted
17	241.64	484.69	342	104	80	552	1.44	SPLIT
21	328.19	657.31	75	66	53	456	1.70	Unknown
24	463.17	926.55	82	47	36	247	1.42	Unknown
25	511.01	1021.97	69	131	107	449	2.49	Deleted
26	558.82	1117.32	-3	56	46	166	1.13	Deleted
29	693.17	1385.28	34	40	32	195	1.54	Unknown
32	803.14	1604.62	7	60	49	159	1.95	Deleted

c:\SEEKER\BIN\182669d03.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-12 GS181103-1

	00 Counting Start: 12/04/2018 14:50:26
	00 Decay Time 1.01E+003 Hrs
Buildup Time 0.00E+000 Hr	rs Live Time
-	g Real Time
Collection Efficiency 1.000	00 Spc. File
Detector #:	5 (Detector 5)
Energy(keV) = $-0.61 + 0.501*Ch + 0.00$	DE+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018

Energy(keV) = -0.61 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018 FWHM(keV) = 0.65 + -0.002*En + 2.17E-03*En^2 +-2.42E-05*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)		COUNTS	UN- CERTAINTY	COUNTS	COUNTS		
1		88.28		46	37			a NET< CL
2	53.89	108.87	41	69	55	568	0.98	a NET< CL
3	66.46	133.98	89	62	49	481	0.82	a
4	74.83	150.72	235	74	55	566	1.02	a.
5	77.12	155.27	383	78	55	566	0.92	b
6	83.84	168.70	18	34	27	197	0.40	a NET< CL
7	87.42	175.85	64	62	49	493	0.78	b
8	92.82	186.64	163	80	62	666	1.22	a.
9	104.22	209.42	34	40	31	241	0.45	a
10	121.88	244.70	26	45	36	293	0.68	a NET< CL
11	128.84	258.60	50	42	32	258	0.44	a
12	140.06	281.02	77	79	64	643	1.29	a
13	185.89	372.58	277	68	49	435	0.96	a .
14	198.19	397.15	78	88	71	705	1.56	a Wide Pk
15	205.52	411.78	75	72	57	517	1.37	a
16	209.23	419.19	127	80	63	582	1.44	b
17	238.54	477.74	1348	90	43	346	0.99	a
18	241.68	484.02	290	74	54	461	1.30	b
19	248.76	498.17	36	45	36	259	0.81	a NET< CL
20	270.37	541.34	100	58	44	336	1.11	a
21	295.06	590.66	470	68	43	320	1.17	a
		Dama 001						

PEAK SEARCH RESULTS

PK. #	(keV)		COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	•	FLAG
22	300.16	600.85	67	39	29	183	0.61	b
23	327.86	656.19	38	40	31	225	0.83	a
24	338.28	677.00	237	51	33	235	1.05	a
25	351.88	704.17	884	75	37	272	1.19	a
26	462.86	925.88	77	37	27	154	1.00	a
27	493.24	986.57	27	42	33	205	1.31	a NET< CL
28	510.90	1021.83	640	79	50	340	2.35	a Wide Pk
29	558.43	1116.79	50	42	32	202	1.45	a
30	583.22	1166.31	451	58	32	198	1.43	a
31	609.30	1218.41	637	68	37	258	1.57	a
32	650.79	1301.29	34	25	19	85	0.81	a
33	727.41	1454.35	122	42	29	155	1.68	a
34	768.54	1536.53	39	35	27	139	1.53	a
35	794.85	1589.07	45	31	23	106	1.34	a
36	861.07	1721.37	32	29	22	108	1.35	a
37	911.29	1821.70	283	46	25	124	1.83	a
38	969.10	1937.18	119	40	28	153	1.63	a
39	1120.28	2239.19	108	40	28	138	2.18	a
40	1237.94	2474.24	45	35	27	129	2.08	a
41	1378.08	2754.20	40	32	24	79	3.44	a
42	1460.94	2919.72	1047	70	21	76	2.36	a
43	1764.80	3526.74	104	28	16	41	2.41	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET051128.BKG (112818-5 LONG BKG CAL)

Bkg.File Detector #: 5

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN- OLD NEW NET NEW UN- NEW

	ENERGY	OTD MEJ.	OLD ON-	OLD	MEM MEJ.	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY			CERTAINTY	CR.LEVEL	FLAG
2	53.89	41	69		31		63 N	NET <cl< td=""></cl<>
3	66.46	89	62		21			NET <cl< td=""></cl<>
4	74.84	235	74	55	214	86	67	
8	92.82	163	80	63	103	96	77	
11	128.84	50	42	32	38	60	48 1	NET <cl< td=""></cl<>
12	140.06	77	79	64	9	92	75 N	TET <cl< td=""></cl<>
13	185.90	277	68	49	189	85	66	
14	198.19	78	89	71	-2	100	82 N	TET <cl< td=""></cl<>
17	238.54	1348	90	43	1288	100	58	
21	295.06	470	68	43	447	78	54	
24	338.28	237	51	33	217	63	46	
25	351.88	884	75	37	828	83	49	
27	493.24	27	42	33	17	47	38 1	TET <cl< td=""></cl<>
28	510.90	640	79	50	118	112	90	
29	558.43	50	42	32		56	46 N	TET <cl< td=""></cl<>
30	583.22	451	58	32			40	
31	609.30		68	37	581	83	55	
37	911.29		46	25			32	
38	969.10	119	40	28	112		36	
39		108			98		33	
42	1460.94	1047		21	915			
43	1764.80	104	28	16	93	33	22	

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-12 GS181103-1

Sampling Start: 10/23/2018 12:00:00	Counting Start: 12/04/2018 14:50:26
Sampling Stop: 10/23/2018 12:00:00	Decay Time 1.01e+003 Hrs
Buildup Time 0.00e+000 Hrs	Live Time 18000 Sec
Sample Size 2.02e+002 g	Real Time 18032 Sec
Collection Efficiency 1.0000	Spectrum File
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval: 95 %
Detector #: 5	(Detector 5)
Efficiency File: (D05)(Sh17).EFF (Geo 17	Eff Cal)

Eff=10^[-1.03E+02 +1.32E+02*L +-5.73E+01*L^2 +8.21E+00*L^3] 05/17/2018

Eff.=10^[-4.57E+01 +4.54E+01*L +-1.54E+01*L^2 +1.70E+00*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concen	tration		Critical	Halflife	
	(keV) T			MDA	Level	(hrs)	
			+- 6.76E-01	1.11E+00	5.44E-01	3.92E+13	
Ra-226	186.10	1.34E+00	+- 6.04E-01	9.59E-01	4.70E-01	1.40E+07	
U-235	Average:x	9.64E-02	+- 1.31E-01			3.33E+10	
	205.31	4.20E-01	+- 4.00E-01	6.54E-01	3.20E-01	3.33E+10	
	143.76 N	5.77E-02	+- 1.38E-01	2.31E-01b	1.12E-01	3.33E+10	
Pb-212	Average:x	8.68E-01	+- 6.69E-02			5.04E+04	
	238.63	8.66E-01	+- 6.74E-02	7.93E-02	3.87E-02	5.04E+04	
	300.09	9.86E-01	+- 5.66E-01	8.83E-01	4.22E-01	5.04E+04	
Ra-223	269.39	2.21E-01	+- 1.27E-01	2.02E-01	9.81E-02	2.87E+08	
Pb-214	Average:x	9.20E-01	+- 8.06E-02			1.40E+07	
	295.21	7.38E-01	+- 1.29E-01	1.82E-01	8.88E-02	1.40E+07	
	351.92	1.04E+00	+- 1.03E-01	1.25E-01	6.10E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	6.66E-01	+- 1.01E-01			5.04E+04	
	338.40	8.30E-01	+- 2.41E-01	3.60E-01	1.75E-01	5.04E+04	
	911.07	6.76E-01	+- 1.29E-01	1.70E-01	8.16E-02	5.04E+04	
	968.90	5.03E-01	+- 2.18E-01	3.34E-01	1.61E-01	5.04E+04	
T1-208	Average:x	2.53E-01	+- 3.77E-02			5.04E+04	
	583.14	2.57E-01	+- 3.87E-02	5.03E-02	2.44E-02	5.04E+04	
	860.47	1.87E-01	+- 1.70E-01	2.75E-01	1.29E-01	5.04E+04	
Bi-214	Average:x	6.81E-01	+- 8.40E-02			1.40E+07	
	Page (004					150 66

150 of 624

MEASURED or MDA CONCENTRATIONS

		N						
	ENERGY	E Concentration					Critical	Halflife
Nuclide	(keV)	T	(pCi/g)	MDA	Level	(hrs)
	609.31					1.33E-01		
	768.36					7.35E-01		
	1120.29					4.16E-01		
	1238.11					9.35E-01		
	1377.67					1.38E+00		
	1764.49					3.94E-01		1.40E+07
Bi-212	727.17					3.13E-01		
T1-210	795.00					3.11E-02		1.40E+07
K-40						8.30E-01		1.12E+13
					3.37E+00			
Pb-210	46.52	N	5.41E+00	+-	3.05E+01	5.14E+01	2.49E+01	1.79E+05
						3.37E+03		
Ir-192					3.81E-02			1.78E+03
Be-7	477.56	N	8.76E-03	+-	3.40E-01	5.80E-01	2.80E-01	1.28E+03
Sc-46	889.26	N	1.22E-02	+-	3.23E-02	5.46E-02	2.59E-02	2.01E+03
						1.99E-01		3.95E+13
Na-22					2.97E-02		2.50E-02	2.28E+04

MEASURED TOTAL: 4.88E+01 +- 2.04E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	43.58	88.28	25	46	37	331	0.42	Deleted
2	53.89	108.87	31	78	63	568	0.98	Deleted
3	66.46	133.98	21	88	72	481	0.82	Deleted
4	74.83	150.72	214	86	67	566	1.02	Unknown
5	77.12	155.27	383	78	55	566	0.92	Unknown
6	83.84	168.70	18	34	27	197	0.40	Deleted
7	87.42	175.85	64	62	49	493	0.78	Unknown
9	104.22	209.42	34	40	31	241	0.45	Unknown
10	121.88	244.70	26	45	36	293	0.68	Deleted
11	128.84	258.60	38	60	48	258	0.44	Deleted
12	140.06	281.02	9	92	75	643	1.29	Deleted
14	198.19	397.15	-2	100	82	705	1.56	Deleted
16	209.23	419.19	127	80	63	582	1.44	Unknown
18	241.68	484.02	290	74	54	461	1.30	SPLIT
19	248.76	498.17	36	45	36	259	0.81	Deleted
23	327.86	656.19	38	40	31	225	0.83	Unknown
26	462.86	925.88	77	37	27	154	1.00	Unknown
27	493.24	986.57	17	47	38	205	1.31	Deleted
28	510.90	1021.83	118	112	90	340	2.35	Unknown
29	558.43	1116.79	-6	56	46	202	1.45	Deleted
		Page 005						4.54

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
32	650.79	1301.29	34	25	19	85	0.81	Unknown

c:\SEEKER\BIN\181899d05.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-13 GS181103-1

Sampling Start: 10/24/2018 12:00:00	Counting Start: 12/04/2018 14:50:03
Sampling Stop: 10/24/2018 12:00:00	Decay Time 9.87E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 18000 Sec
Sample Size 1.86E+002 g	Real Time 18046 Sec
Collection Efficiency 1.0000	Spc. File
Buildup Time 0.00E+000 Hrs Sample Size 1.86E+002 g	Live Time

Detector #: 2 (Detector 2)

Energy(keV) = -1.31 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018 FWHM(keV) = 0.97 + 0.002*En + 9.30E-04*En^2 + 0.00E+00*En^3 07/31/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

	(keV)	CHANNEL	COUNTS	UN- CERTAINTY				FLAG
1		101.72		59	48	458	0.88	a NET< CL
2	66.12	134.58	43	60	48	461		NET< CL Wide Pk
3	70.87	144.07	46	60	48	461		
4	74.66	151.64	181	142	114	1383	2.40	C
5	77.12	156.53	192	72	55	553	0.96	£
6	86.74	175.75	136	100	80	880	1.64	a .
7	89.84	181.93	81	67	53	528	0.96	b
8	92.87	187.98	195	78	60	616	1.21	C
9	129.32	260.73	91	76	61	583	1.38	a
10	139.94	281.92	72	63	50	460	0.94	a.
11	154.15	310.28	49	66	53	482	1.20	a NET< CL
12	185.89	373.64	220	69	51	517	1.12	a .
13	198.24	398.29	55	62	50	487	1.09	a .
14	209.22	420.21	96	69	54	540	1.38	a .
15	238.64	478.92	1223	89	46	416	1.22	a .
16	241.61	484.85	266	70	51	475	1.39	b
17	270.23	541.97	111	59	45	374	1.32	a.
18	277.50	556.49	54	62	50	433	1.46	a .
19	295.29	592.00	436	64	39	305	1.20	a
20	300.15	601.69	70	46	35	262	1.06	b
		Page 001						

PEAK SEARCH RESULTS

D.								
PK.				UN-			FWHM	
#	(keV)			CERTAINTY			-	
21				57				
22	338.29	677.81	275	66	47	366	1.61	a .
23	351.82	704.83	689	71	39	277	1.30	3 .
24	462.78	926.29	54	49	38	257	1.47	a .
25	470.08	940.86	28	34	27	152	0.93	a .
26	510.98	1022.50	557	81	54	394	2.24	2
27	558.20	1116.74	51	38	29	167	1.24	a
28	583.18	1166.61	416	61	38	239	1.90	a .
29	609.32	1218.79	583	65	36	238	1.63	a .
30	661.83	1323.58	368	51	28	148	1.46	a .
31	727.07	1453.80	75	40	30	163	1.59	a .
32	768.33	1536.15	45	33	24	122	1.33	a .
33	803.25	1605.86	25	37	30	154	1.76	a NET< CL
34	860.58	1720.28	39	36	28	132	1.90	a.
35	911.31	1821.53	305	47	26	125	1.99	a
36	969.22	1937.12	111	42	29	167	1.86	a
37	1120.39	2238.84	81	32	22	93	1.77	a .
38	1460.97	2918.63	777	60	19	59	2.61	a
39	1764.69	3524.82	116	28	15	32	3.15	a .

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET021128.BKG (112818-2 LONG BKG CAL)

Bkg.File Detector #: 2

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
2	66.11	43	60	48	-44	99	82	NET <cl< td=""></cl<>
3	70.87	46	60	48	10	126	103	NET <cl< td=""></cl<>
4	74.66	181	142	114	111	189	154	NET <cl< td=""></cl<>
8	92.87	195	78	60	131	95	76	
10	139.94	72	63	50	34	78	63	NET <cl< td=""></cl<>
12	185.89	220	69	51	109	88	71	
13	198.24	55	62	50	-11	82	68	NET <cl< td=""></cl<>
15	238.64	1223	89	46	1126	108	70	
19	295.29	436	64	39	413	75	52	
23	351.82	689	71	39	621	86	57	
26	510.98	557	81	54	64	113	92	NET <cl< td=""></cl<>
27	558.20	51	38	29	-9	52	43	NET <cl< td=""></cl<>
28	583.18	416	61	38	383	68	46	
29	609.32	583	65	36	538	79	52	
33	803.25	25	37	30	-27	55	46	NET <cl< td=""></cl<>
35	911.31	305	47	26	281	54	34	
38	1460.97	777	60	19	669	68	37	
39	1764.69	116	28	15	99	34	23	

Sample ID: 1810627-13 GS181103-1

Page 004

Sampling	Start:	10/24/2018	12:00:00	Counting	Start:	12/04/2018 14:50:03					
Sampling	Stop:	10/24/2018	12:00:00	Decay Tim	e	9.87e+002 Hrs					
Buildup	Time	0.00	+000 Hrs	Live Time		18000 Sec					
Sample S	ize	1.8	86e+002 g	Real Time		18046 Sec					
Collecti	on Efficien	ncy	1.0000	Spectrum	File	182189D02.SPC					
Cr. Leve	1 Confiden	ce Interval:	95 %	Det. Limi	t Confiden	ce Interval: 95 %					
	Detector #: 2 (Detector 2)										
	Efficiency File: (D02)(Sh17).EFF (Geo 17 Eff Cal)										
	-				-	09/06/2018					
Eff.=10^	[-1.14E+01	+1.13E+01*I	+-4.16E+0	0*L^2 +4.7	4E-01*L^3]	Above 300.00 keV					
Library	File: TIDE	WATER_GREATE	TLLS. (Ti	dewater Gr	eat Kills)						
_											
		MEASU	RED or MDA	CONCENTRA	TIONS						
	N										
	ENERGY E	Concenti	ration		Critical	Halflife					
Nuclide		(pCi/g									
Pa-234	Average:x	5.93E-02 +-	8.13E-02			3.95E+13					
	131.28	1.25E-01 +-	1.04E-01	1.70E-01	8.29E-02	3.95E+13					
	946.00 N	-4.80E-02 +-	- 1.32E-01	2.34E-01	1.11E-01	3.95E+13					
		1.25E-01 +-									
Ra-226		9.15E-01 +-			5.95E-01						
Pb-212	-	8.98E-01 +-				5.04E+04					
		9.00E-01 +-			5.59E-02	5.04E+04					
	300.09	8.09E-01 +-	- 5.29E-01	8.41E-01	4.05E-01	5.04E+04					
		2.87E-01 +-		2.39E-01	1.16E-01	2.87E+08					
T1-208	_	2.66E-01 +-									
		2.96E-01 +-									
		2.65E-01 +-									
		2.66E-01 +-		9.41E-01	4.61E-01						
Pb-214	_	7.30E-01 +-				1.40E+07					
		7.78E-01 +			9.77E-02	1.40E+07					
	351.92	7.06E-01 +	- 9.76E-02	1.34E-01	6.54E-02	1.40E+07					
	241.98	I.D.				1.40E+07					
Ac-228	_	7.84E-01 +-			• • •						
	338.40	9.23E-01 +-			1.59E-01						
		8.29E-01 +			1.01E-01	5.04E+04					
	968.90	5.74E-01 +	- 2.14E-01	3.18E-01	1.52E-01	5.04E+04					

156 of 624

MEASURED or MDA CONCENTRATIONS

=======				========		=======================================
	N					
	ENERGY E	Concent	ration		Critical	Halflife
Nuclide	(keV) T			MDA	Level	(hrs)
Bi-214	Average:x	7.12E-01 +				1.40E+07
	609.31	7.29E-01 +	- 1.07E-01	1.45E-01	7.08E-02	1.40E+07
	768.36	6.95E-01 +	- 4.98E-01	7.89E-01	3.74E-01	1.40E+07
	1120.29	5.48E-01 +	- 2.17E-01	3.15E-01	1.48E-01	1.40E+07
	1764.49	9.05E-01 +	- 3.14E-01	4.46E-01	2.10E-01	1.40E+07
Bi-212	727.17	4.50E-01 +	- 2.41E-01	3.74E-01	1.79E-01	5.04E+04
K-40	1460.75	7.70E+00 +	- 7.86E-01	8.76E-01	4.22E-01	1.12E+13
T1-210	Average:x	1.08E-02 +	- 2.75E-02			1.40E+07
	860.00	2.65E-03 +	- 2.53E+00	6.77E-01	3.23E-01	1.40E+07
	795.00 N	1.08E-02 +	- 2.75E-02	4.62E-02	2.21E-02	1.40E+07
Ra-224	241.00	9.39E-01 +	- 3.76E+00	9.23E-01	4.50E-01	5.04E+04
U-238	92.60	7.03E-01 +	- 4.83E+00	1.26E+00	6.21E-01	3.92E+13
Pb-210	46.52 N	7.14E+00 +	- 8.04E+01	1.35E+02	6.60E+01	1.79E+05
T1-201	70.82 N	3.46E+02 +	- 2.93E+03	4.89E+03R	2.40E+03	7.35E+01
U-235	143.76 N-	4.82E-02 +	- 1.73E-01	2.94E-01b	1.44E-01	3.33E+10
Ir-192	316.49 N	5.17E-03 +	- 3.28E-02	5.54E-02	2.68E-02	1.78E+03
Be-7	477.56 N	1.32E-01 +	- 3.71E-01	6.24E-01	3.01E-01	1.28E+03
Sc-46	889.26 N-	-2.50E-02 +	- 3.48E-02	6.31E-02	3.00E-02	2.01E+03
Na-22	1274.54 N-	-1.30E-02 +	- 3.16E-02	5.66E-02	2.68E-02	2.28E+04

MEASURED TOTAL: 3.67E+02 +- 3.02E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	49.65	101.72	34	59	48	458	0.88	Deleted
2	66.11	134.58	-44	99	82	461	0.79	Deleted
3	70.87	144.07	10	126	103	461	0.81	Deleted
4	74.66	151.64	111	189	154	1383	2.40	Deleted
5	77.12	156.53	192	72	55	553	0.96	Unknown
6	86.74	175.75	136	100	80	880	1.64	Unknown
7	89.84	181.93	81	67	53	528	0.96	Unknown
8	92.87	187.98	131	95	76	616	1.21	SPLIT
10	139.94	281.92	34	78	63	460	0.94	Deleted
11	154.15	310.28	49	66	53	482	1.20	Deleted
13	198.24	398.29	-11	82	68	487	1.09	Deleted
14	209.22	420.21	96	69	54	540	1.38	Unknown
16	241.61	484.85	266	70	51	475	1.39	SPLIT
21	327.97	657.22	54	57	45	354	1.49	Unknown
24	462.78	926.29	54	49	38	257	1.47	Unknown
25	470.08	940.86	28	34	27	152	0.93	Unknown
26	510.98	1022.50	64	113	92	394	2.24	Deleted
27	558.20	1116.74	-9	52	43	167	1.24	Deleted
		Page 005						

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
30	661.83	1323.58	368	51	28	148	1.46	Unknown
33	803.25	1605.86	-27	55	46	154	1.76	Deleted
34	860.58	1720.28	39	36	28	132	1.90	SPLIT

c:\SEEKER\BIN\182189d02.res Analysis Results Saved.

GAMMA ANALYSIS

RESULTS

PS Version 1.8.4

ALS Laboratory Group - Fort Collins
GammaScan

Geo 17/26

Sample ID: 1810627-14 GS181103-1

SEEKER

Sampling Start: 10/24/2018 12:00:00	Counting Start: 12/05/2018 14:08:31
Sampling Stop: 10/24/2018 12:00:00	Decay Time 1.01E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.55E+002 g	Real Time 60095 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 2 (Detector 2)

Energy(keV) = $-1.29 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018$ FWHM(keV) = $0.97 + 0.002*En + 9.30E-04*En^2 + 0.00E+00*En^3 07/31/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)		COUNTS	CERTAINTY	C.L. COUNTS	COUNTS		
1	57.17	116.70	62	79	64	996	0.53	a NET< CL
2	63.44	129.21	237	223	182	4082	1.90	a Wide Pk
3	66.32	134.96	186	162	131	2721	1.27	b
4	74.81	151.90	898	161	123	2581	1.18	a
5	77.09	156.45	1441	168	123	2581	1.07	b
6	84.21	170.68	337	143	114	2203	1.09	a
7	87.13	176.50	898	179	138	2832	1.52	b
8	89.89	182.00	508	145	114	2203	1.22	c
9	92.74	187.70	1022	166	126	2517	1.32	đ
10	129.02	260.12	205	110	87	1538	0.79	a
11	139.78	281.59	188	150	121	2321	1.27	a
12	143.78	289.57	292	165	133	2612	1.43	b
13	154.27	310.52	105	121	98	1765	0.98	a
14	185.95	373.75	1241	152	111	2260	1.25	a
15	198.46	398.74	215	123	98	1887	1.18	a
16	209.21	420.19	569	128	98	1880	1.11	a
17	211.63	425.02	4	80	66	1074	0.60	b NET< CL
18	238.60	478.86	6918	205	99	1817	1.28	a
19	241.61	484.86	1632	155	108	2044	1.54	b
20	270.13	541.79	559	127	97	1644	1.40	a
21	277.25	556.00	309	104	81	1278	1.18	b
		Dago 001						

PEAK SEARCH RESULTS

PK.	ENERGY				C.L.		FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
22		591.80			85			
23		601.41				1339		
24			330		99			
25		677.57			81			
26		704.91			79			
27		819.69			58		1.03	
28		926.64						
29	510.93		2243		105			a Wide Pk
30	558.54			67		574		
31	563.00		100		81			
32	569.43							
33	583.15							
34	596.99				76			
35	609.22			141	70			
36	661.56		168					
37	692.67					362	0.84	
38	694.78					1157		
39	727.28			86		638	1.81	
40	755.06			47				
41	768.45			81		626		
42	772.64		83			522		
43	786.05					595		
44	794.94		224		48	446		
45	803.18		146			446		
46	806.45		72		48	446		
47	835.57	1670.50				607	2.04	
48	839.59				40	354	1.20	
49			269					
	911.29			101		463		
51			176			460		
52	964.67	1928.19	296	76	56	534	2.33 a	
53	968.92	1936.68	871	82	47	420		
54	1001.91	2002.53	89	73	58	513	2.78	
55	1094.16	2186.68	31	104	85	798	4.39	a NET< CL
E.C	1120 21	2220 00	606	78	50	440	2.05	Wide Pk
56	1120.31	2238.88	606		32		1.24	
57	1155.19	2308.49	46	41		231 400	2.36	
58	1238.03	2473.86	226 4 7	66 35	48 27	167	1.17	
59 60	1280.83	2559.30		60	44	302	2.76	
60 61	1377.20	2751.67	159 4 9	48	37	248	2.70	
61 62	1407.75	2812.65 2918.50	2185	105	40	252	2.19	
62 63	1460.78		2185	48	38	232	2.41	
63 64	1509.02	3014.80	93	46	34	206	2.11	
6 4	1588.65	3173.75	44	38	3 4 29	148	2.11	
65 66	1620.67	3237.67	102	42	30	148	2.05	
66	1729.65	3455.21	102	42	30	140	4.34	a
		Page 002						160 of 62

160 of 624

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV) FLAG	
67	1764.32	3524.42	571	61	31	146	2.86 a	
68	1847.38	3690.22	4 2	4 6	36	187	3.06 a	

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET021128.BKG (112818-2 LONG BKG CAL)

Bkg.File Detector #: 2

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS				CERTAINTY	CR.LEVEL FLAG	}
3	66.32	186	162	131				
4	74.81	898	161	123	666	445	363	
9	92.74	1022	166	126	808	245	196	
11	139.78	188	150	121	62	214	176 NET <ci< td=""><td></td></ci<>	
14	185.95	1241	152	111	868	238	190	
15	198.46	215	123	98	-5	216	178 NET <ci< td=""><td>4</td></ci<>	4
18	238.60	6918	205	99	6596	289	197	
22	295.18	2547	145	85	2470	197	140	
26	351.85	3982	158	79	3754	227	157	
29	510.93	2243	159	105	599	307	249	
30	558.54	133	67	51	-65	138	114 NET <ci< td=""><td>4</td></ci<>	4
32	569.43	74	71	57	-41	164	135 NET <ci< td=""><td>4</td></ci<>	4
33	583.15	2327	124	64	2218	158	104	
34	596.99	94	94	76	0	195	160 NET <ci< td=""><td></td></ci<>	
35	609.22	3131	141	70	2978	204	141	
45	803.18	146	63	48	-26	150	124 NET <ci< td=""><td></td></ci<>	
50	911.29	1604	101	51	1523	132	88	
62	1460.78	2185	105	40	1826	150	101	
67	1764.32	571	61	31	513	89	63	

182195D02.SPC Analyzed by ******************************** FINAL ACTIVITY REPORT Version 2.2.1 SEEKER ALS Laboratory Group - Fort Collins GammaScan *********************** Geo 17/26 Sample ID: 1810627-14 GS181103-1 Sampling Start: 10/24/2018 12:00:00 | Counting Start: 12/05/2018 14:08:31 Sampling Stop: 10/24/2018 12:00:00 | Decay Time. 1.01e+003 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 60000 Sec Sample Size 1.55e+002 g | Real Time 60095 Sec Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: -----Detector #: 2 (Detector 2) Efficiency File: (D02)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-1.25E+02 +1.62E+02*L +-7.06E+01*L^2 +1.02E+01*L^3] 09/06/2018 Eff.=10^[-1.14E+01 +1.13E+01*L +-4.16E+00*L^2 +4.74E-01*L^3] Above 300.00 keV ______ Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills) ______ MEASURED or MDA CONCENTRATIONS N ENERGY E Concentration Critical Halflife Nuclide (keV) T (pCi/g) MDA Level (hrs) _____ Average:x 2.43E+00 +- 7.14E-01 3.92E+13 U-238 63.29 6.06E+00 +- 5.71E+00 9.37E+00 4.65E+00 3.92E+13 92.60 2.38E+00 +- 7.19E-01 1.16E+00 5.76E-01 3.92E+13 U-235 143.76 2.69E-01 +- 1.52E-01 2.47E-01 1.22E-01 3.33E+10 Ra-223 Average:x 4.37E-01 +- 1.03E-01 2.87E+08 154.18 1.83E-01 +- 2.10E-01 3.45E-01 1.70E-01 2.87E+08 5.18E-01 +- 1.18E-01 1.83E-01 269.39 9.01E-02 2.87E+08 Ra-226 186.10 2.63E+00 +- 7.22E-01 1.16E+00 5.75E-01 1.40E+07 Pb-212 Average:x 1.89E+00 +- 8.18E-02 5.04E+04 238.63 1.89E+00 +- 8.31E-02 1.14E-01 5.66E-02 5.04E+04 1.88E+00 +- 4.63E-01 7.15E-01 3.52E-01 300.09 5.04E+04 Average:x 5.53E-01 +- 3.84E-02 T1-208 5.04E+04 277.36 6.09E-01 +- 2.05E-01 3.22E-01 1.58E-01 5.04E+04 583.14 5.51E-01 +- 3.92E-02 5.24E-02 2.59E-02 5.04E+04 5.53E-01 +- 5.55E-01 7.33E-01 3.63E-01 5.04E+04 860.47 Average:x 1.64E+00 +- 8.33E-02 Ac-228 5.04E+04 338.40 1.67E+00 +- 1.49E-01 1.99E-01 9.78E-02 5.04E+04

911.07 1.62E+00 +- 1.40E-01 1.89E-01 9.30E-02

Average:x 1.53E+00 +- 9.06E-02

1.75E+00 +- 4.51E-01 6.79E-01 3.31E-01 968.90 1.62E+00 +- 1.52E-01 1.78E-01 8.65E-02 5.04E+04

Page 005

964.60

Pb-214

5.04E+04 5.04E+04

1.40E+07

MEASURED or MDA CONCENTRATIONS

======	=======					=======================================
	N					
	ENERGY E	Concen			Critical	Halflife
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)
		1.53E+00	+- 9.28E-02	1.30E-01	6.43E-02	
	241.98	I.D.				
			+- 4.19E-01			
Bi-214	_		+- 8.01E-02			
	609.31	1.45E+00	+- 9.91E-02	1.39E-01	6.88E-02	1.40E+07
	768.36	1.55E+00	+- 4.47E-01	6.86E-01	3.35E-01	1.40E+07
	934.06	1.80E+00	+- 6.89E-01	1.07E+00	5.21E-01	1.40E+07
	1120.29	1.47E+00	+- 1.89E-01	2.48E-01	1.21E-01	1.40E+07
	1238.11	1.50E+00	+- 4.39E-01	6.62E-01	3.22E-01	1.40E+07
	1377.67	1.72E+00	+- 6.43E-01	9.88E-01	4.79E-01	1.40E+07
	1764.49	1.69E+00	+- 2.93E-01	4.24E-01	2.08E-01	1.40E+07
Bi-212	Average:x	1.07E+00	+- 1.76E-01			5.04E+04
	727.17	1.07E+00	+- 1.85E-01	2.66E-01	1.30E-01	5.04E+04
	785.42	1.85E+00	+- 1.03E+00	1.66E+00	8.10E-01	5.04E+04
	1620.56	7.79E-01	+- 6.61E-01	1.06E+00	5.09E-01	5.04E+04
T1-210	Average:x	6.05E-02	+- 1.77E-02			1.40E+07
	795.00	6.08E-02	+- 1.78E-02	2.67E-02	1.30E-02	1.40E+07
	860.00	1.79E-01	+- 1.99E+00	5.03E-01	2.46E-01	1.40E+07
	296.00	3.12E-02	+- 2.03E-01	4.41E-02	2.18E-02	1.40E+07
Pa-234	Average:x	6.64E-02	+- 8.78E-02			3.95E+13
	808.10	4.05E-01	+- 3.40E-01	5.52E-01	2.69E-01	3.95E+13
	946.00 N	4.23E-02	+- 9.09E-02	1.51E-01	7.35E-02	3.95E+13
K-40	1460.75	7.54E+00	+- 6.18E-01	8.45E-01	4.17E-01	1.12E+13
Ra-224	241.00	2.13E+00	+- 3.01E+00	6.99E-01	3.45E-01	5.04E+04
Pb-210	46.52 N	7.69E+00	+- 5.69E+01	9.46E+01	4.67E+01	1.79E+05
T1-201	70.82 N	6.50E+02	+- 5.81E+03	9.59E+03B	4.77E+03	7.35E+01
Ir-192	316.49 N	-7.27E-03	+- 2.35E-02	3.96E-02	1.95E-02	1.78E+03
Be-7	477.56 N	3.46E-02	+- 2.60E-01	4.34E-01	2.13E-01	1.28E+03
			+- 2.42E-02			
			+- 2.11E-02			

MEASURED TOTAL: 6.82E+02 +- 5.87E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	57.17	116.70	62	79	64	996	0.53	Deleted
3	66.32	134.96	-103	309	254	2721	1.27	Deleted
4	74.81	151.90	666	445	363	2581	1.18	Unknown
5	77.09	156.45	1441	168	123	2581	1.07	Unknown
6	84.21	170.68	337	143	114	2203	1.09	Unknown
7	87.13	176.50	898	179	138	2832	1.52	Unknown
8	89.89	182.00	508	145	114	2203	1.22	Unknown

182195D02.SPC Analyzed by

UNKNOWN, SUM OR ESCAPE PEAKS

PK. ENERGY ADDRESS NET UN-C.L. BKG FWHM (keV) CHANNEL COUNTS CERTAINTY COUNTS (keV) FLAG -----87 1538 0.79 Unknown 129.02 260.12 205 10 110 139.78 281.59 214 2321 1.27 Deleted 11 62 176 15 -5 198.46 398.74 178 216 1887 1.18 Deleted 128 209.21 420.19 569 1880 1.11 Unknown 16 98 4 17 211.63 425.02 80 66 1074 0.60 Deleted 241.61 484.86 19 1632 155 108 2044 1.54 SPLIT 22 295.18 591.80 2470 197 140 1339 1.27 SPLIT 327.77 656.86 24 99 1594 1.67 Unknown 330 125 27 409.35 819.69 129 74 58 698 1.03 Unknown 28 462.93 926.64 375 108 83 1070 1.72 Unknown 29 510.93 1022.47 599 307 249 1416 2.45 Unknown -65 30 558.54 1117.51 138 114 574 1.12 Deleted 31 563.00 1126.41 100 101 81 1066 2.18 Unknown 569.43 1139.24 32 -41 164 135 656 1.27 Deleted 34 596.99 1194.25 0 195 160 1016 1.74 Deleted 168 661.56 1323.14 567 1.25 Unknown 36 69 53 37 692.67 1385.24 53 49 38 362 0.84 Unknown 694.78 1389.45 169 38 113 90 1157 2.65 Unknown 755.06 1509.79 40 52 47 37 320 1.03 Unknown 772.64 1544.87 83 67 42 53 522 1.57 Unknown 150 45 803.18 1605.83 -26 124 446 1.44 Deleted 47 835.57 1670.50 124 76 60 607 2.04 Unknown 839.59 1678.52 52 40 48 87 354 1.20 Unknown 860.58 1720.42 79 49 269 60 569 2.10 SPLIT 1001.91 2002.53 58 54 89 73 513 2.78 Unknown 1094.16 2186.68 31 55 104 85 798 4.59 Deleted 57 1155.19 2308.49 46 41 32 231 1.24 Unknown 1280.83 2559.30 47 35 167 1.17 59 27 Unknown 48 61 1407.75 2812.65 49 37 248 2.19 Unknown 2.41 Unknown 63 1509.02 3014.80 38 48 38 239 1588.65 3173.75 64 93 46 34 206 2.11 Unknown 102 66 1729.65 3455.21 42 30 148 2.54 Unknown 68 1847.38 3690.22 42 46 36 187 3.06 Unknown

c:\SEEKER\BIN\182195d02.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-14D GS181103-1

SEEKER

Detector #: 3 (Detector 3)

Energy(keV) = -1.30 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/05/2018 FWHM(keV) = 0.79 + 0.012*En + 1.05E-03*En² + 0.00E+00*En³ 11/01/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
1		129.20			75			
2	66.59	135.44	106	125	101	1888	1.01	b
3	74.87	151.95	1288	161	119	2401	1.14	a
4	77.08	156.37	2141	158	106	2058	0.94	b
5	84.28	170.72	316	136	108	1982	1.17	a
6	87.17	176.49	931	145	108	1982	1.13	b
7	89.94	182.02	484	111	84	1416	0.80	c
8	92.89	187.90	1162	148	108	1982	1.13	đ
9	99.56	201.22	96	89	71	1133	0.64	е
10	105.24	212.54	120	133	108	1982	1.16	£
11	129.04	260.03	233	102	80	1280	0.83	a
12	140.16	282.21	184	111	89	1456	1.01	a
13	144.17	290.19	147	137	111	1941	1.23	b
14	154.17	310.15	116	85	67	1007	0.63	a
15	163.57	328.90	73	106	86	1374	0.92	a NET< CL
16	185.89	373.43	1188	146	106	1780	1.34	a
17	198.65	398.88	202	133	107	1803	1.31	a
18	209.31	420.15	562	124	95	1657	1.27	a
19	226.29	454.03	51	91	74	1155	1.03	a NET< CL
20	238.61	478.61	6512	194	89	1467	1.36	a
21	241.61	484.58	1314	148	106	1834	1.68	b
		D 001						

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	MET/MDA	IIN-	C.L.	BKC	FWHM	
	(keV)				COUNTS			FI.AC
22	265.13	531.51	46	62	50	615	0.63 a	NET< CL
23				108		1230		
24				74		743	0.87 a	
25				58		538		NET< CL
26	295.19	591.47	2047	135		1168	1.53 a	
27	300.18	601.42	389	115	89	1298	1.58 h	o
28	327.97	656.87	282		74	1001	1.31 a	1
29	338.20	677.28	1222	119	79	1087	1.44 a	1
30	351.81	704.43	3359	151	80	1039	1.58 a	1
31	409.71	819.93	131	74	58	657	1.21 8	ı
32	462.80	925.83	308	87	66	802	1.70 a	ı
33	511.01	1022.01	1874	141	91	1178	2.55 €	a Wide Pk
34	558.72	1117.18	77	48	37	340	0.83 8	ı
35	583.12	1165.87	1989	122	68	778	1.89 a	a.
36	596.82	1193.20	61	61	48	507	1.22 8	1
37	609.23	1217.96	2366	130	71	838	1.99 8	A HiResid
38	661.84	1322.91	158	90	71	778	2.25 8	1
39	727.05	1452.99	386	81	58	606	2.18 8	1
40	766.52	1531.73	-6	50	41	381	1.33 8	NET< CL
								HiResid
41	770.45	1539.57	-5	41	34	286	0.97 1	NET< CL
								HiResid
42	795.10		196		43	370	1.63 a	1
43	803.02	1604.54		40	33	259		NET< CL
44	803.29	1605.08			49	444	1.91	
45	860.52	1719.25			47	409	1.95 8	
46	874.86	1747.87			28	197		NET< CL
47	911.17		1198			439		
48	934.18		69				1.59 8	
49	965.19		305			496		
50	969.06	1935.78	670	76	46	379	2.07 1	
51	1119.83	2236.55	491	81	56	428	3.20 8	
52	1238.52	2473.33	148	55	41	299	2.06 8	
53	1377.26	2750.11	131	61	47	300	3.21 8	
54	1460.69	2916.54	1508	91	40	226		A HiResid
55	1509.20	3013.32	34	36	28	149	2.01	
56	1588.45	3171.40	64	39	29	151	2.06	
57	1631.07	3256.44	44	46	36	187	3.10	
58	1729.79	3453.37	62	46	35	159	3.83	
59	1764.61	3522.82	344	55	34	158	3.25	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET031128.BKG (112818-3 LONG BKG CAL)

Bkg.File Detector #: 3

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEL	FLAG
	62.46	100		75	10	170	146	
1			94					NET <cl< td=""></cl<>
2		106			-121			NET <cl< td=""></cl<>
4	77.08	2141	158	106	2078	233	176	
5	84.28	316	136	108	259	195	158	
8	92.89	1162	148	108	844	221	175	
12	140.16	184	111	89	52	228	187	NET <cl< td=""></cl<>
16	185.89	1188	146	106	879	253	202	
17	198.65	202	133	107	-24	252	208	NET <cl< td=""></cl<>
20	238.61	6512	194	89	6280	239	147	
21	241.61	1314	148	106	1251	226	176	
26	295.19	2047	135	82	1925	189	138	
29	338.20	1222	119	79	1189	165	123	
30	351.81	3359	151	80	3109	205	142	
33	511.01	1874	141	91	329	285	233	
34	558.72	77	48	37	-75	116	96	NET <cl< td=""></cl<>
35	583.12	1989	122	68	1858	184	134	
37	609.23	2366	130	71	2205	176	123	
43	803.02	-0	40	33	-144	122	102	NET <cl< td=""></cl<>
47	911.17	1198	93	51	1138	141	102	
5 4	1460.69	1508	91	40	1346	122	80	
59	1764.61	344	55	34	300	78	57	

182672D03.SPC Analyzed by ****************************** FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ********************************* Geo 17/26 Sample ID: 1810627-14D GS181103-1 _____ Sampling Start: 10/24/2018 12:00:00 | Counting Start: 12/05/2018 14:08:44 Sampling Stop: 10/24/2018 12:00:00 | Decay Time. 1.01e+003 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 60000 Sec Sample Size 1.52e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % ______ Detector #: 3 (Detector 3) Efficiency File: (D03)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-8.15E+01 +1.04E+02*L +-4.49E+01*L^2 +6.40E+00*L^3] 11/01/2018 Eff.=10^[-2.02E-01 +-3.44E-01*L +-1.27E-01*L^2 +7.29E-03*L^3] Above 300.00 keV ______ Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills) ______ MEASURED or MDA CONCENTRATIONS ______ N ENERGY E Concentration Critical Halflife MDA Nuclide (keV) T (pCi/g) Level (hrs) ______ 92.60 2.26E+00 +- 5.91E-01 9.45E-01 4.69E-01 บ-238 3.92E+13 Pa-234 Average:x 1.56E-03 +- 1.07E-01 3.95E+13 4.08E-01 2.00E-01 99.70 2.70E-01 +- 2.49E-01 3.95E+13 946.00 N-5.91E-02 +- 1.19E-01 2.04E-01 9.93E-02 3.95E+13 U-235 143.76 1.48E-01 +- 1.38E-01 2.26E-01 1.12E-01 3.33E+10 Ra-223 Average:x 3.99E-01 +- 9.59E-02 2.87E+08 154.18 2.23E-01 +- 1.62E-01 2.64E-01 1.29E-01 2.87E+08 269.39 4.93E-01 +- 1.19E-01 1.83E-01 8.98E-02 2.87E+08 186.10 2.95E+00 +- 8.48E-01 1.37E+00 6.78E-01 1.40E+07 Ra-226 Average:x 2.05E+00 +- 7.73E-02 5.04E+04 Pb-212 238.63 2.06E+00 +- 7.81E-02 9.69E-02 4.80E-02 5.04E+04 300.09 1.88E+00 +- 5.57E-01 8.73E-01 4.30E-01 5.04E+04 Average:x 5.83E-01 +- 5.64E-02 5.04E+04 T1-208 277.36 3.95E-01 +- 1.76E-01 2.77E-01 1.35E-01 5.04E+04

911.07 1.63E+00 +- 2.02E-01 2.96E-01 1.46E-01 5.04E+04 964.60 2.46E+00 +- 6.24E-01 9.38E-01 4.58E-01 5.04E+04

338.40 1.73E+00 +- 2.40E-01 3.63E-01 1.79E-01 5.04E+04

8.78E-02

. . . .

8.07E-01 3.99E-01

4.35E-02

. . . .

5.04E+04

5.04E+04

5.04E+04

6.04E-01 +- 5.98E-02

5.83E-01 +- 6.07E-01

Average:x 1.71E+00 +- 1.18E-01

968.90 1.69E+00 +- 1.93E-01 2.40E-01 1.17E-01 5.04E+04

Page 004

583.14

860.47

Ac-228

MEASURED or MDA CONCENTRATIONS

=======		=======		========	========	
	N					
	ENERGY E	Concer	ntration		Critical	Halflife
	(keV) T	(pCi/g)	MDA	Level	(hrs)
			+- 1.00E-01			
	351.92	1.55E+00	+- 1.02E-01	1.43E-01	7.07E-02	1.40E+07
	241.98	I.D.				1.40E+07
	295.21	1.59E+00	+- 4.93E-01	6.74E-01	3.36E-01	1.40E+07
Bi-214	Average:x	1.44E+00	+- 9.71E-02			1.40E+07
	609.31	1.41E+00	+- 1.13E-01	1.59E-01	7.86E-02	1.40E+07
	934.06	9.58E-01	+- 6.89E-01	1.11E+00	5.34E-01	1.40E+07
	1120.29	1.64E+00	+- 2.70E-01	3.81E-01	1.86E-01	1.40E+07
	1238.11	1.37E+00	+- 5.14E-01	7.86E-01	3.80E-01	1.40E+07
	1377.67	2.01E+00	+- 9.33E-01	1.46E+00	7.11E-01	1.40E+07
	1764.49	1.47E+00	+- 3.82E-01	5.75E-01	2.81E-01	1.40E+07
Bi-212	727.17	1.11E+00	+- 2.34E-01	3.45E-01	1.68E-01	5.04E+04
T1-210	Average:x	7.06E-02	+- 2.14E-02			1.40E+07
	795.00	7.11E-02	+- 2.15E-02	3.21E-02	1.56E-02	1.40E+07
	860.00	1.63E-01	+- 2.17E+00	5.39E-01	2.62E-01	1.40E+07
	296.00	6.67E-03	+- 2.40E-01	5.43E-02	2.69E-02	1.40E+07
K-40	1460.75	7.95E+00	+- 7.19E-01	9.60E-01	4.72E-01	1.12E+13
Ra-224	241.00	1.50E+00	+- 4.97E+00	1.29E+00	6.42E-01	5.04E+04
Pb-210	46.52 N	3.76E+00	+- 1.06E+01	1.75E+01	8.64E+00	1.79E+05
T1-201	70.82 N	-2.28E+02	+- 1.73E+03	2.88E+03B	1.43E+03	7.35E+01
Ir-192	316.49 N	1.20E-02	+- 2.53E-02	4.19E-02	2.06E-02	1.78E+03
			+- 2.82E-01		2.33E-01	1.28E+03
Sc-46	889.26 N	-5.94E-03	+- 3.41E-02	5.80E-02	2.82E-02	2.01E+03
Na-22	1274.54 N	-1.63E-02	+- 3.05E-02	5.27E-02	2.56E-02	2.28E+04

MEASURED TOTAL: 2.75E+01 +- 1.88E+01 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	63.46	129.20	12	178	146	1259	0.64	Deleted
2	66.59	135.44	-121	233	192	1888	1.01	Deleted
3	74.87	151.95	1288	161	119	2401	1.14	Unknown
4	77.08	156.37	2078	233	176	2058	0.94	Unknown
5	84.28	170.72	259	195	158	1982	1.17	Unknown
6	87.17	176.49	931	145	108	1982	1.13	Unknown
7	89.94	182.02	484	111	84	1416	0.80	Unknown
10	105.24	212.54	120	133	108	1982	1.16	Unknown
11	129.04	260.03	233	102	80	1280	0.83	Unknown
12	140.16	282.21	52	228	187	1456	1.01	Deleted
15	163.57	328.90	73	106	86	1374	0.92	Deleted
17	198.65	398.88	-24	252	208	1803	1.31	Deleted
18	209.31	420.15	562	125	95	1657	1.27	Unknown
		Dago 005						

182672D03.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
19	226.29	454.03	51	91	74	1155	1.03	Deleted
21	241.61	484.58	1251	226	176	1834	1.68	SPLIT
22	265.13	531.51	46	62	50	615	0.63	Deleted
25	288.64	578.42	40	58	47	538	0.65	Deleted
26	295.19	591.47	1925	189	138	1168	1.53	SPLIT
28	327.97	656.87	282	96	74	1001	1.31	Unknown
31	409.71	819.93	131	74	58	657	1.21	Unknown
32	462.80	925.84	308	87	66	802	1.70	Unknown
33	511.01	1022.01	329	285	233	1178	2.55	Unknown
34	558.72	1117.18	-75	116	96	340	0.83	Deleted
36	596.82	1193.20	61	61	48	507	1.22	Unknown
38	661.84	1322.91	158	90	71	778	2.25	Unknown
40	766.52	1531.73	-6	50	41	381	1.33	Deleted
41	770.45	1539.57	-5	41	34	286	0.97	Deleted
43	803.02	1604.54	-144	122	102	259	1.08	Deleted
44	803.29	1605.08	107	63	49	444	1.91	Unknown
45	860.52	1719.25	206	64	47	409	1.95	SPLIT
46	874.86	1747.87	26	36	28	197	1.03	Deleted
55	1509.20	3013.32	34	36	28	149	2.01	Unknown
56	1588.45	3171.40	64	39	29	151	2.06	Unknown
57	1631.07	3256.44	44	46	36	187	3.10	Unknown
58	1729.79	3453.37	62	46	35	159	3.83	Unknown

c:\SEEKER\BIN\182672d03.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-15 GS181103-1

Sampling Start:	10/24/2018 12:00:00	_	
Sampling Stop:	10/24/2018 12:00:00	Decay Time	1.00E+003 Hrs
Buildup Time	0.00E+000 Hrs	Live Time	7200 Sec
Sample Size	1.80E+002 g	Real Time	7255 Sec
Collection Efficie	ency 1.0000	Spc. File	181997D10.SPC

Detector #: 10 (Detector 10)

Energy(keV) = -2.04 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018 FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En^2 + 0.00E+00*En^3 11/15/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

	(keV)	CHANNEL	COUNTS	UN- CERTAINTY	COUNTS	COUNTS	(keV)	
1		97.37		55	44			
2	63.23	130.23	147	79	62	572	1.48 8	a.
3	66.18	136.13	72	58	45	381	0.90 1	o
4	74.77	153.26	310	69	49	445	0.94 8	a.
5	76.97	157.66	492	80	55	519	1.17 1	o
6	86.99	177.64	173	63	47	411	1.00 a	a .
7	89.94	183.54	94	60	47	411	0.96 1	o
8	92.68	189.01	294	86	65	617	1.47	3
9	128.80	261.07	35	46	37	275	0.84	NET < CL
10	185.77	374.76	261	66	48	421	1.30 a	a.
11	198.49	400.14	102	61	47	415	1.32 8	a
12	209.55	422.21	119	67	52	449	1.56	a
13	238.56	480.10	1007	83	44	363	1.24	a
14	241.56	486.08	262	63	44	363	1.32 1	b
15	270.12	543.06	74	54	42	311	1.40	a
16	295.20	593.12	614	67	37	254	1.36	a
17	300.41	603.52	54	43	34	222	1.23	b
18	338.32	679.15	203	53	37	249	1.26	a .
19	351.92	706.30	1046	79	37	243	1.42	a
20	511.10	1023.93	665	78	48	345	2.53	a Wide Pk
21		1118.55		40	30	162	1.71	a .
		D 001						

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY			FWHM (keV)	FLAG
22	583.38	1168.16	360	54	32	184	1.71	
23	609.49	1220.26	751	73	40	291	1.66	a
24	661.64	1324.32	304	51	31	174	1.60	a
25	727.57	1455.87	74	37	27	138	1.56	a.
26	768.42	1537.39	54	31	23	113	1.33	a
27	795.07	1590.57	18	42	34	188	2.39	NET < CL
28	861.08	1722.28	49	31	23	108	1.71 8	a
29	911.27	1822.43	283	47	27	131	2.04	a.
30	968.91	1937.45	120	40	28	144	1.98 a	a.
31	1120.63	2240.21	173	42	27	123	2.22	a
32	1238.19	2474.79	31	23	17	65	1.21 8	3.
33	1377.94	2753.65	32	29	22	85	2.31	a
34	1460.59	2918.56	900	64	18	51	2.87	a HiResid
35	1729.27	3454.70	38	19	12	28	1.77 a	a
36	1764.20	3524.39	157	34	19	56	2.58	a
37	1846.70	3689.02	22	16	11	23	1.62	a

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET101128.BKG (112818-10 LONG BKG CAL)

Bkg.File Detector #: 10

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEI	FLAG
1	46.76	44	55	44	8	73	60	NET <cl< td=""></cl<>
2	63.23	147	79	62	92	89	72	MEI/CD
								1770 - OT
3	66.18	72	58	45	-4	67		NET <cl< td=""></cl<>
4	74.77	310	69		221	81	62	
5	76.97	492	80	55	379		66	
6	86.99	173	63	47	148	69	53	
8	92.68	294	86	65	151	95	75	
10	185.77	261	66	48	102	78	62	
11	198.49	102	61	47	-9	69	57	NET <cl< td=""></cl<>
13	238.57	1007	83	44	881	90	55	
14	241.56	262	63	44	164	71	54	
15	270.12	74	54	42	63	59	47	
16	295.20	614	67	37	424	75	51	
18	338.32	203	53	37	180	57	41	
19	351.92	1046	79	37	670	88	58	
20	511.10	665	78	48	70	93	76	NET <cl< td=""></cl<>
21	558.52	81	40	30	-10	47	39	NET <cl< td=""></cl<>
22	583.38	360	54	32	290	60	41	
23	609.49	751	73	40	472	82	58	
26	768.42	54	31	23	14	43	34	NET <cl< td=""></cl<>
28	861.08	49	31	23	39	36	28	
29	911.27	283	47	27	234	51	33	
30	968.91	120	40	28	91	44	33	
31	1120.63	173	42	27	105	47	34	
32	1238.19	31	23	17	12	29		NET <cl< td=""></cl<>
33	1377.94	32	29	22	17	33		NET <cl< td=""></cl<>
34	1460.59		64	18	755	68	33	
35	1729.27	38	19	12	21	25	20	
36		157	34	19	93	38	27	
20	1/04.40	13/	3=	1.9	,,	50	41	

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-15 GS181103-1

Page 004

Sampling Start: 10/24/2018 12:00:00 Counting Start: 12/05/2018 08:31:52 Sampling Stop: 10/24/2018 12:00:00 Decay Time									
Detector #: 10 (Detector 10)									
Efficien	or File. (1	D10)(Sh17).E		•	10)				
	_		-	-	48.00+t A21	11/20/2018			
	-				-				
EII.=IU^	[-2.63E+UI	+2.68E+U1*1	, +-9.41E+0	10*L^2 +1.0	-	Above 300.00 keV			
Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills) MEASURED or MDA CONCENTRATIONS									
					========	=======================================			
	N								
		Concentr							
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)			
U-238	Average:x	1.36E+00 +-	7.43E-01			3.92E+13			
	63.29	2.51E+00 +-	2.45E+00	4.01E+00	1.97E+00	3.92E+13			
	92.60	1.24E+00 +-	7.80E-01	1.26E+00	6.19E-01	3.92E+13			
Ra-226	186.10	1.14E+00 +-	8.74E-01	1.42E+00	6.95E-01	1.40E+07			
Pb-212	Average:x	9.12E-01 +-	9.20E-02			5.04E+04			
	238.63	9.14E-01 +-	9.28E-02	1.17E-01	5.72E-02	5.04E+04			
	300.09	8.53E-01 +-	6.90E-01	1.11E+00	5.35E-01	5.04E+04			
Ra-224	241.00	1.89E+00 +-	8.12E-01	1.28E+00	6.23E-01	5.04E+04			
Ra-223	269.39	2.13E-01 +-	2.00E-01	3.25E-01	1.58E-01	2.87E+08			
Pb-214	Average:x	1.02E+00 +-	1.07E-01			1.40E+07			
	295.21	1.08E+00 +-	1.91E-01	2.69E-01	1.31E-01	1.40E+07			
	351.92	9.93E-01 +-	1.30E-01	1.77E-01	8.64E-02	1.40E+07			
Ac-228	Average:x	7.24E-01 +-	1.23E-01			5.04E+04			
	338.40	7.97E-01 +-	2.51E-01	3.75E-01	1.82E-01	5.04E+04			
	911.07	7.80E-01 +-	1.69E-01	2.31E-01	1.11E-01	5.04E+04			
	968.90	5.23E-01 +-		3.95E-01	1.90E-01	5.04E+04			
T1-208		2.35E-01 +-				5.04E+04			
	583.14	2.35E-01 +-		6.84E-02	3.31E-02	5.04E+04			
	860.47	2.35E-01 +-		1.06E+00	5.18E-01	5.04E+04			
Bi-214		7.63E-01 +-				1.40E+07			

609.31 7.45E-01 +- 1.30E-01 1.86E-01 9.08E-02 1.40E+07

MEASURED or MDA CONCENTRATIONS

Concentration ENERGY E Critical Halflife Nuclide (keV) T (pCi/g) MDA Level (hrs) ------1120.29 7.83E-01 +- 3.48E-01 5.35E-01 2.57E-01 1.40E+07 1764.49 8.76E-01 +- 3.59E-01 5.35E-01 2.55E-01 1.40E+07 Bi-212 727.17 5.11E-01 +- 2.58E-01 3.96E-01 1.88E-01 5.04E+04 K-40 1460.75 9.28E+00 +- 8.33E-01 8.36E-01 4.01E-01 1.12E+13 T1-210 Average:x 4.55E-02 +- 2.98E-02 1.40E+07 860.00 1.17E-01 +- 2.84E+00 7.62E-01 3.63E-01 1.40E+07 795.00 N 4.55E-02 +- 2.98E-02 4.68E-02 2.22E-02 1.40E+07 Pb-210 46.52 N 5.45E+00 +- 5.62E+00 9.18E+00 4.45E+00 1.79E+05 T1-201 70.82 N 8.57E+02 +- 1.39E+03 2.30E+03B 1.12E+03 7.35E+01 U-235 143.76 N 1.18E-01 +- 2.33E-01 3.87E-01 1.89E-01 3.33E+10 Ir-192 316.49 N 1.06E-02 +- 4.05E-02 6.82E-02 3.29E-02 1.78E+03 Be-7 477.56 N 8.81E-02 +- 3.86E-01 6.54E-01 3.13E-01 1.28E+03 889.26 N-1.19E-02 +- 4.41E-02 7.73E-02 3.69E-02 2.01E+03 Sc-46 Pa-234 946.00 N 4.16E-02 +- 1.51E-01 2.58E-01 1.22E-01 3.95E+13 Na-22 1274.54 N 4.68E-03 +- 3.70E-02 6.38E-02 3.02E-02 2.28E+04

MEASURED TOTAL: 8.81E+02 +- 1.40E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	46.76	97.37	8	73	60	352	1.06	Deleted
3	66.18	136.13	-4	67	55	381	0.90	Deleted
4	74.77	153.26	221	81	62	445	0.94	Unknown
5	76.97	157.66	379	89	66	519	1.17	Unknown
6	86.99	177.64	148	69	53	411	1.00	Unknown
7	89.94	183.54	94	61	47	411	0.96	Unknown
9	128.80	261.07	35	46	37	275	0.84	Deleted
11	198.49	400.14	-9	69	57	415	1.32	Deleted
12	209.55	422.21	119	67	52	449	1.56	Unknown
20	511.10	1023.93	70	93	76	345	2.53	Deleted
21	558.52	1118.55	-10	47	39	162	1.71	Deleted
24	661.64	1324.32	304	51	31	174	1.60	Unknown
26	768.42	1537.39	14	43	34	113	1.33	Deleted
27	795.07	1590.57	18	42	34	188	2.39	Deleted
28	861.08	1722.28	39	36	28	108	1.71	SPLIT
32	1238.19	2474.79	12	29	23	65	1.21	Deleted
33	1377.94	2753.65	17	33	26	85	2.31	Deleted
35	1729.27	3454.70	21	25	20	28	1.77	Unknown
37	1846.70	3689.02	22	16	11	23	1.62	Unknown

c:\SEEKER\BIN\181997d10.res Analysis Results Saved.

ALS Laboratory Group - Fort Collins GammaScan

GAMMA ANALYSIS RESULTS

Geo 17/26

Sample ID: 1810627-16 GS181103-1

SEEKER

Detector #: 10 (Detector 10)

Energy(keV) = -2.04 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/05/2018 FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En² + 0.00E+00*En³ 11/15/2018 Where En = Sgrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
1		96.93			105			
2	53.37	110.55	175	144	116	2488	0.91	a
3	63.18	130.13	737	142	108	2339	0.84	a
4	66.23	136.23	711	177	139	3275	1.07	b
5	72.73	149.19	142	117	94	1957	0.67	a
6	74.72	153.17	2127	195	142	3425	1.13	b
7	76.99	157.69	3287	191	126	2936	1.03	c
8	84.13	171.94	632	158	123	2575	1.21	a
9	87.16	177.99	1464	168	123	2575	1.09	b
10	89.75	183.16	765	159	123	2575	1.11	C
11	92.62	188.89	2635	195	136	2943	1.31	đ
12	98.58	200.77	110	167	136	2943	1.34	e NET< CL
13	128.61	260.70	134	100	80	1431	0.70	a
14	139.59	282.61	566	136	105	2024	0.98	a
15	143.65	290.71	386	179	143	3036	1.47	b
16	163.30	329.91	141	162	132	2748	1.31	a
17	185.89	374.99	2555	178	121	2703	1.31	a
18	198.36	399.89	864	133	98	2020	1.03	a
19	209.29	421.69	256	132	105	2194	1.10	a
20	238.59	480.15	3936	183	110	2232	1.30	a
21	241.79	486.54	2377	165	110	2232	1.28	b
		D 001						

PS Version 1.8.4

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	IIN-	C.L.	BKG	MHWT	
	(keV)				COUNTS			FLAG
	-							
22	258.81	520.49	134	106	85	1538	1.04 8	1
23	270.14	543.10	301	130	103	1962	1.31 8	1
24					93		1.22 8	1
25	295.21	593.13	5017	186	99	1829	1.32 8	1
26	300.25	603.19	174	90	71	1143	0.78 1	o
27	321.06	644.71	23	118		1726	1.24	NET< CL
28	327.83	658.22	182	109	87		1.21 8	1
29	338.36	679.23	771		105		1.43	a
30	351.97	706.40	8574	223	102	1802	1.43	a
31	409.33	820.86	54	97	79		1.20 8	NET< CL
32	417.07	836.29	74	105	85	1345	1.30 8	NET< CL
33	463.03	928.00	254	111	87		1.50 a	a
34	511.10	1023.92	5058		138		2.74	a Wide Pk
35	537.33	1076.26	92	71	57	739	1.06	a
36	558.70	1118.91	646	105	76	1112	1.44	a.
37	569.71	1140.89	232	100	79	1206	1.42	a
38	583.47	1168.33	1472	131	87	1346	1.84	a.
39	597.29				97		1.81	a.
40	599.46	1200.24	152	81	64	996	0.84	o
41	609.51	1220.29	6688		104	1985	1.67	2
42	661.88	1324.80	680	115	84	1243	1.76	a
43	665.48	1331.97	127			1017	1.41	b
44	727.49		325		85	1202	1.96	a
45	768.27	1537.09	576	112	83	1222	2.05	a .
46	785.62	1571.72	210	93	73	986	2.02	a
47	795.17	1590.78	154	70	54	641	1.30	a
48	803.46			95	68	881	1.85	Ь
49	806.10	1612.57	135	64	49	561	1.10	2
50	835.92	1672.08	125	81	64	869	1.49	a
51	839.33	1678.88	246	135	108	1737	3.02	b
52	860.65	1721.44	142	83	65	863	1.62	a .
53	898.64	1797.24	127	84	67	853	1.74	a .
54	911.25	1822.40	1114	110	72	915	2.18	a .
55	934.31	1868.42	317	98	75	965	2.22	a .
56	964.14	1927.94	455	134	104	1380	3.80	a Wide Pk
57	969.06	1937.75	749	97	66	780	2.17	b
58	1000.29	2000.06	234	132	106	1372	3.98	a Wide Pk
59	1063.44	2126.08	78	87	70	872	2.14	a .
60	1120.43	2239.79	1430	111	67	790	2.13	a .
61	1155.45	2309.68	120	76	60	656	1.89	9.
62	1207.57	2413.68	97	63	49	513	1.42	a.
63	1238.08	2474.57	544	91	65	712	2.30	а.
64	1281.12	2560.44	46	68	55	550	2.04	a NET< CL
65	1377.37	2752.51	437	82	58	531	2.60	a .
66	1385.54	2768.80	133	77	61	564	2.86	b
67	1407.86	2813.35	148	63	48	447	1.77	a.
		Page 002						

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
68	1460.61	2918.61	3458	136	56	516	2.51	a HiResid
69	1509.35	3015.85	150	70	54	478	2.48	a
70	1660.91	3318.28	86	57	44	331	2.35	a
71	1729.05	3454.26	299	70	50	387	2.83	a
72	1764.05	3524.10	1436	98	52	382	3.09	a
73	1846.68	3688.98	199	68	51	366	3.09	a

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET101128.BKG (112818-10 LONG BKG CAL)

Bkg.File Detector #: 10

SEEKER

BACKGROUND SUBTRACT RESULTS

OLD NET OLD UN-NEW NET ENERGY OLD NEW UN-NEW COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG PK# (keV) -----46.54 -7 348 NET<CL 53.37 287 NET<CL -30 63.18 304 NET<CL 66.23 275 NET<CL 74.72 76.99 84.13 87.16 92.62 139.59 229 NET<CL 143.65 258 NET<CL 185.89 198.36 -63 246 NET<CL 238.59 241.79 149 NET<CL 258.81 270.14 295.21 338.36 351.97 511.10 395 NET<CL 537.33 157 NET<CL 558.70 -106 189 NET<CL 207 NET<CL 569.71 -85 583.47 597.29 208 NET<CL 347 NET<CL 599.46 -453 609.51 768.27 803.46 168 NET<CL -224 258 NET<CL 835.92 839.33 -31 201 NET<CL 140 NET<CL 860.65 -13 141 NET<CL 898.64 911.25 934.31

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL FLAG
56	964.14	455	134	104	182	271	222 NET <cl< td=""></cl<>
57	969.06	749	97	66	506	179	143
58	1000.29	234	132	106	196	168	137
59	1063.44	78	87	70	26	194	159 NET <cl< td=""></cl<>
60	1120.43	1430	111	67	857	202	159
63	1238.08	544	91	65	379	172	137
64	1281.12	46	68	55	-19	128	106 NET <cl< td=""></cl<>
65	1377.37	437	82	58	315	152	121
67	1407.86	148	63	48	96	137	112 NET <cl< td=""></cl<>
68	1460.61	3458	136	56	2245	231	173
69	1509.35	150	70	54	73	113	92 NET <cl< td=""></cl<>
70	1660.91	86	57	44	36	129	106 NET <cl< td=""></cl<>
71	1729.05	299	70	50	155	157	127
72	1764.05	1436	98	52	904	175	135

FINAL ACTIVITY REPORT Version 2.2.1 SEEKER

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-16 GS181103-1

Page 006

Sampling Buildup Sample S Collecti Cr. Leve	Sampling Start: 10/24/2018 12:00:00 Counting Start: 12/05/2018 14:09:19 Sampling Stop: 10/24/2018 12:00:00 Decay Time										
				(Detector	10)						
Efficiency File: (D10)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-5.73E+01 +7.32E+01*L +-3.17E+01*L^2 +4.54E+00*L^3] 11/20/2018 Eff.=10^[-2.63E+01 +2.68E+01*L +-9.41E+00*L^2 +1.07E+00*L^3] Above 300.00 keV											
Tibeass	E:10. TIDET	WATER GREATK	TT.T.C (Ti	dewater Gr	est Kille)						
-		_				=========					
=======				CONCENTRA							
						=========					
	N										
	_ 	Concentr	ation		Critical	Halflife					
Nualido		(pCi/g									
		(DCI/G									
		3.10E+00 +-									
		2.49E-01 +-									
0-235	_	2.18E-01 +-									
		2.93E-01 +-									
Ra-226		3.60E+00 +-			9.06E-01						
		7.78E-01 +-									
FD-212	_	7.81E-01 +-			6.96E-02						
		7.24E-01 +-			2.95E-01						
Ra-223		1.82E-01 +-		3.36E-01	1.67E-01						
T1-208		1.89E-01 +-									
11 200	_	2.11E-01 +-			1.77E-01						
		1.88E-01 +-									
Ac-228		6.61E-01 +-									
110 220	338.40	6.66E-01 +-		4.04E-01	2.00E-01	5.04E+04					
	911.07	6.16E-01 +-		2.77E-01	1.37E-01	5.04E+04					
	968.90	7.64E-01 +-		4.35E-01	2.15E-01	5.04E+04					
Pb-214		2.10E+00 +-				1.40E+07					
	351.92	2.10E+00 +-		2.30E-01	1.14E-01	1.40E+07					
	241.98	I.D.				1.40E+07					
	295.21	2.13E+00 +-		9.44E-01	4.71E-01	1.40E+07					
Bi-214		1.83E+00 +-				1.40E+07					
DI-214	WAGE GAG . W			• • • •	• • •						

182 of 624

MEASURED or MDA CONCENTRATIONS

======			========	=======		========	======
	N						
	ENERGY E	Concen	tration		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
	609.31	1.80E+00	+- 1.56E-01	2.41E-01	1.20E-01	1.40E+07	
	768.36	1.10E+00	+- 1.21E+00	1.99E+00	9.90E-01	1.40E+07	
	934.06	1.91E+00	+- 1.35E+00		1.09E+00	1.40E+07	
	1120.29	1.67E+00	+- 3.95E-01	6.28E-01	3.11E-01	1.40E+07	
	1238.11	2.00E+00	+- 9.07E-01		7.26E-01	1.40E+07	
	1377.67	2.66E+00	+- 1.28E+00	2.08E+00	1.03E+00	1.40E+07	
	1764.49	2.22E+00	+- 4.31E-01	6.73E-01	3.33E-01	1.40E+07	
Bi-212	Average:x	6.44E-01	+- 1.93E-01			5.04E+04	
	727.17	5.84E-01	+- 1.96E-01	3.09E-01	1.52E-01	5.04E+04	
	785.42	2.36E+00	+- 1.05E+00	1.67E+00	8.22E-01	5.04E+04	
T1-210	Average:x	3.45E-02	+- 1.56E-02			1.40E+07	
	795.00	3.45E-02	+- 1.56E-02	2.47E-02	1.20E-02	1.40E+07	
	296.00	3.80E-02	+- 3.35E-01	7.93E-02	3.94E-02	1.40E+07	
K-40	1460.75	7.20E+00	+- 7.41E-01	1.12E+00	5.56E-01	1.12E+13	
Ra-224	241.00	4.91E-01	+- 5.76E+00	1.51E+00	7.53E-01	5.04E+04	
Pb-210	46.52 N	8.98E+00	+- 3.98E+00	6.41E+00	3.17E+00	1.79E+05	
T1-201	70.82 N	3.43E+03	+- 1.64E+03	2.62E+03R	1.30E+03	7.35E+01	
Ir-192	316.49 N	9.24E-03	+- 2.73E-02	4.53E-02	2.23E-02	1.78E+03	
Be-7	477.56 N	4.18E-02	+- 2.64E-01	4.40E-01	2.16E-01	1.28E+03	
Sc-46	889.26 N	1.59E-02	+- 2.99E-02	4.95E-02	2.43E-02	2.01E+03	
Pa-234	946.00 N	-8.34E-02	+- 1.09E-01	1.87E-01	9.16E-02	3.95E+13	
Na-22	1274.54 N	-1.48E-02	+- 2.59E-02	4.41E-02	2.16E-02	2.28E+04	

MEASURED TOTAL: 3.46E+03 +- 1.65E+03 pCi/g

UNKNOWN, SUM OF ESCAPE PEAKS

UN-PK. ENERGY ADDRESS NET C.L. BKG FWHM COUNTS CERTAINTY (keV) CHANNEL COUNTS COUNTS (keV) FLAG 2233 0.81 Deleted 46.54 96.93 -7 424 348 1 2488 0.91 Deleted 2 53.37 110.55 -30 348 287 63.18 130.13 304 2339 0.84 Deleted 3 278 372 79 275 3275 1.07 Deleted 4 66.23 136.23 335 1957 0.67 Unknown 5 72.73 149.19 142 117 94 3425 1.13 Unknown 6 74.72 153.17 1387 402 325 2936 1.03 Unknown 2350 300 7 76.99 157.69 378 84.13 171.94 246 2575 1.21 Unknown 8 469 302 9 87.16 177.99 1258 2575 1.09 Unknown 283 225 123 2575 1.11 Unknown 10 89.75 183.16 765 159 98.58 200.77 2943 1.34 Deleted 12 110 167 136 13 128.61 260.70 134 100 80 1431 0.70 Unknown 229 2024 0.98 Deleted 14 139.59 282.61 60 279 299 246 2020 1.03 Deleted 18 198.36 399.89 -63 209.29 421.69 256 132 106 2194 1.10 Unknown 19

Page 007

182000D10.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
21	241.79	486.54	1566	315	251	2232	1.28	SPLIT
22	258.81	520.49	75	182	149	1538	1.04	Deleted
25	295.21	593.13	3441	332	256	1829	1.32	SPLIT
27	321.06	644.71	23	118	97	1726	1.24	Deleted
28	327.83	658.22	182	109	87	1488	1.21	Unknown
31	409.33	820.86	54	97	79	1237	1.20	Deleted
32	417.07	836.29	74	105	85	1345	1.30	Deleted
33	463.03	928.00	254	111	87	1317	1.50	Unknown
34	511.10	1023.92	100	480	395	2618	2.74	Deleted
35	537.33	1076.26	19	192	157	739	1.06	Deleted
36	558.70	1118.91	-106	229	189	1112	1.44	Deleted
37	569.71	1140.89	-85	251	207	1206	1.42	Deleted
39	597.29	1195.91	129	254	208	1672	1.81	Deleted
40	599.46	1200.24	-453	419	347	996	0.84	Deleted
42	661.88	1324.80	680	115	84	1243	1.76	Unknown
43	665.48	1331.97	127	91	72	1017	1.41	Unknown
48	803.46	1607.30	66	205	168	881	1.85	Deleted
49	806.10	1612.57	135	64	49	561	1.10	Unknown
50	835.92	1672.08	-224	312	258	869	1.49	Deleted
51	839.33	1678.88	-31	245	201	1737	3.02	Deleted
52	860.65	1721.44	67	171	140	863	1.62	Deleted
53	898.64	1797.24	-13	171	141	853	1.74	Deleted
56	964.14	1927.94	182	271	222	1380	3.80	Deleted
58	1000.29	2000.06	196	168	137	1372	3.98	Unknown
59	1063.44	2126.08	26	194	159	872	2.14	Deleted
61	1155.45	2309.68	120	76	60	656	1.89	Unknown
62	1207.57	2413.68	97	63	49	513	1.42	Unknown
64	1281.12	2560.44	-19	128	106	550	2.04	Deleted
66	1385.54	2768.80	133	77	61	564	2.86	Unknown
67	1407.86	2813.35	96	137	112	447	1.77	Deleted
69	1509.35	3015.85	73	113	92	478	2.48	Deleted
70	1660.91	3318.28	36	129	106	331	2.35	Deleted
71	1729.05	3454.26	155	157	127	387	2.83	Unknown
73	1846.68	3688.98	199	68	51	366	3.09	Unknown

c:\SEEKER\BIN\182000d10.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-17 GS181103-1

Detector #: 5 (Detector 5)

Energy(keV) = -0.63 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/05/2018 FWHM(keV) = 0.65 + -0.002*En + 2.17E-03*En² +-2.42E-05*En³ 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS		
1	74.90	150.87	102	59	46	328	1.30	a Wide Pk
2	77.02	155.11	165	47	32	205	0.89	b
3	87.39	175.83	37	40	31	196	0.75	a
4	89.76	180.56	45	45	36	235	0.99	b
5	92.94	186.92	109	58	44	313	1.28	C
6	125.08	251.12	23	27	21	104	0.44	a
7	129.14	259.23	30	27	21	104	0.48	b
8	185.84	372.51	91	36	25	142	0.73	a
9	209.20	419.18	46	32	23	122	0.66	a
10	238.50	477.71	656	60	25	131	0.90	a.
11	241.83	484.35	144	54	40	236	1.45	b
12	270.13	540.90	53	31	23	103	0.83	a
13	276.97	554.56	36	27	20	88	0.74	a.
14	295.07	590.72	246	46	27	127	1.21	a.
15	300.26	601.08	56	36	27	127	1.21	b
16	338.27	677.02	122	36	24	112	1.23	a.
17	351.82	704.09	402	49	24	109	1.15	a
18	463.12	926.44	34	27	20	80	1.13	a
19	510.72	1021.53	263	55	37	159	2.86	a Wide Pk
20	583.16	1166.24	172	35	19	75	1.36	a.
21	609.26	1218.38	310	44	21	89	1.52	a
		Page 001						

Page 001

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	727.54	1454.67	48	22	14	43	1.02	a
23	911.20	1821.59	145	30	14	40	1.73	a
24	969.03	1937.12	73	26	16	56	1.36	a
25	1120.71	2240.13	51	27	19	61	2.27	a
26	1460.88	2919.68	432	44	13	26	2.49	a
27	1764.86	3526.96	56	17	7	9	2.24	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET051128.BKG (112818-5 LONG BKG CAL)

Bkg.File Detector #: 5

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)		OLD UN- CERTAINTY		NEW NET			FLAG
1	74.90	102	59	46	93	61	48	
5	92.94	109	58	44	85	62	48	
7	129.14	30	27	21	25	32	25	NET <cl< td=""></cl<>
8	185.84	91	36	25	55	42	32	
10	238.50	656	60	25	632	62	30	
14	295.07	246	46	27	236	48	30	
16	338.27	122	36	24	114	39	27	
17	351.82	402	49	24	380	51	27	
19	510.72	263	55	37	54	63	51	
20	583.16	172	35	19	161	37	22	
21	609.26	310	44	21	288	48	28	
23	911.20	145	30	14	138	31	17	
24	969.03	73	26	16	70	28	19	
25	1120.71	51	27	19	47	28	20	
26	1460.88	432	44	13	379	46	20	
27	1764.86	56	17	7	52	19	10	

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-17 GS181103-1

------Sampling Start: 10/25/2018 12:00:00 | Counting Start: 12/05/2018 08:31:28 Sampling Stop: 10/25/2018 12:00:00 | Decay Time. 9.81e+002 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 7200 Sec Sample Size 2.13e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % -----Detector #: 5 (Detector 5) Efficiency File: (D05)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-1.03E+02 +1.32E+02*L +-5.73E+01*L^2 +8.21E+00*L^3] 05/17/2018 Eff.=10^[-4.57E+01 +4.54E+01*L +-1.54E+01*L^2 +1.70E+00*L^3] Above 300.00 keV _____ Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills) ______ MEASURED or MDA CONCENTRATIONS

=======	=========		===				========	======
	N							
	ENERGY E	Concer	ntra	ation		Critical	Halflife	
	(keV) T				MDA			
	92.60							
Ra-226	186.10	9.37E-01	+-	7.03E-01	1.13E+00	5.40E-01	1.40E+07	
Pb-212	Average:x	1.02E+00	+-	9.94E-02			5.04E+04	
	238.63	1.01E+00	+-	9.97E-02	1.01E-01	4.85E-02	5.04E+04	
	300.09	1.96E+00	+-	1.27E+00	2.00E+00	9.54E-01	5.04E+04	
Ra-223	269.39	2.76E-01	+-	1.63E-01	2.52E-01	1.19E-01	2.87E+08	
T1-208	Average:x	2.37E-01	+-	5.21E-02			5.04E+04	
	277.36	4.09E-01	+-	3.04E-01	4.78E-01	2.24E-01	5.04E+04	
	583.14	2.32E-01	+-	5.29E-02	6.69E-02	3.15E-02	5.04E+04	
Pb-214	Average:x	1.05E+00	+-	1.19E-01			1.40E+07	
	295.21	9.28E-01	+-	1.89E-01	2.49E-01	1.19E-01	1.40E+07	
	351.92	1.13E+00	+-	1.53E-01	1.71E-01	8.16E-02	1.40E+07	
	241.98	I.D.					1.40E+07	
Ac-228	Average:x	8.49E-01	+-	1.46E-01			5.04E+04	
	338.40	1.04E+00	+-	3.57E-01	5.18E-01	2.47E-01	5.04E+04	
	911.07	8.36E-01	+-	1.89E-01	2.20E-01	1.02E-01	5.04E+04	
	968.90	7.53E-01	+-	2.99E-01	4.24E-01	1.98E-01	5.04E+04	
Bi-214	Average:x	8.16E-01	+-	1.20E-01			1.40E+07	
	609.31	8.06E-01	+-	1.33E-01	1.62E-01	7.71E-02	1.40E+07	
	1120.29	6.65E-01	+-	4.02E-01	6.19E-01	2.90E-01	1.40E+07	
	1764.49	1.03E+00	+-	3.73E-01	4.52E-01	1.99E-01	1.40E+07	
	Page	004						100 00

188 of 624

181902D05.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

N

		7.4							
	ENERGY	E	Concer	ntra	ation		Critical	Halflife	
Nuclide	(keV)	T	(pCi/g)	MDA	Level	(hrs)	
Bi-212	727.17		5.89E-01	+-	2.66E-01	3.69E-01	1.68E-01	5.04E+04	
K-40	1460.75		9.38E+00	+-	1.14E+00	1.07E+00	5.02E-01	1.12E+13	
Ra-224	241.00		5.04E-01	+-	5.84E+00	1.47E+00	7.09E-01	5.04E+04	
Pb-210	46.52	N	5.98E+00	+-	4.90E+01	8.38E+01	4.00E+01	1.79E+05	
T1-201	70.82	N-	-4.23E+02	+-	2.23E+03	3.85E+03B	1.85E+03	7.35E+01	
U-235	143.76	N	3.17E-02	+-	2.18E-01	3.71E-01	1.78E-01	3.33E+10	
Ir-192	316.49	N	1.46E-02	+-	5.93E-02	1.01E-01	4.80E-02	1.78E+03	
Be-7	477.56	N-	-3.12E-01	+-	4.84E-01	8.83E-01	4.17E-01	1.28E+03	
T1-210	795.00	N	4.31E-03	+-	3.72E-02	6.48E-02	3.03E-02	1.40E+07	
Sc-46	889.26	N-	-7.16E-03	+-	5.46E-02	9.73E-02	4.54E-02	2.01E+03	
Pa-234	946.00	N-	-6.31E-02	+-	1.83E-01	3.35E-01	1.55E-01	3.95E+13	
Na-22	1274.54	N-	-2.39E-02	+-	4.32E-02	8.19E-02	3.77E-02	2.28E+04	

MEASURED TOTAL: 2.31E+01 +- 5.90E+01 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG	
1	74.90	150.87	93	61	48	328	1.30	Unknown	
2	77.02	155.11	165	47	32	205	0.89	Unknown	
3	87.39	175.83	37	40	31	196	0.75	Unknown	
4	89.76	180.56	45	45	36	235	0.99	Unknown	
6	125.08	251.12	23	27	21	104	0.44	Unknown	
7	129.14	259.23	25	32	25	104	0.48	Deleted	
9	209.20	419.18	46	32	23	122	0.66	Unknown	
11	241.83	484.35	144	54	40	236	1.45	SPLIT	
18	463.12	926.44	34	27	20	80	1.13	Unknown	
19	510.72	1021.53	54	63	51	159	2.86	Unknown	

c:\SEEKER\BIN\181902d05.res Analysis Results Saved.

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-18 GS181103-1

Sampling Start: 10/25/2018 12:00:00	Counting Start: 12/04/2018 15:05:18
Sampling Stop: 10/25/2018 12:00:00	Decay Time 9.63E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 18000 Sec
Sample Size 1.82E+002 g	Real Time 18027 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 1 (Detector 1)

Energy(keV) = -1.89 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/04/2018 FWHM(keV) = 0.66 + 0.012*En + 6.94E-04*En^2 + 0.00E+00*En^3 08/21/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN- C.L. BKG FWHM
(keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG

66.44	136.39	42	41	32	247	0.41 a
74.90	153.29	147	66	51	477	0.92 a
77.09	157.66	317	71	51	477	0.92 b
84.29	172.03	135	78	61	555	1.45 a Wide Pk
87.26	177.97	214	68	50	432	1.08 b
89.93	183.29	116	59	45	370	1.03 c
92.92	189.26	263	75	56	493	1.34 d
185.90	374.86	308	79	58	536	1.24 a
209.16	421.29	95	57	44	353	1.00 a
238.63	480.11	1154	89	47	373	1.07 a Wide Pk
241.72	486.28	299	83	62	533	1.58 b
270.19	543.12	110	63	49	359	1.40 a
277.68	558.05	61	60	48	339	1.43 a
295.24	593.11	488	65	39	265	1.10 a
327.82	658.15	54	58	46	317	1.48 a
338.31	679.08	231	54	36	226	1.17 a
351.87	706.16	746	69	35	207	1.21 a
462.87	927.72	98	43	31	172	1.49 a
511.01	1023.83	478	75	50	319	2.48 a Wide Pk
558.39	1118.40	37	27	20	88	0.74 a
	74.90 77.09 84.29 87.26 89.93 92.92 185.90 209.16 238.63 241.72 270.19 277.68 295.24 327.82 338.31 351.87 462.87 511.01	74.90 153.29 77.09 157.66 84.29 172.03 87.26 177.97 89.93 183.29 92.92 189.26 185.90 374.86 209.16 421.29 238.63 480.11 241.72 486.28 270.19 543.12 277.68 558.05 295.24 593.11 327.82 658.15 338.31 679.08 351.87 706.16 462.87 927.72 511.01 1023.83	74.90 153.29 147 77.09 157.66 317 84.29 172.03 135 87.26 177.97 214 89.93 183.29 116 92.92 189.26 263 185.90 374.86 308 209.16 421.29 95 238.63 480.11 1154 241.72 486.28 299 270.19 543.12 110 277.68 558.05 61 295.24 593.11 488 327.82 658.15 54 338.31 679.08 231 351.87 706.16 746 462.87 927.72 98 511.01 1023.83 478	74.90 153.29 147 66 77.09 157.66 317 71 84.29 172.03 135 78 87.26 177.97 214 68 89.93 183.29 116 59 92.92 189.26 263 75 185.90 374.86 308 79 209.16 421.29 95 57 238.63 480.11 1154 89 241.72 486.28 299 83 270.19 543.12 110 63 277.68 558.05 61 60 295.24 593.11 488 65 327.82 658.15 54 58 338.31 679.08 231 54 351.87 706.16 746 69 462.87 927.72 98 43 511.01 1023.83 478 75	74.90 153.29 147 66 51 77.09 157.66 317 71 51 84.29 172.03 135 78 61 87.26 177.97 214 68 50 89.93 183.29 116 59 45 92.92 189.26 263 75 56 185.90 374.86 308 79 58 209.16 421.29 95 57 44 238.63 480.11 1154 89 47 241.72 486.28 299 83 62 270.19 543.12 110 63 49 277.68 558.05 61 60 48 295.24 593.11 488 65 39 327.82 658.15 54 58 46 338.31 679.08 231 54 36 351.87 706.16 746 69 35 462.87 927.72 98 43 31 511.01	74.90 153.29 147 66 51 477 77.09 157.66 317 71 51 477 84.29 172.03 135 78 61 555 87.26 177.97 214 68 50 432 89.93 183.29 116 59 45 370 92.92 189.26 263 75 56 493 185.90 374.86 308 79 58 536 209.16 421.29 95 57 44 353 238.63 480.11 1154 89 47 373 241.72 486.28 299 83 62 533 270.19 543.12 110 63 49 359 277.68 558.05 61 60 48 339 295.24 593.11 488 65 39 265 327.82 658.15 54 58 46 317 338.31 679.08 231 54 36 226

37

28

138 1.47 a

Page 001

48

570.11 1141.80

21

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
22	583.32	1168.16	378	 53	30	153	1.49 a	
23		1220.05			30	170	1.29 8	
24	727.38	1455.71	47	33	25	116	1.24 a	ı
25	768.49	1537.78	49	37	28	136	1.89 a	1
26	860.63	1721.71	40	26	19	74	1.32 a	1
27	911.35	1822.95	232	42	24	95	1.94 a	ı
28	969.12	1938.26	108	36	24	113	1.47 a	ı
29	1120.61	2240.67	122	32	19	65	1.71 ε	ı
30	1238.73	2476.45	30	26	20	71	1.95 a	1
31	1461.00	2920.12	486	49	17	51	2.28 a	1
32	1764.74	3526.42	91	24	12	28	1.79 a	1

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET011128.BKG (112818-1 LONG BKG CAL)

Bkg.File Detector #: 1

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEI	FLAG
1	66.44	43	41	32	13	73	60	NET <cl< td=""></cl<>
2	74.90	147	66	51	124	72	56	
7	92.92	263	75	56	230	89	69	
8	185.90	308	79	58	276	89	68	
10	238.63	1154	89	47	1109	99	61	
14	295.24	488	65	39	476	77	52	
17	351.87	746	69	35	693	84	54	
19	511.01	478	75	50	83	107	86	NET <cl< td=""></cl<>
20	558.39	37	27	20	-26	42	35	NET <cl< td=""></cl<>
21	570.11	48	37	28	26	43	34	NET <cl< td=""></cl<>
22	583.32	378	53	30	356	65	43	
23	609.32	545	59	30	513	66	40	
27	911.35	232	42	24	214	52	35	
31	1461.00	486	49	17	356	57	35	
32	1764.74	91	24	12	73	29	20	

****************************** SEEKER FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-18 GS181103-1

N

Sampling Start: 10/25/2018 12:00:00	Counting Start: 12/04/2018 15:05:18
Sampling Stop: 10/25/2018 12:00:00	Decay Time 9.63e+002 Hrs
Buildup Time 0.00e+000 Hrs	Live Time 18000 Sec
Sample Size 1.82e+002 g	Real Time 18027 Sec
Collection Efficiency 1.0000	Spectrum File
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval: 95 %

Detector #: 1 (Detector 1)

Efficiency File: (D01)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-1.00E+02 +1.28E+02*L +-5.55E+01*L^2 +7.96E+00*L^3] 09/12/2018

Eff.=10^[-9.85E-01 +4.24E-01*L +-4.07E-01*L^2 +4.46E-02*L^3] Above

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N		_				
	ENERGY E	Concent	ration		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
U-238	92.60	2.14E+00 +	- 8.27E-01	1.30E+00	6.40E-01	3.92E+13	
Ra-226	186.10	2.88E+00 +	- 9.33E-01	1.45E+00	7.13E-01	1.40E+07	
Pb-212	238.63	1.13E+00 +	- 1.01E-01	1.26E-01	6.18E-02	5.04E+04	
Ra-223	269.39	3.73E-01 +	- 2.15E-01	3.44E-01	1.67E-01	2.87E+08	
T1-208	Average:x	3.37E-01 +	- 6.03E-02			5.04E+04	
	277.36	4.46E-01 +	- 4.39E-01	7.17E-01	3.49E-01	5.04E+04	
	583.14	3.35E-01 +	- 6.11E-02	8.44E-02	4.09E-02	5.04E+04	
	860.47	3.37E-01 +	- 7.01E-01	9.46E-01	4.60E-01	5.04E+04	
Pb-214	Average:x	1.09E+00 +	- 1.06E-01			1.40E+07	
	295.21	1.22E+00 +	- 1.98E-01	2.75E-01	1.34E-01	1.40E+07	
	351.92	1.04E+00 +	- 1.26E-01	1.66E-01	8.11E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	8.80E-01 +	- 1.32E-01			5.04E+04	
	338.40	1.01E+00 +	- 2.35E-01	3.31E-01	1.60E-01	5.04E+04	
	911.07	8.61E-01 +	- 2.08E-01	2.93E-01	1.41E-01	5.04E+04	
	968.90	7.55E-01 +	- 2.52E-01	3.57E-01	1.69E-01	5.04E+04	
Bi-214	Average:x	9.68E-01 +	- 1.06E-01			1.40E+07	
	609.31	9.49E-01 +	- 1.22E-01	1.52E-01	7.34E-02	1.40E+07	
	768.36	1.02E+00 +	- 7.77E-01	1.24E+00	5.92E-01	1.40E+07	
	1120.29	1.12E+00 +	- 2.92E-01	3.70E-01	1.73E-01	1.40E+07	
	1238.11	7.68E-01 +	- 6.61E-01	1.06E+00	4.94E-01	1.40E+07	
	Page (004					102 -66

193 of 624

182159D01.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

Concentration ENERGY E Critical Halflife Nuclide (keV) T (pCi/g) MDA Level (hrs) 1764.49 9.43E-01 +- 3.79E-01 5.43E-01 2.54E-01 1.40E+07 Bi-212 727.17 3.83E-01 +- 2.74E-01 4.34E-01 2.06E-01 5.04E+04 K-40 1460.75 5.63E+00 +- 8.99E-01 1.15E+00 5.54E-01 1.12E+13 Average:x 1.15E-02 +- 3.05E-02 T1-210 1.40E+07 860.00 5.98E-02 +- 2.51E+00 6.39E-01 2.98E-01 1.40E+07 795.00 N 1.15E-02 +- 3.05E-02 5.17E-02 2.44E-02 1.40E+07 Ra-224 241.00 1.26E+00 +- 5.68E+00 1.43E+00 7.01E-01 5.04E+04 Pb-210 46.52 N 1.44E+01 +- 3.25E+01 5.42E+01 2.62E+01 1.79E+05 T1-201 70.82 N 7.99E+02 +- 1.73E+03 2.88E+03B 1.41E+03 7.35E+01 143.76 N 1.46E-01 +- 1.58E-01 2.58E-01 1.25E-01 3.33E+10 **U-235** Ir-192 316.49 N 2.42E-02 +- 3.78E-02 6.26E-02 3.02E-02 1.78E+03 477.56 N-1.23E-01 +- 3.86E-01 6.76E-01 3.23E-01 1.28E+03 Be-7 Sc-46 889.26 N 2.83E-02 +- 4.00E-02 6.63E-02 3.10E-02 2.01E+03 946.00 N-2.37E-02 +- 1.55E-01 2.75E-01 1.29E-01 3.95E+13 Pa-234

MEASURED TOTAL: 8.31E+02 +- 1.78E+03 pCi/g

Na-22 1274.54 N 1.40E-02 +- 3.13E-02 5.34E-02 2.46E-02 2.28E+04

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	66.44	136.39	13	73	60	247	0.41	Deleted
2	74.90	153.29	124	72	56	477	0.92	Unknown
3	77.09	157.66	317	71	51	477	0.92	Unknown
4	84.29	172.03	135	78	61	555	1.45	Unknown
5	87.26	177.97	214	68	50	432	1.08	Unknown
6	89.93	183.29	116	59	45	370	1.03	Unknown
9	209.16	421.29	95	57	44	353	1.00	Unknown
11	241.72	486.28	299	83	62	533	1.58	SPLIT
15	327.82	658.15	54	58	46	317	1.48	Unknown
18	462.87	927.72	98	43	31	172	1.49	Unknown
19	511.01	1023.83	83	107	86	319	2.48	Deleted
20	558.39	1118.40	-26	42	35	88	0.74	Deleted
21	570.11	1141.80	26	43	34	138	1.47	Deleted
26	860.63	1721.71	40	26	19	74	1.32	SPLIT

c:\SEEKER\BIN\182159d01.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-19 GS181103-1

SEEKER

Sampling Start: 10/25/2018 12:00:00	Counting Start: 12/05/2018 14:09:05
Sampling Stop: 10/25/2018 12:00:00	Decay Time 9.86E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.60E+002 g	Real Time 60109 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 5 (Detector 5)

Energy(keV) = -0.63 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018 FWHM(keV) = 0.65 + -0.002*En + 2.17E-03*En^2 +-2.42E-05*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #			•	UN- CERTAINTY				FLAG
1				114	92			
2	66.41	133.92	298	117	92	1699	0.78 h	
3	74.82	150.72	937	115	80	1424	0.73 ε	HiResid
4	77.07	155.21	1339	122	80	1424	0.67 h	HiResid
5	83.74	168.53	81	78	63	970	0.50 ε	L
6	84.64	170.33	106	79	63	970	0.45 h	
7	87.23	175.52	733	136	102	1939	0.94	:
8	89.94	180.92	394	116	90	1616	0.74 d	l
9	92.92	186.88	885	152	115	2262	1.15 €	•
10	99.50	200.03	119	90	72	1145	0.67 ε	ı
11	105.29	211.60	126	119	96	1713	1.06 a	ı
12	108.47	217.94	81	104	84	1428	0.89 1	NET< CL
13	128.99	258.94	365	121	95	1660	1.06 a	ı
14	139.84	280.60	298	106	83	1382	0.87 ε	1
15	144.03	288.99	163	132	106	1934	1.15 h	
16	154.12	309.13	109	107	86	1497	0.80 a	ı
17	163.76	328.40	60	72	58	824	0.48 a	ı
18	185.92	372.67	1227	147	107	1939	1.12 ε	ı
19	198.52	397.84	203	101	80	1278	0.79 ε	ı
20	205.47	411.72	69	70	56	774	0.50 a	ı
21	209.23	419.23	533	108	80	1290	0.85 1	
		D 001						

PEAK SEARCH RESULTS

PK. #	(keV)	CHANNEL			C.L. COUNTS			FLAG
22	238.56	477.83	6620		86			a HiResid
		483.63			107			HiResid
24	270.21	541.06	482	124	96	1449	1.28	a
25	277.48						1.14	
26	295.14		2508					
27				114				
28					66			a
29		676.98			65			a
30				153				a.
31		819.29				677		a .
32					58			a .
33	510.86			153				a Wide Pk
34	558.47		111	69	54	591	1.27	a .
35	562.54	1125.05	154			665	1.52	b
36	569.99	1139.94			81	1045	2.05	a .
37	583.11	1166.15	1930	114	60	692	1.46	a
38	596.70	1193.30	132	88	70	901	1.57	a
39	609.26	1218.40	2980	134	64	803	1.54	a
40	665.41	1330.55	78	63	50	511	1.26	a
41	693.50	1386.68	99	95	76	932	2.16	a
42	727.28	1454.16	409	84		642	1.81	a .
43	768.36	1536.23	238	71	53	514	1.61	a .
44	772.07	1543.64	112	68	53	514	1.61	b
45	785.52	1570.50	134	61	46	413	1.40	a .
46	794.87	1589.19	180	58	42	367	1.29	b
47	803.01	1605.44	135	61	46	413	1.50	C
48	806.18	1611.77	45	39	31	229	0.90	đ
	835.81				39		0.91	a.
50	860.49	1720.27		66				
51	898.17	1795.56	48	61	49	462	1.75	a NET< CL
52	911.24	1821.66	1378	93	46	409	1.81	a
53	934.35	1867.83	92	49	37	300	1.25	
54	964.78	1928.62	292	67	48	440	1.85	
55	969.02	1937.09	756	77	45	400	1.56	
56	1000.71	2000.40	69	50	39	305	1.70	
57	1120.28	2239.27	622	76	47	394	2.06	
58	1155.05	2308.72	69	51	40	305	1.86	
59	1238.04	2474.53	186	58	42	341	1.79	
60	1377.98	2754.07	151	50	36	241	1.92	
61	1408.79	2815.63	45	38	29	176	1.41	
62	1460.85	2919.63	2375	107	37	235		a HiResid
63	1509.32	3016.47	64	45	35	200	2.49	
64	1588.61	3174.87	45	47	37	242	2.06	
65	1630.91	3259.36	49	41	32	164	2.44	
66	1729.46	3456.23	136	42	29	134	2.51	
67	1764.56	3526.36	463	55	28	137	2.20	a
		Page 002						196 of 62

196 of 624

			_	_									
====													
	PEAK SEARCH RESULTS												
====													
PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM						
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG					
									_				
68	1847.59	3692.23	66	37	28	126	2.39	a .					

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

Background File: DET051128.BKG (112818-5 LONG BKG CAL)

Bkg.File Detector #: 5

SEEKER

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN-OLD NEW NET NEW UN-NEW PK# COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG (keV) ______ 63.43 171 NET<CL 66.41 194 NET<CL 74.82 92.92 124 NET<CL 99.50 128.99 153 NET<CL 139.84 160 NET<CL 163.76 185.92 152 NET<CL 198.52 -66 238.56 295.14 338.25 351.85 510.86 558.47 -74 117 NET<CL 137 NET<CL 569.99 583.11 -57 141 NET<CL 596.70 609.26 115 NET<CL 693.50 803.01 -45 99 NET<CL -41 121 NET<CL 898.17 911.24 969.02 1120.28 62 1460.85 67 1764.56

181905D05.SPC Analyzed by ******************************* FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ******************************* Geo 17/26 Sample ID: 1810627-19 GS181103-1 _____ Sampling Start: 10/25/2018 12:00:00 | Counting Start: 12/05/2018 14:09:05 Sampling Stop: 10/25/2018 12:00:00 | Decay Time. 9.86e+002 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 60000 Sec Sample Size 1.60e+002 g | Real Time Collection Efficiency 1.0000 | Spectrum File 181905D05.SPC Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % _____ Detector #: 5 (Detector 5) Efficiency File: (D05)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-1.03E+02 +1.32E+02*L +-5.73E+01*L^2 +8.21E+00*L^3] 05/17/2018 Eff.=10^[-4.57E+01 +4.54E+01*L +-1.54E+01*L^2 +1.70E+00*L^3] Above 300.00 keV _____ Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills) ______ MEASURED or MDA CONCENTRATIONS ______ N Critical Halflife ENERGY E Concentration) MDA Nuclide (keV) T (pCi/g Level (hrs) ______ บ-235 Average:x 1.37E-01 +- 1.08E-01 3.33E+10 143.76 1.37E-01 +- 1.11E-01 1.82E-01 8.99E-02 3.33E+10 205.31 1.37E-01 +- 4.77E-01 6.65E-01 3.30E-01 3.33E+10 Ra-223 Average:x 3.41E-01 +- 8.90E-02 2.87E+08 154.18 1.72E-01 +- 1.69E-01 2.78E-01 1.37E-01 2.87E+08 269.39 4.05E-01 +- 1.04E-01 1.63E-01 8.04E-02 2.87E+08 Ra-226 186.10 2.52E+00 +- 6.10E-01 9.73E-01 4.83E-01 1.40E+07 Average:x 1.65E+00 +- 6.15E-02 5.04E+04 Pb-212 238.63 1.64E+00 +- 6.18E-02 7.67E-02 3.80E-02 5.04E+04 300.09 2.27E+00 +- 6.39E-01 9.99E-01 4.92E-01 5.04E+04 Average:x 4.22E-01 +- 3.33E-02 5.04E+04 T1-208 277.36 3.95E-01 +- 1.95E-01 3.13E-01 1.54E-01 5.04E+04 583.14 4.23E-01 +- 3.39E-02 4.60E-02 2.27E-02 5.04E+04 5.04E+04 860.47 4.22E-01 +- 4.24E-01 5.62E-01 2.78E-01Average:x 1.74E+00 +- 7.23E-02 Pb-214 1.40E+07

1.66E-01

. . . .

. . . .

1.28E+00 +- 1.15E-01 1.52E-01 7.47E-02 5.04E+04

8.20E-02

. . . .

. . . .

1.40E+07

1.40E+07

1.40E+07

5.04E+04

Page 005

241.98

911.07

Ac-228

295.21 1.53E+00 +- 1.17E-01

I.D.

Average:x 1.34E+00 +- 8.94E-02

351.92 1.86E+00 +- 9.18E-02 1.16E-01 5.74E-02

. . . .

338.40 1.65E+00 +- 2.35E-01 3.56E-01 1.76E-01 5.04E+04

MEASURED or MDA CONCENTRATIONS

	N					
	ENERGY E	Concen	tration		Critical	Halflife
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)
	964.60	1.59E+00	+- 3.67E-01	5.35E-01	2.60E-01	5.04E+04
	968.90	1.25E+00	+- 2.05E-01	3.05E-01	1.50E-01	5.04E+04
Bi-214	Average:x	1.26E+00	+- 7.58E-02			1.40E+07
	609.31	1.25E+00	+- 9.24E-02	1.32E-01	6.53E-02	1.40E+07
	768.36	1.18E+00	+- 3.55E-01	5.39E-01	2.63E-01	1.40E+07
	934.06	8.67E-01	+- 4.57E-01	7.16E-01	3.45E-01	1.40E+07
	1120.29	1.34E+00	+- 2.38E-01	3.53E-01	1.74E-01	1.40E+07
	1238.11	1.17E+00	+- 3.64E-01	5.45E-01	2.64E-01	1.40E+07
	1377.67	1.55E+00	+- 5.18E-01	7.71E-01	3.72E-01	1.40E+07
	1764.49	1.35E+00	+- 2.57E-01	3.73E-01	1.82E-01	1.40E+07
Bi-212	Average:x	8.42E-01	+- 1.61E-01			5.04E+04
	727.17	8.03E-01	+- 1.65E-01	2.43E-01	1.19E-01	5.04E+04
	785.42	1.65E+00	+- 7.49E-01	1.17E+00	5.69E-01	5.04E+04
T1-210	Average:x	4.50E-02	+- 1.43E-02			1.40E+07
	795.00	4.43E-02	+- 1.43E-02	2.15E-02	1.04E-02	1.40E+07
	860.00	1.17E-01	+- 1.52E+00	3.79E-01	1.84E-01	1.40E+07
	1410.00	3.68E-01	+- 3.08E-01	4.96E-01	2.37E-01	1.40E+07
Pa-234	Average:x	8.58E-02	+- 7.49E-02			3.95E+13
	808.10	2.30E-01	+- 2.01E-01	3.25E-01	1.56E-01	3.95E+13
	946.00 N	6.04E-02	+- 8.12E-02	1.34E-01	6.50E-02	3.95E+13
	94.67	2.30E-01	+- 7.23E-01	1.03E+00	5.12E-01	3.95E+13
K-40	1460.75	7.65E+00	+- 5.96E-01	8.08E-01	3.99E-01	1.12E+13
Ra-224	241.00	3.77E-01	+- 2.60E+00	6.14E-01	3.03E-01	5.04E+04
Ir-192	Average:x	-5.47E-03	+- 2.62E-02			1.78E+03
	205.78	1.99E-02	+- 1.99E+00	4.85E-01	2.37E-01	1.78E+03
	316.49 N	-5.47E-03	+- 2.62E-02	4.41E-02	2.16E-02	1.78E+03
U-238	92.60	1.15E+00	+- 4.43E+00	1.01E+00	5.00E-01	3.92E+13
Pb-210	46.52 N	8.75E+00	+- 2.18E+01	3.61E+01	1.78E+01	1.79E+05
T1-201	70.82 N	9.83E+02	+- 1.45E+03	2.39E+03	1.18E+03	7.35E+01
Be-7	477.56 N	-2.47E-01	+- 2.44E-01	4.20E-01	2.06E-01	1.28E+03
Sc-46	889.26 N	-6.13E-03	+- 2.43E-02	4.12E-02	2.01E-02	2.01E+03
Na-22	1274.54 N	1.17E-03	+- 2.06E-02	3.49E-02	1.69E-02	2.28E+04

MEASURED TOTAL: 1.01E+03 +- 1.48E+03 pCi/g

Page 006

UNKNOWN, SUM OF ESCAPE PEAKS

PK. ENERGY ADDRESS UN-BKG FWHM NET C.L. (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG ______ 171 194 63.43 127.97 79 209 1699 0.83 Deleted 1 236 1699 0.78 Deleted 66.41 133.92 71 2 187 1424 0.73 Unknown 866 146 74.82 150.72 3 80 1339 122 1424 0.67 Unknown 4 77.07 155.21 78 970 0.50 Unknown 5 83.74 168.53 81 63

200 of 624

181905D05.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
6	84.64	170.33	106	79	63	970	0.45	Unknown
7	87.23	175.52	733	136	102	1939	0.94	Unknown
8	89.94	180.92	394	116	90	1616	0.74	Unknown
9	92.92	186.88	684	234	187	2262	1.15	SPLIT
10	99.50	200.03	85	152	124	1145	0.67	Deleted
11	105.29	211.60	126	119	96	1713	1.06	Unknown
12	108.47	217.94	81	104	84	1428	0.89	Deleted
13	128.99	258.94	326	187	151	1660	1.06	Unknown
14	139.84	280.60	73	187	153	1382	0.87	Deleted
17	163.76	328.40	2	195	160	824	0.48	Deleted
19	198.52	397.84	-66	184	152	1278	0.79	Deleted
20	205.47	411.72	69	70	56	774	0.50	SPLIT
21	209.23	419.23	533	108	80	1290	0.85	Unknown
23	241.46	483.63	1323	149	107	1807	1.36	SPLIT
28	327.91	656.32	246	87	66	933	0.94	Unknown
31	409.48	819.29	142	73	57	677	0.92	Unknown
32	462.92	926.03	313	79	58	673	1.21	Unknown
33	510.86	1021.81	397	304	248	1363	2.36	Unknown
34	558.47	1116.93	-74	142	117	591	1.27	Deleted
35	562.54	1125.05	154	75	58	665	1.52	Unknown
36	569.99	1139.94	10	167	137	1045	2.05	Deleted
38	596.70	1193.30	-57	171	141	901	1.57	Deleted
40	665.41	1330.55	79	63	50	511	1.26	Unknown
41	693.50	1386.68	26	140	115	932	2.16	Deleted
44	772.07	1543.64	112	68	53	514	1.61	Unknown
47	803.01	1605.44	-45	120	99	413	1.50	Deleted
49	835.81	1670.98	55	50	39	355	0.91	Unknown
50	860.49	1720.27	220	66	49	460	1.73	SPLIT
51	898.17	1795.56	-41	147	121	462	1.75	Deleted
56	1000.71	2000.40	69	50	39	305	1.70	Unknown
58	1155.05	2308.72	69	51	40	305	1.86	Unknown
63	1509.32	3016.47	64	45	35	200	2.49	Unknown
64	1588.61	3174.87	45	47	37	242	2.06	Unknown
65	1630.91	3259.36	49	41	32	164	2.44	Unknown
66	1729.46	3456.23	136	42	29	134	2.51	Unknown
68	1847.59	3692.23	66	37	28	126	2.39	Unknown

c:\SEEKER\BIN\181905d05.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-20 GS181103-1

Sampling Start: 10/25/2018 12:00:00 | Counting Start: 12/04/2018 14:50:45
Sampling Stop: 10/25/2018 12:00:00 | Decay Time. 9.63E+002 Hrs
Buildup Time. . . . 0.00E+000 Hrs | Live Time 18000 Sec
Sample Size 2.18E+002 g | Real Time 181816D09.SPC

Detector #: 9 (Detector 9)

Energy(keV) = -2.19 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/04/2018 FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En² + 0.00E+00*En³ 11/01/2018 Where En = Sgrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

				UN-				
#				CERTAINTY				
1				65			0.92	
2	63.21	130.46	246	56	38	355	0.53	a
3	66.41	136.85	74	49	38	355	0.54	b
4	74.76	153.50	698	93	63	733	0.97	a
5	77.05	158.07	1073	94	55	611	0.88	b
6	84.22	172.38	192	78	60	607	1.21	a Wide Pk
7	87.09	178.10	452	84	60	607	1.14	b
8	89.91	183.73	252	65	46	433	0.82	c
9	92.74	189.36	589	101	73	780	1.46	đ
10	105.60	215.01	59	74	59	559	1.24	a NET< CL
11	109.02	221.85	80	54	42	349	0.83	b
12	129.01	261.71	76	56	44	383	0.75	a
13	168.36	340.21	51	49	38	293	0.84	a
14	186.03	375.46	272	64	45	377	0.99	a
15	198.36	400.06	52	54	43	335	0.96	a
16	209.33	421.94	118	52	39	308	0.89	a
17	238.67	480.48	1379	88	39	281	1.00	a
18	241.63	486.37	304	79	58	468	1.56	b
19	270.42	543.80	102	58	45	317	1.24	a
20	277.22	557.37	45	40	31	198	0.76	a
21	295.30	593.44	467	61	36	234	1.02	a
		Page 001						

Page 001

PEAK SEARCH RESULTS

PK. #	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
22	300.18	603.17	96	47	36	234	1.05	Ь
23	316.09	634.92	30	41	33	197	0.93	a NET< CL
24	327.98	658.64	81	48	37	233	1.11	a .
25	338.51	679.63	235	50	33	199	1.02	a .
26	352.12	706.79	748	70	35	212	1.10	a .
27	463.44	928.84	78	41	30	170	1.30	a .
28	511.16	1024.03	510	72	46	280	2.34	a Wide Pk
29	558.87	1119.21	58	31	22	101	1.04	a .
30	569.49	1140.40	31	36	28	148	1.29	a
31	583.48	1168.30	430	54	29	154	1.31	a .
32	609.65	1220.51	525	58	29	159	1.32	a
33	697.67	1396.08	26	26	19	86	0.85	a
34	727.62	1455.84	88	35	25	112	1.29	a
35	768.47	1537.32	34	24	18	71	0.85	a
36	795.33	1590.90	35	26	19	74	1.16	a
37	803.19	1606.57	19	25	19	74	1.20	b NET< CL
38	861.06	1722.01	30	24	17	70	1.02	a .
39	911.43	1822.51	264	43	23	100	1.66	a
40	934.51	1868.53	27	23	17	59	1.31	a
41	969.17	1937.67	134	32	18	74	1.11	a
42	1120.45	2239.46	117	34	22	85	1.84	a.
43	1377.61	2752.45	23	18	13	35	1.53	a.
44	1460.70	2918.20	825	61	17	50	2.09	a
45	1764.16	3523.53	94	24	11	25	1.84	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET091128.BKG (112818-9 LONG BKG CAL)

Bkg.File Detector #: 9

BACKGROUND SUBTRACT RESULTS

ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEI	FLAG
46.33	176		40	76	06	60	
							NET <cl< td=""></cl<>
74.76		93					
77.05		94	55	1011	105	69	
84.22	192	78	60	168	94	75	
87.09	452	84	60	426	94	70	
92.74	589	101	73	406	112	86	
186.03	272	64	45	181	76	59	
198.36	52	54	43	-9	67	55	NET <cl< td=""></cl<>
238.67	1379	88	39	1300	97	53	
270.42	102	58	45	90	69	55	
295.30	467	61	36	444	70	46	
327.98	81	48	37	70	54	42	
338.51	235	50	33	224	55	38	
352.12	748	70	35	697	78	47	
511.16	510	72	46	44	102	83	NET <cl< td=""></cl<>
558.87	58	31	22	1	43	36	NET <cl< td=""></cl<>
569.49	31	36	28	8	52	43	NET <cl< td=""></cl<>
		54	29	398	63	40	
					66	40	
							NET <cl< td=""></cl<>
				•			-,
-	(keV) 46.32 63.21 66.41 74.76 77.05 84.22 87.09 92.74 186.03 198.36 238.67 270.42 295.30 327.98 338.51 352.12 511.16	(keV) COUNTS 46.32 176 63.21 246 66.41 74 74.76 698 77.05 1073 84.22 192 87.09 452 92.74 589 186.03 272 198.36 52 238.67 1379 270.42 102 295.30 467 327.98 81 338.51 235 352.12 748 511.16 510 558.87 58 569.49 31 583.48 430 609.65 525 803.19 19 911.43 264 1460.70 825	(keV) COUNTS CERTAINTY 46.32 176 65 63.21 246 56 66.41 74 49 74.76 698 93 77.05 1073 94 84.22 192 78 87.09 452 84 92.74 589 101 186.03 272 64 198.36 52 54 238.67 1379 88 270.42 102 58 295.30 467 61 327.98 81 48 338.51 235 50 352.12 748 70 511.16 510 72 558.87 58 31 569.49 31 36 583.48 430 54 609.65 525 58 803.19 19 25 911.43 264 43 1460.70 </td <td>(keV) COUNTS CERTAINTY CR.LEVEL 46.32 176 65 49 63.21 246 56 38 66.41 74 49 38 74.76 698 93 63 77.05 1073 94 55 84.22 192 78 60 87.09 452 84 60 92.74 589 101 73 186.03 272 64 45 198.36 52 54 43 238.67 1379 88 39 270.42 102 58 45 295.30 467 61 36 327.98 81 48 37 338.51 235 50 33 352.12 748 70 35 511.16 510 72 46 58.87 58 31 22 569.49 31 <t< td=""><td>(keV) COUNTS CERTAINTY CR.LEVEL COUNTS 46.32 176 65 49 76 63.21 246 56 38 145 66.41 74 49 38 48 74.76 698 93 63 639 77.05 1073 94 55 1011 84.22 192 78 60 168 87.09 452 84 60 426 92.74 589 101 73 406 186.03 272 64 45 181 198.36 52 54 43 -9 238.67 1379 88 39 1300 270.42 102 58 45 90 295.30 467 61 36 444 327.98 81 48 37 70 338.51 235 50 33 224 558.87</td><td>(keV) COUNTS CERTAINTY CR. LEVEL COUNTS CERTAINTY 46.32 176 65 49 76 86 63.21 246 56 38 145 75 66.41 74 49 38 48 82 74.76 698 93 63 639 102 77.05 1073 94 55 1011 105 84.22 192 78 60 168 94 87.09 452 84 60 426 94 92.74 589 101 73 406 112 186.03 272 64 45 181 76 198.36 52 54 43 -9 67 238.67 1379 88 39 1300 97 270.42 102 58 45 90 69 295.30 467 61 36 444 70</td><td>(keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL 46.32 176 65 49 76 86 69 63.21 246 56 38 145 75 58 66.41 74 49 38 48 82 66 74.76 698 93 63 639 102 73 77.05 1073 94 55 1011 105 69 84.22 192 78 60 168 94 75 87.09 452 84 60 426 94 70 92.74 589 101 73 406 112 86 186.03 272 64 45 181 76 59 198.36 52 54 43 -9 67 55 238.67 1379 88 39 1300 97 53 279.98</td></t<></td>	(keV) COUNTS CERTAINTY CR.LEVEL 46.32 176 65 49 63.21 246 56 38 66.41 74 49 38 74.76 698 93 63 77.05 1073 94 55 84.22 192 78 60 87.09 452 84 60 92.74 589 101 73 186.03 272 64 45 198.36 52 54 43 238.67 1379 88 39 270.42 102 58 45 295.30 467 61 36 327.98 81 48 37 338.51 235 50 33 352.12 748 70 35 511.16 510 72 46 58.87 58 31 22 569.49 31 <t< td=""><td>(keV) COUNTS CERTAINTY CR.LEVEL COUNTS 46.32 176 65 49 76 63.21 246 56 38 145 66.41 74 49 38 48 74.76 698 93 63 639 77.05 1073 94 55 1011 84.22 192 78 60 168 87.09 452 84 60 426 92.74 589 101 73 406 186.03 272 64 45 181 198.36 52 54 43 -9 238.67 1379 88 39 1300 270.42 102 58 45 90 295.30 467 61 36 444 327.98 81 48 37 70 338.51 235 50 33 224 558.87</td><td>(keV) COUNTS CERTAINTY CR. LEVEL COUNTS CERTAINTY 46.32 176 65 49 76 86 63.21 246 56 38 145 75 66.41 74 49 38 48 82 74.76 698 93 63 639 102 77.05 1073 94 55 1011 105 84.22 192 78 60 168 94 87.09 452 84 60 426 94 92.74 589 101 73 406 112 186.03 272 64 45 181 76 198.36 52 54 43 -9 67 238.67 1379 88 39 1300 97 270.42 102 58 45 90 69 295.30 467 61 36 444 70</td><td>(keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL 46.32 176 65 49 76 86 69 63.21 246 56 38 145 75 58 66.41 74 49 38 48 82 66 74.76 698 93 63 639 102 73 77.05 1073 94 55 1011 105 69 84.22 192 78 60 168 94 75 87.09 452 84 60 426 94 70 92.74 589 101 73 406 112 86 186.03 272 64 45 181 76 59 198.36 52 54 43 -9 67 55 238.67 1379 88 39 1300 97 53 279.98</td></t<>	(keV) COUNTS CERTAINTY CR.LEVEL COUNTS 46.32 176 65 49 76 63.21 246 56 38 145 66.41 74 49 38 48 74.76 698 93 63 639 77.05 1073 94 55 1011 84.22 192 78 60 168 87.09 452 84 60 426 92.74 589 101 73 406 186.03 272 64 45 181 198.36 52 54 43 -9 238.67 1379 88 39 1300 270.42 102 58 45 90 295.30 467 61 36 444 327.98 81 48 37 70 338.51 235 50 33 224 558.87	(keV) COUNTS CERTAINTY CR. LEVEL COUNTS CERTAINTY 46.32 176 65 49 76 86 63.21 246 56 38 145 75 66.41 74 49 38 48 82 74.76 698 93 63 639 102 77.05 1073 94 55 1011 105 84.22 192 78 60 168 94 87.09 452 84 60 426 94 92.74 589 101 73 406 112 186.03 272 64 45 181 76 198.36 52 54 43 -9 67 238.67 1379 88 39 1300 97 270.42 102 58 45 90 69 295.30 467 61 36 444 70	(keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL 46.32 176 65 49 76 86 69 63.21 246 56 38 145 75 58 66.41 74 49 38 48 82 66 74.76 698 93 63 639 102 73 77.05 1073 94 55 1011 105 69 84.22 192 78 60 168 94 75 87.09 452 84 60 426 94 70 92.74 589 101 73 406 112 86 186.03 272 64 45 181 76 59 198.36 52 54 43 -9 67 55 238.67 1379 88 39 1300 97 53 279.98

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-20 GS181103-1

Page 004

Sampling Buildup Sample S Collecti Cr. Leve	Stop: Time ize on Efficier 1 Confidence	10/25/2018 0.000 2.3	12:00:00 e+000 Hrs 18e+002 g 1.0000 : 95 %	Decay Time Live Time Real Time Spectrum	e	12/04/2018 14:50:45 9.63e+002 Hrs 18000 Sec 18064 Sec181816D09.SPC ce Interval: 95 %			
			ector #: 9	(Detector					
Efficiency File: (D09)(Sh17).EFF (Geo 17 Eff Cal)									
	-					11/06/2018			
	-				_	Above 300.00 keV			
		WATER_GREAT							
_		-				=======================================			
		MEAS	URED or MDA	CONCENTRA	TIONS				
=======					========				
	N								
		Concent							
		(pCi/g			Level				
		7.49E-01 +				1 700+05			
		9.96E-01 +							
0-236	_	9.96E-01 +			4.02E-01				
		9.96E-01 +				3.92E+13			
Pa-234		6.21E-02 +							
	_	2.01E-01 +							
	699.10	4.59E-01 +	- 4.54E-01	7.35E-01	3.43E-01	3.95E+13			
	946.00 N	-1.22E-01 +	- 1.38E-01	2.57E-01	1.21E-01	3.95E+13			
	94.67	2.11E-01 +	- 1.20E+00	2.45E-01	1.21E-01	3.95E+13			
Ra-226	186.10	1.43E+00 +	- 6.04E-01	9.51E-01	4.65E-01	1.40E+07			
Pb-212	Average:x	1.08E+00 +	- 7.96E-02			5.04E+04			
		1.08E+00 +							
		1.22E+00 +			4.50E-01				
Ra-223		2.67E-01 +		3.33E-01	1.63E-01				
T1-208	_	3.21E-01 +		• • • •	• • •	5.04E+04			
	277.36		- 2.64E-01		2.05E-01	5.04E+04			
	583.14	3.27E-01 +		6.79E-02	3.28E-02	5.04E+04			
	860.47	2.49E-01 +		3.08E-01	1.43E-01	5.04E+04			
Ac-228	_	8.61E-01 +			1 447 01	5.04E+04			
	338.40	8.46E-01 +		2.97E-01	1.44E-01	5.04E+04			
	911.07	8.86E-01 +	- I.00E-Ul	2.09E-01	9.98E-02	5.04E+04			

205 of 624

MEASURED or MDA CONCENTRATIONS

=======											
	N										
	ENERGY E	Concen	tra	tion		Critical	Halflife				
	(keV) T	-			MDA	Level	(hrs)				
	968.90				2.48E-01						
Pb-214	Average:x	8.97E-01	+-	9.83E-02			1.40E+07				
	351.92	8.96E-01	+-	1.00E-01	1.24E-01	6.05E-02	1.40E+07				
	241.98	I.D.					1.40E+07				
	295.21	9.33E-01	+-	5.22E-01	7.13E-01	3.53E-01	1.40E+07				
Bi-214	Average:x	8.21E-01	+-	9.19E-02			1.40E+07				
	609.31	7.98E-01	+-	1.06E-01	1.33E-01	6.41E-02	1.40E+07				
	768.36	6.27E-01	+-	4.48E-01	6.98E-01	3.24E-01	1.40E+07				
	934.06	9.28E-01	+-	7.97E-01	1.27E+00	5.86E-01	1.40E+07				
	1120.29	9.62E-01	+-	2.83E-01	3.84E-01	1.81E-01	1.40E+07				
	1377.67	8.63E-01	+-	6.81E-01	1.06E+00	4.79E-01	1.40E+07				
	1764.49	9.55E-01	+-	3.53E-01	4.98E-01	2.33E-01	1.40E+07				
Bi-212	727.17	6.36E-01	+-	2.55E-01	3.76E-01	1.78E-01	5.04E+04				
T1-210	Average:x	3.19E-02	+-	2.39E-02			1.40E+07				
	795.00	3.18E-02	+-	2.40E-02	3.78E-02	1.77E-02	1.40E+07				
	296.00	3.62E-02	+-	2.55E-01	5.38E-02	2.61E-02	1.40E+07				
K-40	1460.75	1.11E+01	+-	9.26E-01	8.19E-01	3.90E-01	1.12E+13				
Ra-224	241.00	9.78E-01	+-	4.42E+00	1.10E+00	5.37E-01	5.04E+04				
T1-201	70.82 N	-1.64E+01	+-	3.08E+02	5.19E+02	2.54E+02	7.35E+01				
U-235	143.76 N	-6.45E-02	+-	1.54E-01	2.62E-01	1.28E-01	3.33E+10				
Ir-192	316.49 N	2.68E-02	+-	3.17E-02	5.21E-02	2.51E-02	1.78E+03				
Be-7	477.56 N	2.10E-01	+-	3.16E-01	5.24E-01	2.49E-01	1.28E+03				
Sc-46	889.26 N	-7.13E-03	+-	3.58E-02	6.36E-02	2.99E-02	2.01E+03				
Na-22	1274.54 N	1.28E-02	+-	3.10E-02	5.29E-02	2.45E-02	2.28E+04				

MEASURED TOTAL: 2.05E+01 +- 8.67E+00 pCi/g

UNKNOWN, SUM OT ESCAPE PEAKS

NET UN-PK. ENERGY ADDRESS C.L. BKG FWHM (keV) CHANNEL COUNTS CERTAINTY COUNTS # COUNTS (keV) FLAG ______ 66.41 136.85 48 82 66 355 0.54 Deleted 3 73 733 0.97 Unknown 4 74.76 153.50 639 102 77.05 158.07 1011 611 0.88 Unknown 5 105 69 607 1.21 Unknown 6 84.22 172.38 168 94 75 607 1.14 Unknown 87.09 178.10 70 7 426 94 46 433 0.82 Unknown 8 89.91 183.73 252 65 780 1.46 SPLIT 9 92.74 189.36 406 112 86 59 559 1.24 Deleted 10 105.60 215.01 59 74 383 0.75 Unknown 76 12 129.01 261.71 56 44 49 293 0.84 Unknown 13 168.36 340.21 51 38 335 0.96 Deleted 198.36 400.06 55 15 -9 67

52

79

39

58

Page 005

118

304

16 209.33 421.94

18

241.63 486.37

308 0.89 Unknown

468 1.56 SPLIT

181816D09.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
21	295.30	593.44	444	70	46	234	1.02	SPLIT
23	316.09	634.92	30	41	33	197	0.93	Deleted
24	327.98	658.64	70	54	42	233	1.11	Unknown
27	463.44	928.84	78	41	30	170	1.30	Unknown
28	511.16	1024.03	44	102	83	280	2.34	Deleted
29	558.87	1119.21	1	43	36	101	1.04	Deleted
30	569.49	1140.40	8	52	43	148	1.29	Deleted
37	803.19	1606.57	-6	35	29	74	1.20	Deleted

c:\SEEKER\BIN\181816d09.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-21 GS181103-2

Sampling Start: 10/26/2018 12:00:00	Counting Start: 12/05/2018 08:31:38
Sampling Stop: 10/26/2018 12:00:00	Decay Time 9.57E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time
Sample Size 2.34E+002 g	Real Time
Collection Efficiency 1.0000	Spc. File

Detector #: 8 (Detector 8)

Energy (keV) = $-2.26 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018$ $FWHM(keV) = 0.65 + 0.012*En + 6.79E-04*En^2 + 0.00E+00*En^3 04/17/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 _____

PEAK SEARCH RESULTS

	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	FLAG
1		96.65			15			1
2	63.11	130.38	78	44	33	222	0.78 ε	ı
3	73.05	150.21	45	43	33	224	0.79 ε	ı
4	74.69	153.48	260	47	28	179	0.73 1	
5	76.99	158.07	363	51	28	179	0.72	:
6	84.33	172.69	67	49	38	251	1.14 a	ı
7	87.15	178.33	97	37	25	143	0.65 1	•
8	89.76	183.54	74	31	21	108	0.57	2
9	92.76	189.52	214	55	38	251	1.08	1
10	99.25	202.46	26	30	23	117	0.72 8	1
11	109.23	222.36	20	25	19	90	0.45 a	ı
12	129.09	261.96	46	34	26	136	0.85 a	ı
13	139.77	283.26	29	25	18	82	0.45 8	ı
14	185.64	374.75	98	45	33	187	1.10 a	a.
15	209.38	422.09	44	36	28	141	0.97 a	a.
16	238.58	480.34	513	53	22	98	0.89 8	1
17	241.74	486.63	122	47	34	176	1.55 1	•
18	277.01	556.97	66	46	35	152	1.99 8	a Wide Pk
19	295.20	593.24	140	36	23	94	0.94 8	a.
20	300.05	602.92	30	26	20	78	0.85 1	•
21	328.02	658.70	29	19	13	42	0.54 8	a
		Page 001						

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
22	338.44	679.49	71	34	24	100	1.10	a
23	351.91	706.35	301	42	19	65	1.03 a	a
24	409.65	821.51	29	34	26	104	1.51 8	a
25	462.96	927.82	40	31	24	97	1.43	a
26	511.18	1024.00	259	48	29	116	2.34	a Wide Pk
27	558.60	1118.56	21	17	12	34	0.65	a .
28	583.47	1168.17	164	35	20	66	1.42	a .
29	609.48	1220.04	214	37	18	61	1.35	a.
30	727.54	1455.48	28	27	20	71	1.42	a .
31	795.27	1590.57	16	14	10	24	0.90	a
32	911.17	1821.72	70	26	17	53	1.69	a
33	968.97	1936.98	55	23	15	44	1.37	a
34	1120.19	2238.56	40	20	13	32	1.70	2.
35	1460.49	2917.26	362	40	10	17	2.02	a .
36	1763.91	3522.39	43	16	7	10	2.06	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET081128.BKG (112818-8 LONG BKG CAL)

Bkg.File Detector #: 8

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEL	FLAG
1	46.20	 79	26	15	38	31	23	
2	63.11	78	44	33	8	49	40 1	NET <cl< td=""></cl<>
3	73.05	45	43	33	14	46	37 1	NET <cl< td=""></cl<>
5	76.99	363	51	28	331	55	34	
6	84.33	67	49	38	44	55	44	
7	87.15	97	37	25	86	41	30	
9	92.76	214	55	38	121	59	45	
10	99.25	26	30	23	24	34	27 1	NET <cl< td=""></cl<>
11	109.23	20	25	19	18	27	21 1	NET <cl< td=""></cl<>
13	139.77	29	25	18	-1	32	26 1	NET <cl< td=""></cl<>
14	185.64	98	45	33	60	47	37	
16	238.58	513	53	22	472	56	29	
19	295.20	140	36	23	123	40	27	
22	338.44	71	34	24	63	37	28	
23	351.91	301	42	19	277	44	23	
26	511.18	259	48	29	48	57	45	
27	558.60	21	17	12	-7	22	18 1	NET <cl< td=""></cl<>
28	583.47	164	35	20	152	38	24	
29	609.48	214	37	18	191	41	25	
32	911.17	70	26	17	61	28	19	
34	1120.19	40	20	13	37	22	15	
35	1460.49	362	40	10	337	41	15	
36	1763.91	43	16	7	38	17	10	

SEEKER FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-21 GS181103-2

Sampling Start: 10/26/2018 12:00:00	Counting Start: 12/05/2018 08:31:38
Sampling Stop: 10/26/2018 12:00:00	Decay Time 9.57e+002 Hrs
Buildup Time 0.00e+000 Hrs	Live Time
Sample Size 2.34e+002 g	Real Time
Collection Efficiency 1.0000	Spectrum File
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval: 95 %

Detector #: 8 (Detector 8)

Efficiency File: (D08)(Sh17).EFF (Geo 17 Eff Cal)

Eff.=1/[5.03E-02*En^-2.20E+00 + 1.32E+02*En^8.10E-01] 05/17/2018

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

N
ENERGY E Concentration Critical Halflife
Nuclide (keV) T (pCi/g) MDA Level (hrs)

Pb-210	46.52	8.21E-01	+-	6.78E-01	1.09E+00	5.14E-01	1.79E+05
U-238	92.60	1.00E+00	+-	4.91E-01	7.73E-01	3.75E-01	3.92E+13
Ra-226	186.10	9.95E-01	+-	7.82E-01	1.26E+00	6.08E-01	1.40E+07
Pb-212	Average:x	7.59E-01	+-	8.90E-02			5.04E+04
	238.63	7.59E-01	+-	8.99E-02	9.74E-02	4.65E-02	5.04E+04
	300.09	7.67E-01	+-	6.63E-01	1.06E+00	4.96E-01	5.04E+04
T1-208	Average:x	2.53E-01	+-	6.10E-02			5.04E+04
	277.36	7.91E-01	+-	5.45E-01	8.70E-01	4.19E-01	5.04E+04
	583.14	2.46E-01	+-	6.14E-02	8.11E-02	3.84E-02	5.04E+04
Pb-214	Average:x	6.58E-01	+-	9.42E-02			1.40E+07
	295.21	5.33E-01	+-	1.72E-01	2.47E-01	1.18E-01	1.40E+07
	351.92	7.11E-01	+-	1.13E-01	1.28E-01	6.03E-02	1.40E+07
	241.98	I.D.					1.40E+07
Ac-228	Average:x	4.91E-01	+-	1.38E-01			5.04E+04
	338.40	4.71E-01	+-	2.78E-01	4.34E-01	2.07E-01	5.04E+04
	911.07	4.17E-01	+-	1.94E-01	2.85E-01	1.33E-01	5.04E+04
	968.90	6.64E-01	+-	2.78E-01	3.84E-01	1.76E-01	5.04E+04
Bi-214	Average:x	6.26E-01	+-	1.15E-01			1.40E+07
	609.31	6.08E-01	+-	1.29E-01	1.64E-01	7.79E-02	1.40E+07
	1120.29	5.80E-01	+-	3.39E-01	5.05E-01	2.31E-01	1.40E+07
	1764.49	8.34E-01	+-	3.70E-01	4.76E-01	2.09E-01	1.40E+07

727.17 3.98E-01 +- 3.77E-01 6.07E-01 2.85E-01

Page 004

Bi-212

MEASURED or MDA CONCENTRATIONS

Concentration ENERGY E Critical Halflife) MDA Level (hrs) (keV) T (pCi/g Nuclide -----795.00 2.79E-02 +- 2.51E-02 3.93E-02 1.72E-02 1.40E+07 T1-210 1460.75 9.10E+00 +- 1.11E+00 8.81E-01 4.04E-01 1.12E+13 K-40 Ra-224 241.00 9.13E-01 +- 5.14E+00 1.28E+00 6.17E-01 5.04E+04 T1-201 70.82 N 5.57E+01 +- 3.86E+02 0.33E-02 1.18E-01 3.33E+10
U-235 143.76 N-2.97E-03 +- 1.80E-01 3.10E-01 1.48E-01 3.33E+10 Ir-192 316.49 N 2.12E-03 +- 4.20E-02 7.27E-02 3.45E-02 1.78E+03 477.56 N 2.86E-02 +- 4.06E-01 7.15E-01 3.32E-01 1.28E+03 Be-7 Sc-46 889.26 N 0.00E+00 +- 4.87E-02 8.73E-02 4.00E-02 2.01E+03 Pa-234 946.00 N 4.06E-02 +- 1.75E-01 3.07E-01 1.40E-01 3.95E+13 Na-22 1274.54 N 2.66E-03 +- 4.16E-02 7.51E-02 3.39E-02 2.28E+04

MEASURED TOTAL: 7.20E+01 +- 3.96E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
2	63.11	130.38	8	49	40	222	0.78	Deleted
3	73.05	150.21	14	46	37	224	0.79	Deleted
4	74.69	153.48	260	47	28	179	0.73	Unknown
5	76.99	158.07	331	55	34	179	0.72	Unknown
6	84.33	172.69	44	55	44	251	1.14	Unknown
7	87.15	178.33	86	41	30	143	0.65	Unknown
8	89.76	183.54	74	31	21	108	0.57	Unknown
10	99.25	202.46	24	34	27	117	0.72	Deleted
11	109.23	222.36	18	27	21	90	0.45	Deleted
12	129.09	261.96	46	34	26	136	0.85	Unknown
13	139.77	283.26	-1	32	26	82	0.45	Deleted
15	209.38	422.09	44	36	28	141	0.97	Unknown
17	241.74	486.63	122	47	34	176	1.55	SPLIT
21	328.02	658.70	29	19	13	42	0.54	Unknown
24	409.65	821.51	29	34	26	104	1.51	Unknown
25	462.96	927.82	40	31	24	97	1.43	Unknown
26	511.18	1024.00	48	57	45	116	2.34	Unknown
27	558.60	1118.56	-7	22	18	34	0.65	Deleted

c:\SEEKER\BIN\181957d08.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins

Geo 17/26

Sample ID: 1810627-22 GS181103-2

SEEKER

Detector #: 10 (Detector 10)

Energy(keV) = -2.05 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/06/2018 FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En² + 0.00E+00*En³ 11/15/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

				UN- CERTAINTY				FLAG
1				 57				
2				46				
3				54				
4	74.65			87		615		
5	77.03			83				
6	86.97		163		49			
7	89.85			40				
8	92.67		264		61			C
9		214.04			41			
10	128.85		50		40			
11		282.79			43			
12	143.79		42		38			
13		374.89			49			
14	198.34		111		34			a
15		421.21			33			a
16	238.55				45	368	1.27	a
17		486.46			57			b
18	270.26		107		36			
19		554.17			29			b
20		557.46			40			С
21		593.16						a
		Page 001						

PEAK SEARCH RESULTS

#	(keV)	CHANNEL	COUNTS		C.L. COUNTS			FLAG
22					48	364	1.84	b
23	327.94	658.50	62	58	45	340	1.65	a
24	338.44	679.45	223	57	40	280	1.43	a
25	351.89	706.29	1065	80	39	261	1.42	a
26	463.41	928.82	46	61	49	319	2.30	a NET< CL
27	511.11	1024.01	712	78	47	315	2.56	a Wide Pk
28	558.47	1118.53	63	33	24	127	1.19	a .
29	570.18	1141.89	39	33	25	139	1.14	a
30	583.38	1168.24	413	56	31	182	1.58	a .
31	609.47	1220.29	884	77	40	285	1.73	a
32	662.14	1325.39	32	34	27	147	1.25	a
33	727.51	1455.84	105	42	31	164	1.76	a.
34	768.20	1537.05	39	37	29	167	1.58	a
35	786.05	1572.67	38	30	22	110	1.33	a
36	795.35	1591.22	17	23	18	80	0.95	a NET< CL
37	802.96	1606.41	63	33	24	119	1.51	b
38	860.57	1721.36	42	28	21	96	1.25	a .
39	911.37	1822.72	306	45	23	111	1.65	a
40	969.13	1937.99	145	40	27	143	1.71	a
41	1120.39	2239.83	162	40	25	106	2.54	a
42	1238.19	2474.90	59	37	28	129	2.52	a
43	1376.54	2750.98	47	50	40	149	5.75	a Wide Pk
44	1460.50	2918.52	1067	71	23	78	2.95	a.
45	1509.07	3015.44	21	28	22	75	2.85	a NET< CL
46	1729.77	3455.85	26	24		51		
47	1763.82	3523.80	166	33	17	41	3.08	а.

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

GammaScan

Background File: DET101128.BKG (112818-10 LONG BKG CAL)

Bkg.File Detector #: 10

BACKGROUND SUBTRACT RESULTS

ENERGY		OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW		
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVE		
1	45.88	61	57	45	26	75		NET <cl< td=""></cl<>	
2	63.11	69	46	36	14	62	51	NET <cl< td=""></cl<>	
3	66.10	86	54	42	10	64	52	NET <cl< td=""></cl<>	
4	74.65	442	87	62	353	96	73		
5	77.03	546	83	56	433	91	67		
6	86.97	163	65	49	138	70	54		
8	92.67	264	81	61	121	90	72		
11	139.66	53	54	43	-8	62	51	NET <cl< td=""></cl<>	
12	143.79	42	47	38	24	57	46	NET <cl< td=""></cl<>	
13	185.81	318	70	49	158	80	63		
14	198.34	111	46	34	-0	56	46	NET <cl< td=""></cl<>	
16	238.55	1172	87	45	1046	93	55		
17	241.72	366	79	57	269	85	65		
18	270.26	107	49	36	95	54	41		
21	295.19	640	68	38	451	76	52		
24	338.44	223	57	40	200	61	44		
25	351.89	1065	80	39	689	89	59		
27	511.11	712	78	47	117	94	75		
28	558.47	63	33	24	-28	41	35	NET <cl< td=""></cl<>	
29	570.18	39	33	25	1	43	35	NET <cl< td=""></cl<>	
30	583.38	413	56	31	343	62	41		
31	609.47	884	77	40	605	86	58		
34	768.20	39	37	29	-2	47	39	NET <cl< td=""></cl<>	
37	802.96	63	33	24	2	40	32	NET <cl< td=""></cl<>	
38	860.57	42	28	21	33	34	26		
39	911.37	306	45	23	258	49	31		
40	969.13	145	40	27	116	44	32		
41	1120.39	162	40	25	93	45	33		
42	1238.19	59	37	28	40	41	32		
43	1376.54	47	50	40	33	52	42	NET <cl< td=""></cl<>	
44	1460.50	1067	71	23	921	74	36		
45	1509.07	21	28	22	11	30	24	NET <cl< td=""></cl<>	
46	1729.77	26	24	18	9	29	24	NET <cl< td=""></cl<>	
		_	•						

47 **1**763.82 **1**66 **3**3 **1**7 **1**02 **3**7 **2**6

*********************************** FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-22 GS181103-2

------Sampling Start: 10/26/2018 12:00:00 | Counting Start: 12/06/2018 08:01:02
Sampling Stop: 10/26/2018 12:00:00 | Decay Time. 9.80e+002 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 7200 Sec Sample Size 2.10e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % ______ Detector #: 10 (Detector 10) Efficiency File: (D10)(Sh17).eff (Geo 17 Eff Cal) *Eff=10^[-5.73E+01 +7.32E+01*L +-3.17E+01*L^2 +4.54E+00*L^3] 11/20/2018 Eff.=10^[-2.63E+01 +2.68E+01*L +-9.41E+00*L^2 +1.07E+00*L^3] Above 300.00 keV ______ Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills) ______ MEASURED or MDA CONCENTRATIONS

	N							
	ENERGY E	Concen	tra	ation		Critical	Halflife	
	(keV) T					Level		
	46.52 N					5.29E+00		
U-238	92.60	8.58E-01	+-	6.39E-01	1.04E+00	5.10E-01	3.92E+13	
Ra-226	186.10	1.53E+00	+-	7.78E-01	1.24E+00	6.08E-01	1.40E+07	
Pb-212	Average:x	9.33E-01	+-	8.28E-02			5.04E+04	
	238.63	9.33E-01	+-	8.32E-02	1.01E-01	4.94E-02	5.04E+04	
	300.09	1.02E+00	+-	8.40E-01	1.36E+00	6.63E-01	5.04E+04	
Ra-223	269.39	2.78E-01	+-	1.58E-01	2.50E-01	1.21E-01	2.87E+08	
T1-208	Average:x	2.40E-01	+-	4.19E-02			5.04E+04	
	277.36	3.77E-01	+-	3.20E-01	5.20E-01	2.51E-01	5.04E+04	
	583.14	2.38E-01	+-	4.30E-02	5.86E-02	2.84E-02	5.04E+04	
	860.47	2.20E-01	+-	2.23E-01	3.62E-01	1.72E-01	5.04E+04	
Pb-214	Average:x	9.14E-01	+-	9.39E-02			1.40E+07	
	295.21	9.91E-01	+-	1.67E-01	2.34E-01	1.14E-01	1.40E+07	
	351.92	8.78E-01	+-	1.14E-01	1.54E-01	7.55E-02	1.40E+07	
	241.98	I.D.					1.40E+07	
Ac-228	Average:x	7.05E-01	+-	1.06E-01			5.04E+04	
	338.40	7.62E-01	+-	2.31E-01	3.46E-01	1.68E-01	5.04E+04	
	911.07	7.37E-01	+-	1.41E-01	1.84E-01	8.82E-02	5.04E+04	
	968.90	5.76E-01	+-	2.19E-01	3.29E-01	1.58E-01	5.04E+04	
Bi-214	Average:x	7.92E-01	+-	1.01E-01			1.40E+07	
	609.31	8.21E-01	+-	1.17E-01	1.61E-01	7.86E-02	1.40E+07	
	Page	004						

216 of 624

MEASURED or MDA CONCENTRATIONS

=======	=======			========		=======================================
	N					
	ENERGY E	Concentr	ation		Critical	Halflife
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)
				4 455 04		4 40- 05
	1120.29	5.99E-01 +-			2.15E-01	
	1238.11	6.90E-01 +-	7.18E-01	1.17E+00	5.62E-01	1.40E+07
	1764.49	8.30E-01 +-	3.02E-01	4.40E-01	2.09E-01	1.40E+07
Bi-212	Average:x	6.62E-01 +-	2.45E-01			5.04E+04
	727.17	6.23E-01 +-	2.51E-01	3.78E-01	1.81E-01	5.04E+04
	785.42	1.42E+00 +-	1.10E+00	1.75E+00	8.25E-01	5.04E+04
K-40	1460.75	9.74E+00 +-	7.87E-01	7.80E-01	3.75E-01	1.12E+13
Ra-224	241.00	8.80E-01 +-	5.13E+00	1.31E+00	6.42E-01	5.04E+04
T1-201	70.82 N	1.07E+02 +-	9.86E+02	1.65E+03B	8.08E+02	7.35E+01
U-235	143.76 N	5.49E-02 +-	1.80E-01	3.02E-01b	1.47E-01	3.33E+10
Ir-192	316.49 N	-1.05E-02 +-	3.38E-02	5.84E-02	2.82E-02	1.78E+03
Be-7	477.56 N	-2.32E-01 +-	3.29E-01	5.84E-01	2.81E-01	1.28E+03
T1-210	795.00 N	-2.36E-02 +-	2.74E-02	4.91E-02B	2.35E-02	1.40E+07
Sc-46	889.26 N	-2.48E-02 +-	3.50E-02	6.32E-02	3.01E-02	2.01E+03
Pa-234	946.00 N	1.16E-01 +-	1.34E-01	2.19E-01	1.04E-01	3.95E+13
Na-22	1274.54 N	1.66E-02 +-	3.29E-02	5.51E-02	2.61E-02	2.28E+04

MEASURED TOTAL: 1.27E+02 +- 1.00E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	63.11	130.03	14	62	51	281	0.69	Deleted
3	66.10	136.00	10	64	52	352	0.89	Deleted
4	74.65	153.06	353	96	73	615	1.26	Unknown
5	77.03	157.81	433	91	67	538	1.07	Unknown
6	86.97	177.64	138	70	54	440	1.05	Unknown
7	89.85	183.39	79	40	30	220	0.55	Unknown
9	105.21	214.04	61	53	41	314	0.96	Unknown
10	128.85	261.22	50	50	40	318	0.81	Unknown
11	139.66	282.79	-8	62	51	342	0.95	Deleted
12	143.79	291.03	24	57	46	285	0.75	Deleted
14	198.34	399.89	-0	56	46	264	0.82	Deleted
15	209.02	421.21	79	44	33	251	0.87	Unknown
17	241.72	486.46	269	85	65	506	1.75	SPLIT
19	275.66	554.17	30	37	29	187	0.80	Unknown
23	327.94	658.50	62	58	46	340	1.65	Unknown
26	463.41	928.82	46	61	49	319	2.30	Deleted
27	511.11	1024.01	117	94	75	315	2.56	Unknown
28	558.47	1118.53	-28	41	35	127	1.19	Deleted
29	570.18	1141.89	1	43	35	139	1.14	Deleted
32	662.14	1325.39	32	34	27	147	1.25	Unknown
34	768.20	1537.05	-2	47	39	167	1.58	Deleted
		Page 005						217 .5

217 of 624

182002D10.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
36	795.35	1591.22	17	23	18	80	0.95	Deleted
37	802.96	1606.41	2	40	32	119	1.51	Deleted
43	1376.54	2750.98	33	52	42	149	5.75	Deleted
45	1509.07	3015.44	11	30	24	75	2.85	Deleted
46	1729.77	3455.85	9	29	24	51	2.67	Deleted

c:\SEEKER\BIN\182002d10.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-23 GS181103-2

Sampling Start: 10/26/2018 12:00:00 | Counting Start: 12/05/2018 14:09:37 Sampling Stop: 10/26/2018 12:00:00 | Decay Time. 9.62E+002 Hrs Buildup Time. 0.00E+000 Hrs | Live Time Sample Size 1.69E+002 g | Real Time

Detector #: 7 (Detector 7)

Energy (keV) = $-2.43 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018$ $FWHM(keV) = 0.77 + 0.005*En + 8.11E-04*En^2 + 0.00E+00*En^3 09/24/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 _____

PEAK SEARCH RESULTS

PK. #	(keV)	CHANNEL	COUNTS	UN- CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1				86			0.61	a.
2	66.55	137.51	105	74	59	844	0.44	a
3	74.80	153.97	678	118	87	1531	0.84	a
4	77.00	158.36	1176	139	100	1837	0.93	b
5	84.28	172.87	411	141	111	1940	1.24	a.
6	87.16	178.62	680	132	100	1698	1.13	b
7	89.83	183.92	426	128	100	1698	1.10	c
8	92.77	189.80	1126	150	111	1940	1.38	đ
9	105.25	214.67	117	109	88	1424	1.03	a
10	112.64	229.41	53	69	55	750	0.46	a NET< CL
11	128.97	261.96	270	100	77	1206	0.85	a
12	139.75	283.47	151	83	65	947	0.71	a
13	143.76	291.44	141	109	88	1420	0.92	b
14	145.83	295.59	93	82	65	947	0.64	C
15	153.98	311.82	93	95	77	1186	0.77	a
16	185.83	375.32	1026	133	96	1576	1.19	a
17	198.47	400.53	224	153	123	2112	1.68	a Wide Pk
18	209.14	421.81	364	109	84	1296	0.91	a
19	238.58	480.50	4969	177	88	1320	1.07	a
20	241.63	486.58	1131	136	98	1508	1.33	b
21	270.17	543.47	393	112	86	1165	1.25	a
		Page 001						

182023D07.SPC Analyzed by

PEAK SEARCH RESULTS

	ENERGY (keV)				C.L. COUNTS			FI.AC
22	277.41	557.91	193	98	77	1023	1.10	a
					41			
24					76			
25	300.00	602.94			59	702	0.85	b
26	328.06	658.90	282	93	72	879	1.14	a
27				99	64	767		
28					74			
29					81			
30					47			
31	463.02	927.97	303	80	60	617		
32					98			
33	558.78				53			
34	570.04				43			
35	583.46				58			
36	596.75				59			
37		1220.13	2381	125	64	704		
38	618.44				62			
	665.31				64			
		1389.17			110 4 2			
41					4. Z	346		
42	708.33			69	50 36	204	1.81	
43 44	786.22				45			
45	795.22			63		406		
46	803.28				36			
47	839.99			54	43			
48					43			
	911.36				45			
					34			
51			272		82			
52	969.11	1936.98	614	71	42	309	1.81	b
53	1078.95	2155.95	55	47	37	239	1.84	a
54	1120.55	2238.90	479	67	41	318	1.98	a
55	1156.29	2310.16	62	52	41	295	2.10	a
56	1238.40	2473.85	176	53	38	266	2.05	a
57	1377.91	2752.00	105	42	31	172	1.91	a
58	1408.05	2812.09	60	36	27	143	1.61	a
59	1460.66	2916.99	1862	95	32	176	2.33	
60	1509.29	3013.93	33	37	29	159	1.93	
61	1588.34	3171.54	86	38	28	135	2.15	
62	1729.27	3452.52	63	31	22	95	1.86	
63	1764.12	3522.00	365	50	26	118	2.22	
64	1847.37	3687.97	33	28	21	83	1.74	a

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET071128.BKG (112818-7 LONG BKG CAL)

Bkg.File Detector #: 7

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN- OLD NEW NET NEW UN-NEW COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG PK# (keV) 46.48 -19 172 NET<CL 66.55 -81 145 NET<CL 74.80 77.00 84.28 92.77 139.75 146 NET<CL 145.83 102 NET<CL 185.83 198.47 -52 182 NET<CL 238.58 295.17 338.44 352.00 511.07 558.78 -53 112 NET<CL 570.04 -39 103 NET<CL 583.46 596.75 128 NET<CL 609.56 618.44 -6 119 NET<CL 694.35 133 NET<CL 727.50 803.28 -19 85 NET<CL

911.36

59 1460.66

63 1764.12

182023D07.SPC Analyzed by

SEEKER FINAL ACTIVITY REPORT

Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-23 GS181103-2

Detector #: 7 (Detector 7)

Efficiency File: (D07)(Sh17).EFF (DET 7 GEO 17 Eff Cal)

Eff=10^[-1.18E+02 +1.52E+02*L +-6.65E+01*L^2 +9.63E+00*L^3] 09/25/2018

Eff.=10^[9.78E-01 +-1.35E+00*L +1.03E-01*L^2 +-1.37E-03*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

N

	N						
	ENERGY E	Concent	ration		Critical	Halflife	
		(pCi/g					
		2.58E+00 +		1.23E+00			
บ-235	143.76	1.53E-01 +	- 1.18E-01	1.92E-01	9.47E-02	3.33E+10	
Ra-223	Average:x	3.60E-01 +	- 1.03E-01			2.87E+08	
	154.18	1.90E-01 +	- 1.95E-01	3.20E-01	1.57E-01	2.87E+08	
	269.39	4.25E-01 +	- 1.21E-01	1.88E-01	9.27E-02	2.87E+08	
Ra-226	186.10	2.70E+00 +	- 6.99E-01	1.11E+00	5.52E-01	1.40E+07	
Pb-212	Average:x	1.54E+00 +	- 7.45E-02			5.04E+04	
	238.63	1.57E+00 +	- 7.61E-02	1.01E-01	5.00E-02	5.04E+04	
	300.09	1.00E+00 +	- 3.60E-01	5.61E-01	2.74E-01	5.04E+04	
T1-208	Average:x	4.48E-01 +	- 5.02E-02			5.04E+04	
	277.36	4.43E-01 +	- 2.25E-01	3.62E-01	1.78E-01	5.04E+04	
	583.14	4.48E-01 +	- 5.18E-02	7.67E-02	3.79E-02	5.04E+04	
	860.47	4.48E-01 +	- 5.09E-01	6.78E-01	3.35E-01	5.04E+04	
Pb-214	Average:x	1.43E+00 +	- 7.49E-02			1.40E+07	
	295.21	1.42E+00 +	- 1.39E-01	2.02E-01	9.97E-02	1.40E+07	
	351.92	1.43E+00 +	- 8.90E-02	1.20E-01	5.91E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	1.32E+00 +	- 9.80E-02			5.04E+04	
	338.40	1.25E+00 +	- 1.91E-01	2.87E-01	1.42E-01	5.04E+04	
	911.07	1.25E+00 +	- 1.66E-01	2.41E-01	1.19E-01	5.04E+04	
	964.60	1.96E+00 +	- 7.56E-01	1.20E+00	5.90E-01	5.04E+04	
	Page	004					

MEASURED or MDA CONCENTRATIONS

======									
	N								
	ENERGY E	Concer	ntration		Critical	Halflife			
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)			
		4 207 00		1 05- 01		F 04= 04			
-: 014	968.90		+- 1.61E-01		9.49E-02	5.04E+04			
Bi-214	_		+- 8.55E-02			1.40E+07			
	609.31		+- 1.10E-01	1.57E-01	7.75E-02	1.40E+07			
	768.36		+- 4.66E-01	7.02E-01	3.42E-01	1.40E+07			
	934.06			8.86E-01	4.26E-01	1.40E+07			
	1120.29	1.41E+00	+- 1.97E-01	2.52E-01	1.22E-01	1.40E+07			
	1238.11	1.41E+00	+- 4.27E-01	6.31E-01	3.04E-01	1.40E+07			
	1377.67	1.36E+00	+- 5.50E-01	8.28E-01	3.96E-01	1.40E+07			
	1764.49	1.28E+00	+- 2.86E-01	4.19E-01	2.04E-01	1.40E+07			
Bi-212	Average:x	6.74E-01	+- 2.77E-01			5.04E+04			
	727.17	5.77E-01	+- 2.89E-01	4.64E-01	2.28E-01	5.04E+04			
	785.42	1.78E+00	+- 9.76E-01	1.55E+00	7.51E-01	5.04E+04			
T1-210	Average:x	4.64E-02	+- 2.10E-02			1.40E+07			
	795.00	4.45E-02	+- 2.10E-02	3.31E-02	1.61E-02	1.40E+07			
	860.00	1.59E-01	+- 1.82E+00	4.51E-01	2.18E-01	1.40E+07			
	1410.00	6.23E-01	+- 3.71E-01	5.79E-01	2.75E-01	1.40E+07			
K-40	1460.75	7.93E+00	+- 6.60E-01	8.80E-01	4.33E-01	1.12E+13			
Ra-224	241.00	1.42E+00	+- 3.09E+00	7.34E-01	3.62E-01	5.04E+04			
Pb-210	46.52 N	3.96E+01	+- 3.68E+01	6.03E+01	2.96E+01	1.79E+05			
T1-201	70.82 N	4.63E+02	+- 1.85E+03	3.06E+03B	1.52E+03	7.35E+01			
Ir-192	316.49 N	-8.78E-04	+- 2.30E-02	3.87E-02	1.90E-02	1.78E+03			
Be-7			+- 2.57E-01	4.38E-01	2.14E-01	1.28E+03			
Sc-46				4.54E-02	2.20E-02	2.01E+03			
Pa-234			+- 8.90E-02	1.46E-01	7.05E-02	3.95E+13			
Na-22			+- 2.05E-02	3.60E-02	1.74E-02	2.28E+04			
14G-22	75/4.34 M.	1.17E-V2	. 2.038-02	J. 00H-02	/-EB-V2	2.202.05			

MEASURED TOTAL: 5.25E+02 +- 1.89E+03 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	46.48	97.51	-19	209	172	1057	0.61	Deleted
2	66.55	137.51	-81	176	145	844	0.44	Deleted
3	74.80	153.97	538	181	144	1531	0.84	Unknown
4	77.00	158.36	1046	227	179	1837	0.93	Unknown
5	84.28	172.87	338	231	187	1940	1.24	Unknown
6	87.16	178.62	680	132	100	1698	1.13	Unknown
7	89.83	183.92	426	128	100	1698	1.10	Unknown
9	105.25	214.67	117	109	88	1424	1.03	Unknown
10	112.64	229.41	53	69	55	750	0.46	Deleted
11	128.97	261.96	270	100	77	1206	0.85	Unknown
12	139.75	283.47	18	178	146	947	0.71	Deleted
14	145.83	295.59	61	126	102	947	0.64	Deleted
		- 00-						

182023D07.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
17	198.47	400.53	-52	220	182	2112	1.68	Deleted
18	209.14	421.81	364	109	84	1296	0.91	Unknown
20	241.63	486.58	1131	136	98	1508	1.33	SPLIT
23	287.76	578.54	54	52	41	418	0.55	Unknown
26	328.06	658.90	282	93	72	879	1.14	Unknown
29	356.48	715.55	33	99	81	966	1.42	Deleted
30	409.47	821.19	111	61	47	505	0.80	Unknown
31	463.02	927.97	303	80	60	617	1.40	Unknown
32	511.07	1023.76	509	292	238	1178	2.56	Unknown
33	558.78	1118.89	-53	135	112	522	1.24	Deleted
34	570.04	1141.34	-39	125	103	398	1.00	Deleted
36	596.75	1194.60	44	156	128	611	1.44	Deleted
38	618.44	1237.83	-6	144	119	629	1.63	Deleted
39	665.31	1331.27	41	78	64	628	1.76	Deleted
40	694.35	1389.17	74	163	133	1278	3.28	Deleted
43	772.35	1544.69	48	46	36	284	1.16	Unknown
46	803.28	1606.35	-19	103	85	280	1.08	Deleted
47	839.99	1679.54	52	54	43	381	1.24	Unknown
48	860.81	1721.05	180	59	43	341	1.65	SPLIT
53	1078.95	2155.95	55	47	37	239	1.84	Unknown
55	1156.29	2310.16	62	52	41	295	2.10	Unknown
60	1509.29	3013.93	33	37	29	159	1.93	Unknown
61	1588.34	3171.54	86	38	28	135	2.15	Unknown
62	1729.27	3452.52	63	31	22	95	1.86	Unknown
64	1847.37	3687.97	33	28	21	83	1.74	Unknown

c:\SEEKER\BIN\182023d07.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-24 GS181103-2

Sampling Start:	10/26/2018 12:00:00	Counting Start:	12/05/2018 14:09:45
Sampling Stop:	10/26/2018 12:00:00	Decay Time	9.62E+002 Hrs
Buildup Time	0.00E+000 Hrs	Live Time	60000 Sec
Sample Size	1.35E+002 g	Real Time	60220 Sec
Collection Effici	iency 1.0000	Spc. File	181959D08.SPC

Detector #: 8 (Detector 8)

Energy(keV) = -2.26 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018 FWHM(keV) = 0.65 + 0.012*En + 6.79E-04*En^2 + 0.00E+00*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	CHANNEL		UN- CERTAINTY		COUNTS	•	
1	46.41			91		925		
2	49.61	103.45	50	66	53	694	0.42	b NET< CL
3	53.18	110.57	198	109	87	1387	1.04	C
4	63.18	130.52	1060	118	81	1328	0.78	a Wide Pk
5	66.34	136.81	371	213	172	3454	2.07	b
6	69.58	143.28	238	144	116	2125	1.23	C
7	72.42	148.94	649	242	194	3985	2.39	đ
8	74.76	153.61	2241	137	81	1328	0.83	е
9	77.01	158.10	3187	150	81	1328	0.81	f
10	79.00	162.06	84	100	81	1328	0.76	g
11	84.11	172.25	476	128	99	1664	1.10	a HiResid
12	87.13	178.29	1169	127	88	1426	1.02	b HiResid
13	89.83	183.66	748	108	77	1188	0.88	c HiResid
14	92.72	189.43	1792	136	88	1426	1.06	d HiResid
15	99.33	202.62	123	112	90	1380	1.08	a
16	105.25	214.42	181	113	90	1391	1.17	a
17	108.78	221.46	80	87	70	993	0.74	b
18	112.77	229.43	93	63	49	596	0.43	C
19	128.97	261.73	236	90	69	969	0.74	a
20	139.73	283.20	146	77	60	796	0.73	a
21	143.62	290.95	116	76	60	796	0.67	b
		Dago 001						

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL		CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
	153.99	211 62	90	61	48		0.45	
22 23	163.45	311.63 330.50	75		48 75	564 1048	0.45	a NET< CL
24	170.20	343.95	61		77	1083		a NET< CL
25	173.73		12		47	542		b NET< CL
26	177.24		14		47	542		c NET< CL
27	185.87		1041		75	1040	0.93	
28	198.33		316		82	1160	1.18	
29	209.33	421.99	333		62	770	0.85	
30	236.10	475.38	132		76	984	1.09	
31	238.60		3880		59	703		
32	241.70	486.56	973		84	1124	1.28	
33	270.30	543.60	331		78	957	1.38	
34	277.40	557.75	204		54	588	0.86	
35	295.25	593.35	1429		53	563		a HiResid
36		603.28	245		60	675		b HiResid
37	328.06	658.79	144		53	561	0.89	
38	338.42	679.45	744		56	577	1.06	
39	352.02	706.56	2479		54	542	1.04	
40		805.94	32		39	335		a NET< CL
41	409.50	821.20	132		57	550	1.18	
42	463.13	928.16	164	58	43	383	1.04	a
43	511.10	1023.83	2067	140	87	981	2.45	a Wide Pk
44	537.95	1077.38	33	38	30	223	0.64	a
45	558.65	1118.66	172	55	40	337	0.94	a
46	570.13	1141.55	94	60	47	436	1.07	a
47	583.44	1168.11	1111	87	47	427	1.10	a
48	598.16	1197.46	78	96	78	850	2.14	a Wide Pk
49	609.61	1220.29	1858	109	54	547	1.30	a
50	665.59	1331.95	43	58	47	406	1.27	a NET< CL
51	727.64	1455.70	233	56	39	300	1.09	a
52	768.47	1537.13	121	57	43	339	1.27	a
53	785.68	1571.44	72	42	31	227	1.04	a
54	795.07	1590.17	123	48	35	258	1.35	a
55	802.91	1605.81	169	54	39	291	1.49	b
56	806.30	1612.57	68	43	32	226	1.14	c
57	835.69		48	42	32	241	0.92	a
58	860.72	1721.11	109		27	175	0.87	a
59	898.05	1795.54	53		44	336	1.74	a
60	911.33	1822.03	751		36	251	1.48	
61	934.12	1867.48	80		30	200	1.15	
62	962.30		74		31	198	1.25	
63	964.72		148		42	296	1.97	
64	969.19		470		37	247	1.58	
65	1001.31		37		22	124	0.85	
66	1120.49		325		35	235		
67	1238.02		119		32	210		
0 /	1230.02		119	43	<i>4 &</i>	210	_,,,,	_
67	1258.02	2473.57 Page 002	119	45	32	210	1.33	a

226 of 624

181959D08.SPC Analyzed by

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
68	1377.59	2751.91	86	40	29	161	1.77	a
69	1407.48	2811.52	39	28	21	102	1.12	a
70	1460.51	2917.29	1185	75	25	118	1.94	a
71	1509.15	3014.30	49	30	22	101	1.55	a
72	1630.41	3256.14	28	26	19	79	1.52	a
73	1763.98	3522.51	275	43	23	96	1.92	a
74	1846.54	3687.17	46	42	32	140	3.40	a

ALS Laboratory Group - Fort Collins

GammaScan

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

Background File: DET081128.BKG (112818-8 LONG BKG CAL)

Bkg.File Detector #: 8

SEEKER

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN-OLDNEW NET NEW UN-NEW PK# (keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG 46.41 53.18 179 NET<CL 63.18 66.34 220 NET<CL 69.58 74.76 77.01 84.11 87.13 92.72 99.33 144 NET<CL 108.78 107 NET<CL 112.77 109 NET<CL 139.73 -101 156 NET<CL 143.62 -40 152 NET<CL 185.87 198.33 145 NET<CL 238.60 295.25 338.42 352.02 511.10 558.65 -66 104 NET<CL 570.13 -16 95 NET<CL 583.44 609.61 802.91 -4 90 NET<CL 134 NET<CL 898.05 -39 911.33 79 NET<CL 962.30 66 1120.49

70 1460.51

73 1763.98

181959D08.SPC Analyzed by ******************************* FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ****************************** Geo 17/26 Sample ID: 1810627-24 GS181103-2 ______ Sampling Start: 10/26/2018 12:00:00 | Counting Start: 12/05/2018 14:09:45
Sampling Stop: 10/26/2018 12:00:00 | Decay Time. 9.62e+002 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 60000 Sec Sample Size 1.35e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % ______ Detector #: 8 (Detector 8) Efficiency File: (D08)(Sh17).EFF (Geo 17 Eff Cal) $Eff.=1/[5.03E-02*En^{-2}.20E+00 + 1.32E+02*En^{8}.10E-01] 05/17/2018$ ______ Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills) ______ MEASURED or MDA CONCENTRATIONS ______

	ENERGY E	Conce	ntra	ation		Critical	Halflife	
	(keV) T				MDA	Level		
	46.52							
U-238	Average:x	1.68E+00	+-	3.40E-01			3.92E+13	
	63.29	1.48E+00	+-	6.77E-01	1.10E+00	5.46E-01	3.92E+13	
	92.60	1.74E+00	+-	3.93E-01	6.25E-01	3.10E-01	3.92E+13	
Ra-223	Average:x	2.77E-01	+-	8.25E-02			2.87E+08	
	154.18	1.73E-01	+-	1.18E-01	1.89E-01	9.19E-02	2.87E+08	
	269.39	3.79E-01	+-	1.16E-01	1.81E-01	8.90E-02	2.87E+08	
Ra-226	186.10	2.48E+00	+-	5.89E-01	9.30E-01	4.60E-01	1.40E+07	
Pb-212	Average:x	1.19E+00	+-	7.03E-02			5.04E+04	
	238.63	1.18E+00	+-	7.13E-02	9.82E-02	4.86E-02	5.04E+04	
	300.09	1.28E+00	+-	4.18E-01	6.47E-01	3.17E-01	5.04E+04	
T1-208	Average:x	3.53E-01	+-	4.84E-02			5.04E+04	
	277.36	5.06E-01	+-	1.78E-01	2.75E-01	1.34E-01	5.04E+04	
	583.14	3.40E-01	+-	5.08E-02	7.66E-02	3.79E-02	5.04E+04	
	860.47	3.53E-01	+-	3.73E-01	5.04E-01	2.48E-01	5.04E+04	
Pb-214	Average:x	1.20E+00	+-	7.70E-02			1.40E+07	
	295.21	1.16E+00	+-	1.52E-01	2.28E-01	1.13E-01	1.40E+07	
	351.92	1.22E+00	+-	8.94E-02	1.22E-01	6.04E-02	1.40E+07	
	241.98	I.D.					1.40E+07	
Ac-228	Average:x	1.07E+00	+-	9.63E-02			5.04E+04	
	338.40	1.05E+00	+-	2.35E-01	3.68E-01	1.82E-01	5.04E+04	
	911.07	9.64E-01	+-	1.52E-01	2.22E-01	1.09E-01	5.04E+04	
	Page (005						220 0

229 of 624

MEASURED or MDA CONCENTRATIONS

=======								
	N							
	ENERGY E	Concer	tration		Critical	Halflife		
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)		
			+- 4.51E-01					
			+- 1.55E-01					
Bi-212	Average:x	7.13E-01	+- 1.62E-01			5.04E+04		
	727.17	6.84E-01	+- 1.65E-01	2.37E-01	1.14E-01	5.04E+04		
			+- 7.67E-01					
Bi-214	Average:x	1.03E+00	+- 1.44E-01			1.40E+07		
	768.36	9.02E-01	+- 4.21E-01	6.58E-01	3.19E-01	1.40E+07		
	934.06	1.11E+00	+- 5.66E-01	8.75E-01	4.19E-01	1.40E+07		
	1120.29	9.83E-01	+- 2.67E-01	4.07E-01	1.99E-01	1.40E+07		
	1238.11	1.07E+00	+- 4.03E-01	6.03E-01	2.89E-01	1.40E+07		
	1377.67	1.26E+00	+- 5.81E-01	8.85E-01	4.23E-01	1.40E+07		
	1764.49	1.05E+00	+- 2.91E-01	4.33E-01	2.10E-01	1.40E+07		
	609.31	1.03E+00	+- 4.56E-01	6.68E-01	3.33E-01	1.40E+07		
T1-210	Average:x	4.53E-02	+- 1.78E-02			1.40E+07		
	795.00	4.53E-02	+- 1.78E-02	2.70E-02	1.30E-02	1.40E+07		
	860.00	1.24E-02	+- 1.33E+00	3.13E-01	1.49E-01	1.40E+07		
Pa-234	Average:x	1.06E-02	+- 8.97E-02			3.95E+13		
	808.10	5.16E-01	+- 3.23E-01	5.10E-01	2.45E-01	3.95E+13		
	946.00 N	-3.17E-02	+- 9.34E-02	1.62E-01	7.80E-02	3.95E+13		
K-40	1460.75	5.51E+00	+- 6.27E-01	8.69E-01	4.27E-01	1.12E+13		
Ra-224	241.00	1.29E+00	+- 2.75E+00	6.38E-01	3.14E-01	5.04E+04		
T1-201	70.82 N	-4.18E+02	+- 3.82E+02	6.49E+02r	3.22E+02	7.35E+01		
U-235	143.76 N	1.51E-01	+- 8.63E-02	1.39E-01	6.80E-02	3.33E+10		
Ir-192	316.49 N	3.64E-03	+- 2.37E-02	3.97E-02	1.94E-02	1.78E+03		
Be-7	477.56 N	1.82E-01	+- 2.37E-01	3.90E-01	1.90E-01	1.28E+03		
			+- 2.71E-02		2.30E-02			
Na-22	1274.54 N	2.77E-03	+- 2.17E-02	3.70E-02	1.78E-02	2.28E+04		

MEASURED TOTAL: 1.80E+01 +- 6.24E+00 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	49.61	103.45	50	66	53	694	0.42	Deleted
3	53.18	110.57	103	219	179	1387	1.04	Deleted
5	66.34	136.81	200	270	220	3454	2.07	Deleted
6	69.58	143.29	212	182	148	2125	1.23	Unknown
7	72.42	148.94	649	242	194	3985	2.39	Unknown
8	74.76	153.61	1984	199	147	1328	0.83	Unknown
9	77.01	158.10	2922	224	161	1328	0.81	Unknown
10	79.00	162.06	84	100	81	1328	0.76	Unknown
11	84.11	172.25	281	233	190	1664	1.10	Unknown
12	87.13	178.29	1082	196	152	1426	1.02	Unknown

181959D08.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. ENERGY ADDRESS NET UN-C.L. BKG **FWHM** COUNTS (keV) FLAG # (keV) CHANNEL COUNTS CERTAINTY 89.83 183.66 0.88 Unknown 99.33 202.62 1.08 Deleted 105.25 214.42 1.17 Unknown 108.78 221.46 0.74 Deleted 112.77 229.43 0.43 Deleted 128.97 261.73 0.74 Unknown 139.73 283.20 -101 0.73 Deleted 143.62 290.95 -40 0.67 Deleted 163.46 330.50 0.90 Deleted 170.20 343.95 0.92 Deleted 173.73 351.00 0.46 Deleted 177.24 358.00 0.46 Deleted 198.33 400.05 1.18 Deleted 209.33 421.99 0.85 Unknown 236.10 475.38 1.09 Unknown 241.70 486.56 1.28 SPLIT 328.06 658.79 0.89 Unknown 401.85 805.94 0.58 Deleted 409.50 821.20 1.18 Unknown 463.13 928.16 1.04 Unknown 511.10 1023.83 2.45 Unknown 537.95 1077.38 0.64 Unknown 0.94 558.65 1118.66 -66 Deleted 570.13 1141.55 -16 1.07 Deleted 598.16 1197.46 2.14 Unknown 609.61 1220.29 1.30 SPLIT 665.59 1331.95 1.27 Deleted 802.91 1605.81 -4 1.49 Deleted 835.69 1671.19 0.92 Unknown 860.72 1721.11 0.87 SPLIT 1.74 898.05 1795.54 -39 Deleted 962.30 1923.68 1.25 Deleted 1001.31 2001.49 0.85 Unknown 1407.48 2811.52 1.12 Unknown 1.55 Unknown 1509.15 3014.30 1630.41 3256.14 1.52 Unknown 74 1846.54 3687.17 3.40 Unknown 609.61 1220.29 547 1.30 1120SEsc

c:\SEEKER\BIN\181959d08.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-25 GS181103-2

	Counting Start: 12/05/2018 14:09:53
Sampling Stop: 10/26/2018 12:00:00	Decay Time 9.62E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.21E+002 g	Real Time 60220 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 9 (Detector 9)

Energy(keV) = -2.21 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018 FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En^2 + 0.00E+00*En^3 11/01/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN-C.L. BKG FWHM COUNTS CERTAINTY (keV) CHANNEL COUNTS COUNTS (keV) FLAG 71 46.36 96.87 98 1 560 1005 0.81 a2 53.16 110.45 98 64 50 612 0.51 a63.17 130.41 3 839 115 81 0.85 a1334 4 66.14 190 105 1868 1.19 b 136.33 130 5 73.14 150.29 181 120 96 1.02 a 1698 6 74.73 0.88 b 153.48 1922 134 84 1415 7 76.98 84 0.87 c 157.96 3070 151 1415 8 84.19 172.34 1624 1.32 a HiResid 523 131 101 178.28 9 87.17 1149 120 81 1218 1.05 b HiResid 89.81 71 1015 0.85 c HiResid 10 183.55 619 100 92.71 189.34 1.24 d HiResid 11 1658 148 101 1624 1.34 e HiResid 12 94.62 193.15 106 125 101 1624 1.15 f HiResid 13 98.35 200.59 112 113 91 1421 1.15 a Wide Pk 14 105.48 214.81 209 107 85 1225 15 109.01 1.50 b NET< CL 221.85 85 127 103 1575 0.46 a 16 115.37 234.53 71 60 47 545 17 129.02 261.77 235 87 67 906 0.84 a 1.07 a 18 139.84 283.35 175 106 85 1227 19 143.52 290.68 88 71 56 701 0.73 b 153.51 0.72 a20 310.62 62 70 56 698 21 159.51 322.58 55 56 45 489 0.47 a

181821D09.SPC Analyzed by

PEAK SEARCH RESULTS

#	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
					89			
23 24					11 4 69			
25					65			
26					65			
27					98			
28	241.09	486.50	250		72			
29					72 72			
					62			
31	293.27	602.06	1302	100	60	760	1.33	
32	300.07	650 61	120	73	69 57	700 610	1.05	
33	327.37	670.01	717	73	60	610	1.14	
34					57			
35					44			
36					50			
36 37		947.65		57				a NET< CL
			1714	122		430	2 43	a Wide Pk
38					85 4 3			
39					49			
40					44			
41	503.40	1100.27	1011	99	40	438		
42								
43					44 50			
44					35			
45	727.62				32			
46	768.63					194		
47		1590.50				240		
48				48	42			
					33			
50					41			
51						277	1.92	
52	962.58	1924.47	97	53	40	182	1.28	
53	965.07	1929.43	80	40	30		1.41	
54	969.20	1937.67	348	54	32	204	1.79	
55	1064.02	2126.80	46	47	37 32	242 186	1.67	
56	1120.41	2239.29	256					
57 50	1238.19	2474.22	134	47	3 4 26	191 127	1.99 1.85	
58	1377.58	2752.27	104	37				
59	1407.95	2812.85	32	29	22	102	1.44	
60	1460.67	2918.01	963	71	28	137	2.07	
61	1592.70	3181.36	29	35	28	143	1.91	
62	1729.17	3453.59	43	27	20	71	2.01	
63	1764.01	3523.08	239	41	22	87	2.08	a

************************* SEEKER

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

GammaScan *******************************

Background File: DET091128.BKG (112818-9 LONG BKG CAL)

Bkg.File Detector #: 9

BACKGROUND SUBTRACT RESULTS

______ ENERGY OLD NET OLD UN-OLD NEW NET NEW UN-NEW PK# COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG -----46.36 53.16 126 NET<CL 63.17 66.14 208 NET<CL 73.14 -15 149 NET<CL 76.98 84.19 87.17 92.71 139.84 137 NET<CL -9 143.52 108 NET<CL 185.89 198.92 159 NET<CL -69 238.63 270.26 295.27 327.97 85 NET<CL 338.44 352.01 225 NET<CL 511.13 558.57 -57 97 NET<CL 570.08 116 NET<CL 583.48 609.61 147 NET<CL 693.21 77 NET<CL 803.26 911.44 962.58 60 1460.67 63 1764.01

181821D09.SPC Analyzed by

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-25 GS181103-2

Detector #: 9 (Detector 9)

Efficiency File: (D09)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-1.47E+01 +1.58E+01*L +-5.94E+00*L^2 +6.70E-01*L^3] 11/06/2018

Eff.=10^[-4.97E+00 +4.67E+00*L +-1.91E+00*L^2 +2.19E-01*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concen	tration		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
Pb-210	46.52	1.21E+00	+- 1.11E+00	1.83E+00	9.07E-01	1.79E+05	
U-238	Average:x	2.11E+00	+- 3.98E-01			3.92E+13	
	63.29	1.86E+00	+- 7.52E-01	1.22E+00	6.04E-01	3.92E+13	
	92.60	2.21E+00	+- 4.68E-01	7.43E-01	3.68E-01	3.92E+13	
Pa-234	Average:x	5.13E-02	+- 4.26E-02			3.95E+13	
	94.67	8.01E-02	+- 9.43E-02	1.55E-01	7.65E-02	3.95E+13	
	98.44	5.19E-02	+- 5.24E-02	8.60E-02	4.24E-02	3.95E+13	
	946.00 N	5.70E-03	+- 1.16E-01	1.97E-01	9.48E-02	3.95E+13	
Ra-223	Average:x	2.06E-01	+- 1.37E-01			2.87E+08	
	154.18	1.45E-01	+- 1.64E-01	2.69E-01	1.31E-01	2.87E+08	
	269.39	3.50E-01	+- 2.51E-01	4.10E-01	2.03E-01	2.87E+08	
Ra-226	186.10	2.62E+00	+- 7.93E-01	1.27E+00	6.28E-01	1.40E+07	
Pb-212	Average:x	1.43E+00	+- 8.67E-02			5.04E+04	
	238.63	1.43E+00	+- 8.76E-02	1.19E-01	5.89E-02	5.04E+04	
	300.09	1.52E+00	+- 6.09E-01	9.63E-01	4.72E-01	5.04E+04	
T1-208	Average:x	4.03E-01	+- 5.84E-02			5.04E+04	
	277.36	4.32E-01	+- 3.19E-01	5.18E-01	2.54E-01	5.04E+04	
	583.14	4.02E-01	+- 5.96E-02	8.88E-02	4.38E-02	5.04E+04	
	860.47	4.03E-01	+- 6.94E-01	9.22E-01	4.55E-01	5.04E+04	
Ac-228	Average:x	1.15E+00	+- 1.06E-01			5.04E+04	
	338.40	1.39E+00	+- 2.40E-01	3.60E-01	1.77E-01	5.04E+04	
	Page (004					225 66

235 of 624

MEASURED or MDA CONCENTRATIONS

=======								
	N							
	ENERGY E	Concen	tration		Critical	Halflife		
	(keV) T				Level	·		
	911.07		+- 1.64E-01		1.12E-01			
			+- 4.35E-01					
			+- 1.83E-01					
Pb-214			+- 1.13E-01					
			+- 1.15E-01					
	241.98	I.D.				1.40E+07		
	295.21		+- 6.18E-01					
Bi-212	727.17	7.12E-01	+- 1.97E-01	2.84E-01	1.37E-01	5.04E+04		
Bi-214	Average:x	1.23E+00	+- 1.58E-01			1.40E+07		
	768.36	9.49E-01	+- 4.35E-01	6.67E-01	3.20E-01	1.40E+07		
	934.06	1.59E+00	+- 9.82E-01	1.56E+00	7.57E-01	1.40E+07		
	1120.29	1.14E+00	+- 2.23E-01	2.95E-01	1.41E-01	1.40E+07		
	1238.11	1.64E+00	+- 5.76E-01	8.58E-01	4.13E-01	1.40E+07		
	1377.67	2.07E+00	+- 7.45E-01	1.08E+00	5.14E-01	1.40E+07		
	1764.49	1.25E+00	+- 4.72E-01	7.38E-01	3.61E-01	1.40E+07		
			+- 4.84E-01					
T1-210	Average:x	4.47E-02	+- 2.09E-02			1.40E+07		
	795.00	4.47E-02	+- 2.09E-02	3.22E-02	1.54E-02	1.40E+07		
	860.00	5.43E-02	+- 2.48E+00	6.47E-01	3.14E-01	1.40E+07		
	296.00	3.91E-02	+- 3.02E-01	7.01E-02	3.46E-02	1.40E+07		
K-40	1460.75	6.22E+00	+- 7.93E-01	1.11E+00	5.44E-01	1.12E+13		
Ra-224	241.00	1.25E+00	+- 4.03E+00	9.87E-01	4.87E-01	5.04E+04		
			+- 4.25E+02			7.35E+01		
			+- 1.13E-01			3.33E+10		
Ir-192	316.49 N	2.97E-02	+- 2.88E-02	4.71E-02	2.30E-02	1.78E+03		
Be-7	477.56 N	8.35E-02	+- 2.91E-01	4.88E-01	2.37E-01	1.28E+03		
Sc-46	889.26 N	6.57E-03	+- 3.20E-02	5.42E-02	2.61E-02	2.01E+03		
Na-22	1274.54 N	-3.79E-03	+- 2.80E-02	4.84E-02	2.32E-02	2.28E+04		

MEASURED TOTAL: 4.76E+02 +- 4.33E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	53.16	110.44	20	153	126	612	0.51	Deleted
4	66.14	136.33	104	254	208	1868	1.19	Deleted
5	73.14	150.29	-15	181	149	1698	1.02	Deleted
6	74.73	153.48	1922	134	84	1415	0.88	Unknown
7	76.98	157.96	2863	217	156	1415	0.87	Unknown
8	84.19	172.34	442	222	179	1624	1.32	Unknown
9	87.17	178.28	1063	185	143	1218	1.05	Unknown
10	89.81	183.55	619	100	71	1015	0.85	Unknown
14	105.48	214.81	209	107	85	1225	1.15	Unknown
		D 00F						

181821D09.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
15	109.01	221.85	85	127	103	1575	1.50	Deleted
16	115.37	234.53	71	60	47	545	0.46	Unknown
17	129.02	261.77	235	87	67	906	0.84	Unknown
18	139.84	283.35	55	167	137	1227	1.07	Deleted
19	143.52	290.68	-9	131	108	701	0.73	Deleted
21	159.51	322.58	55	56	45	489	0.47	Unknown
23	198.92	401.20	-69	192	159	1687	1.82	Deleted
24	209.31	421.92	271	90	69	883	0.93	Unknown
25	229.43	462.05	46	81	65	790	0.91	Deleted
27	241.69	486.50	840	132	98	1318	1.57	SPLIT
30	295.27	593.38	1282	154	113	665	1.12	SPLIT
32	327.97	658.61	83	105	85	610	1.05	Deleted
35	409.55	821.34	74	56	44	385	0.84	Unknown
36	463.01	927.98	190	67	50	470	1.34	Unknown
37	472.88	947.65	20	57	47	430	1.15	Deleted
38	511.13	1023.96	159	275	225	919	2.43	Deleted
39	558.57	1118.59	-57	117	97	366	1.08	Deleted
40	570.08	1141.54	33	141	116	416	1.41	Deleted
42	609.61	1220.40	1469	142	98	438	1.32	SPLIT
43	658.02	1316.96	51	56	44	343	1.42	Unknown
44	693.21	1387.16	3	179	147	442	1.49	Deleted
48	803.26	1606.66	15	94	77	240	1.27	Deleted
49	860.93	1721.70	98	54	42	307	1.78	SPLIT
52	962.58	1924.47	70	87	70	272	1.92	Unknown
55	1064.02	2126.80	46	47	37	242	1.79	Unknown
59	1407.95	2812.85	32	29	22	102	1.44	Unknown
61	1592.70	3181.36	29	35	28	143	1.91	Unknown
62	1729.17	3453.59	43	27	20	71	2.01	Unknown
67	609.61	1220.40	62	1146	98	438	1.32	1120SEsc

c:\SEEKER\BIN\181821d09.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-26 GS181103-2

SEEKER

Sampling Start: 10/26/2018 12:00:00	Counting Start: 12/06/	2018 14:04:20
Sampling Stop: 10/26/2018 12:00:00	Decay Time	9.86E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time	60000 Sec
Sample Size 1.56E+002 g	Real Time	60064 Sec
Collection Efficiency 1.0000	Spc. File	182683D03.SPC
Detector #: 3	(Detector 3)	

Energy(keV) = -1.44 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/06/2018 FWHM(keV) = 0.79 + 0.012*En + 1.05E-03*En² + 0.00E+00*En³ 11/01/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
1		129.08			113		1.27	
2	66.34	135.19	189	127	102	1763	1.12	o
3	69.27	141.02	7	68	55	756	0.48	NET < CL
4	74.70	151.86	736	125	93	1599	1.06	a
5	76.97	156.38	1167	132	93	1599	1.02	o
6	84.32	171.04	254	129	103	1675	1.31	a
7	87.08	176.53	662	135	103	1675	1.31	o
8	89.83	182.03	347	107	82	1256	1.02	2
9	92.76	187.86	971	151	113	1884	1.49	i .
10	105.18	212.64	144	131	106	1666	1.52	3
11	108.86	219.97	126	120	97	1481	1.24	o
12	128.91	259.96	144	100	80	1179	0.94	3.
13	185.80	373.41	796	119	86	1266	1.18	a
14	198.27	398.28	155	96	76	1081	1.01	a
15	209.20	420.08	327	107	83	1271	1.29	a
16	238.57	478.66	3660	155	79	1163	1.28	3
17	241.60	484.70	889	113	79	1163	1.35	0
18	253.02	507.47	56	57	45	510	0.62	a .
19	270.26	541.84	307	111	86	1229	1.62	a
20	277.82	556.92	162	84	66	852	1.14	a .
21		591.52				932		a
		- 001						

182683D03.SPC Analyzed by

PEAK SEARCH RESULTS

PK. #	(keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
22	299.97	601.10	343	110	86	1139	1.82 1	o
23	327.99	656.97	161	79	62	746	1.09	1
24	338.20	677.34	730	102	71	887	1.52	a
25	351.79	704.45	2360	128	68	816	1.47	a.
26	409.75	820.03	86	87	70	811	1.60	a.
27	463.12	926.46	158	57	42	403	1.06	a.
28	511.18	1022.32	1742	132	84	957	2.79	a Wide Pk
29	558.62	1116.91	122	60	46	433	1.36	a.
30	583.18	1165.90	1159	98	58	569	1.94	a.
31	609.28	1217.96	1810	118	67	750	2.04	a.
32	727.13	1452.97	222	67	49	449	2.04	a.
33	768.78	1536.04	165	72	56	509	2.46	a .
34	773.00	1544.45	64	49	38	305	1.45	o
35	795.06	1588.44	41	47	38	297	1.48	a
36	803.36	1605.00	91	46	35	264	1.37	o
37	860.39	1718.73	128	56	43	335	2.03	a
38	911.31	1820.28	658	77	48	389	2.35	a .
39	934.07	1865.67	48	51	40	300	1.94	a .
40	969.28	1935.89	323	64	43	365	1.81	a .
41	1120.60	2237.67	299	68	48	361	2.64	a .
42	1238.56	2472.91	112	53	40	278	2.24	a .
43	1377.73	2750.46	81	54	42	240	3.25	a .
44	1461.03	2916.58	1202	84	39	220	3.07	a .
45	1764.90	3522.59	258	53	35	158	3.53	a .

182683D03.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET031128.BKG (112818-3 LONG BKG CAL)

Bkg.File Detector #: 3

BACKGROUND SUBTRACT RESULTS

==========				=======================================		========	==
ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#		COUNTS	CERTAINTY			CERTAINTY		
1	63.29		139		34			NET <cl< td=""></cl<>
2	66.34	189	127	102	-38	234	193	NET <cl< td=""></cl<>
3	69.27	7	68	55	-52	163	135	NET <cl< td=""></cl<>
5	76.97	1167	132	93	1105	216	169	
6	84.32	254	129	103	197	190	154	
9	92.76	971	151	113	653	223	178	
13	185.80	796	119	86	487	238	192	
14	198.27	155	96	76	-71	235	194	NET <cl< td=""></cl<>
16	238.57	3660	155	79	3427	208	141	
17	241.60	889	113	79	826	205	162	
21	295.17	1538	119	73	1416	178	133	
24	338.20	730	102	71	697	153	118	
25	351.79	2360	128	68	2109	189	136	
28	511.18	1742	132	84	197	281	230	NET <cl< td=""></cl<>
29	558.62	122	60	46	-30	121	100	NET <cl< td=""></cl<>
30	583.18	1159	98	58	1028	169	129	
31	609.28	1810	118	67	1649	168	121	
36	803.36	91	46	35	-53	124	103	NET <cl< td=""></cl<>
38	911.31	658	77	48	598	131	100	
44	1461.03	1202	84	39	1040	116	80	
45	1764.90	258	53	35	213	76	58	

182683D03.SPC Analyzed by

SEEKER FINAL ACTIVITY REPORT

Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-26 GS181103-2

Sampling Start: 10/26/2018 12:00:00 | Counting Start: 12/06/2018 14:04:20 | Sampling Stop: 10/26/2018 12:00:00 | Decay Time. 9.86e+002 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 60000 Sec Sample Size 1.56e+002 g | Real Time

Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

Detector #: 3 (Detector 3)

Efficiency File: (D03)(Sh17).eff (Geo 17 Eff Cal)

*Eff=10^[-8.15E+01 +1.04E+02*L +-4.49E+01*L^2 +6.40E+00*L^3] 11/01/2018

Eff.=10^[-2.02E-01 +-3.44E-01*L +-1.27E-01*L^2 +7.29E-03*L^3] Above 300.00 keV

Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N						
	ENERGY E	Concent	tration		Critical	Halflife	
	(keV) T	_		MDA	Level	(hrs)	
	92.60		+- 5.81E-01	9.38E-01	4.65E-01	3.92E+13	
Ra-226	186.10	1.59E+00	+- 7.79E-01	1.27E+00	6.29E-01	1.40E+07	
Pb-212	Average:x	1.10E+00	+- 6.57E-02			5.04E+04	
	238.63	1.09E+00	+- 6.62E-02	9.08E-02	4.50E-02	5.04E+04	
	300.09	1.62E+00	+- 5.21E-01	8.20E-01	4.03E-01	5.04E+04	
Ra-223	269.39	3.30E-01	+- 1.19E-01	1.89E-01	9.28E-02	2.87E+08	
T1-208	Average:x	3.29E-01	+- 5.15E-02			5.04E+04	
	277.36	3.74E-01	+- 1.94E-01	3.10E-01	1.52E-01	5.04E+04	
	583.14	3.26E-01	+- 5.37E-02	8.26E-02	4.09E-02	5.04E+04	
	860.47	3.29E-01	+- 5.23E-01	6.97E-01	3.44E-01	5.04E+04	
Ac-228	Average:x	8.53E-01	+- 1.05E-01			5.04E+04	
	338.40	9.90E-01	+- 2.18E-01	3.40E-01	1.68E-01	5.04E+04	
	911.07	8.36E-01	+- 1.84E-01	2.84E-01	1.40E-01	5.04E+04	
	968.90	7.94E-01	+- 1.57E-01	2.20E-01	1.07E-01	5.04E+04	
Pb-214	Average:x	1.03E+00	+- 9.00E-02			1.40E+07	
	351.92	1.03E+00	+- 9.19E-02	1.33E-01	6.60E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
	295.21	1.05E+00	+- 4.51E-01	6.15E-01	3.07E-01	1.40E+07	
Bi-212	727.17	6.24E-01	+- 1.88E-01	2.85E-01	1.38E-01	5.04E+04	
Bi-214	Average:x	9.98E-01	+- 1.49E-01			1.40E+07	
	768.36	1.18E+00	+- 5.18E-01	8.16E-01	3.98E-01	1.40E+07	
	Page	004					241 67

241 of 624

MEASURED or MDA CONCENTRATIONS

	N	1				
	ENERGY E	Concentr	ation		Critical	Halflife
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)
	934.06	6.43E-01 +-	6.87E-01	1.13E+00	5.44E-01	1.40E+07
	1120.29	9.75E-01 +-	2.20E-01	3.20E-01	1.56E-01	1.40E+07
	1238.11	1.01E+00 +-	4.82E-01	7.53E-01	3.64E-01	1.40E+07
	1377.67	1.20E+00 +-	8.00E-01	1.28E+00	6.20E-01	1.40E+07
	1764.49	1.02E+00 +-	3.64E-01	5.66E-01	2.77E-01	1.40E+07
	609.31	9.98E-01 +-	4.34E-01	6.50E-01	3.24E-01	1.40E+07
T1-210	Average:x	1.45E-02 +-	1.67E-02			1.40E+07
	795.00	1.44E-02 +-	1.68E-02	2.75E-02	1.33E-02	1.40E+07
	860.00	1.35E-01 +-	1.87E+00	4.77E-01	2.31E-01	1.40E+07
	296.00	2.56E-02 +-	2.19E-01	5.10E-02	2.53E-02	1.40E+07
K-40	1460.75	5.99E+00 +-	6.70E-01	9.32E-01	4.58E-01	1.12E+13
Ra-224	241.00	8.64E-01 +-	4.41E+00	1.16E+00	5.74E-01	5.04E+04
Pb-210	46.52 N	1-3.50E+00 +-	9.06E+00	1.52E+01	7.50E+00	1.79E+05
T1-201	70.82 N	I-3.63E+02 +-	1.27E+03	2.12E+03B	1.05E+03	7.35E+01
U-235	143.76 N	1 6.38E-03 +-	1.09E-01	1.82E-01	8.95E-02	3.33E+10
Ir-192	316.49 N	7.54E-03 +-	2.21E-02	3.69E-02	1.81E-02	1.78E+03
Be-7	477.56 N	1 2.01E-01 +-	2.44E-01	4.01E-01	1.95E-01	1.28E+03
Sc-46	889.26 N	1 2.16E-03 +-	3.00E-02	5.06E-02	2.46E-02	2.01E+03
Pa-234	946.00 N	N-1.17E-02 +-	1.09E-01	1.85E-01	8.98E-02	3.95E+13
Na-22	1274.54 N	7 2.24E-03 +-	2.62E-02	4.44E-02	2.15E-02	2.28E+04

MEASURED TOTAL: 1.56E+01 +- 7.65E+00 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY			FWHM (keV)	FLAG
1	63.29	129.08	34	205	168	2015	1.27	Deleted
2	66.34	135.19	-38	234	193	1763	1.12	Deleted
3	69.27	141.02	-52	163	135	756	0.48	Deleted
4	74.70	151.86	736	125	93	1599	1.06	Unknown
5	76.97	156.38	1105	216	169	1599	1.02	Unknown
6	84.32	171.04	197	190	154	1675	1.31	Unknown
7	87.08	176.53	662	135	103	1675	1.31	Unknown
8	89.83	182.03	347	107	82	1256	1.02	Unknown
10	105.18	212.64	144	131	106	1667	1.52	Unknown
11	108.86	219.97	126	120	97	1481	1.24	Unknown
12	128.91	259.96	144	100	80	1179	0.94	Unknown
14	198.27	398.28	-71	235	194	1081	1.01	Deleted
15	209.20	420.08	327	107	83	1271	1.29	Unknown
17	241.60	484.70	826	205	162	1163	1.35	SPLIT
18	253.02	507.47	56	57	46	510	0.62	Unknown
21	295.17	591.52	1416	178	133	932	1.49	SPLIT
23	327.99	656.97	161	79	62	746	1.09	Unknown
		Page 005						

182683D03.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
26	409.75	820.03	86	87	70	811	1.60	Unknown
27	463.12	926.46	158	57	42	403	1.06	Unknown
28	511.18	1022.32	197	281	230	957	2.79	Deleted
29	558.62	1116.91	-30	121	100	433	1.36	Deleted
31	609.28	1217.96	1649	168	121	750	2.04	SPLIT
34	773.00	1544.45	64	49	38	305	1.45	Unknown
36	803.36	1605.00	-53	124	103	264	1.37	Deleted
37	860.39	1718.73	128	56	43	335	2.03	SPLIT
49	609.28	1217.96	51	1429	121	750	2.04	1121SEsc

c:\SEEKER\BIN\182683d03.res Analysis Results Saved.

182192D02.SPC Analyzed by

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-27 GS181103-2

	Counting Start: 12/05/2018 08:31:12
Sampling Stop: 10/29/2018 12:00:00	Decay Time 8.85E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time
Sample Size 2.36E+002 g	Real Time
Collection Efficiency 1.0000	Spc. File

Detector #: 2 (Detector 2)

Energy (keV) = $-1.29 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/05/2018$ $FWHM(keV) = 0.97 + 0.002*En + 9.30E-04*En^2 + 0.00E+00*En^3 07/31/2018$ Where En = Sqrt(Energy in keV)

------Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
				CERTAINTY				
				42				
2	77.07	156.42	127	51	37	256	1.05	0
3	87.01	176.26	58	44	34	231	0.82	a
4	92.44	187.11	54	38	29	181	0.70	a.
5	186.02	373.89	84	39	28	178	0.87	a
6	209.09	419.96	31	38	30	185	1.05	a.
7	238.61	478.88	688	64	31	187	1.23	a.
8	241.84	485.31	129	47	34	214	1.27	0
9	270.30	542.13	59	44	34	197	1.47	3.
10	295.20	591.83	174	40	24	125	0.96	a
11	327.87	657.05	32	29	22	106	0.95	a
12	338.28	677.84	108	34	22	103	0.98	a
13	351.82	704.86	353	49	27	130	1.31	a
14	444.07	889.01	25	24	18	67	1.04	a
15	462.51	925.82	56	43	34	144	2.52	a Wide Pk
16	488.06	976.80	19	25	19	73	1.13	NET< CL
17	510.79	1022.18	247	50	32	137	2.22	2
18	583.10	1166.52	215	37	18	66	1.50	3.
19	609.33	1218.89	267	44	25	113	1.56	a
20	726.96	1453.69	44	24	16	53	1.34	a
21	794.58	1588.68	26	25	19	62	1.84	a
		Page 001						

182192D02.SPC Analyzed by

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	911.31	1821.69	139	29	14	42	1.70	a
23	968.85	1936.54	54	28	20	75	1.83	a
24	1119.90	2238.06	61	30	21	65	3.09	a
25	1378.16	2753.58	26	17	11	21	2.47	a
26	1460.69	2918.32	494	47	12	23	2.60	a
27	1764.05	3523.88	46	21	13	24	3.10	a

182192D02.SPC Analyzed by

********************** SEEKER

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

GammaScan *****************************

Background File: DET021128.BKG (112818-2 LONG BKG CAL)

Bkg.File Detector #: 2

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL FLAG
1	74.76	59	42	33	31	65	53 NET <cl< td=""></cl<>
4	92.44	54	38	29	28	43	35 NET <cl< td=""></cl<>
5	186.02	84	39	28	39	44	35
7	238.61	688	64	31	649	69	38
10	295.20	174	40	24	165	43	28
13	351.82	353	49	27	325	53	32
17	510.79	247	50	32	50	59	47
18	583.10	215	37	18	202	39	22
19	609.33	267	44	25	249	48	30
22	911.31	139	29	14	130	31	17
26	1460.69	494	47	12	451	48	19
27	1764.05	46	21	13	39	22	15

Sample ID: 1810627-27 GS181103-2

Page 004

Sampling Buildup Sample S Collecti Cr. Leve	Stop: Time	10/29/2018 0.00 2. ncy	0e+000 Hrs 36e+002 g 1.0000 .: 95 %	Decay Time Live Time Real Time Spectrum	e	12/05/2018 08:31:1 8.85e+002 Hr 7200 Se 7306 Se182192D02.SP ce Interval: 95
			ector #: 2	(Detector		
Efficien	cy File: (I	002)(Sh17).	EFF (Geo 17	Eff Cal)		
	_					09/06/2018
						Above 300.00 ke
			KILLS. (Ti			
_						=======================================
			SURED or MDA			
=======	========		.========	========		
	N					
			ration			
Nuclide	(keV) T	(pCi/g)			
-			7.00E-01			
			7.38E-01			
			1.08E-01		6.00E-02	
			2.22E-01		1.71E-01	
Pb-214	-		9.52E-02			
			- 1.58E-01		1.04E-01	
	351.92 2 4 1.98		- 1.19E-01		7.21E-02	
Ac-228			 - 1.26E-01			
AC-226	_		- 2.24E-01			
			- 1.81E-01		1.01E-01	
			- 2.86E-01		2.00E-01	
T1-208			5.26E-02		2.94E-02	
			- 1.16E-01			
			- 1.28E-01	1.65E-01	7.89E-02	1.40E+07
	1120.29		- 4.03E-01		2.84E-01	1.40E+07
	1377.67		- 1.02E+00	1.51E+00	6.73E-01	1.40E+07
	1764.49		- 3.99E-01	5.92E-01	2.72E-01	1.40E+07
Bi-212	727.17		- 2.79E-01	4.12E-01	1.90E-01	5.04E+04
				F 077 00	2 705 02	1 405.07
T1-210	795.00	3.81E-02 +	3.70E-02	5.97E-02	2.78E-02	1.40E+07

247 of 624

182192D02.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

Nuclide	ENERGY (keV)	_	Concer (pCi/g	ntra	ation)	MDA	Critical Level	Halflife (hrs)	
Ra-224	241.00		9.22E-01	+-	4.99E+00	1.23E+00	 5.93E-01	5.04E+04	
Pb-210	46.52				1.10E+02	1.85E+02	8.94E+01	1.79E+05	
T1-201	70.82	N-	8.03E+02	+-	1.49E+03	2.55E+03B	1.24E+03	7.35E+01	
U-235	143.76	N	2.10E-01	+-	2.26E-01	3.69E-01	1.78E-01	3.33E+10	
Ir-192	316.49	N	4.89E-03	+-	4.04E-02	6.94E-02	3.30E-02	1.78E+03	
Be-7	477.56	N	4.85E-02	+-	4.71E-01	8.11E-01	3.85E-01	1.28E+03	
Sc-46	889.26	N	1.51E-02	+-	4.62E-02	7.95E-02	3.68E-02	2.01E+03	
Pa-234	946.00	N-	1.29E-01	+-	1.73E-01	3.28E-01	1.52E-01	3.95E+13	
Na-22	1274.54	N-	1.46E-02	+-	4.65E-02	8.49E-02	3.94E-02	2.28E+04	

MEASURED TOTAL: 5.66E+01 +- 1.20E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	74.76	151.81	31	65	53	213	0.75	Deleted
2	77.07	156.42	127	51	37	256	1.05	Unknown
3	87.01	176.26	58	44	34	231	0.82	Unknown
6	209.09	419.96	31	38	30	185	1.05	Unknown
8	241.84	485.31	129	47	34	214	1.27	SPLIT
11	327.87	657.05	32	29	22	106	0.95	Unknown
14	444.07	889.01	25	24	18	67	1.04	Unknown
15	462.51	925.82	56	43	34	144	2.52	Unknown
16	488.06	976.80	19	25	19	73	1.13	Deleted
17	510.79	1022.18	50	59	47	137	2.22	Unknown

c:\SEEKER\BIN\182192d02.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-28 GS181103-2

Sampling Start: 10/29/2018 12:00:00	Counting Start: 12/06/2018 14:59:29
Sampling Stop: 10/29/2018 12:00:00	Decay Time 9.15E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.72E+002 g	Real Time 60060 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 4 (Detector 4)

Energy(keV) = -1.48 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/06/2018 FWHM(keV) = 0.82 + 0.019*En + 7.17E-04*En^2 + 0.00E+00*En^3 09/25/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	CHANNEL	COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
1		110.25		111	89	1609	0.75	
2	63.17	129.05	298	117	92	1693	0.80	a.
3	74.74	152.15	2028	206	153	3441	1.41	a HiResid
4	77.01	156.66	2759	158	97	1912	0.84	b HiResid
5	84.19	171.00	224	131	105	2036	1.05	a
6	87.15	176.90	1183	159	118	2375	1.21	b
7	89.85	182.31	631	122	92	1697	0.90	C
8	92.80	188.19	1419	176	131	2715	1.25	đ
9	99.44	201.44	16	95	78	1357	0.57	e NET< CL
10	105.47	213.47	58	80	64	1018	0.55	f NET< CL
11	115.38	233.25	104	102	82	1363	0.87	a
12	124.25	250.95	108	116	94	1629	1.06	a
13	129.06	260.55	363	120	94	1629	0.98	b
14	139.89	282.18	123	103	83	1388	0.81	a.
15	143.85	290.09	262	148	118	2221	1.29	b
16	154.11	310.56	171	130	105	1884	1.17	a.
17	185.83	373.86	1320	134	93	1695	1.21	a.
18	198.53	399.21	134	79	62	952	0.73	a.
19	209.25	420.61	514	108	80	1364	1.04	a.
20	238.57	479.14	6808	198	89	1477	1.34	a
21	241.66	485.29	1671	153	106	1846	1.62	b
		Dago 001						

182732D04.SPC Analyzed by

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	IIN-	C.L.	BKG	FWHM	
#	(keV)				COUNTS			FLAG
22	249.73	501.41	42	65	52	670	0.65 ε	NET< CL
23	270.11	542.10	543	127	97	1544	1.61 a	ι
24	277.49	556.81	168	87	68	983	0.92 ε	ı
25	295.17	592.10	2472	137	77	1096	1.38 a	ı
26	299.96	601.66	390	110	84	1233	1.46 h	
27	327.97	657.56	289	82	61	793	1.03 a	ı.
28	338.15	677.89	1117	111	73	995	1.26 a	HiResid
29	351.81	705.15	4012	153	71	926	1.35 a	HiResid
30	389.47	780.31		91	75	966	1.41 a	NET< CL
31	409.77	820.84	80	61	48	524	0.85 a	ı
32	438.77	878.73	53	72	58	682	1.35 a	NET< CL
33	462.96	927.01	346	86	64	755	1.57 a	ı
34	510.94	1022.78	1783	135	87	1116	2.46 8	ı
35	558.29			65	51	536	1.23 a	ı
36	583.17	1166.94	1796	115	64	711		ı
37	609.23	1218.96	2732			680	1.54 a	A HiResid
38	664.95	1330.16	70	68	54	541	1.65 a	ı
39	693.62	1387.39	70	64	51	533	1.39 a	ı
40	727.31	1454.63	310	66	46	449	1.48 a	ı
41	768.55	1536.95	93	49	37	332	1.00 a	ı
42	794.59	1588.92	197	69	52	493	2.01 a	ı
43	803.10	1605.89	112	51	39	329	1.31 1	
44	835.96	1671.50	57	47	36	306	1.21 a	ı
45	860.41	1720.28	163	58		374	1.60 a	ı
46	911.23	1821.73				418		
47	933.95	1867.07				274	1.44 8	
48	965.22	1929.49					2.04	
49	968.95			77		442		
50	1014.79		32				1.18 8	
51	1120.19		556				2.51 a	
52	1238.02	2473.97	206	73	55	466	2.71 8	
53	1377.73	2752.83	168	58	42	257	3.17 8	
54	1385.76	2768.85	44	30	22	108	1.36 1	
55	1460.81	2918.65	2969	118	37	220		a HiResid
56	1588.25	3173.01	46	34	25	137	1.39 8	
57	1729.79	3455.52	83	29	18	68	1.69 8	
58	1764.59	3524.99	430	53	27	117	2.69 8	
59	1847.89	3691.24	37	24	17	58	1.49 8	1

182732D04.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET041128.BKG (112818-4 LONG BKG CAL)

Bkg.File Detector #: 4

55 1460.81

BACKGROUND SUBTRACT RESULTS

====:			========		=======	========	
-	ENERGY			OLD	NEW NET	NEW UN-	NEW
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEL FLAG
1	53.75	128	111	89	-4	199	163 NET <cl< td=""></cl<>
2	63.17	298	117	92	116	209	171 NET <cl< td=""></cl<>
5	84.19	224	131	105	157	188	154
8	92.80	1419	176	131	851	251	200
14	139.89	123	103	83	-30	190	156 NET <cl< td=""></cl<>
15	143.85	262	148	118	201	181	147
17	185.83	1320	134	93	910	203	159
18	198.53	134	79	62	-18	183	150 NET <cl< td=""></cl<>
20	238.57	6808	198	89	6698	221	122
25	295.17	2472	137	77	2392	184	128
29	351.81	4012	153	71	3884	200	128
34	510.94	1783	135	87	477	268	217
35	558.29	96	65	51	-65	131	109 NET <cl< td=""></cl<>
36	583.17	1796	115	64	1749	151	104
37	609.23	2732	127	59	2615	182	124
39	693.62	70	64	51	3	129	106 NET <cl< td=""></cl<>
43	803.10	112	51	39	2	100	82 NET <cl< td=""></cl<>

37

2829

138

2969

118

73

Geo 17/26

Sample ID: 1810627-28 GS181103-2

Sampling Start: 10/29/2018 12:00:00	Counting Start: 12/06/2018 14:59:29
Sampling Stop: 10/29/2018 12:00:00	Decay Time 9.15e+002 Hrs
Buildup Time 0.00e+000 Hrs	Live Time 60000 Sec
Sample Size 1.72e+002 g	Real Time 60060 Sec
Collection Efficiency 1.0000	Spectrum File
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval: 95 %
Detector #: 4	(Detector 4)
Efficiency File: (D04)(Sh17).eff (Geo 17	Eff Cal)
*Eff=10^[-7.41E+01 +9.43E+01*L +-4.05E+0	1*L^2 +5.76E+00*L^3] 09/25/2018
Eff.=10^[-8.67E+00 +8.41E+00*L +-3.13E+0	0*L^2 +3.49E-01*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N ENERGY E	Concent	ration		Critical	Halflife	
Nuclide	(keV) T			MDA	Level		
U-238	92.60	1.80E+00 -	5.30E-01	8.53E-01	4.24E-01	3.92E+13	
U-235	143.76	1.68E-01	1.52E-01	2.49E-01	1.23E-01	3.33E+10	
Ra-223	Average:x	4.58E-01 -	1.05E-01			2.87E+08	
	154.18	2.75E-01 -	2.09E-01	3.42E-01	1.69E-01	2.87E+08	
	269.39	5.19E-01 -	1.21E-01	1.88E-01	9.28E-02	2.87E+08	
Ra-226	186.10	2.58E+00 -	5.74E-01	9.09E-01	4.51E-01	1.40E+07	
Pb-212	Average:x	1.88E+00 -	6.16E-02			5.04E+04	
	238.63	1.88E+00 -	6.21E-02	6.95E-02	3.44E-02	5.04E+04	
	300.09	1.75E+00 -	+- 4.93E-01	7.69E-01	3.78E-01	5.04E+04	
T1-208	Average:x	4.99E-01 -	+- 4.16E-02			5.04E+04	
	277.36	3.46E-01 -	+- 1.80E-01	2.87E-01	1.41E-01	5.04E+04	
	583.14	5.09E-01 -	+- 4.41E-02	6.12E-02	3.02E-02	5.04E+04	
	860.47	4.88E-01 -	+- 1.75E-01	2.66E-01	1.29E-01	5.04E+04	
Pb-214	Average:x	1.77E+00 -	+- 7.56E-02			1.40E+07	
	295.21	1.78E+00 -	+- 1.37E-01	1.93E-01	9.54E-02	1.40E+07	
	351.92	1.76E+00 -	+- 9.06E-02	1.18E-01	5.83E-02	1.40E+07	
	241.98	I.D.				1.40E+07	
Ac-228	Average:x	1.48E+00 ·	+- 8.04E-02			5.04E+04	
	_		+- 1.48E-01				
			+- 1.17E-01			5.04E+04	
	964.60		+- 4.78E-01			5.04E+04	
	Page (252

252 of 624

MEASURED or MDA CONCENTRATIONS ______

	N					- 25215	
	ENERGY E		ration				
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
	968.90	1.41E+00 +	- 1.78E-01	2.32E-01	1.13E-01	5.04E+04	
Bi-214	Average:x	1.54E+00 +	- 8.37E-02			1.40E+07	
	609.31	1.50E+00 +	- 1.04E-01	1.44E-01	7.10E-02	1.40E+07	
	768.36	6.20E-01 +	- 3.23E-01	5.06E-01	2.44E-01	1.40E+07	
	934.06	1.89E+00 +	- 6.35E-01	9.47E-01	4.56E-01	1.40E+07	
	1120.29	1.71E+00 +	- 2.38E-01	3.18E-01	1.55E-01	1.40E+07	
	1238.11	1.76E+00 +	- 6.25E-01	9.69E-01	4.73E-01	1.40E+07	
	1377.67	2.37E+00 +	- 8.15E-01	1.24E+00	5.99E-01	1.40E+07	
	1764.49	1.94E+00 +	- 2.40E-01	2.58E-01	1.23E-01	1.40E+07	
Bi-212	727.17	8.06E-01 +	- 1.72E-01	2.47E-01	1.20E-01	5.04E+04	
T1-210	795.00	6.48E-02 +	- 2.27E-02	3.49E-02	1.70E-02	1.40E+07	
K-40	1460.75	1.55E+01 +	- 7.58E-01	8.13E-01	3.99E-01	1.12E+13	
Ra-224	241.00	1.79E+00 +	- 2.92E+00	6.71E-01	3.31E-01	5.04E+04	
	46.52 N	2.25E+00 +	- 6.66E+00	1.10E+01	5.45E+00	1.79E+05	
		8.19E+02 +			3.08E+02	7.35E+01	
	316.49 N	-1.49E-02 +	- 2.26E-02	3.83E-02	1.88E-02	1.78E+03	
Be-7		2.99E-02 +			2.14E-01	1.28E+03	
		-1.41E-02 +			2.38E-02	2.01E+03	
		-3.85E-02 +			9.82E-02	3.95E+13	
Na-22		9.55E-03 +			2.47E-02		

MEASURED TOTAL: 8.51E+02 +- 4.00E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	53.75	110.25	-4	199	163	1609	0.75	Deleted
2	63.17	129.05	116	209	171	1693	0.80	Deleted
3	74.74	152.15	2028	206	153	3441	1.41	Unknown
4	77.01	156.66	2759	158	97	1912	0.84	Unknown
5	84.19	171.00	157	188	154	2036	1.05	Unknown
6	87.15	176.90	1183	159	118	2375	1.21	Unknown
7	89.85	182.31	631	122	92	1697	0.90	Unknown
9	99.44	201.44	16	95	78	1357	0.57	Deleted
10	105.47	213.47	58	80	64	1018	0.55	Deleted
11	115.38	233.25	104	102	82	1363	0.87	Unknown
12	124.25	250.95	108	116	94	1629	1.06	Unknown
13	129.06	260.55	363	120	94	1629	0.98	Unknown
14	139.89	282.18	-30	190	156	1388	0.81	Deleted
18	198.53	399.21	-18	183	150	952	0.73	Deleted
19	209.25	420.61	514	108	80	1364	1.04	Unknown
21	241.66	485.29	1671	153	106	1846	1.62	SPLIT
22	249.73	501.41	42	65	52	670	0.65	Deleted
		Page 005						

Page 005

182732D04.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
27	327.97	657.56	289	82	61	793	1.03	Unknown
30	389.47	780.31	39	91	75	966	1.41	Deleted
31	409.77	820.84	80	61	48	524	0.85	Unknown
32	438.77	878.73	53	72	58	682	1.35	Deleted
33	462.96	927.01	346	86	64	755	1.57	Unknown
34	510.94	1022.78	477	268	217	1116	2.46	Unknown
35	558.29	1117.28	-65	131	109	536	1.23	Deleted
38	664.95	1330.16	70	68	54	541	1.65	Unknown
39	693.62	1387.39	3	129	106	533	1.39	Deleted
43	803.10	1605.89	2	100	82	329	1.31	Deleted
44	835.96	1671.50	57	47	36	306	1.21	Unknown
50	1014.79	2028.42	32	36	28	183	1.18	Unknown
54	1385.76	2768.85	44	30	22	108	1.36	Unknown
56	1588.25	3173.01	46	34	25	137	1.39	Unknown
57	1729.79	3455.52	83	29	18	68	1.69	Unknown
59	1847.89	3691.24	37	24	17	58	1.49	Unknown

c:\SEEKER\BIN\182732d04.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-29 GS181103-2

SEEKER

Sampling Start: 10/29/2018 12:00:00	Counting Start: 12/06/2018 14:04:33
Sampling Stop: 10/29/2018 12:00:00	Decay Time 9.14E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.49E+002 g	Real Time 60116 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 5 (Detector 5)

Energy(keV) = -0.66 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/06/2018 FWHM(keV) = 0.65 + -0.002*En + 2.17E-03*En^2 +-2.42E-05*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	63.18	127.52	168	95	75	1378	0.44 8	1
2	66.42	133.99	154	132	107	2296	0.84 1	•
3	74.80	150.74	1528	171	125	2894	0.99 a	1
4	77.07	155.27	2645	168	109	2412	0.77 1	•
5	84.25	169.61	440	147	116	2473	1.06 a	A HiResid
6	87.16	175.43	1429	175	130	2885	1.09 1	HiResid
7	89.87	180.84	831	136	101	2061	0.80	: HiResid
8	92.93	186.95	1558	177	130	2885	1.15	d HiResid
9	94.68	190.44	103	88	71	1237	0.55 €	HiResid
10	99.54	200.15	224	120	95	1831	0.84 8	a.
11	105.45	211.96	300	156	125	2653	1.21 8	a .
12	128.94	258.89	542	127	97	1898	0.81 8	1
13	139.80	280.59	147	87	69	1174	0.45 8	a.
14	143.98	288.94	246	157	127	2738	1.08 1	o
15	154.06	309.07	372	200	161	3613	1.56 a	a Wide Pk
16	157.59	316.13	115	133	108	2168	0.91 1	•
17	185.83	372.54	1763	155	107	2118	0.92 8	a HiResid
18	198.30	397.45	187	84	66	1058	0.53 a	a
19	209.21	419.23	844	127	93	1729	0.84	a.
20	229.49	459.76	41	76	61	928	0.52 8	NET < CL
21	238.54	477.84	10717	238	97	1736	1.01 8	a HiResid
		Page 001						

Page 001

PEAK SEARCH RESULTS

PK.	ENERGY	*DDDECC	NIEM /MT) N	UN-	C.L.	BKG	FWHM	
#	(keV)			CERTAINTY		COUNTS		FLAG
22		483.72			121			o HiResid
23	252.53	505.77			79	1246	0.78	3.
24	270.02	540.72	856	152	115	1968	1.54	a .
25	277.31	555.27	352	99	76	1158	0.86	a
26	287.57	575.78	129	174	142	2494	1.96	a NET< CL
								Wide Pk
27	295.11	590.83	3702	165	91	1425	1.08	a .
28	299.97	600.55	663	122	91	1425	1.09	b
29	327.97	656.48	598	120	90	1512	1.31	3.
30	338.22	676.96	2062	135	82	1334	1.08	2.
31	351.83	704.14	6195	179	70	1022	1.06	a HiResid
32	409.39	819.13	250	93	72	1029	1.09	3.
33	430.84	861.98	47	73	59	740	0.94	a NET < CL
34	462.89	926.00	614	111	81	1090	1.69	a
35	510.80	1021.70	2628	168	109	1603	2.37	a Wide Pk
36	558.46	1116.91	118	59	45	510	0.85	a .
37	583.12	1166.18	3285	136	61	752	1.37	a .
38	596.75	1193.41	161	108	87	1261	1.89	a
39	598.87	1197.65	111	87	70	946	1.50	b
40	609.28	1218.43	4761	163	71	984	1.54	a HiResid
41	665.28	1330.30	53	51	40	397	0.82	a.
42	727.33		671		60	669	1.71	a
43	768.27		368		52	546	1.32	a
44	772.22		61		37	342	0.89	b
45	785.77		72		45	441	1.20	a Wide Pk
46	794.80		307			630		
47	804.42		182					c
48	835.49		166		61	664		
49	839.36	1678.06	127		70	785		
50		1720.58	397		45	428	1.41	
51		1821.59	2154		58	614		
52		1867.37	224		48	450		
53		1928.39	481		71	743		
54		1937.14	1302		49	454	1.76	
55		2001.57	61		35	288		
56		2187.64	78		52	455		
57		2239.36	1007		55	515	2.24	
58		2310.31	92		47	409	1.92	
59		2475.04	363		51	456	2.08	
60		2560.09	46		29	198	1.14	
61		2753.50	271		37	249		
62		2767.96	56		33	211		
63		2800.42	99		62	474		a Wide Pk
64		2814.38	111		36	237		
65		2919.58	3352		47			a HiResid
66		3017.00	87		34	214		
30	1007.02	Page 002	37				_,,,	
		- 490 002						256 of 6

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
67	1588.37	3174.30	148	53	39	267	2.05	a
68	1619.43	3236.36	120	76	60	392	4.74	A HiResid Wide Pk
69	1629.16	3255.80	56	104	85	581	6.96	NET< CL HiResid
70	1661.53	3320.45	49	36	27	137	1.89	a .
71	1729.74	3456.72	133	46	33	186	2.27	a
72	1764.75	3526.65	717	70	37	207	2.75	a .
73	1847.27	3691.50	91	42	31	156	2.48	a.

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET051128.BKG (112818-5 LONG BKG CAL)

Bkg.File Detector #: 5

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#						CERTAINTY		
1	63.18		95					
2	66.42	154	132	107	-74	244	201 NE	T <cl< td=""></cl<>
3	74.80	1528	171	125	1457	226	175	
8	92.93	1558	177	130	1356	250	197	
10	99.54	224	120	95	190	171	139	
12	128.94	542	127	97	503	191	153	
13	139.80	147	87	69	-79	177	146 NE	T <cl< td=""></cl<>
17	185.83	1763	155	107	1469	230	179	
18	198.30	187	84	66	-82	176	145 NE	T <cl< td=""></cl<>
21	238.54	10717	238	97	10518	279	155	
27	295.11	3702	165	91	3624	207		
30	338.22	2062	135	82	1997	183	132	
31	351.83	6195	179		6009		121	
35	510.80	2628	168	109	891	311	251	
36	558.46	118	59	46	-68	137		T <cl< td=""></cl<>
37	583.12	3285	136	61	3197	165	99	
38	596.75	161	108	87	-28	182	150 NE	T <cl< td=""></cl<>
40	609.28	4761	163	71	4574	226	149	
47	804.42	182	136	110	2	171		T <cl< td=""></cl<>
51	911.21	2154	116	58	2092	137	84	
54	969.06	1302	93	49	1277	131	90	
57	1120.34	1007	92	55	973		81	
65	1460.85		129	47				
72	1764.75	717	70	37	682	92	63	

************************* FINAL ACTIVITY REPORT Version 2.2.1

SEEKER

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-29 GS181103-2

Sampling Start: 10/29/2018 12:00:00	Counting Start: 12/06/2018 14:04:33
Sampling Stop: 10/29/2018 12:00:00	Decay Time 9.14e+002 Hrs
Buildup Time 0.00e+000 Hrs	Live Time 60000 Sec
Sample Size 1.49e+002 g	Real Time 60116 Sec
Collection Efficiency 1.0000	Spectrum File
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval: 95 %
Detector #: 5	(Detector 5)
Efficiency File: (D05)(Sh17).eff (Geo 17	Eff Cal)
*Eff=10^[-1.03E+02 +1.32E+02*L +-5.73E+0	
Eff.=10^[-4.57E+01 +4.54E+01*L +-1.54E+0	1*L^2 +1.70E+00*L^3] Above 300.00 keV
Library File: TIDEWATER_GREATKILLS. (Ti	dewater Great Kills)
MEASURED or MDA	CONCENTRATIONS
N	

MEASURED OF MDA CONCENTRATIONS										
		=======	===	=======	========	========				
	N	_								
	ENERGY E									
	(keV) T				MDA	Level	(hrs)			
	92.60				1.13E+00	5.63E-01	3.92E+13			
	Average:x									
					1.41E-01					
					1.54E-01					
					1.69E-01					
II-235	143.76						3.33E+10			
	Average:x						2.87E+08			
	_				5.54E-01					
					2.10E-01		2.87E+08			
Ra-226					1.04E+00		1.40E+07			
Pb-212										
15 212	_				8.58E-02					
					1.11E+00					
T1-208										
11-200					2.97E-01					
					4.94E-02	2.44E-02	5.04E+04			
					2.21E-01		5.04E+04			
-1 014										
Pb-214	Average:x									
					1.88E-01					
					1.25E-01					
	241.98	I.D.					1.40E+07			
	Domo	0 0 E								

Page 005

MEASURED or MDA CONCENTRATIONS

=======		========		========		
	N	~			Cuitical	
	ENERGY E	•			Critical	
Nuclide	(keV) T	(pCi/g	· · · · · · · · · · · · · · · · · · ·	MDA	Level	(hrs)
Ac-228	Average:x	2.37E+00 +-	1.10E-01			5.04E+04
		3.10E+00 +-				
	911.07	2.18E+00 +-	1.43E-01	1.78E-01	8.77E-02	5.04E+04
		2.80E+00 +-			4.13E-01	
	968.90	2.33E+00 +-	2.39E-01	3.34E-01	1.64E-01	5.04E+04
Bi-214	Average:x	2.23E+00 +-	9.01E-02			1.40E+07
		2.19E+00 +-		1.44E-01	7.15E-02	1.40E+07
	768.36	1.97E+00 +-	3.93E-01	5.65E-01	2.75E-01	1.40E+07
	934.06	2.26E+00 +-	6.63E-01	9.99E-01	4.86E-01	1.40E+07
	1120.29	2.37E+00 +-	2.85E-01	4.03E-01	1.98E-01	1.40E+07
	1238.11	2.44E+00 +-	4.87E-01	7.00E-01	3.41E-01	1.40E+07
	1377.67	2.99E+00 +-	6.20E-01	8.56E-01	4.13E-01	1.40E+07
	1764.49	2.31E+00 +-	3.12E-01	4.33E-01	2.12E-01	1.40E+07
Bi-212	Average:x	1.23E+00 +-	6.02E-01			5.04E+04
	785.42	9.54E-01 +-	7.58E-01	1.23E+00	5.95E-01	5.04E+04
	1620.56	2.17E+00 +-	1.38E+00	2.22E+00	1.09E+00	5.04E+04
	727.17	1.23E+00 +-	1.43E+00	2.30E+00	1.15E+00	5.04E+04
T1-210	Average:x	8.32E-02 +-	2.09E-02			1.40E+07
	795.00	8.10E-02 +-	2.09E-02	3.15E-02	1.54E-02	1.40E+07
	1410.00	9.75E-01 +-	4.26E-01	6.55E-01	3.15E-01	1.40E+07
K-40	1460.75	1.23E+01 +-	7.07E-01	8.99E-01	4.44E-01	1.12E+13
Ra-224	241.00	1.76E+00 +-	3.29E+00	7.43E-01	3.67E-01	5.04E+04
Pb-210	46.52 N	1.20E+01 +-	2.67E+01	4.42E+01	2.18E+01	1.79E+05
T1-201	70.82 N	5.37E+02 +-	8.58E+02	1.41E+03	7.00E+02	7.35E+01
Ir-192	316.49 N	6.51E-03 +-	3.09E-02	5.15E-02	2.53E-02	1.78E+03
Be-7	477.56 N	-5.74E-02 +-	2.86E-01	4.80E-01	2.36E-01	1.28E+03
Sc-46	889.26 N	3.20E-03 +-	2.77E-02	4.65E-02	2.27E-02	2.01E+03
Na-22	1274.54 N	-8.32E-04 +-	2.37E-02	4.02E-02B	1.95E-02	2.28E+04

MEASURED TOTAL: 5.85E+02 +- 8.91E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	63.18	127.52	85	199	163	1378	0.44	Deleted
2	66.42	133.99	-74	244	201	2296	0.84	Deleted
3	74.80	150.74	1457	226	175	2894	0.99	Unknown
4	77.07	155.27	2645	168	109	2412	0.77	Unknown
5	84.25	169.61	440	147	116	2473	1.06	Unknown
6	87.16	175.43	1429	175	130	2885	1.09	Unknown
7	89.87	180.84	831	136	101	2061	0.80	Unknown
11	105.45	211.96	300	156	125	2653	1.21	Unknown
12	128.94	258.89	503	191	153	1898	0.81	Unknown

Page 006

181914D05.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. ENERGY ADDRESS NET UN-C.L. BKG FWHM # (keV) CHANNEL COUNTS CERTAINTY COUNTS (keV) FLAG 139.80 280.59 -79 1174 0.45 Deleted 157.59 316.13 2168 0.91 Unknown 198.30 397.45 -82 1058 0.53 Deleted 209.21 419.23 1729 0.84 Unknown 229.49 459.76 928 0.52 Deleted 241.49 483.72 1.27 SPLIT 252.53 505.77 1246 0.78 Unknown 287.57 575.78 1.96 Deleted 327.97 656.48 1.31 Unknown 409.39 819.13 1.09 Unknown 430.84 861.98 740 0.94 Deleted 462.89 926.00 1.69 Unknown 510.80 1021.70 2.37 Unknown 558.46 1116.91 -68 0.85 Deleted 596.75 1193.41 -28 1.89 Deleted 598.87 1197.65 1.50 1619DEsc 665.28 1330.30 0.82 Unknown 727.33 1454.27 1.71 SPLIT 772.22 1543.94 0.89 Unknown 804.42 1608.25 3.65 Deleted 835.49 1670.33 1.84 Unknown 839.36 1678.06 2.06 Unknown 1001.31 2001.57 1.20 Unknown 1094.45 2187.64 2.32 Unknown 1155.86 2310.31 1.92 Unknown 1280.90 2560.09 1.14 Unknown 1384.95 2767.96 1.77 Unknown 1401.21 2800.42 3.97 Unknown 1509.62 3017.00 1.96 Unknown 1588.37 3174.30 2.05 Unknown 1629.16 3255.80 6.96 Deleted 1661.53 3320.45 1.89 Unknown 1729.74 3456.72 2.27 Unknown 1847.27 3691.50 2.48 Unknown 727.33 1454.27 669 1.71 1238SEsc

c:\SEEKER\BIN\181914d05.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-29D GS181103-2

Sampling Start: 10/29/2018 12:00:00	Counting Start: 12/06/2018 14:04:44
Sampling Stop: 10/29/2018 12:00:00	Decay Time 9.14E+002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.61E+002 g	Real Time 60205 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 7 (Detector 7)

Energy(keV) = $-2.40 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/06/2018$ FWHM(keV) = $0.77 + 0.005*En + 8.11E-04*En^2 + 0.00E+00*En^3 09/24/2018$ Where En = Sgrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)		COUNTS	CERTAINTY	C.L. COUNTS	COUNTS		
1	66.48		119		82			
2	74.74	153.80	1204	154	113	2358	0.92	a
3	77.02	158.35	1983	149	99	1965	0.88	b
4	84.32	172.91	335	147	117	2343	1.22	a
5	87.10	178.45	1071	157	117	2343	1.08	b
6	89.73	183.71	703	152	117	2343	1.16	c
7	92.81	189.83	1573	177	130	2677	1.37	đ
8	98.90	201.98	169	154	125	2469	1.32	a
9	105.10	214.34	248	170	138	2804	1.49	a
10	108.74	221.60	78	93	75	1246	0.63	b
11	115.30	234.69	50	79	64	995	0.47	a NET< CL
12	128.97	261.93	421	102	77	1301	0.74	a
13	139.60	283.14	111	112	91	1660	0.84	a
14	143.65	291.21	142	144	117	2324	1.11	b
15	150.49	304.86	78	111	90	1634	0.77	a NET< CL
16	159.50	322.82	37	76	62	933	0.48	a NET< CL
17	163.52	330.83	47	123	100	1866	0.92	b NET< CL
18	185.91	375.47	1602	158	112	2129	1.19	a
19	198.50	400.58	169	76	59	857	0.51	a
20	209.22	421.94	745	126	94	1621	0.98	a
21	215.27	434.01	67	112	91	1542	1.00	a NET< CL
		Dage 001						

Page 001

PEAK SEARCH RESULTS

					C.L.			
#	(keV)	CHANNEL	COUNTS		COUNTS			FLAG
	230 50		9097		89		1.06	
					121			
24					70			
25		543.49			97			
26	277.53						0.91	
27	295.19		2989					
28					65			
29					90		1.29	
30		679.50			90			
31		706.53						
32		776.38		117	95	1405		a NET< CL
33					60			
34					58			
35	511.02				106			a Wide Pk
36	558.64							
37	562.98					537		
38	570.20				59			
39					53			
40	583.38		2570		63			
41		1195.89			97			a Wide Pk
42	609.52				67			
43	618.46				35			
44	633.70				39			
45	665.82			63		477		
46	692.81						0.74	
47	727.47			84			1.61	a.
48	755.54				53	526	1.58	a
49					55			
50		1545.49	125	71	55	539	1.77	b
51	785.85	1571.70	86	53	41	368	1.07	a
52	795.01	1589.97	327	69	49	435	1.66	a
53	803.21	1606.31	154	56	41	346	1.39	a
54	805.96	1611.80	94	49	37	303	1.10	b
55	836.00	1671.69	30	44	35	309	0.80	a NET< CL
56	860.68	1720.90	248	64	46	404	1.50	a
57	888.08	1775.54	26	35	28	189	0.83	a NET< CL
58	911.25	1821.73	1647	98	45	371	1.72	a HiResid
59	933.94	1866.98	129	56	42	347	1.50	a
60	964.92	1928.75	304	70	50	426	1.95	a
61	969.08	1937.05	1075	87	47	391	1.87	b
62	1000.72	2000.12	52	50	40	304	1.52	
63	1120.38	2238.72	763	76	43	349	1.86	
64	1155.25	2308.25	82	52	40	308	1.81	
65	1238.05	2473.35	285	67	47	394	2.06	
66	1281.09	2559.17	86	75	60	462		a Wide Pk
67	1377.47	2751.34	192	50	34	219	2.05	a
		Page 002						263 of 6

263 of 624

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
68	1408.09	2812.38	64	47	36	235	2.13 a	.
69	1460.50	2916.89	2362	107	37	227	2.47 a	HiResid
70	1509.29	3014.18	74	35	25	129	1.55 a	L
71	1588.03	3171.18	141	45	31	176	2.14 a	ı
72	1591.59	3178.28	110	48	35	203	2.54 h	
73	1630.84	3256.53	35	30	23	110	1.42 a	ı
74	1661.10	3316.86	41	30	22	98	1.59 a	ı
75	1729.01	3452.27	127	37	25	112	1.99 a	ı
76	1763.85	3521.74	663	64	31	158	2.47 s	ı
77	1847.16	3687.85	89	33	22	93	1.80 a	ı

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET071128.BKG (112818-7 LONG BKG CAL)

Bkg.File Detector #: 7

SEEKER

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEI	FLAG
1	66.48	119	102	82	-66	189	156	NET <cl< td=""></cl<>
2	74.74	1204	154	113	1064	206	161	
3	77.02	1983	149	99	1854	233	178	
4	84.32	335	147	117	262	235	191	
7	92.81	1573	177	130	1215	247	195	
13	139.60	111	112	91	-22	193	159	NET <cl< td=""></cl<>
18	185.91	1602	158	112	1338	214	166	
19	198.50	169	76	59	-107	176	146	NET <cl< td=""></cl<>
22	238.59	8087	210	89	7807	254	150	
27	295.19	2989	149	83	2887	192	131	
30	338.39	1611	136	90	1573	165	119	
31	351.94	5148	172	78	4970	208	125	
35	511.02	2502	163	106	823	299	241	
36	558.64	238	65	47	21	132	109	NET <cl< td=""></cl<>
38	570.20	122	75	59	13	135	111	NET <cl< td=""></cl<>
40	583.38	2570	127	63	2416	182	126	
41	597.37	119	120	97	51	182	149	NET <cl< td=""></cl<>
42	609.52	3993	151	67	3842	201	130	
43	618.46	56	45	35	7	131	107	NET <cl< td=""></cl<>
46	692.81	44	43	34	37	80	65	NET <cl< td=""></cl<>
47	727.47	541	84	57	484	122	94	
53	803.21	154	56	41	45	107	87	NET <cl< td=""></cl<>
58	911.25	1647	98	45	1562	137	92	
69	1460.50	2362	107	37	2095	142	89	
76	1763.85	663	64	31	620	82	54	

SEEKER FINAL ACTIVITY REPORT Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 1810627-29D GS181103-2

Sampling Start: 10/29/2018 12:00:00 | Counting Start: 12/06/2018 14:04:44
Sampling Stop: 10/29/2018 12:00:00 | Decay Time. 9.14e+002 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 60000 Sec Sample Size 1.61e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %

Detector #: 7 (Detector 7)

Efficiency File: (D07)(Sh17).eff (DET 7 GEO 17 Eff Cal)

*Eff=10^[-1.18E+02 +1.52E+02*L +-6.65E+01*L^2 +9.63E+00*L^3] 09/25/2018

Eff.=10^[9.78E-01 +-1.35E+00*L +1.03E-01*L^2 +-1.37E-03*L^3] Above 300.00 keV

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	N							
	ENERGY E	Concer	tration	on		Critical	Halflife	
	(keV) T				MDA	Level	(hrs)	
	92.60							
Pa-234	Average:x	7.87E-02	+- 1.0	06E-01			3.95E+13	
	99.70	5.94E-01	+- 5.4	42E-01	8.88E-01	4.39E-01	3.95E+13	
	946.00 N	5.84E-02	+- 1.0	08E-01	1.79E-01	8.67E-02	3.95E+13	
บ-235	143.76	1.61E-01	+- 1.	63E-01	2.68E-01	1.33E-01	3.33E+10	
Ra-226	186.10	4.98E+00	+- 7.	98E-01	1.24E+00	6.17E-01	1.40E+07	
Pb-212	Average:x	2.72E+00	+- 8.	73E-02			5.04E+04	
	238.63	2.74E+00	+- 8.	91E-02	1.06E-01	5.26E-02	5.04E+04	
	300.09	2.27E+00	+- 4.	39E-01	6.46E-01	3.17E-01	5.04E+04	
Ra-223	269.39	7.36E-01	+- 1.	46E-01	2.24E-01	1.10E-01	2.87E+08	
T1-208	Average:x	7.72E-01	+- 5.	68E-02			5.04E+04	
	277.36	6.11E-01	+- 2.	41E-01	3.82E-01	1.88E-01	5.04E+04	
	583.14	7.81E-01	+- 5.	87E-02	8.21E-02	4.06E-02	5.04E+04	
	860.47	7.72E-01	+- 5.	80E-01	7.72E-01	3.82E-01	5.04E+04	
Pb-214	Average:x	2.47E+00	+- 8.	75E-02			1.40E+07	
	_				2.20E-01			
	351.92	2.51E+00	+- 1.	05E-01	1.28E-01	6.33E-02	1.40E+07	
	241.98	I.D.	•				1.40E+07	
Ac-228								
	_				3.55E-01			
					2.54E-01			
	Page		_,	-		· · · 		
								266 of 6'

266 of 624

MEASURED or MDA CONCENTRATIONS

=======								
	N							
	ENERGY E	Concentr	ration		Critical	Halflife		
Nuclide	(keV) T	(pCi/g)	MDA	Level			
		2.31E+00 +-	. 5 35F_01	7 85F-01	 3 82F_01			
		2.55E+00 +-						
Bi_212		1.38E+00 +-						
B1-212		1.36E+00 +-						
		1.52E+00 +-				5.04E+04		
D: 214								
D1-214		2.41E+00 +- 2.46E+00 +-						
		1.70E+00 +-			5.56E-01			
		2.36E+00 +-			1.32E-01	1.40E+07		
		2.40E+00 +-			3.97E-01	1.40E+07		
		2.62E+00 +-						
		2.59E+00 +-			2.25E-01	1.40E+07		
		2.41E+00 +-			3.58E-01	1.40E+07		
T1-210	Average:x	1.16E-01 +-	- 2.43E-02			1.40E+07		
	795.00	1.15E-01 +-	- 2.43E-02	3.51E-02	1.71E-02	1.40E+07		
	860.00	2.06E-02 +-	- 2.08E+00	5.01E-01	2.43E-01	1.40E+07		
	1410.00	6.94E-01 +-	- 5.12E-01	8.21E-01	3.96E-01	1.40E+07		
K-40	1460.75	1.09E+01 +-	7.41E-01	9.46E-01	4.66E-01	1.12E+13		
Ra-224	241.00	2.67E+00 +-	- 4.07E+00	9.56E-01	4.73E-01	5.04E+04		
Pb-210	46.52 N	-2.12E+01 +-	8.72E+01	1.45E+02	7.19E+01	1.79E+05		
T1-201	70.82 N	-2.44E+02 +-	- 1.30E+03	2.17E+03	1.07E+03	7.35E+01		
		-5.70E-03 +-			2.17E-02	1.78E+03		
Be-7	477.56 N	1.49E-02 +-	- 2.90E-01	4.87E-01	2.38E-01	1.28E+03		
		2.32E-02 +-			2.40E-02	2.01E+03		
		2.39E-02 +-						

MEASURED TOTAL: 3.61E+01 +- 8.10E+00 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	66.48	137.34	-66	189	156	1494	0.65	Deleted
2	74.74	153.80	1064	206	161	2358	0.92	Unknown
3	77.02	158.35	1854	233	178	1965	0.88	Unknown
4	84.32	172.91	262	235	191	2343	1.22	Unknown
5	87.10	178.45	1071	157	117	2343	1.08	Unknown
6	89.73	183.71	703	152	117	2343	1.16	Unknown
9	105.10	214.34	248	170	138	2804	1.49	Unknown
10	108.74	221.60	78	93	75	1246	0.63	Unknown
11	115.30	234.69	50	79	64	996	0.47	Deleted
12	128.97	261.93	421	102	77	1301	0.74	Unknown
13	139.60	283.14	-22	193	159	1660	0.84	Deleted
15	150.49	304.86	78	111	90	1634	0.77	Deleted
		Page 006						

182032D07.SPC Analyzed by

UNKNOWN, SUM OT ESCAPE PEAKS

PK.	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
16	159.50	322.82	37	76	62	933	0.48	Deleted
17	163.52	330.83	47	123	100	1866	0.92	Deleted
19	198.50	400.58	-107	176	146	857	0.51	Deleted
20	209.22	421.94	745	126	94	1621	0.98	Unknown
21	215.27	434.01	67	112	91	1542	1.00	Deleted
23	241.64	486.60	1922	172	121	2180	1.42	SPLIT
24	258.65	520.51	79	86	70	977	0.78	Unknown
29	327.94	658.66	405	117	90	1288	1.29	Unknown
32	386.97	776.38	67	117	95	1405	1.74	Deleted
33	409.56	821.40	193	78	60	752	1.01	Unknown
34	463.13	928.21	451	82	58	665	1.17	Unknown
35	511.02	1023.72	823	299	241	1386	2.56	Unknown
36	558.64	1118.65	21	132	109	461	1.03	Deleted
37	562.98	1127.32	128	67	52	. 537	1.16	Unknown
38	570.20	1141.72	13	135	111	638	1.31	Deleted
39	572.73	1146.76	53	66	53	558	1.09	Deleted
41	597.37	1195.89	51	182	149	1211	2.52	Deleted
42	609.52	1220.10	3842	201	130	788	1.49	SPLIT
43	618.46	1237.94	7	131	107	307	0.70	Deleted
44	633.70	1268.33	35	48	39	339	0.77	Deleted
45	665.82	1332.37	83	63	49	477	1.18	Unknown
46	692.81	1386.19	37	80	65	282	0.74	Deleted
48	755.54	1511.26	73	67	53	526	1.58	Unknown
50	772.71	1545.49	125	71	55	539	1.77	Unknown
53	803.21	1606.31	45	107	87	346	1.39	Deleted
54	805.96	1611.80	94	49	37	303	1.10	Unknown
55	836.00	1671.69	30	44	35	309	0.80	Deleted
56	860.68	1720.90	248	64	46	404	1.50	SPLIT
57	888.08	1775.54	26	35	28	189	0.83	Deleted
62	1000.72	2000.12	52	50	40	304	1.52	Unknown
64	1155.25	2308.25	82	52	40	308	1.81	Unknown
66	1281.09	2559.17	86	75	60	462	3.69	Unknown
70	1509.29	3014.18	74	35	25	129	1.55	Unknown
71	1588.03	3171.18	141	45	31	176	2.14	Unknown
72	1591.59	3178.28	110	48	35	203	2.54	Unknown
73	1630.84	3256.53	35	30	23	110	1.42	Unknown
74	1661.10	3316.86	41	30	22	98	1.59	Unknown
75	1729.01	3452.27	127	37	25	112	1.99	Unknown
77	1847.16	3687.85	89	33	22	93	1.80	Unknown
81	609.52	1220.10	52	1587	130	788	1.49	1120SEsc

c:\SEEKER\BIN\182032d07.res Analysis Results Saved.

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: GS181103-1MB GS181103-1

SEEKER

Sampling Start: 12/05/2018 14:00:00	Counting Start: 12/05/2018 14:08:53
Sampling Stop: 12/05/2018 14:00:00	Decay Time 1.48E-001 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 2.15E+002 g	Real Time 60095 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 4 (Detector 4)

Energy(keV) = -1.45 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 12/05/2018 FWHM(keV) = 0.82 + 0.019*En + 7.17E-04*En² + 0.00E+00*En³ 09/25/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

C.L. ENERGY ADDRESS NET/MDA BKG FWHM PK. UN-# (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG 53.67 110.00 108 89 71 858 1.17 a 1 807 1.02 a HiResid 2 63.04 128.71 159 84 66 66.36 135.33 54 51 40 404 0.52 b HiResid 3 1076 1.30 c NET< CL 4 70.02 142.64 56 101 82 HiResid 74 942 1.11 d NET< CL 5 74.82 152.22 70 92 HiResid 61 690 0.97 a NET< CL 6 84.55 171.64 60 76 67 763 1.21 a 7 92.48 187.47 604 95 42 393 0.70 a8 139.83 281.97 79 54 57 590 0.91 b 9 143.82 289.92 72 71 64 766 1.35 a NET< CL 10 163.42 329.04 57 80 1.00 a 325 73 **52** 571 11 185.67 373.44 560 0.99 a 52 12 198.37 398.80 94 66 77 60 674 1.28 a 13 238.49 478.86 139 266 0.66 a 33 14 266.90 535.55 39 42 68 49 466 1.07 a 15 294.88 591.40 61 1.20 a 43 370 16 351.78 704.95 142 58 219 0.74 a NET< CL 31 17 397.63 796.46 31 39

107

53

1205

104

67

40

Page 001

511.06 1022.84

558.42 1117.34

18

19

612 2.82 a Wide Pk

309 1.53 a

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
20	564.64	1129.76	19	41	33	240	1.19	b NET< CL
21	569.77	1139.99	54	54	43	343	1.59	C
22	583.08	1166.55	61	41	31	211	1.19	a
23	609.17	1218.63	83	48	36	285	1.15	a
24	693.68	1387.28	70	60	47	377	1.99	a
25	803.16	1605.78	129	41	28	170	1.42	a
26	911.17	1821.33	69	46	35	209	2.37	a
27	1460.71	2918.05	164	41	26	108	2.56	a
28	1764.79	3524.90	57	26	17	54	2.17	a

BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET041128.BKG (112818-4 LONG BKG CAL)

Bkg.File Detector #: 4

SEEKER

BACKGROUND SUBTRACT RESULTS

______ ENERGY OLD NET OLD UN- OLD NEW NET NEW UN-NEW PK# (keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG ______ 1 53.67 108 89 71 -24 187 154 NET<CL

FINAL ACTIVITY REPORT Version 2.2.1 SEEKER

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: GS181103-1MB GS181103-1

Sampling Start: 12/05/2018 14:00:00 | Counting Start: 12/05/2018 14:08:53
Sampling Stop: 12/05/2018 14:00:00 | Decay Time. 1.48e-001 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 60000 Sec Sample Size 2.15e+002 g | Real Time 60095 Sec 95 % | Det. Limit Confidence Interval: 95 % Cr. Level Confidence Interval:

Detector #: 4 (Detector 4)

Efficiency File: (D04)(Sh17).EFF (Geo 17 Eff Cal)

Eff=10^[-7.41E+01 +9.43E+01*L +-4.05E+01*L^2 +5.76E+00*L^3] 09/25/2018

Eff.=10^[-8.67E+00 +8.41E+00*L +-3.13E+00*L^2 +3.49E-01*L^3] Above 300.00 keV

Library File: TIDEWATER GREATKILLS. (Tidewater Great Kills)

______ MEASURED or MDA CONCENTRATIONS

		N							
	ENERGY	E	Conce	ntra	ation		Critical	Halflife	
						MDA		(hrs)	
	92.60					5.66E-01			
Ra-226	186.10	N -1	L.93E-01	+-	3.82E-01	6.39E-01	3.16E-01	1.40E+07	
Pb-212	238.63	N 6	5.70E-03	+-	2.80E-02	4.64E-02	2.29E-02	5.04E+04	
Pb-214	351.92	N S	5.37E-03	+-	5.11E-02	8.50E-02	4.20E-02	1.40E+07	
Ac-228	911.07	7	7.16E-02	+-	4.73E-02	7.53E-02	3.62E-02	5.04E+04	
K-40	1460.75	N I	L.06E-01	+-	3.64E-01	6.07E-01	2.98E-01	1.12E+13	
Bi-214	Average	:ж 5	5.59E-02	+-	2.84E-02			1.40E+07	
	1764.49	2	2.08E-01	+-	9.43E-02	1.36E-01	6.33E-02	1.40E+07	
	609.31	N 4	1.08E-02	+-	2.97E-02	4.81E-02	2.34E-02	1.40E+07	
Pb-210	46.52	N	7.92E-01	+-	3.35E+00	5.59E+00	2.74E+00	1.79E+05	
T1-201	70.82	N (5.14E-02	+-	3.28E-02	5.25E-02	2.57E-02	7.35E+01	
U-235	143.76	N !	5.22E-02	+-	5.24E-02	8.58E-02	4.20E-02	3.33E+10	
Ra-224	241.00	N-4	1.70E-02	+-	1.88E-01	3.18E-01	1.56E-01	5.04E+04	
Ra-223	269.39	N :	L.92E-02	+-	7.15E-02	1.18E-01r	5.81E-02	2.87E+08	
Ir-192	316.49	N :	L.39E-03	+-	8.79E-03	1.48E-02	7.19E-03	1.78E+03	
Be-7	477.56	N-(5.32E-02	+-	8.39E-02	1.46E-01	7.10E-02	1.28E+03	
T1-208	583.14	N :	L.06E-02	+-	1.17E-02	1.91E-02	9.23E-03	5.04E+04	
Bi-212	727.17	N :	1.51E-02	+-	9.19E-02	1.56E-01	7.50E-02	5.04E+04	
T1-210	795.00	N-	7.92E-04	+-	1.12E-02	1.92E-02	9.23E-03	1.40E+07	
Sc-46	889.26	N :	2.65E-03	+-	1.21E-02	2.05E-02	9.83E-03	2.01E+03	
Pa-234	946.00	N (6.09E-03	+-	6.32E-02	1.08E-01	5.17E-02	3.95E+13	
	Pag	e 0	04						272 05 (

272 of 624

182694D04.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

N
ENERGY E Concentration Critical Halflife

Nuclide (keV) T (pCi/g) MDA Level (hrs)

Na-22 1274.54 N 8.27E-04 +- 1.45E-02 2.48E-02 1.18E-02 2.28E+04

MEASURED TOTAL: 1.27E+00 +- 4.57E+00 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	53.67	110.00	-24	187	154	858	1.17	Deleted
2	63.04	128.71	-23	193	159	807	1.02	Deleted
3	66.36	135.33	-11	118	97	404	0.52	Deleted
4	70.02	142.64	56	101	82	1076	1.30	Deleted
5	74.82	152.22	70	92	74	942	1.11	Deleted
6	84.55	171.64	-7	155	128	690	0.97	Deleted
8	139.83	281.97	-73	168	139	393	0.70	Deleted
9	143.82	289.92	11	127	104	590	0.91	Deleted
10	163.42	329.04	57	80	64	766	1.35	Deleted
12	198.37	398.80	-58	177	146	560	0.99	Deleted
14	266.90	535.55	39	42	33	266	0.66	Unknown
15	294.88	591.40	-12	138	114	466	1.07	Deleted
17	397.63	796.46	31	39	31	219	0.74	Deleted
18	511.06	1022.84	-101	254	210	612	2.82	Deleted
19	558.42	1117.34	-58	126	104	309	1.53	Deleted
20	564.64	1129.76	19	41	33	240	1.19	Deleted
21	569.77	1139.99	14	91	75	343	1.59	Deleted
22	583.08	1166.55	14	107	88	211	1.19	Deleted
23	609.17	1218.63	-34	139	114	285	1.15	Deleted
24	693.68	1387.28	3	127	105	377	1.99	Deleted
25	803.16	1605.78	19	95	78	170	1.42	Deleted

c:\SEEKER\BIN\182694d04.res Analysis Results Saved.

ALS Laboratory Group - Fort Collins

GammaScan

Geo 17/26

Sample ID: GS181103-1LCS GS181103-1

Sampling Start: 11/26/2018 14:00:00	Counting Start: 11/26/2018 14:33:18
Sampling Stop: 11/26/2018 14:00:00	Decay Time 5.55E-001 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 1800 Sec
Sample Size 2.15E+002 g	Real Time 1932 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 9 (Detector 9)

Energy(keV) = -2.15 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/26/2018 FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En^2 + 0.00E+00*En^3 11/01/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK.	ENERGY (keV)	ADDRESS CHANNEL		CERTAINTY	C.L. COUNTS	COUNTS	,	FLAG
1	43.14	90.30	275		153			a Wide Pk
2	49.28	102.54	1049	285	228	8230	1.29	a .
3	57.74	119.40	2852	468	375	15552	2.23	a Wide Pk
4	59.45	122.82	58783	516	144	4175	0.86	b
5	77.96	159.72	59	83	67	1113	0.44	a NET< CL
6	88.01	179.76	13118	255	92	1713	0.87	a
7	122.00	247.55	1482	119	75	1138	0.87	a
8	136.41	276.27	206	93	73	1061	0.74	a
9	228.57	460.03	78	92	75	1124	0.81	a.
10	418.67	839.09	81	75	60	733	0.79	a
11	478.67	958.72	27	87	71	989	1.15	a NET< CL
12	511.84	1024.87	60	105	85	1134	1.77	a NET< CL
13	536.96	1074.96	49	62	50	524	0.97	a NET< CL
14	661.99	1324.26	19615	288	56	578	1.39	a
15	857.88	1714.86	86	103	84	983	2.11	a
16	1104.72	2207.03	64	70	56	618	1.55	a
17	1173.47	2344.13	14512	247	45	359	1.81	a
18	1332.59	2661.39	13033	230	21	83	1.92	a HiResid

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET091114.BKG (111418-9 LONG BKG CAL)

Bkg.File Detector #: 9

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN- OLD NEW NET NEW UN-NEW PK# (keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG _____ 83 67 51 255 92 13117 92 75 76 5 77.96 59 83 67 NET<CL 6 88.01 13118 9 228.57 78 255 92 93 75 12 511.84 60 105 85 18 105 86 NET<CL

```
181752D09.SPC Analyzed by
****************
          FINAL ACTIVITY REPORT
                                    Version 2.2.1
             ALS Laboratory Group - Fort Collins
                     GammaScan
*****************
                     Geo 17/26
Sample ID: GS181103-1LCS GS181103-1
Sampling Start:
          11/26/2018 14:00:00 | Counting Start: 11/26/2018 14:33:18
          11/26/2018 14:00:00 | Decay Time. . . . . . 5.55e-001 Hrs
Sampling Stop:
Buildup Time. . . . . 0.00e+000 Hrs | Live Time . . . . . . .
                                         1800 Sec
Sample Size . . . . . . . 2.15e+002 g | Real Time . . . . . . . . .
Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 %
Detector #: 9 (Detector 9)
Efficiency File: (D09)(Sh17).EFF (Geo 17 Eff Cal)
Eff=10^[-1.47E+01 +1.58E+01*L +-5.94E+00*L^2 +6.70E-01*L^3] 11/06/2018
Eff.=10^[-4.97E+00 +4.67E+00*L +-1.91E+00*L^2 +2.19E-01*L^3] Above 300.00 keV
------
Library File: . . . ANALYTICAL.LIB (Analytical)
MEASURED or MDA CONCENTRATIONS
N
            Concentration
     ENERGY E
                             Critical Halflife
Nuclide (keV) T (pCi/g ) MDA Level (hrs)
------
Am-241 59.54 4.71E+02 +- 4.13E+00 2.33E+00 1.15E+00 3.79E+06
Cd-109
     88.02 7.87E+02 +- 1.53E+01 1.12E+01 5.53E+00 1.11E+04
Co-57
     122.07 3.85E+00 +- 3.11E-01 3.98E-01 1.95E-01 6.50E+03
Cs-137 661.62 1.81E+02 +- 2.66E+00 1.06E+00 5.16E-01 2.64E+05
1173.21 1.87E+02 +- 3.18E+00 1.20E+00 5.81E-01 4.62E+04
    1332.48 1.86E+02 +- 3.29E+00 6.45E-01 3.03E-01 4.62E+04
Ce-139
     165.85
             MDA
                  . . . 5.35E-01 2.63E-01 3.30E+03
Hg-203
     279.18
             MDA
                  . . . 8.46E-01 4.16E-01 1.12E+03
                   . . . 1.25E+00 6.14E-01 2.76E+03
Sn-113
     391.68
             MDA
Y-88
     898.02
             MDA
                   ... 1.44E+00 7.06E-01 2.56E+03
 MEASURED TOTAL: 1.63E+03 +- 2.47E+01 pCi/g
UNKNOWN, SUM or ESCAPE PEAKS
PK. ENERGY ADDRESS
              NET
                   UN-
                          C.L.
                                BKG
                                     FWHM
# (keV) CHANNEL COUNTS CERTAINTY COUNTS (keV) FLAG
   1 43.14 90.30
               275 189
                           153
```

Page 003

3480 1.50 Unknown

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	49.28	102.54	1049	285	228	8230	1.29	Unknown
3	57.74	119.40	2852	468	375	15552	2.23	Unknown
5	77.96	159.72	51	83	67	1113	0.44	Deleted
8	136.41	276.27	206	93	73	1061	0.74	Unknown
9	228.57	460.03	76	93	75	1124	0.81	Unknown
10	418.67	839.09	81	75	60	733	0.79	Unknown
11	478.67	958.72	27	87	71	989	1.15	Deleted
12	511.84	1024.87	18	105	86	1134	1.77	Deleted
13	536.96	1074.96	49	62	50	524	0.97	Deleted
15	857.88	1714.86	86	103	84	983	2.11	Unknown
16	1104.72	2207.03	64	70	56	618	1.55	Unknown

c:\SEEKER\BIN\181752d09.res Analysis Results Saved.

ALS Laboratory Group - Fort Collins GammaScan

GAMMA ANALYSIS RESULTS

Geo 17/26

Sample ID: GS181103-2MB GS181103-2

SEEKER

Sampling Start: 12/06/2018 14:00:00	Counting Start: 12/06/2018 14:04:56
Sampling Stop: 12/06/2018 14:00:00	Decay Time 8.22E-002 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 2.15E+002 g	Real Time 60202 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 9 (Detector 9)

Energy(keV) = -2.21 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 12/06/2018 FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En^2 + 0.00E+00*En^3 11/01/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	44.24	92.67	44	60	48	507	0.57	a NET< CL
2	46.23	96.64	295	68	48	507	0.62	b
3	63.08	130.25	490	82	57	653	0.85	a.
4	66.18	136.44	176	74	57	653	0.80	b
5	74.72	153.47	221	66	48	515	0.74	a.
6	76.98	157.98	186	74	57	644	0.82	b
7	84.20	172.39	170	85	67	758	1.11	a.
8	87.21	178.39	73	56	44	433	0.69	b
9	90.07	184.10	64	74	59	650	1.03	c
10	92.46	188.87	755	98	67	758	1.13	đ
11	139.52	282.74	219	144	116	1415	2.50	a Wide Pk
12	143.59	290.86	78	61	48	472	0.83	b
13	154.10	311.82	40	68	55	564	0.91	a NET< CL
14	158.92	321.45	40	43	34	282	0.48	b
15	185.67	374.82	290	67	48	462	0.87	a
16	198.20	399.80	220	76	58	574	1.19	a
17	205.73	414.83	40	69	56	572	0.91	a NET< CL
18	238.51	480.22	275	73	53	528	1.02	a.
19	295.16	593.24	93	68	53	483	1.14	a.
20	338.33	679.36	43	43	34	258	0.61	a
21	351.90	706.42	173	66	50	420	1.18	a
		Page 001						

Page 001

PS Version 1.8.4

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL			C.L. COUNTS		FWHM (keV)	FLAG
22	374.86	752.22	47	109	89	800	2.57 ε	NET< CL Wide Pk
23	511.06	1023.93	1471	113	69	606	2.48 a	a Wide Pk
24	514.06	1029.93	47	48	38	283	1.11 k	
25	558.57	1118.71	173	50	35	246	1.15 a	1
26	569.97	1141.45	56	37	28	179	0.86 a	ı
27	583.57	1168.59	79	50	38	272	1.30 a	1
28	609.46	1220.24	97	48	36	272	0.90 €	ı
29	651.05	1303.21	34	41	33	211	1.09 a	ı
30	669.95	1340.91	29	40	32	197	1.12 ε	NET< CL
31	803.15	1606.63	146	49	35	213	1.54 a	ı
32	911.10	1821.98	75	40	29	168	1.39 a	1
33	962.35	1924.23	49	28	20	97	1.05 a	1
34	969.60	1938.68	49	33	25	129	1.27 h	
35	1120.35	2239.43	37	31	24	117	1.24 a	1
36	1460.22	2917.43	175	38	22	87	2.16 a	ı
37	1763.69	3522.83	44	30	22	74	2.77 ε	ı

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET091128.BKG (112818-9 LONG BKG CAL)

Bkg.File Detector #: 9

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEI	FLAG
2	46.23	295	68	48	-37	198	163	NET <cl< td=""></cl<>
3	63.08	490	82	57	152	187	152	NET <cl< td=""></cl<>
4	66.18	176	74	57	90	230	189	NET <cl< td=""></cl<>
5	74.72	221	66	48	26	151	124	NET <cl< td=""></cl<>
6	76.98	186	74	57	-21	173	143	NET <cl< td=""></cl<>
7	84.20	170	85	67	88	198	162	NET <cl< td=""></cl<>
8	87.21	73	56	44	-14	152	125	NET <cl< td=""></cl<>
10	92.46	755	98	67	144	193	157	NET <cl< td=""></cl<>
11	139.52	219	144	116	99	193	158	NET <cl< td=""></cl<>
12	143.59	78	61	48	-18	126	104	NET <cl< td=""></cl<>
15	185.67	290	67	48	-14	154	127	NET <cl< td=""></cl<>
16	198.20	220	76	58	14	152	125	NET <cl< td=""></cl<>
18	238.51	275	73	53	12	154	126	NET <cl< td=""></cl<>
19	295.16	93	68	53	14	131	108	NET <cl< td=""></cl<>
20	338.33	43	43	34	7	87	71	NET <cl< td=""></cl<>
21	351.90	173	66	50	1	134	110	NET <cl< td=""></cl<>
23	511.06	1471	113	69	-84	266	219	NET <cl< td=""></cl<>
25	558.57	173	50	35	-17	114	94	NET <cl< td=""></cl<>
26	569.97	56	37	28	-21	132	109	NET <cl< td=""></cl<>
27	583.57	79	50	38	-25	117	96	NET <cl< td=""></cl<>
28	609.46	97	48	36	-8	112	93	NET <cl< td=""></cl<>
31	803.15	146	49	35	62	95	77	NET <cl< td=""></cl<>
32	911.10	75	40	29	20	69	56	NET <cl< td=""></cl<>
33	962.35	49	28	20	22	75	61	NET <cl< td=""></cl<>
36	1460.22	176	38	22	21	84	69	NET <cl< td=""></cl<>
37	1763.69	44	30	22	4	70	58	NET <cl< td=""></cl<>

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: GS181103-2MB GS181103-2

Detector #: 9 (Detector 9)

Efficiency File: (D09)(Sh26).EFF (Geo 26 Eff Cal)

Eff. = Spline Fit 11/01/2018

Library File: TIDEWATER_GREATKILLS. (Tidewater Great Kills)

MEASURED or MDA CONCENTRATIONS

	ENERGY E Co	centr	ation		Critical	Halflife	
Nuclide	(keV) T (pCi			MDA			
Pb-210	46.52 N-1.25E	01 +-	6.73E-01	1.12E+00	5.55E-01	1.79E+05	
U-238	92.60 N 3.25E	01 +-	4.33E-01	7.13E-01	3.54E-01	3.92E+13	
Ra-226	186.10 N-5.18E	-02 +-	5.64E-01	9.38E-01	4.64E-01	1.40E+07	
Pb-212	238.63 N 4.00E	-03 +-	4.99E-02	8.29E-02	4.10E-02	5.04E+04	
Pb-214	351.92 N 6.18E	-04 +-	7.01E-02	1.17E-01	5.77E-02	1.40E+07	
Bi-214	Average:x 4.12E	-02 +-	6.36E-02			1.40E+07	
	609.31 N-5.74E	-03 +-	7.93E-02	1.33E-01	6.53E-02	1.40E+07	
	1120.29 1.26E	-01 +-	1.06E-01	1.71E-01	8.07E-02	1.40E+07	
Ac-228	Average:x 8.79E	-02 +-	6.70E-02			5.04E+04	
	911.07 N 3.07E	-02 +-	1.04E-01	1.74E-01	8.51E-02	5.04E+04	
	968.90 1.28E	-01 +-	8.75E-02	1.38E-01	6.55E-02	5.04E+04	
K-40	1460.75 N 1.38E	-01 +-	5.50E-01	9.18E-01	4.50E-01	1.12E+13	
T1-201	70.82 N 1.19E	-03 +-	2.10E-02	3.53E-02	1.73E-02	7.35E+01	
U-235	143.76 N 1.48E	-01 +-	1.19E-01	1.89E-01r	9.29E-02	3.33E+10	
Ra-224	241.00 N-1.55E	-01 +-	2.45E-01	4.20E-01	2.05E-01	5.04E+04	
Ra-223	269.39 N-5.04E	-02 +-	1.53E-01	2.55E-01	1.26E-01	2.87E+08	
Ir-192	316.49 N-1.21E	-03 +-	1.25E-02	2.11E-02	1.03E-02	1.78E+03	
Be-7	477.56 N-8.88E	-02 +-	1.07E-01	1.89E-01	9.11E-02	1.28E+03	
T1-208	583.14 N 3.33E	-02 +-	1.78E-02	2.79E-02	1.35E-02	5.04E+04	
Bi-212	727.17 N-1.17E	-02 +-	1.43E-01	2.45E-01	1.18E-01	5.04E+04	
T1-210	795.00 N-9.30E	-03 +-	1.71E-02	2.98E-02	1.44E-02	1.40E+07	
Sc-46	889.26 N 2.72E	-03 +-	1.66E-02	2.83E-02	1.36E-02	2.01E+03	
	Page 004						201 of 6

281 of 624

181830D09.SPC Analyzed by

MEASURED or MDA CONCENTRATIONS

N
ENERGY E Concentration Critical Halflife
Nuclide (keV) T (pCi/g) MDA Level (hrs)

Pa-234 946.00 N-3.37E-02 +- 8.03E-02 1.41E-01 6.75E-02 3.95E+13 Na-22 1274.54 N 7.96E-03 +- 1.80E-02 3.03E-02 1.44E-02 2.28E+04

MEASURED TOTAL: 7.90E-01 +- 1.43E+00 pCi/g

UNKNOWN, SUM OF ESCAPE PEAKS

PK.	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	44.24	92.67	44	60	48	507	0.57	Deleted
3	63.08	130.25	152	187	152	653	0.85	Deleted
4	66.18	136.44	90	230	189	653	0.80	Deleted
5	74.72	153.47	26	151	124	515	0.74	Deleted
6	76.98	157.98	-21	173	143	644	0.82	Deleted
7	84.20	172.39	88	198	162	758	1.11	Deleted
8	87.21	178.39	-14	152	125	433	0.69	Deleted
9	90.07	184.10	64	74	59	650	1.03	Unknown
11	139.52	282.74	99	193	158	1415	2.50	Deleted
12	143.59	290.86	-18	126	104	472	0.83	Deleted
13	154.10	311.82	40	68	55	564	0.91	Deleted
14	158.92	321.45	40	43	34	282	0.48	Unknown
16	198.20	399.80	14	152	125	574	1.19	Deleted
17	205.73	414.83	40	69	56	572	0.91	Deleted
19	295.16	593.24	14	131	108	483	1.14	Deleted
20	338.33	679.36	7	87	71	258	0.61	Deleted
22	374.86	752.22	47	109	89	800	2.57	Deleted
23	511.06	1023.93	-84	266	219	606	2.48	Deleted
24	514.06	1029.93	47	48	38	283	1.11	Unknown
25	558.57	1118.71	-17	114	94	246	1.15	Deleted
26	569.97	1141.45	-21	132	109	179	0.86	Deleted
27	583.57	1168.59	-25	117	96	272	1.30	Deleted
29	651.05	1303.21	34	41	33	211	1.09	Unknown
30	669.95	1340.91	29	40	32	197	1.12	Deleted
31	803.15	1606.63	62	95	77	213	1.54	Deleted
33	962.35	1924.23	22	75	61	97	1.05	Deleted
37	1763.69	3522.83	4	70	58	74	2.77	Deleted

c:\SEEKER\BIN\181830d09.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: GS181103-2LCS GS181103-2

Sampling Start: 11/27/2018 08:00	0:00 Counting Start: 11/27/2018 08:35:13
Sampling Stop: 11/27/2018 08:00	0:00 Decay Time 5.87E-001 Hrs
Buildup Time 0.00E+000	Hrs Live Time 1800 Sec
Sample Size 2.15E+00	02 g Real Time 1865 Sec
Collection Efficiency 1.0	0000 Spc. File SPC

Detector #: 10 (Detector 10)

Energy(keV) = -2.03 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/27/2018 FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En^2 + 0.00E+00*En^3 11/15/2018 Where En = Sgrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

C.L. BKG FWHM ENERGY ADDRESS NET/MDA UN-PK. COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG # (keV) CHANNEL ______ 357 287 11410 1.70 a 119.64 1388 57.91 1 5569 1.02 b 174 38357 445 2 59.40 122.60 3091 1.00 a NET< CL 66.63 137.02 158 129 3 57 316 141 3685 1.06 a 87.92 179.52 17604 2879 2871 1.18 a 130 191 121.94 247.41 5 176 141 3137 1.32 a 136.34 276.14 443 6 112 2299 1.02 a 115 137 165.62 334.58 7 1839 0.91 a 352.27 707.05 118 116 93 8 2394 1.24 a NET< CL 393.18 788.69 114 140 93 9 93 1675 1.50 a NET< CL 83 114 10 553.72 1109.06 2167 1.99 a HiResid 661.79 1324.74 62475 519 114 11 1440 1.47 a 12 102 83 820.80 1642.05 91 1516 2.69 a HiResid 98 13 1173.26 2345.42 49173 459 2062 2.80 a HiResid 14 1332.43 2663.07 445 116 44620

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

GammaScan

Background File: DET101114.BKG (111418-10 LONG BKG CAL)

Bkg.File Detector #: 10

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL FLAG
3	66.63	57	158	129	29	158	130 NET <cl< th=""></cl<>
4	87.92	17604	316	141	17595	316	141
8	352.27	118	116	93	23	116	95 NET <cl< th=""></cl<>

```
181935D10.SPC Analyzed by
***************
          FINAL ACTIVITY REPORT Version 2.2.1
              ALS Laboratory Group - Fort Collins
                       GammaScan
 *************
                       Geo 17/26
Sample ID: GS181103-2LCS GS181103-2
-----
Sampling Start: 11/27/2018 08:00:00 | Counting Start: 11/27/2018 08:35:13 Sampling Stop: 11/27/2018 08:00:00 | Decay Time. . . . . . . . . . . . 5.87e-001 Hrs
           11/27/2018 08:00:00 | Counting Start: 11/27/2018 08:35:13
                                              1800 Sec
Buildup Time. . . . . 0.00e+000 Hrs | Live Time . . . . . . .
Collection Efficiency . . . . 1.0000 | Spectrum File . . . . . . . . . 181935D10.SPC
Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval:
______
                 Detector #: 10 (Detector 10)
Efficiency File: (D10)(Sh17).EFF (Geo 17 Eff Cal)
Eff=10^[-5.73E+01 +7.32E+01*L +-3.17E+01*L^2 +4.54E+00*L^3] 11/20/2018
Eff.=10^[-2.63E+01 +2.68E+01*L +-9.41E+00*L^2 +1.07E+00*L^3] Above 300.00 keV
Library File: . . . . ANALYTICAL.LIB (Analytical)
_______
                MEASURED or MDA CONCENTRATIONS
Critical Halflife
      ENERGY E Concentration
                        ) MDA Level (hrs)
Nuclide (keV) T (pCi/g
59.54 4.73E+02 +- 5.48E+00 4.31E+00 2.14E+00 3.79E+06
Am-241
      88.02 7.82E+02 +- 1.40E+01 1.27E+01 6.28E+00 1.11E+04
Cd-109
Co-57
     122.07 4.20E+00 +- 2.78E-01 3.82E-01 1.89E-01 6.50E+03
Ce-139 165.85 1.81E-01 +- 2.16E-01 3.55E-01 1.75E-01 3.30E+03
      661.62 1.84E+02 +- 1.53E+00 6.78E-01 3.35E-01 2.64E+05
Cs-137
                                  . . . 4.62E+04
Co-60 Average:x 1.87E+02 +- 1.28E+00 . . . .
      1173.21 1.89E+02 +- 1.76E+00 7.61E-01 3.75E-01 4.62E+04
     1332.48 1.86E+02 +- 1.86E+00 9.81E-01 4.85E-01 4.62E+04
                   . . . 4.99E-01 2.47E-01 1.12E+03
Hg-203 279.18 MDA
                     . . . 7.19E-01 3.56E-01 2.76E+03
Sn-113
      391.68
               MDA
                     .... 7.55E-01 3.73E-01 2.56E+03
      898.02
               MDA
Y-88
 MEASURED TOTAL: 1.63E+03 +- 2.28E+01 pCi/g
UNKNOWN, SUM or ESCAPE PEAKS
PK. ENERGY ADDRESS
               NET UN-
                             C.L.
                                   BKG
                                         FWHM
# (keV) CHANNEL COUNTS CERTAINTY COUNTS (keV) FLAG
1 57.91 119.64
                1388
                       357
                              287
                                   11410 1.70 Unknown
```

Page 003

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
3	66.63	137.02	29	158	130	3091	1.00	Deleted
6	136.34	276.14	443	176	141	3137	1.32	Unknown
8	352.27	707.05	23	116	95	1839	0.91	Deleted
9	393.18	788.69	93	140	114	2394	1.24	Deleted
10	553.72	1109.06	83	114	93	1675	1.50	Deleted
12	820.80	1642.05	91	102	83	1440	1.47	1332SEsc

c:\SEEKER\BIN\181935d10.res Analysis Results Saved.

Gamma Spectrometer Run Log

Date: 11 | 210 | 6

Reviewed By/Date: Stilzule

	ample ID	Ver ¹	Det. No.	Geo ²	Count Dur. (min.) ³	Start Time	Analyst	File ID.SPC	Saved?
1810627-1		Sp.	7	70	30	12:27	32	121947007	2
	-2		8			1		191999000	8
	-3		9					191750009	85
	-3D	V	10			V	Ψ	192ED10	So
	-4	20				13:07	26	1920E7DO1	20
	-5		2					192122002	2
	-y		3					19240D03	8,
			4					1921003DO4	8
	-8		S					181943005	Su
	-9		7					191949007	S
	-10		Two					191999D09	56
	-11		9			V		121757D09	8
	-12	V	10			13:08		181929DIO	8,
	-13	20	_ \			13:49	26	12082DO1	So
	-14		2					192123002	3
	-140		3					1921011D03	8
	-15		4					192604004	8
	-16		10					181930D10	8
	-17		7					121949D07	85
	-18	V	8					191990DDS	S
	-19	K	1 (#	
	V - 20	2	5	V		V	A	1919441205	85
6519	1103-1 MB		7	The		14:31	20	191950D07	8
	LUS	V	89	17	₩	14:33	1	121752009	SU

Analyst will verify the position, detector, and geometry when the sample is removed from the detector.

² Calibration geometry.

³ Count duration.

A recent, did not save file

<u>KEY</u>: * sample was counted on a puck

 $[\]uparrow$ sample was counted with air flow arrow pointing up

Gamma Spectrometer Run Log

Date: 11127118

Reviewed By/Date: 56 11/27/18

Sample ID	Ver ¹	Det. No.	Geo ²	Count Dur. (min.) ³	Start Time	Analyst	File ID.SPC	Saved?
1810627-28	85	5	17/20	30	8:34	20	181848005	8
-29		+					1919SYDUA	8
1 - 290		દ			1		19199 DUS	(L)
GS181103-2M	3 /	9	1		8:35		18175LEDOT	Si
Vus	A	10	17	V	1	V	121935DIO	2
112718-4(1048)	30	4	7.	30	9:07	3	192409D04	85
112719-7(1096)	30	7	7	45	9:11	Sign	121957007	30
GS181103-27/LS	8	1	200	30	9:18	8	192093001	20
1811333-2		2	11		9:19		19212EDUZ	8
J-2D	V	ઈ	7	1	$\downarrow \downarrow$	7	1919940008	8
1811254-1 4	56	3	13	30	9:18	Sb	19210110003	8
1811321-11		1		1	1		192117003	So
1811254-2 4		5			9:19		181949005	50
1811321-21	1	V	1		J	1	181890005	SC-
1811332-3	2	9	01		9:19	35	191757009	8
1 -4	1	10	1	Ψ	1	7	E1936010	Si
-5	8	1	01	30	10:00	85	197094DOI	84
-7		4			1		122010DV	34
-6		9			10,01		1817581209	25
V -9	V	10	•			1	181937 DIO	30
GS1811210-145	30	3 5	13		10:02	84	192619003	8
1-F251(31		5	11		10:01		181957005	8
GSIEIIZG-ZMB		2					182129 DOZ	
L Lus	V	g	1	V		9	191997008	8

Analyst will verify the position, detector, and geometry when the sample is removed from the detector.

KEY:

Calibration geometry. * Same Samp.

Count duration.

^{*} sample was counted on a puck

[↑] sample was counted with air flow arrow pointing up

Date: 12 4 19

Reviewed By/Date: <u>\$\sqrt{35}\$ 12|5|18</u>

Sample ID	Ver ¹	Det. No.	Geo ²	Count Dur. (min.) ³	Start Time	Analyst	File ID.SPC	Saved?
GS181130-345	5	\	11	30	8:52	S	192157001	E
120418-2(1096)	8	2	6	40	6:55	8	192192002	Su
1-4(1098)	35	2	13	30	8:5Ce	S	1826792004	2
120412-5(1092)	#	5	ઇ	4	8:57	Sig	4	
120419-740935	5	Á	14	41	8:59	22	1920131007	SS
120419-10(1097)	35	10	97	15	9:01	S	16 1929 DIO	So
1204184(1046)	8	4	13	30	9:34	85	192480000	&
120418-2(1048)	3	2	6	30	9148	S	182183DDZ	8
120418-1 (1096)	8		6	30	9:49	8	182152001	80
120418-10(1047)	8	10	91	30	9:52	SU	121990DIO	80
1-7/1044)	85	7	14	1	9:54	3	F2014D07	SG
1810627-1	3	3	17	155	10:18	8	18266800331	20
1 -2		4	1	400			182685004	30
-3	2	5		90			161897DUS	2
-30	8	8		75			181952D00	20
-4	7	9		120	V		181812D09	8
-5	N)	2		120	10:25	132	192197DD2	8
1 te	B	10	1	60	10:24	30	191992DID	SC
120418-1(1048)	5		10.	30	10:57	S	182153DOI	\mathcal{S}
1810627-7	8	7	17/2	300	10.30	8	182018DO7	\$
-8	8		<u> </u>	90	10:59	8	1821SUDDI	1
-9	1	8		75	12:04	'	181953DOO	25
1 -10	35	10	V	[0]	12:07	4	181993010	8
05181126-33U	us J	5	01	30	12:19	3	191292005	20

Analyst will verify the position, detector, and geometry when the sample is removed from the detector.

² Calibration geometry.

Count duration.

Arecount for

CXICAGEO time low Amoul counts 1 sample was counted with air flow arrow pointing up

<u>KEY</u>: * sample was counted on a puck

Date: 12104118/215/18

Reviewed By/Date: Strict 12 15 18

Sample ID	Ver ¹	Det. No.	Geo ²	Count Dur. (min.) ³	Start Time	Analyst	File ID.SPC	Saved?
GS181018-3AUS	3>	2	20	<i>3</i> 5	12:55	9	191198002	87
120419-1(+095)	B	1	14	45	12:54	Ss	1971STD01	20
1-1(1044)	3	1	7	30	14:31	8	19215EDU	80
1810427-11		3	Hap	400	14:50	20	122649003	2
-12		S					121299005	3
-13		2					192199052	2
-140		8		1	\ <u>\</u>		181954006	50
-161		10		400	14:49		181994010	50
- 20		9		360	14:30	4	1818160001	S
-18	7		V	→	15:05	Sir	182159001	25
1810027-15	70	10	17/26	120	8:31		12PPADIO	\$
1 -17		5				~	181902005	70
1 - 21		2				76	191957008	30
V - C+	V		74	20	<u> </u>	7	19200	N.
4-1265		1	子"	30	8:44	3-	122161001	8
		7		1.0	8:47	2	1720/000+	8
120518-4(1093)	130	4	14	102	10:23	20	1921000	85
1912035-1	7	\ \	70	30	11.22	8	16211204	85
10-205	1	10	1		11.W	30	181999DIO	50
18120360-1		2	91		11 22		1921921117	30
J · 2		4			11100		1921/92 M	8,
1812037-1		<			1		1819DD	3)
J -2	V	7	7		11:23		192021007	56

Analyst will verify the position, detector, and geometry when the sample is removed from the detector.

² Calibration geometry.

Count duration.

recent for exercise

KEY: * sample was counted on a puck

[↑] sample was counted with air flow arrow pointing up

Date: 12/5/18/12/10/18

Reviewed By/Date: S 1210118

Sample ID	Ver ¹	Det. No.	Geo ²	Count Dur. (min.) 3	Start Time	Analyst	File ID.SPC	Saved?
1812037-3	3	8	91	100	11:23	22	19195EDDS	56
-4	1	9	T	7	J	1	R182017U9	Si
1812035-ZD	9	١	70	60	12:33	26	182163DD1	8
GS181205-16MB		10	7	1	1	1	10997D10	B
1812036-20		2	91	100	12:33	80	182194DVZ	32
1212037-40		4			12:34		921093DOY	25
7-2	$\downarrow /$	5					18190100	30
GS18120512MB		7	1	Ψ	V	V	192022DDH	$\widetilde{\mathcal{Z}}$
GS181130-3MB	25	1	11	1000	14:08	جد	162164201	X
1610027-14		2	17/20				18795WL	72
1 -140		3					1621A2003	8
-16		10			14:09		[ES000]	30
1 -19		5			14:09		181905DOT	36
GS181103-1MB		4	1		14:08		19269410	3
1810427-23		7	17/a		4:09		192023DD7	8
-24	1	8					121959100	8
V -25	$\frac{\sqrt{N}}{\sqrt{N}}$	9	121	100	8:01	O.	1802000	8
1810027-22	<u> 4X</u>	10	Hu	170	1001	3	19720021)10	8
1911150-13	7/2		26	20	7:59	120	18210001	123
1611153-135	4	2			6:00		1921 0 201	3
1 -4	-	5					1920700	20
-5	+	7	-		 		16 20000	3
30	-	9				1	16 BLAINS	So
	<u> </u>	U				<u> </u>	ILLI TUTIO O	

Analyst will verify the position, detector, and geometry when the sample is removed from the detector.

KEY:

² Calibration geometry.

Count duration.

sample was counted on a puck

[↑] sample was counted with air flow arrow pointing up

Date: 12/01/8

Reviewed By/Date: 5 1212119

Sample ID	Ver ^l	Det. No.	Geo ²	Count Dur. (min.) 3	Start Time	Analyst	File ID.SPC	Saved?
1811484-1	36	Ц	MA	(min.) ²	14:30	9-	1927210704	SG
1811532-2	1	1	1		14:38	\mathcal{I}	162727D04	
1 -5					4-42		1227 29004	
1812003-9			\downarrow		14:45		192729004	
TC181204-1MB			NA		14:49		192730004	
1 les	J		7	V	14:55	J	192731004	V
PEF 1	5		NA	2	12:30	70	192703004	30
REF Z					12:41		182704204	
12EPS	V	V	1	<u> </u>	12:56	V	165302007	4
GS181109-266	Xa	છ	260	30	13:05	Sy	121910EDCE	50
1811514-1 *		10	13	1000	14:03		182000D10	20
V -1D		8					181919DD8	S
1811518-14	V	10		1	1	1	197057DIO	7
1811375-1	3/2		11	560	14:02	25	182174DOI	80
9 -1D	∇V	2	1	1	14:03	7	192705D02	20
18101027-26	35	3	17ta	100	14.07	20	1821&3DO 3	Z
-28		4	'		14:59		152732004	30
-29		5			1404		181914120 2	30
1 -29D	1	13					1970 32107	20
GS181103-2MG	3 1	9	1		V	<u> </u>	171430DO9	SCI
	+			9.				=
		So	12131	10				
	_				·			

Analyst will verify the position, detector, and geometry when the sample is removed from the detector.

² Calibration geometry. Same Sample

³ Count duration.

KEY:

sample was counted with air flow arrow pointing up

^{*} sample was counted on a puck

Technical Comments Regarding Analysis using the TIDEWATER GREATKILLS.LIB Gamma Spectroscopy Library

Analysis using the TIDEWATER_GREATKILLS.LIB library is limited to the list of gamma emitting radionuclides specified by ALS Laboratory Group. ALS Laboratory Group specifies all values assigned to the nuclides in this library. In cases where multiple gamma emissions are used to quantify activity, the most abundant emission is used for quantification in the absence of any supporting gamma emissions. It should be noted that the current software program used for gamma spectroscopic analysis is limited to a +/- 2.0 keV photo-peak resolution tolerance. Thus, any gamma emissions occurring within the same +/- 2.0 keV range will suffer interference, consequently preventing accurate quantification. Nuclide specific information regarding analysis using the TIDEWATER_GREATKILLS library is as follows:

Nuclide: ²¹²Bi, ²¹²Pb, ²⁰⁸Tl

Energy: various

Photon Abundance: various

All activity values for 212 Bi, 212 Pb, and 208 Tl are calculated using the half-life, $t_{1/2}$ =1.91 years, of the longlived ²²⁸Th parent. It is assumed that secular equilibrium is achieved between the ²²⁸Th parent and the ²¹²Bi, ²¹²Pb, and ²⁰⁸Tl progeny.

Nuclide: ²¹⁴Bi. ²¹⁴Pb

Energy: various

Photon Abundance: various

All activity values for 214 Bi and 214 Pb are calculated using the half-life, $t_{1/2}$ =1600 years, of the long-lived ²²⁶Ra parent. It is assumed that secular equilibrium is achieved between the ²²⁶Ra parent and the ²¹⁴Bi and ²¹⁴Pb progeny.

Nuclide: 40K

Energy: 1460.75

Photon Abundance: 0.1070

The only gamma emission useful for quantification of this nuclide suffers from possible resolution interference due to the ²²⁸Ac gamma emission occurring at 1459.2 keV (0.0104, abundance). Therefore, a possibility of a high bias to the ⁴⁰K results may occur in the presence of elevated ²²⁸Ac activity

Nuclide: ²¹⁰Pb

Energy: 46.52 keV

Photon Abundance: 0.0400

Activity calculations for 210Pb should be considered to be estimated values, based upon an energy dependent efficiency calibration that is non-inclusive of the 210Pb gamma emission energy of 46.50 keV.

Nuclide: 223Ra

Energy: Various

Photon Abundance: various

All activity values for 223 Ra are calculated using the half-life, $t_{1/2}$ =3.30E+04 years, for the long-lived 231 Pa parent. It is assumed that secular equilibrium is achieved between the ²³¹Pa parent and the ²²³Ra progeny.

Nuclide: 226Ra

Energy: 186.10

Photon Abundance: 0.0350

Quantifying ²²⁶Ra activity using the 186.10 keV photo-peak is vulnerable to a significant high bias due to interference from gamma emissions from ²³⁵U occurring at 185.72 keV (0.5720, abundance). Therefore, this nuclide will always be "SI" flagged, indicating that significant spectral interference prohibits accurate quantification.

Nuclide: 228Ra, 228Ac

Energy: various

Photon Abundance: various

All activity values for 228 Ac are calculated using the half-life, $t_{1/2}$ =5.75 years, of the long-lived 228 Ra parent. It is assumed that secular equilibrium is achieved between the 228 Ra parent and the 228 Ac progeny. If the requested analysis involves the quantification of both 228 Ac and 228 Ra, the reported results for each nuclide will be identical. The quantification will be obtained from the measurement of the observed 228 Ra photo-peaks with energies of 338.40, 911.07, and 968.90 and 964.6 keV.

Nuclide: 214Pb

Energy: 241.98

Photon Abundance: 0.0750

Quantifying ²¹⁴Pb activity using the 241.98 keV photo-peak is vulnerable to a significant high bias due to interference from gamma emissions from ²²⁴Ra occurring at 241.00 keV (0.0390, abundance). Therefore, this emission will be used as an identifier only and not in the activity calculations for this nuclide.

Nuclide: 238U

Energy: Various

Photon Abundance: Various

Uranium-238 does not emit any gamma photons that would be useful for quantification. U-238 activity is calculated based on the gamma emissions of the 234 Th progeny, assuming secular equilibrium with parent nuclide. The quantification will be obtained from the measurement of the observed 234 Th photopeaks with energies of 63.29 and 92.60 keV. The half-life of 238 U (t1/2=4.468E+09 years) will be used in the activity calculations.

Gamma Spectroscopist

Date

Radiochemistry Instrumentation Laboratory

Radiochemistry Manager

Date

12-18-18

Library File: Tidewater_GreatKills.LIB File I.D.: Tidewater Great Kills

Pk.	Energy	Isotope	2ndary		Gamma		
#	(keV)	Name	Pk #	Type	Fraction	Halflife	
	-						======
1	46.52	Pb-210	0	NET	0.0400	2.0400E+01 yrs	
2	63.29	U-238	6	QUANT	0.0390	4.4680E+09 yrs	
3	68.89	T1-201	4	QUANT	0.2890	3.0630E+00 dys	
4	70.82	T1-201	5	NET	0.4900	3.0630E+00 dys	
5	80.20	T1-201	15	QUANT	0.1690	3.0630E+00 dys	
6	92.60	U-238	2	NET	0.0557	4.4680E+09 yrs	
7	94.67	Pa-234	8	QUANT	0.1550	4.5100E+09 yrs	
8	98.44	Pa-234	9	QUANT	0.2510	4.5100E+09 yrs	
9	99.70	Pa-234	10	QUANT	0.0470	4.5100E+09 yrs	
10	111.00	Pa-234	11	QUANT	0.0855	4.5100E+09 yrs	
11	131.28	Pa-234	19	QUANT	0.2000	4.5100E+09 yrs	
12	143.76	บ-235	14	NET	0.1050	3.8000E+06 yrs	
13	154.18	Ra-223	23	QUANT	0.0559	3.2760E+04 yrs	
14	163.35	U-235	17	QUANT	0.0470	3.8000E+06 yrs	
15	167.43	T1-201	3	QUANT	0.1190	3.0630E+00 dys	
16	186.10	Ra-226	0	NET	0.0350	1.6000E+03 yrs	
17	205.31	U-235	12	QUANT	0.0470	3.8000E+06 yrs	
18	205.78	Ir-192	28	QUANT	0.0349	7.4020E+01 dys	
19	226.87	Pa-234	36	QUANT	0.0650	4.5100E+09 yrs	
20	238.63	Pb-212	27	NET	0.4310	5.7500E+00 yrs	
21	241.00	Ra-224	0	NET	0.0390	5.7500E+00 yrs	
22	241.98	Pb-214	25	ID	0.0750	1.6000E+03 yrs	
23	269.39	Ra-223	30	NET	0.1360	3.2760E+04 yrs	
24	277.36	T1-208	37	QUANT	0.0650	5.7500E+00 yrs	
25	295.21	Pb-214	32	QUANT	0.1850	1.6000E+03 yrs	
26	296.00	T1-210	48	QUANT	0.8000	1.6000E+03 yrs	
27	300.09	Pb-212	20	QUANT	0.0327	5.7500E+00 yrs	
28	308.44	Ir-192	29	QUANT	0.3175	7.4020E+01 dys	
29 30	316.49 323.88	Ir-192	33	NET	0.8704	7.4020E+01 dys	
		Ra-223	13	QUANT	0.0390	3.2760E+04 yrs	
31 32	338.40 351.92	Ac-228 Pb-214	57 22	QUANT	0.1201	5.7500E+00 yrs	
33	468.06	Ir-192	22 35	NET	0.3580 0.5175	1.6000E+03 yrs	
34	477.56	Be-7	0	QUANT NET	0.1030	7.4020E+01 dys 5.3400E+01 dys	
35	484.54	Ir-192	38	QUANT	0.0335	7.4020E+01 dys	
36	569.26	Pa-234	42	QUANT	0.1040	4.5100E+09 yrs	
37	583.14	T1-208	45	NET	0.8600	5.7500E+00 yrs	
38	588.60	Ir-192	39	QUANT	0.0460	7.4020E+01 dys	
39	604.40	Ir-192	41	QUANT	0.0890	7.4020E+01 dys	
40	609.31	Bi-214	46	NET	0.4479	1.6000E+03 yrs	
41	612.45	Ir-192	18	QUANT	0.0580	7.4020E+01 dys	
42	699.10	Pa-234	44	QUANT	0.0460	4.5100E+09 yrs	
43	727.17	Bi-212	47	NET	0.1180	5.7500E+00 yrs	
44	733.00	Pa-234	49	QUANT	0.0850	4.5100E+09 yrs	
45	763.30	T1-208	52	QUANT	0.0170	5.7500E+00 yrs	
46	768.36	Bi-214	59	QUANT	0.0480	1.6000E+03 yrs	
47	785.42	Bi-212	74	QUANT	0.0200	5.7500E+00 yrs	
48	795.00	T1-210	51	NET	1.0000	1.6000E+03 yrs	
		Page 001					295 of 624
							295 OT 624

Pk. #	Energy (keV)	Isotope Name	2ndary Pk #	Туре	Gamma Fraction	Halflife
49	808.10	Pa-234	50	QUANT	0.0490	4.5100E+09 yrs
50	831.10	Pa-234	53	QUANT	0.0560	4.5100E+09 yrs
51	860.00	T1-210	64	QUANT	0.0700	1.6000E+03 yrs
52	860.47	T1-208	24	QUANT	0.1200	5.7500E+00 yrs
53	880.51	Pa-234	54	QUANT	0.0650	4.5100E+09 yrs
54	883.24	Pa-234	56	QUANT	0.1200	4.5100E+09 yrs
55	889.26	Sc-46	0	NET	0.9998	8.3850E+01 dys
56	898.60	Pa-234	58	QUANT	0.0400	4.5100E+09 yrs
57	911.07	Ac-228	62	NET	0.2900	5.7500E+00 yrs
58	926.70	Pa-234	60	QUANT	0.1100	4.5100E+09 yrs
59	934.06	Bi-214	65	QUANT	0.0303	1.6000E+03 yrs
60	946.00	Pa-234	61	NET	0.2000	4.5100E+09 yrs
61	949.00	Pa-234	71	QUANT	0.0780	4.5100E+09 yrs
62	964.60	Ac-228	63	QUANT	0.0545	5.7500E+00 yrs
63	968.90	Ac-228	31	QUANT	0.1746	5.7500E+00 yrs
64	1110.00	T1-210	66	QUANT	0.0700	1.6000E+03 yrs
65	1120.29	Bi-214	67	QUANT	0.1480	1.6000E+03 yrs
66	1210.00	T1-210	69	QUANT	0.1700	1.6000E+03 yrs
67	1238.11	Bi-214	70	QUANT	0.0586	1.6000E+03 yrs
68	1274.54	Na-22	0	NET	0.9994	2.6000E+00 yrs
69	1310.00	T1-210	72	QUANT	0.2100	1.6000E+03 yrs
70	1377.67	Bi-214	75	QUANT	0.0392	1.6000E+03 yrs
71	1394.10	Pa-234	7	QUANT	0.0390	4.5100E+09 yrs
72	1410.00	T1-210	26	QUANT	0.0500	1.6000E+03 yrs
73	1460.75	K-40	0	NET	0.1070	1.2800E+09 yrs
74	1620.56	Bi-212	43	QUANT	0.0275	5.7500E+00 yrs
75	1764.49	Bi-214	40	QUANT	0.1536	1.6000E+03 yrs

TECHNICAL BULLETIN ADDENDUM

The library used for analysis defines the gamma emission(s) to be used for analysis of each nuclide. If multiple gamma emissions are used for quantification, then a 'NET' quantification emission (or peak) must be defined in the library. This designation provides for the calculation of nuclide activity concentrations and detection limits in the case of non-presence of the nuclide. When the nuclide is not present, or the software is unable to resolve a peak at the library defined 'NET' energy, the software evaluates the 'NET' region of interest ('NET' peak energy +/- 2 keV) by performing a summation of the net counts above the background level. This 'NET' quantification can result in net negative, zero, or positive activity results, and is highly dependent on the spectral distribution in the region of interest of the 'NET' peak. In cases where only the 'NET' peak is found, and the software performs a net quantification, the nuclide result will be flagged with an 'NQ' qualifier on the final reports. This indicates that the nuclide is not detected or supported at any level above the reported MDC. Results are submitted without further qualification.

All nuclides specified in the library of analysis for gamma spectroscopy are evaluated for positive <u>OR</u> tentative identification on the following criteria:

- The individual abundances for the gamma emissions specified for each nuclide are summed to obtain a total nuclide abundance.
- From the total nuclide abundance, a positive identification criterion is set as 75% of this total nuclide abundance.
- For all nuclide peaks that are not net quantified, those peak abundances are summed. The total non-net quantified peak sum is compared to the calculated 75% abundance criterion. If this sum is greater than the 75% criterion, the nuclide is considered to be positively identified at the reported concentration. If the sum is less than the 75% criterion, the nuclide is tentatively identified at the reported concentration. These results will be flagged with a 'TI' qualifier on the final reports to indicate that the 75% abundance criterion was not met.

Section 6

QUALITY ASSURANCE SUMMARY REPORTS

6

No NON-CONFORMANCE REPORTS or QUALITY ASSURANCE SUMMARY SHEETS are included in this data package.

Section 7

LABORATORY BENCH SHEETS

<i>a</i>
w
40
ш
_
_
_
4.0
L CD
S
_
_
_
_
\mathbf{c}
. •
nt
_
4
w
Ĕ
_
_
_
_
3
_
U)
97
25
Ë
<u>l</u>
Ins
/ Ins
y Ins
ry Ins
ry Ins
try Ins
try Ins
stry Ins
stry Ins
istry Ins
istry Ins
nistry Ins
nistry Ins
mistry Ins
mistry Ins
emistry Ins
emistry Ins
nemistry Ins
hemistry Ins
hemistry Ins
chemistry Ins
chemistry Ins
schemistry Ins
ochemistry Ins
ochemistry Ins
iochemistry Ins
liochemistry Ins
diochemistry Ins
diochemistry Ins
adiochemistry Ins
adiochemistry Ins
adiochemistry Ins
Radiochemistry Ins
Radiochemistry Ins

ALS -- Fort Collins

Prep Batch: GS181103-1

Prep Date Aliquot Units Pipet ID ≰ ≰ Ž 6 215 215 Analytical QASS / NCR? Y (N) 11/03/18 11/03/18 DPM/g DPM/g Spike Solution Information 1,041.413 420.158 Cnt 3 Count Date Exp Date 4 Cnt 3 Inst/Det SoluID 1022 Cnt 3 File Cnt Dur (min) Nuclide Am-241 Co-60 Cnt 2 Count Date Soln # S1 S1 Cnt 2 Inst/Det Mewaters-Great Kills BizIY XO.2 Cnt 2 File Cnt Dur (min) 1215112 11/20/18 1215118 1214118 311121 3112161 311412 Cnt 1 Count Date S J J Cnt 1 Inst/Det 4 J M σ 360 Cnt 1 File Cnt Dur (min) pcilg (CC) DOO! PCilg [OCC) Dh boilg TOO! 300 pcilg 200 Ob Brid S CJZ 1 OS Bridge PCilg 120 S girad 5 75 pCi/g Report Units pCi/g **GAMMASCAN** Units Geo. 9 6 7 9 Init Alq Fin Alq 209.2 213.5 171.2 258.5 241.3 210.8 159.7 DUP 217.5 217.5 254.2 272.9 202.3 185.5 159.6 217.7 225.3 217.4 217.4 151.7 180.3 212.6 181.7 GS181103-1 LCS 215 215 11/03/18 11:06 82.9 155 215 225.3 213.5 241.3 210.8 SMP 209.2 171.2 258.5 254.2 202.3 212.6 SMP 159.7 272.9 185.5 180.3 181.7 SMP 159.6 SMP 217.7 151.7 82.9 215 155 OC Type SMP SMP SMP SMP SMP 1810627-11 SMP SMP SMP SMP MB Prep Procedure: 10/24/18 09:15 10/24/18 10:45 1810627-16 10/24/18 09:50 10/24/18 09:50 1810627-15 10/22/18 09:00 10/22/18 10:10 10/22/18 11:30 10/22/18 11:30 10/22/18 14:35 10/23/18 08:35 10/23/18 09:10 10/23/18 10:45 10/23/18 11:45 10/23/18 11:45 10/25/18 15:45 Lab ID Collection Date 10/22/18 11:30 10/23/18 11:05 10/23/18 11:20 1810627-12 10/25/18 11:10 10/25/18 15:10 11/03/18 11:06 1810627-9 1810627-13 10/24/18 11:30 1810627-18 10/25/18 14:30 1810627-19 1810627-3 1810627-8 1810627-10 1810627-5 1810627-6 1810627-1 1810627-3 1810627-4 1810627-17 1810627-2 1810627-7 301 of 624 8e

GAMMASCAN Instrument Sheet

12/7/2018

Date Printed:

LIMS Version: 6.885

Supersedes: 115118 15,56

ALS -- Fort Collins

Prep Batch: GS181103-1

ALS -- Fort Collins

GAMMASCAN Prep Procedure:

riep riocedule.		NICOCUMINICO										Analytic	al QASS /	Analytical QASS / NCR? Y //N	15 N		
Prep Lab ID Num Collection Date	QC Init Alq Fin Alq Type	Units Geo.	Report Units	Cnt 1 File Cnt Dur (min)	Cnt 1 C	Cnt 1 Count Date	Cnt 2 File Cnt Dur (min)	Cnt 2 Inst/Det	Cnt 2 Count Date	Cnt 3 File Cnt Dur (min)	Cnt 3 Inst/Det	Cnt 3 Count Date			woles		
									S1 Cs-137		1022	VA	395.440	DPM/g	11/03/18 215	6	N/A
Sample Barcodes	ies																
1810627-1 GS181103-1PS26	*GS181103-1PS26*	1103-1	PS26	*	1810627-2 GS181103-1PS27	2 3-1PS27	355 *	318110	*GS181103-1PS27*	*	1810627-3 GS181103-	1810627-3 GS181103-1PS28	*	GS181	*GS181103-1PS28*	*	
1810627-3DUP GS181103-1PS29	*GS181103-1PS29*	1103-1	.PS29	*	1810627-4 GS181103-1PS30	4 3-1PS30	* GS	318110	*GS181103-1PS30*	*0*	1810627-5 GS181103-	1810627-5 GS181103-1PS31	*	GS181	*GS181103-1PS31*	*	
1810627-6 GS181103-1PS32	*GS181103-1PS32*	1103-1	. PS32		1810627-7 GS181103-1PS33	7 }-1PS33	* 0.00	318110	*GS181103-1PS33*	33*	1810627-8 GS181103-	1810627-8 GS181103-1PS34	*	GS181	*GS181103-1PS34*	*	
1810627-9 GS181103-1PS35	*GS181103-1PS35*	1103-1	. PS35	: ★ :	1810627-10 GS181103-1PS36	10 1-1PS36	* G.0	318110	*GS181103-1PS36*	*9	1810627-11 GS181103-1	1810627-11 GS181103-1PS37	*	GS181	*GS181103-1PS37*	* _	
1810627-12 GS181103-1PS38	*GS181103-1PS38*	1103-1	. PS38	*	1810627-13 GS181103-1PS39	13 3-1PS39	* G.0	318110	*GS181103-1PS39*	*68	1810627-14 GS181103-1	1810627-14 GS181103-1PS40	*	GS181	*GS181103-1PS40*	*	
1810627-14DUP GS181103-1PS41	*GS181103-1PS41*	1103-1	.PS41	* ,	1810627-15 GS181103-1PS42	15 }-1PS42	57 ₩	318110	*GS181103-1PS42*	12*	1810627-16 GS181103-1	1810627-16 GS181103-1PS43	*	GS181	*GS181103-1PS43*	*	
1810627-17 GS181103-1PS44	*GS181103-1PS44*	1103-1	PS44	*	1810627-18 GS181103-1PS45	18 3-1PS45	355 *	318110	*GS181103-1PS45*	15*	1810627-19 GS181103-1	1810627-19 GS181103-1PS46	*	GS181	*GS181103-1PS46*	*	
1810627-20 GS181103-1PS47	*GS181103-1PS47*	1103-1	PS47	*	GS181103-1MB GS181103-1PS49	3-1MB 3-1PS49	* C	318110	*GS181103-1PS49*	*61	GS181 GS181	GS181103-1LCS GS181103-1PS50	*	GS181	*GS181103-1PS50*	*	

GAMMASCAN Instrument Sheet

12/7/2018

Date Printed:

Prep Batch: GS181103-1

ALS -- Fort Collins

iits
=
\supseteq
p
Ē
8
ē
m

RptUnits:	pCi/g																			
TstGrpName:	Gamma_GKP_2018																			
LabID:	1810627-1	1810627-2	1810627-3	1810627-4	1810627-5	1810627-6	1810627-7	1810627-8	1810627-9	1810627-10	1810627-11	1810627-12	1810627-13	1810627-14	1810627-15	1810627-16	1810627-17	1810627-18	1810627-19	1810627-20

ALS -- Fort Collins LIMS Version: 6.885

GAMMASCAN Instrument Sheet

12/7/2018

Date Printed:

303 of 62%

ALS -- Fort Collins

Radiochemistry Instrument Worksheet

Prep Batch: GS181103-1

	Prep Procedure:	edure:	GAN	MMA:	GAMMASCAN										Analyt	Analytical QASS / NCR? Y (N	/ NCR?	Y (N)	#		**************************************
	Prep Lab ID Num Collection Date	\vdash	Init Alq Fin Alq Units Geo.	Alq Un Ge	its Report to. Units	ort Cnt 1 File ts Cnt Dur (min)	ile Cnt 1 ur Inst/Det)	1 Cnt 1 Count Det Date		Cnt 2 File Cnt Dur	Cnt 2 Ci	Cmt 2 Count Date	Cnt 3 File Cnt Dur (min)	Cnt 3 Inst/Det	Cnt 3 Count Date			Motes			
	1 1810627-1 10/22/18 09:00			225.3 g 17	3 pCi/g 7	QS .	t 0	11/21	1210151	155	3 12	12/4/18				Ar	Arecount		to hit MICC	HICK	1
	1 1810627-2 10/22/18 10:10	27-2 SMP : 10:10	159.7 15	159.7 g 17	g pCi/g 17	, g	о —		J	20	7					:	_	0	of 0.2	. 1	
	1 1810627-3 10/22/18 11:30	27-3 SMP :11:30	209.2 20	209.2 g	g pCi/g 17	6/	0		5	2	5				, yellow						l
	1 1810627-3 10/22/18 11:30	27-3 DUP	217.5 21	217.5 g	g pCi/g	6/	0		۲۲												ı
2	1 1810627-4 10/22/18 11:30	27-4 SMP 11:30	217.4 21	217.4 g	g pCi/g	6/			2	6											ı
,	1 1810627-5 10/22/18 14:35	27-5 SMP	213.5 21	213.5 g) pCi/g	6,	7		12	7											ı
	1 1810627-6 10/23/18 08:35	27-6 SMP 08:35	254.2 25	254.2 g	pCi/g	6,	M		9												1
	1 1810627-7 10/23/18 09:10	27-7 SMP 09:10	171.2 17	171.2 g	pCi/g	6,	5		8	7											ı
	1 1810627-8 10/23/18 10:45	27-8 SMP 10:45	258.5 25	258.5 g	pCi/g	6,	5	,	8												ı
	1 1810627-9 10/23/18 11:05	27-9 SMP 11:05	241.3 24	241.3 g	pCi/g	6,	IT		T	10	S				:						ı
	1 1810627-10 10/23/18 11:20	7-10 SMP 11:20	72 8:272	272.9 g 71	pCi/g	6,	ഗ —		χ)		2								:		ı
	1 1810627-11 10/23/18 11:45	7-11 SMP 11:45	210.8 21	210.8 g	pCi/g	6	9		40		M										ı
	1 1810627-12 10/23/18 11:45	7-12 SMP 11:45	202.3 20	202.3 g	pCi/g	6,	_	٥	3	S											ı
	1 1810627-13 10/24/18 09:15	7-13 SMP 09:15	185.5 18	185.5 g	pCi/g	6,	_				7								:		ı
	1 1810627-14 10/24/18 09:50	7-14 SMP 09:50	155 1	155 g 17	pCi/g	Б,	2		>		Q CO	7	NOD A	2 2	311212		9	tho	100 JOS	for loss min	ı (
	1 1810627-14 10/24/18 09:50	7-14 DUP 09:50	151.7 15	151.7 g	pCi/g	6,	\sim		20		M										ſ
	1 1810627-15 10/24/18 10:45	7-15 SMP 10:45	180.3 18	180.3 g 17	pCi/g	6,	<i>Б</i>		120		1 01	211512	& 2								I
	1 1810627-16 10/24/18 11:30	7-16 SMP 11:30	82.9 82	82.9 g 17	pCi/g	, 6,	500	Q	00h	110	121 01	214/18 1060	000	101	31/2/21/01	ລ	275	s recont for	for y	1000 min	ر خ را
	1 1810627-17 10/25/18 11:10	7-17 SMP 11:10	212.6 21	212.6 g 17	pCi/g	lg.	7		1120	VI	5 121	3115			•						
	1 1810627-18 10/25/18 14:30	7-18 SMP 14:30	181.7 18	181.7 g 17	pCi/g	6,	S		300		121	12/4/18		A	SPEIT		7				1
	1 1810627-19 10/25/18 15:10	7-19 SMP 15:10	159.6 15	159.6 g 17	pCi/g	7 6,) d	٥	35	٦ ر	1112	0001 811 52111	200	88	Sk &	1212/18	7 6	رمهمع	D ((O) 4	45 lighter recourt, Old not save	A P
	1 1810627-20 10/25/18 15:45	7-20 SMP 15:45	217.7 21	217.7 g 17	pCi/g	V 6,	N/WE	X	1/30C	6 (12/4	81147				•	reck	t try	Nit 1	regard to hit MOC Of. 2	5, 2
	1 GS181103-1 11/03/18 11:06	103-1 MB 11:06	215 2	215 g 17	pCi/g	→			1000	7	1111	1114/12						→)
	1 GS181103-1 11/03/18 11:06	11:06	215 2.	215 g 17	pCi/g	6,		S													1 1
	S N	Natural 118	J. 18	- 0	O	CS-137 (0.5) (O:S	£							Spike Sol	Spike Solution Information	nation				
O TO TOLO	804 of 6	Darzu us	$\alpha_{\mathcal{B}}$		Ø	20226 W	(Z)				Soln #	# Nuclide Am-241 Co-60	8	_	Exp Date	Prep Conc 1,041.413 420.158	Units DPM/g DPM/g	Prep Date 11/03/18 11/03/18	Aliquot Ul 215 215	nits Pipet ID 9 N/A 9 N/A	
ag a	1 of 6	GAMM	GAMMASCAN Instrument Sheet	strumer	t Sheet				ALS		Fort Collins					Supersedes: NA	AN :				1 1

Supersedes: NA

ALS -- Fort Collins LIMS Version: 6.885

11/5/2018

Date Printed:

ALS Fort Collins	Sollins	Radio	Radiocnemistry instrument Worksneet	y instri	nment v	VOLKSI	າອອເ		Prep) Batch:	Prep Batch: GS181103-1	31103	-1	,
Prep Procedure:	re: GAMMASCAN			:				Analytic	Analytical QASS / NCR? Y / N	NCR? Y	(N)	7	6	***************************************
Prep Lab ID Num Collection Date	QC Init Alq Fin Alq Units Report Cnt 1 File Type Geo. Units Cnt Dur (min)	Cnt 1 Cn Inst/Det	Cnt 1 Count Cnt 2 File Date Cnt Dur (min)	File Cnt 2 ur Inst/Det	Cnt 2 Count Date	Cnt 3 File Cnt Dur (min)	Cnt 3 C	Cnt 3 Count Date		1	Notes			
					S1 Cs-137 S2 RA-226		1022	100	395.440 1,039.475	DPM/g DPM/g	11/03/18 11/03/18	215 215	6 6	A A
Sample Barcodes	les													
1810627-1 GS181103-1PS1		1810627-2 GS181103-1PS2	PS2				1810627-3 GS181103-	1810627-3 GS181103-1PS3						
1810627-3DUP GS181103-1PS4		1810627-4 GS181103-1PS5	PS5				1810627-5 GS181103-	1810627-5 GS181103-1PS6						
1810627-6 GS181103-1PS7		1810627-7 GS181103-1PS8	PS8				1810627-8 GS181103-	1810627-8 GS181103-1PS9						-
1810627-9 GS181103-1PS10		1810627-10 GS181103-1PS11	PS11				1810627-11 GS181103-1	1810627-11 GS181103-1PS12						
1810627-12 GS181103-1PS13		1810627-13 GS181103-1PS14	PS14				1810627-14 GS181103-1	1810627-14 GS181103-1PS15						
1810627-14DUP GS181103-1PS16		1810627-15 GS181103-1PS17	PS17				1810627-16 GS181103-1	1810627-16 GS181103-1PS18						-
1810627-17 GS181103-1PS19		1810627-18 GS181103-1PS20	PS20				1810627-19 GS181103-1	1810627-19 GS181103-1PS21						
1810627-20 GS181103-1PS22		GS181103-1MB GS181103-1PS24	MB PS24				GS1817 GS1811	GS181103-1LCS GS181103-1PS25						

GAMMASCAN Instrument Sheet

11/5/2018 15:59

Date Printed:

orksheet
\leq
<
nstrument
S
istry
<u></u>
hen
4
ioc
7
ă
ď

ALS -- Fort Collins

Prep Batch: GS181103-1

|--|

ALS -- Fort Collins

Prep Batch: GS181103-1

Prep	Prep Procedu	nre:	ĸ	Ra_226/228	6/22	œ			•••••						Analytic	Analytical QASS / NCR? Y(/ N	NCR? Y	Z	4			1
Prep Num	Prep Lab ID QC Num Collection Type Date	QC Type	Init Alq	Fin Alq	Units Geo.	QC Init Alq Fin Alq Units Report Type Geo. Units	Cnt 1 File Cnt Dur (min)	Cnt 1 Inst/Det	Cnt 1 Count Cnt 2 File Date Cnt Dur (min)	Cnt 2 File Cnt Dur (min)	Cnt 2 Inst/Det	Cnt 2 Cnt 2 Count Cnt 3 File InstDet Date Cnt Dur (min)	Cnt 3 File Cnt Dur (min)	Cnt 3 Inst/Det	Cnt 3 Count Date			Modes				
												S1 Cs-137		1022		395.440	DPM/9	395.440 DPM/9 11/03/18 215	215	6	A/N	_
												000	,	,,,		- 1000 CALCOLLA - 1000 L		0,000			*	

					S1 Cs	Cs-137	1022		395.440	DPM/g	11/03/18	215	6	N/A	
					S2 RA	RA-226	144		1,039.475	DPM/g	11/03/18	215	6	N/A	
Sample Barcodes															
		1810627-2 GS181103	-1PS2				18106. GS181	(27-3 1103-1PS3							
		1810627-4 GS181103	-1PS5				18106. GS181	27-5 1103-1PS6							
		1810627-7 GS181103	-1PS8				18106. GS181	27-8 1103-1PS9							
		1810627-1 ¹ GS181103-	0 -1PS11				18106; GS181	27-11 1103-1PS12							
		1810627-1 GS181103-	3 -1PS14				18106; GS181	27-14 103-1PS15							
		1810627-1 GS181103-	5 -1PS17				18106; GS181	27-16 1103-1PS18							
		1810627-1. GS181103-	8 -1PS20				18106. GS181	27-19 103-1PS21							
		GS181103 GS181103-	-1ALCS -1PS23				GS181 GS181	1103-1MB							
Ā.								1810627-2 1810627-2 1810627-4 1810627-4 1810627-1 1810		1810627-2 1810627-2 1810627-4 1810627-4 1810627-7 1810627-10 1810627-10 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-18 1810627-	1810627-2 1810627-2 1810627-4 1810627-4 1810627-1 1810	1810627-2 1810627-2 1810627-4 1810627-4 1810627-1 1810	1810627-2 1810627-2 1810627-4 1810627-4 1810627-1 1810	1810627-2 1810627-2 1810627-4 1810627-4 1810627-7 1810627-10 1810627-10 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-15 1810627-18 1810627-	1810627-2 1810627-2 1810627-4 1810627-4 1810627-7 1810627-1 1810

Ra_226/228 Instrument Sheet

11/5/2018 15:59

Prep Batch: GS181103-1

ALS -- Fort Collins

Units
_
O
.=
ヒ
=
O
Q
Φ
œ

																																					ALS Fort Collins
pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	
GAMMA_NP	GAMMA_Ra226	GAMMA_Ra226	GAMMA_NP	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	GAMMA_NP	GAMMA_Ra226	Ra 226/228 Instrument Sheet								
1810627-1	1810627-1	1810627-2	1810627-2	1810627-3	1810627-3	1810627-4	1810627-4	1810627-5	1810627-5	1810627-6	1810627-6	1810627-7	1810627-7	1810627-8	1810627-8	1810627-9	1810627-9	1810627-10	1810627-10	1810627-11	1810627-11	1810627-12	1810627-12	1810627-13	1810627-13	1810627-14	1810627-14	1810627-15	1810627-15	1810627-16	1810627-16	1810627-17	1810627-17	1810627-18	66 10627-18	9 10627-19	Page 5 of 6

Supersedes: MA

Prep Batch: GS181103-1

lins
S
Fort
ALS

pCi/g pCi/g pCi/g GAMMA_Ra226 GAMMA_NP 1810627-20 1810627-20 1810627-19

ALS -- Fort Collins LIMS Version: 6.885

Supersedes: ALA

Date Printed: 309 of 62 &

Ra_226/228 Instrument Sheet

11/5/2018 15:59

GAMMASCAN Prep Procedure:

ALS -- Fort Collins

Non-Routine Pre-Treatment? Y (N

Prep SOP: PAI 739 Rev: 12

Prep SOP: NONE Matrix Class: solid

Reviewed By: smg

Review Date: 12/7/2018

Prep Batch: GS181103-1

Oven In Date: 11/3/2018 11:55:00 AM Oven Out Date: 11/5/2018 12:00:00 PM Prep QASS / NCR? Y Balance: N/A Balance: 46 Batch: Prep Analyst: Mitchell R. LeRoy SC Re-Prep? Y (/ N) Prep Dept: GM Batch: NH

Standards Prep Notes															07			(6)						St	
Dry Weight + St Dish Weight (g)	252.7	187	236.7	244.9	244.8	241.1	281.7	198.9	285.9	268.6	300.5	238.1	229.8	213.1	182.5	179.3	207.7	110.3	240.1	209.2	187.2	245.2	1	-	\$5 1217
Dish Weight (g)	27.4	27.3	27.5	27.4	27.4	27.6	27.5	27.7	27.4	27.3	27.6	27.3	27.5	27.6	27.5	27.6	27.4	27.4	27.5	27.5	27.6	27.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	\$
Geometry	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	11	17	17	17	
Prep Basis	Dry Weight	Dry Weight																							
Init Alq Fin Alq 9 9	225.3	159.7	209.2	217.5	217.4	213.5	254.2	171.2	258.5	241.3	272.9	210.8	202.3	185.5	155	151.7	180.3	82.9	212.6	181.7	159.6	217.7	215	215	
_	225.3	159.7	209.2	217.5	217.4	213.5	254.2	171.2	258.5	241.3	272.9	210.8	202.3	185.5	155	151.7	180.3	82.9	212.6	181.7	159.6	217.7	215	215	
Dish No.	5	-	_	-							-	-	_	_	_			\vdash	-	_	_		-		
QC Type	SMP	SMP	SMP	DOP	SMP	PUP	SMP	SMP	SMP	SMP	SMP	SMP	MB	SOT											
LabiD	1810627-1	1810627-2	1810627-3	1810627-3	1810627-4	1810627-5	1810627-6	1810627-7	1810627-8	1810627-9	1810627-10	1810627-11	1810627-12	1810627-13	1810627-14	1810627-14	1810627-15	1810627-16	1810627-17	1810627-18	1810627-19	1810627-20	GS181103-1	GS181103-1	
Prep Num	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Samp Num	-	7	m	4	2	ဖ	_	80	6	9	1	12	13	14	15	16	17	18	19	70	21	77	23	24	

310 of 624 be

GAMMASCAN Bench Sheet 12/7/2018 Date Printed:

ALS -- Fort Collins LIMS Version: 6.885

Supersedes: 11| 51| 5

Prep Batch: GS181103-1

ALS -- Fort Collins

GAMMASCAN Prep Procedure:

Batch: Non-Routine Pre-Treatment? Y (N

Balance: N/A Balance: 46

Reviewed By: smg &

12/7/2018

Review Date:

OvenNum: 19 Oven In Date: 11/3/2018 11:55:00 AM Prep QASS / NCR? Y (N)

Prep Analyst: Mitchell R. LeRoy SCS

Oven Out Date: 11/5/2018 12:00:00 PM

Fin Alq Init Alq 6 Dish No. Prep SOP: PAI 739 Rev: 12 ogy Type Prep SOP: NONE LabID Matrix Class: solid

Geometry Prep Basis

Dish Weight (g)

Standards

Dry Weight + Dish Weight (g)

Prep Notes

5 1022 1022 1022 SolnID Am-241 Co-60 Nuclide

Pipet ID **₹** ₹ ₹

Prep Date Aliquot Units

11/03/18 11/03/18 11/03/18

DPM/9 DPM/g DPM/9

1,041.413 Prep Conc

420.158 395.440

Cs-137

S1 S1

Units

Exp Date

Soln #

Spike Solution Information

215 215

Date: N/A Witnessed By: N/A

Date: N/A

Spiked By: N/A

Comments

Samp Prep Num Num

GAMMASCAN Bench Sheet

12/7/2018

Date Printed:

311 of 62%

Supersedes: 11 5116

ALS -- Fort Collins

LIMS Version: 6.885

Prep Batch: GS181103-1

ALS -- Fort Collins

Prep Procedure:

GAMMASCAN

Batch: Non-Routine Pre-Treatment? Y / N

Prep SOP: PAI 739 Rev: 12

Prep SOP: NONE

Matrix Class: solid

Re-Prep? Y / (N) Prep Analyst: Mitchell R. LeRoy W Prep Date: 11/3/2018 Prep Dept: GM

Reviewed By: mrl Mu

11/5/2018

Review Date:

Prep QASS / NCR? Y / 1●

Oven Num: 19 Oven In Date: 11/3/2018 11:55:00 AM Oven Out Date: 11/5/2018 12:00:00 PM

Balance: N/A

Balance: 46

Batch:

11/5/2018 MW **Prep Notes** Standards 11/5/2018 Dry Weight + Dish Weight (g) 244.9 268.6 281.7 198.9 229.8 182.5 110.3 209.2 187.2 244.8 241.1 285.9 300.5 238.1 213.1 179.3 240.1 236.7 207.7 252.7 187 Dish Weight (g) 27.3 27.5 27.6 27.4 27.5 27.5 27.5 27.5 27.4 27.6 27.7 27.4 27.6 27.3 27.6 27.4 27.4 27.6 Geometry 17 1 11 1 17 1 1 17 11 7 11 17 7 1 17 11 Dry Weight **Dry Weight Dry Weight Dry Weight** Prep Basis **Dry Weight Dry Weight** Dry Weight **Dry Weight Dry Weight Dry Weight Dry Weight Dry Weight** Fin Alq 209.2 225.3 213.5 254.2 258.5 241.3 272.9 210.8 217.4 202.3 185.5 151.7 212.6 159.6 159.7 171.2 180.3 82.9 181.7 155 Init Alq 209.2 213.5 254.2 258.5 241.3 272.9 225.3 217.4 171.2 210.8 202.3 185.5 212.6 181.7 159.6 180.3 159.7 155 151.7 82.9 6 Dish No. SMP ZA Type Type SMP PUP SMP SMP SMP PP SMP 1810627-12 1810627-13 1810627-14 1810627-14 1810627-15 1810627-16 1810627-18 1810627-19 1810627-10 1810627-11 1810627-3 1810627-17 1810627-1 1810627-3 1810627-4 1810627-5 1810627-6 1810627-8 1810627-9 1810627-7 LabID Prep Num Samp 15 12 13 4 17 18 20

ALS -- Fort Collins

S

1115/2018 MAR

245.2

27.5

17

Dry Weight Dry Weight

215

SOT

GS181103-1 GS181103-1

Dry Weight

217.7

217.7 215

SMP MB.

1810627-20

Supersedes:

GAMMASCAN Bench Sheet

11/5/2018

Date Printed:

LIMS Version: 6.885

312 of 62**4**

Prep Batch: GS181103-1

ALS -- Fort Collins

GAMMASCAN Prep Procedure: 4/4 Non-Routine Pre-Treatment? Y (N) Batch:

Prep SOP: PAI 739 Rev: 12

Prep SOP: NONE

Matrix Class: solid

Re-Prep? Y /(N) Prep Analyst: Mitchell R. LeRoy Mu

Prep Date: 11/3/2018

Prep Dept: GM

Reviewed By: mrl Mu

Review Date: 11/5/2018

Prep QASS / NCR? Y / (1)

Oven In Date: 11/3/2018 11:55:00 AM

Balance: 46 Balance: N/A Batch:

Oven Out Date: 11/5/2018 12:00:00 PM

Prep Notes

Standards

Dry Weight + Dish Weight (g)

Dish Weight (g)

Geometry

Prep Basis

Init Alg Fin Alg 6 Dish No. OC Type LabiD Comments Samp Prep Num Num

Date: N/A Date: N/A Spiked By: N/A Witnessed By: N/A

	Pipet ID	V/N	۷ ۷	۷/۷	N/A
	Units	6	6	б	б
	Aliquot	215	215	215	215
	Prep Date Aliquot Units	11/03/18	11/03/18	11/03/18	11/03/18
nation	Units	DPM/g	DPM/9	DPM/9	DPM/g
Spike Solution Informatio	Prep Conc	1,041.413	420.158	395.440	1,039.475
Spike Sol	Exp Date			4	-
	SolnID	1022	1022	1022	144
	Nuclide	Am-241	Co-60	Cs-137	RA-226
	Soln #	S1	S1	S1	S2

Prep Batch: GS181103-1

ALS -- Fort Collins Prep Procedure:

Ra_226/228

Non-Routine Pre-Treatment? Y / (N) Batch:

Prep SOP: PAI 739 Rev: 12

Prep SOP: NONE Matrix Class: solid

Re-Prep? Y / (1) Prep Analyst: Mitchell R. LeRoy MM **Prep Date:** 11/3/2018

Prep Dept: GM

Balance: 46 Batch:

Balance: N/A

Reviewed By: mrl Mu

11/5/2018

Review Date:

Oven Out Date: 11/5/2018 12:00:00 PM

OvenNum: 19 Oven In Date: 11/3/2018 11:55:00 AM Prep QASS / NCR? Y / (4)

																								1	
Prep Notes			11/5/2018 ML																						
Standards		11/5/2019	3																				S2		11/5/20-8/10
Dry Weight + Dish Weight (g)	252.7	187	236.7	244.9	244.8	241.1	281.7	198.9	285.9	268.6	300.5	238.1	229.8	213.1	182.5	179.3	207.7	110.3	240.1	209.2	187.2	245.2	1	1	OBMO
Dish Weight (g)	27.4	27.3	27.5	27.4	27.4	27.6	27.5	7.72	27.4	27.3	27.6	27.3	27.5	27.6	27.5	27.6	27.4	27.4	27.5	27.5	27.6	27.5	\	V	11/5/2018
Geometry	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	
Prep Basis	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	
Fin Alq g	225.3	159.7	209.2	217.5	217.4	213.5	254.2	171.2	258.5	241.3	272.9	210.8	202.3	185.5	155	151.7	180.3	82.9	212.6	181.7	159.6	217.7	215	215	
Init Alq g	225.3	159.7	209.2	217.5	217.4	213.5	254.2	171.2	258.5	241.3	272.9	210.8	202.3	185.5	155	151.7	180.3	82.9	212.6	181.7	159.6	217.7	215	215	
Dish No.	₹	_			L	L	L		L		L	L				L	_	L		_	L	_	_	7	
OC Type	SMP N	SMP	SMP	DUP	SMP	DUP	SMP	SMP	SMP	SMP	SMP	SMP	rcs	MB											
LabiD	1810627-1	1810627-2	1810627-3	1810627-3	1810627-4	1810627-5	1810627-6	1810627-7	1810627-8	1810627-9	1810627-10	1810627-11	1810627-12	1810627-13	1810627-14	1810627-14	1810627-15	1810627-16	1810627-17	1810627-18	1810627-19	1810627-20	GS181103-1A	GS181103-1	
Prep Num	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Samp Prep Num Num	-	7	m	4	2	9	-	®	6	10	=	12	13	14	15	16	17	18	19	50	21	22	23	24	

Date Printed:

Supersedes: __

Prep Batch: GS181103-1

ALS -- Fort Collins Prep Procedure:

Ra 226/228

Non-Routine Pre-Treatment? Y / (N) Batch:

Prep SOP: PAI 739 Rev: 12

Prep SOP: NONE

Matrix Class: solid

Batch:

Re-Prep? Y / (A)

Prep Analyst: Mitchell R. LeRoy Met

Prep Date: 11/3/2018

Prep Dept: GM

Review Date: 11/5/2018

Reviewed By: mrl Mu

Prep QASS / NCR? Y /(N)

OvenNum: 19 Oven In Date: 11/3/2018 11:55:00 AM

Prep Basis Init Alq Fin Alq Dish No. OC Type LabiD

6

Balance: N/A Balance: 46

Oven Out Date: 11/5/2018 12:00:00 PM

Prep Notes

Standards

Dry Weight + Dish Weight (g)

Dish Weight (g)

Geometry

Comments

Samp Prep Num Num

Date: N/A Date: N/A Spiked By: N/A Witnessed By: N/A

			Spike So	pike Solution Inform	ation				
Soln #	Nuclide	SolnID	Exp Date	Prep Conc	Units	Prep Date Aliquot Units	Aliquot	Units	Pipet ID
S1	Am-241	1022		1,041.413	DPM/9	11/03/18	215	б	N/A
S1	Co-60	1022		420.158	DPM/g	11/03/18	215	б	A/N
S	Cs-137	1022	せ	395.440	DPM/9	11/03/18	215	б	A/N
S2	RA-226	144	· ·	1,039.475	DPM/g	11/03/18	215	6	N/A

Supersedes: 1/20

		Sampl	e Condi	tion Form (Solid)
Analyst: 🎶				
Analysis Date:	5/2018			Method: Pref
			e Condition (V	isual Appearance of Analysis Aliquot at Time of Prep)
Work Order	Sample ID	Dry/Wet/ Moist	Texture	Remarks
1810627	ì	Dry	Sadimont	Done
	2			
	3			
	4			
	5			
	6			
	7		1	
	8		Soil	
	9			
	ю			
	11			
	12			
	13			
	19			
	15			
	16			
	17			
	18			
	19			
\checkmark	20			↓

ALS -- Fort Collins

Prep Batch: GS181103-2

Analytical QASS / NCR? Y /N H nformation Cnt 3 Count Date Cnt 3 Inst/Det Cnt 3 File Cnt Dur (min) Cnt 2 Count Date Cnt 2 Inst/Det Cnt 2 File Cnt Dur (min) 3 11 52/11 3112121 12/10/18 12/10/18 3/19/21 12/5/18 3112121 Cnt 1 Count Date Cnt 1 Inst/Det 0 T S σ POCOI PICTOR Cnt 1 File Cnt Dur (min) pci/9 20 30 Report Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g GAMMASCAN Units Geo. 155.6 172.2 209.6 169.1 235.5 134.7 215 215 149 161 121 209.6 169.1 233.5 155.6 172.2 134.7 149 161 215 215 OC Type SMP rcs 1810627-29 DUP Æ Prep Procedure: 10/26/18 09:20 10/26/18 09:20 1810627-23 10/26/18 11:00 10/26/18 14:45 10/26/18 15:30 1810627-27 10/29/18 10:10 GS181103-2 11/03/18 11:09 10/26/18 16:35 10/29/18 11:35 10/29/18 12:45 10/29/18 12:45 11/03/18 11:09 Lab ID Collection Date GS181103-2 1810627-28 1810627-29 1810627-21

ce Solution Informs	Prep Conc	1,041.413	420.158	395.440
Splike Sol	Exp Date		Q Z	-
	SoluID	1022	1022	1022
	Soln # Nuclide	Am-241	1 Co-60	S1 Cs-137
	Soln #	S1	S	S1
Ċ	ンククと	,	としる	
		S こうとう プラインチャ こうて		
	1	1	-	

Pipet ID N/A N/A

215

11/03/18 11/03/18

Units DPM/g DPM/g

11/03/18

Sample Barcodes

GS181103-2PS3	*GS181103-2PS6*	*GS181103-2PS9*	*GS181103-2PS13*
1810627-23	1810627-26	1810627-29	GS181103-2LCS
GS181103-2PS3	GS181103-2PS6	GS181103-2PS9	GS181103-2PS13
GS181103-2PS2	*GS181103-2PS5*	*GS181103-2PS8*	*GS181103-2PS12*
1810627-22	1810627-25	1810627-28	GS181103-2MB
GS181103-2PS2	GS181103-2PS5	GS181103-2PS8	GS181103-2PS12
GS181103-2PS1	*GS181103-2PS4*	*GS181103-2PS7*	*GS181103-2PS10*
1810627-21	1810627-24	1810627-27	1810627-29DUP
GS181103-2PS1	GS181103-2PS4	GS181103-2PS7	GS181103-2PS10

317 of 624 8

Pager of 2 GAMMASCAN Instrument Sheet

Date Printed: 12/6/2018 7:32

ALS -- Fort Collins
LIMS Version: 6.885

Supersedes: 11 Jul 16 9:3

ALS -- Fort Collins

Reporting Units

RptUnits:	pCi/g								
TstGrpName:	Gamma_GKP_2018								
LabID:	1810627-21	1810627-22	1810627-23	1810627-24	1810627-25	1810627-26	1810627-27	1810627-28	1810627-29

Supersedes: 11/10/16 9:31

ALS -- Fort Collins LIMS Version: 6.885

Date Printed:

318 of 62**4**,

Prep Batch: GS181103-2

Prep	Prep Procedure:	Te:	Ğ	GAMMASCAN	ASC	AN		THE PARTY OF THE P							Analyl	Analytical QASS / NCR? Y (N)	ICR? Y	Z	4	
Prep	Lab ID Collection Date	oc Type	Init Alq	Init Alq Fin Alq Units Geo.		Report Units	Cnt 1 File Cnt Dur (min)	Cnt 1 Inst/Det	Cnt 1 Count Date	Cnt 2 File Cnt Dur (min)	Cnt 2 Inst/Det	Cnt 2 Count Date	Cnt 3 File Cnt Dur (min)	Cnt 3 Inst/Det	Cnt 3 Count Date			Notes		
-	1810627-21 10/26/18 09:20	SMP	233.5	233.5	9	pCi/g	300	 	17311512	50120	က	8115111 3	S			Irecant to hit	mt t	> Fix	Ę	FR S
-	1810627-22 10/26/18 09:20	SMP	209.6	209.6	9 17	pCi/g	-	П	_	1 25	100	31/21/21/201	. .^				_			0.6
-	1810627-23 10/26/18 11:00	SMP	169.1	169.1	9	pCi/g		හ		C.C.	4	7 1215118	8							
ا- ك	1810627-24	SMP	134.7	134.7	9 71	pCi/g		0		33	ට									
- 2/	1810627-25 10/26/18 15:30	SMP	121	121	9	pCi/g		Q		_	Ø	3								
-	1810627-26 10/26/18 16:35	SMP	155.6	155.6	9	pCi/g		_		->	3	12/10/18	310							
-	1810627-27 10/29/18 10:10	SMP	235.5	235.5	9	pCi/g		W	_	2 -120	4	1215118	ವ							
-	1810627-28	SMP	172.2	172.2	9	pCi/g		5		CDG	7	12110118	18							
-	1810627-29	SMP	149	149	9 71	pCi/g		ΓŤ		_	S	_								
-	1810627-29	DUP	161	161	9	pCi/g		ග			۲+									
-	GS181103-2 11/03/18 11:09	WB .	215	215	9	pCi/g	>	σ		->	8	72					'			
-	GS181103-2 11/03/18 11:09	SOT	215	215	9	pCi/g	>	9												
	an instant		-	0			トンし	(3-1376.5)						9	Spike Sol	E			-	i
	3	5	7	ر آ)				й <u> </u>	Soin # Nuclide S1 Am-241		SolnID 1022	Exp Date	1,041.413 [Units P	rep Date A	215	Prep Date Aliquot Units Pripet ID 11/03/18 215 9 N/A
	Dr. 030000	366	0	đ			g	Po 22 Celin				S1 Co-60 S1 Cs-137		1022 NA 1022 NA	C	420.158 I	DPM/g DPM/g	11/03/18	215 g 215 g	6 A/N
	ال الد	Š	,)))				S2 RA-226		144			DPM/g	11/03/18	215 g	N/A
	1																			

Sample Barcodes

1810627-21 GS181103-2PS1 1810627-24 GS181103-2PS4

GS181103-2MB GS181103-2PS12 1810627-22 GS181103-2PS2 1810627-25 GS181103-2PS5 1810627-28 GS181103-2PS8

1810627-23 GS181103-2PS3

1810627-26 GS181103-2PS6 1810627-29 GS181103-2PS9

GS181103-2LCS GS181103-2PS13

319 of 624g

1810627-29DUP GS181103-2PS10

1810627-27 GS181103-2PS7

GAMMASCAN Instrument Sheet Date Printed:

11/6/2018

ALS -- Fort Collins LIMS Version: 6.885

Supersedes: MA

ALS -- Fort Collins

Prep Batch: GS181103-2

Pipet ID
 A
 A
 A

 Z
 Z
 Z
 ₹ Ž Prep Date Aliquot Units 215 215 215 Analytical QASS / NCR? Y (N 11/03/18 11/03/18 11/03/18 11/03/18 DPM/g DPM/g DPM/g DPM/g Spike Solution Information 1,041.413 Prep Conc 1,039,475 420.158 395.440 Exp Date Cnt 3 Inst/Det 1022 1022 144 Cnt 3 File Cnt Dur (min) Cs-137 RA-226 Am-241 Co-60 Nuclide Cnt 2 Count Date Soln # S1 S1 S2 Cnt 2 Inst/Det 3 Cnt 2 File Cnt Dur (min) 31142/11 Jahma Gamma Cnt 1 Count Date Cnt 1 Inst/Det 60 Cnt 1 File Cnt Dur (min) 4 Report Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g Ra 226/228 209.6 233.5 169.1 235.5 172.2 134.7 155.6 215 149 215 161 121 209.6 233.5 169.1 155.6 172.2 134.7 215 121 149 161 OC Type SMP MB Prep Procedure: 10/26/18 16:35 1810627-27 10/29/18 10:10 1810627-28 10/29/18 12:45 GS181103-2A 10/26/18 09:20 10/26/18 09:20 10/26/18 11:00 10/26/18 14:45 10/26/18 15:30 10/29/18 11:35 1810627-29 11/03/18 11:09 GS181103-2 11/03/18 11:09 10/29/18 12:45 Lab ID Collection Date 1810627-29 1810627-21

Sample Barcodes

1810627-21 GS181103-2PS1 1810627-29DUP GS181103-2PS10 1810627-24 GS181103-2PS4 GS181103-2PS7

1810627-27

1810627-22 GS181103-2PS2 1810627-25 GS181103-2PS5

GS181103-2ALCS GS181103-2PS11 1810627-28 GS181103-2PS8

1810627-23 GS181103-2PS3

1810627-26 GS181103-2PS6

GS181103-2PS9 1810627-29

GS181103-2MB GS181103-2PS12

Supersedes: NA

LIMS Version: 6.885

Ra 226/228 Instrument Sheet Date Printed:

320 of 624 8

11/6/2018

ALS -- Fort Collins

ALS -- Fort Collins

Units
Reporting

LabID:	TstGrpName:	RptUnits:
1810627-21	GAMMA_Ra226	pCi/g
1810627-21	GAMMA_NP	pCi/g
1810627-22	GAMMA_NP	pCi/g
1810627-22	GAMMA_Ra226	pCi/g
1810627-23	GAMMA_NP	pCi/g
1810627-23	GAMMA_Ra226	pCi/g
1810627-24	GAMMA_Ra226	pCi/g
1810627-24	GAMMA_NP	pCi/g
1810627-25	GAMMA_Ra226	pCi/g
1810627-25	GAMMA_NP	pCi/g
1810627-26	GAMMA_NP	pCi/g
1810627-26	GAMMA_Ra226	pCi/g
1810627-27	GAMMA_NP	pCi/g
1810627-27	GAMMA_Ra226	pCi/g
1810627-28	GAMMA_NP	pCi/g
1810627-28	GAMMA_Ra226	pCi/g
1810627-29	GAMMA_Ra226	pCi/g
1810627-29	GAMMA_NP	pCi/g

ALS -- Fort Collins LIMS Version: 6.885

Ra_226/228 Instrument Sheet

11/6/2018

Date Printed:

Supersedes: NM

ALS -- Fort Collins

GAMMASCAN Prep Procedure:

Non-Routine Pre-Treatment? Y(/ N) Batch: Prep SOP: PAI 739 Rev: 12

Prep SOP: NONE Matrix Class: solid

Prep Analyst: Mitchell R. LeRoy

Prep Dept: GM

Balance: N/A Balance: 46

Batch

Re-Prep? Y(/ N)

Reviewed By: smg 🔏

Review Date: 12/4/2018

Prep Batch: GS181103-2

Oven In Date: 11/3/2018 12:04:00 PM Oven Out Date: 11/5/2018 4:15:00 PM Prep QASS / NCR? Y/ N)

Prep Notes					5		2							
Standards									$ \setminus $	V		S1		
Dry Weight + Dish Weight (g)	261	237.1	196.7	162.1	148.3	183.1	262.8	199.7	176.2	188.5	1	,	85 1214	
Dish Weight (g)	27.5	27.5	27.6	27.4	27.3	27.5	27.3	27.5	27.2	27.5		\setminus	ශී	
Geometry	17	17	17	17	17	17	17	17	17	17	17	17		
Prep Basis	Dry Weight	Dry Weight	Dry Weight	Dry Weight										
Fin Alq g	233.5	209.6	169.1	134.7	121	155.6	235.5	172.2	149	161	215	215		;]
Init Alq g	233.5	209.6	169.1	134.7	121	155.6	235.5	172.2	149	161	215	215		
Dish No.	¥	_	_	_				L	_	_		>		
QC Type	SIMP ZA	SMP	E E	MB	SOT		: '							
LabiD	1810627-21	1810627-22	1810627-23	1810627-24	1810627-25	1810627-26	1810627-27	1810627-28	1810627-29	1810627-29	GS181103-2	GS181103-2	Į.	
Prep Num	-	-	-	-	-	-	-	-	-	-	-	-	Comments	ļ İ
Samp Prep Num Num	-	2	e e	4	2	9	7	80	6	10	£	12	ပ်	

1000		I			
	Pipet ID	N/A	∀ Z	A/A	
	Units	6	6	6	
	Aliquot 1	215	215	215	
	Prep Date	11/03/18	11/03/18	11/03/18	
ntion	Units	DPM/g	DPM/g	DPM/g	
lution Inform	Prep Conc	1,041.413	420.158	395.440	
Spike Sol	Exp Date	•	\$	•	
	SoluID	1022	1022	1022	
	Nuclide	Am-241	Co-60	Cs-137	
	Soln #	S	S	S1	

Date: N/A Date: N/A

Spiked By: N/A Witnessed By: N/A GAMMASCAN Bench Sheet 12/4/2018 Date Printed:

ALS -- Fort Collins LIMS Version: 6.885

322 of 624

Prep Batch: GS181103-2

ALS -- Fort Collins

GAMMASCAN Prep Procedure:

K/X Batch: Non-Routine Pre-Treatment? Y / (

Prep SOP: PAI 739 Rev: 12 Prep SOP: NONE Matrix Class: solid

Re-Prep? Y / 🕔 Prep Analyst: Mitchell R. LeRoy | ML Prep Date: 11/3/2018

Prep Dept: GM

Balance: 46 Balance: N/A

Batch:

Reviewed By: mrl Ma

11/6/2018

Review Date:

Prep QASS / NCR? Y / (1)

Oven Num: 19 Oven In Date: 11/3/2018 12:04:00 PM Oven Out Date: 11/5/2018 4:15:00 PM

Samp Prep Num Num	Prep Num	LabiD	QC Dish Type No.	Init Alq	Fin Alq	Prep Basis	Geometry	Dish Weight (g) Dry Weight + Dish Weight (g)	Dry Weight + Dish Weight (g)	Standards	Prep Notes
				6	6						
-	-	1810627-21	FIND AMS	233.5	233.5	Dry Weight	17	27.5	261		
2	-	1810627-22	SMP (209.6	209.6	Dry Weight	17	27.5	237.1	1 810019/1	
e e	-	1810627-23	SMP	169.1	169.1	Dry Weight	17	27.6	196.7	Mul /	111 612018 Mrs
4	-	1810627-24	SMP	134.7	134.7	Dry Weight	17	27.4	162.1	/	
20	-	1810627-25	SMP	121	121	Dry Weight	17	27.3	148.3	/	
9	-	1810627-26	SMP	155.6	155.6	Dry Weight	17	27.5	183.1	/	
_	-	1810627-27	SMP	235.5	235.5	Dry Weight	17	27.3	262.8	/	
∞	-	1810627-28	SMP	172.2	172.2	Dry Weight	17	27.5	199.7	/	
6	-	1810627-29	SMP	149	149	Dry Weight	17	27.2	176.2	/	
9	-	1810627-29	DUP	161	161	Dry Weight	17	27.5	188.5		
11	-	GS181103-2	MB	215	215	Dry Weight	17		7		
12	-	GS181103-2	l Sol	215	215	Dry Weight	17			S1	
Com	Comments	·^						19/11	1612018 Mad		

Soln #	Nuclide	SolnID	Exp Date	Prep Conc	Units	Prep Date	Aliquot Units	Units	Pipet ID
S1	Am-241	1022		1,041.413	DPM/g	11/03/18	215	6	ΑN
S1	Co-60	1022		420.158	DPM/g	11/03/18	215	თ	A/A
S1	Cs-137	1022	アラ	395.440	DPM/g	11/03/18	215	б	A/N
S 2	RA-226	144	•	1,039.475	DPM/g	11/03/18	215	6	A/N

Date: N/A Date: N/A

Spiked By: N/A Witnessed By: N/A

323 of 624g

GAMMASCAN Bench Sheet Date Printed:

ALS -- Fort Collins

Supersedes:

LIMS Version: 6.885

ALS -- Fort Collins

Ra_226/228 Prep Procedure:

Non-Routine Pre-Treatment? Y / N Batch: __

Prep SOP: PAI 739 Rev: 12

Prep SOP: NONE Matrix Class: solid

Prep Analyst: Mitchell R. LeRoy NA Prep Date: 11/3/2018

Prep Dept: GM

Batch: Re-Prep? Y / 🕦

Balance: N/A Balance: 46

Reviewed By: mrl Mul

Review Date: 11/6/2018

Prep Batch: GS181103-2

Prep QASS / NCR? Y / (1)

Oven In Date: 11/3/2018 12:04:00 PM Oven Out Date: 11/5/2018 4:15:00 PM

Dry Weight + Standards Prep Notes Jish Weight (g)	261	237.1	196.7 LL / / Lay Ma	162.1	148.3	183.1	262.8	199.7	176.2	188.5	82	
Dish Weight (g) Dry Weight + Dish Weight (g)	27.5	27.5	27.6	27.4	27.3	27.5	27.3	27.5	27.2	27.5	 	V
Geometry	26	26	26	26	26	26	26	26	26	26	26	26
Prep Basis	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight	Dry Weight
Fin Alq 9	233.5	209.6	169.1	134.7	121	155.6	235.5	172.2	149	161	215	215
Init Alq 9	233.5	209.6	169.1	134.7	121	155.6	235.5	172.2	149	161	215	215
QC Dish Type No.	SMPNIA	SMP	SMP	SMP	SMP	SMP	SMP	SMP	SMP	DUP	SOT	MB
LabiD	1810627-21	1810627-22	1810627-23	1810627-24	1810627-25	1810627-26	1810627-27	1810627-28	1810627-29	1810627-29	GS181103-2A LCS	GS181103-2
Samp Prep Num Num	-	-	-	-	-	-	-	-	-	-	-	-
Samp	-	2	۳	4	2	9	_	∞	6	10	1	12

Date: N/A	Date: N/A
Spiked By: N/A	Witnessed By: N/A

					$\overline{}$
	Pipet ID	A/A	Α/Z	A/N	N/A
Spike Solution Information	Units	6	6	б	6
	Aliquot Units	215	215	215	215
	Prep Date	11/03/18	11/03/18	11/03/18	11/03/18
	Units	DPM/9	DPM/9	DPM/g	DPM/g
	Prep Conc	1,041.413	420.158	395.440	1,039.475
	Exp Date	47			
	SolnID	1022	1022	1022	144
	Nuclide	Am-241	Co-60	Cs-137	RA-226
	Soln #	S	S1	S1	S2

Supersedes:

		Sample	e Condi	tion Form (Solid)
Analyst: EST				
Analysis Date: ///	3/18			Method: Prep
			Condition (V	isual Appearance of Analysis Aliquot at Time of Prep)
Work Order	Sample ID	Dry/Wet/ Moist	Texture	Remarks
1810 627	21	Dry	Soil	None
	22			
	23			
	24			
	25			
	26			
	27			
	28			
	29	V	\\	V
				11/2/18 EST
				' '

Section 8

STANDARDS TRACEABILITY DOCUMENTS

1022 Received 2/24/2015

1380 Seabo ard Industrial Blvd. Atlanta, Ge orgia 30318 Tel 404·35 2 8677 Fax 404·35 2·2837 www.ezag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

99580 Sand in Metal Can

Customer:

ALS Laboratory Group

P.O. No.:

FC000629, Item 2

Product Code: 8401-EG-SAN

Reference Date:

01-Jan-2015

12:00 PM EST Grams of Master Source:

0.01 1839

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solutions. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

hod*
LS
· Ce
Ge
Ge
Ge
Ge Ge

^{*} Master Source refers to Analytics' 8-isotope mixture which is calibrated quarterly.

Calibration Methods: 4π LS - 4 pi Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber. Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results."

(Certificate continued on reverse side)

02/26/2018.

New Exp. Date

=) 02/26/2019

Page 1 of 2

~ 120 mL / 215.0 g of customer supplied sand.			
This standard will expire one year after the reference date.			
Source Prepared by: R. Ormsby, Radiochemist			
QC Approved: J. S. Lahr, Spectroscopist	Date:	20F6815	_

Comments:

Section 9

ADDITIONAL SUPPORTING DOCUMENTATION

Gamma Spectroscopy

Initial Calibration Standards Traceability

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 1 / Water

Sample ID: 082118-1 FWHM Cal (1089)

SEEKER

	Counting Start: 08/21/2018 07:55:12
	Decay Time 5.57E+003 Hrs
	Live Time
-	Real Time 2780 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 1 (Detector 1)

Energy(keV) = $-1.94 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 08/21/2018$ FWHM(keV) = $0.67 + 0.010*En + 7.32E-04*En^2 + 0.00E+00*En^3 08/21/2017$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM		
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)		FLAG
1	59.47	122.60	12074	308	178	6356	0.77	a.	
2	72.97	149.53	148	168	136	4590	0.42	a	
3	87.95	179.45	53795	523	198	7926	0.83	a	
4	122.07	247.56	33630	420	168	5661	0.89	a	
5	136.52	276.40	4216	226	152	4688	0.83	a	
6	165.84	334.94	28749	394	166	5061	0.93	a	
7	255.16	513.23	832	184	143	3795	0.91	a	
8	279.22	561.26	4747	212	133	3264	1.01	a	
9	310.89	624.49	106	93	75	1370	0.53	a	
10	391.76	785.92	18174	309	124	2632	1.15	a	
11	511.34	1024.62	528	218	176	3960	2.48	a	Wide Pk
12	661.76	1324.89	30300	374	113	2230	1.42	a	
13	682.82	1366.94	99	156	127	2519	1.83	a	NET< CL
14	712.32	1425.83	61	125	102	1823	1.50	a	NET< CL
15	730.01	1461.14	54	71	57	802	0.73	a	NET< CL
16	813.91	1628.63	243	119	94	1736	1.41	a	
17	898.18	1796.85	19502	308	107	2104	1.64	a	
18	952.77	1905.83	75	107	87	1656	1.07	a	NET< CL
19	1173.38	2346.22	31544	366	72	1011	1.88	a	HiResid
20	1325.23	2649.35	353	88	65	672	2.60	a	HiResid
21	1332.57	2663.99	28633	344	52	504	1.98	b	HiResid
		Dago 001							_ / 1

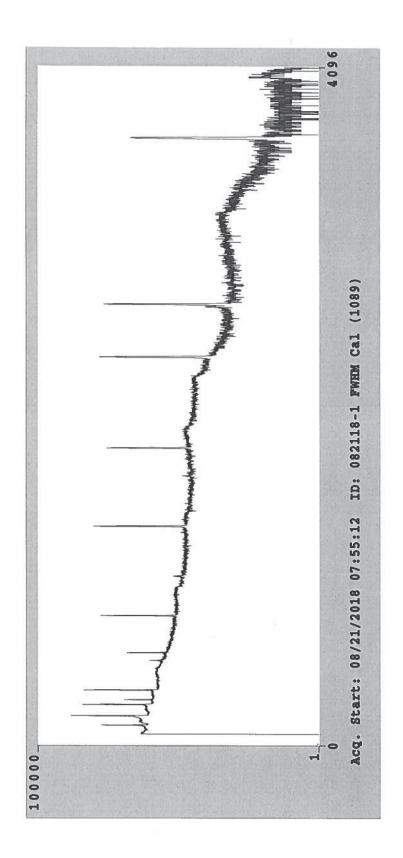
Dless Then 10,000 Counts achieved due to greate Than 5 Years clapsed. ABELEINE

181403D01.SPC Analyzed by

====												
	PEAK SEARCH RESULTS											
PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM					
#	(keV)	CHANNEL	COUNTS C	ERTAINTY	COUNTS	COUNTS	(keV)	FLAG				
••	(/		0000		00011111	000-1110	(1101)					
22	1836.03	3669.01	11469	217	27	123	2.43	a HiResid				

181403D01.SPC Analyzed by

Sample ID: 082118-1 FWHM Cal (1089) Stds. Match Tolerance: 2.00 keV


Detector Number: 01 Calibration Date. . . 08/21/2018 07:55:12

 $FWHM(keV) = 0.66 + 0.012*En + 6.94e-04*En^2 + 0.00e+00*En^3$ (Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)	
======				==========	=======		
1	59.50	0.773	1.81	0.787	-0.27	0.785	
2	88.04	0.834	-0.96	0.826	-0.51	0.822	
3	122.06	0.888	-2.15	0.869	-0.70	0.863	
4	165.85	0.934	-1.45	0.921	-0.85	0.913	
5	279.00	1.012	3.03	1.043	-1.03	1.033	
6	391.68	1.147	0.84	1.157	-1.05	1.145	
7	661.64	1.420	-0.50	1.413	-0.92	1.400	
8	898.02	1.639	-0.83	1.626	-0.72	1.614	
9	1173.21	1.883	-0.92	1.866	-0.49	1.857	
10	1332.48	1.979	1.18	2.002	-0.36	1.995	
11 🐇	1836.01	2.426	-0.06	2.425	0.01	2.425	

Calibration Results Saved.

On TREIZILE

Analytics

RSU # 1089 Recid 3-8-18

1380 Se aboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404 •352•8677 Fax 404 •352•2837 www.ez.ag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 108578

Source Description: 1.0 Liter Solid in 138G GA-MA Beaker

Product Code: 8401-EG-SD
Customer: ALS Laboratory Group
P.O. Number: FC001718, Item 1

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Density of solid matrix: $1.17 \text{ g/cm}^3 \pm 3 \%$.

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

lastona	Gamma-Ray	11.161.16			Ur	certair	ity	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s ⁻¹	u4, %	u_B , %	U, %*	Method**
Am-241	89.5	1.580E+05	3.689E+03	1.324E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.193E+04	1.921E+03	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	1.179E+03	1.009E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.774E+03	1.419E+03	0.4	1.7	3.6	
Hg-203	279.2	4.659E+01	3.823E+03	3.118E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	3.035E+03	1.972E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.488E+03	1.266E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.089E+03	4.768E+03	0.7	1.7		HPGe
Y-88	1836.1	TO STATE OF THE PARTY	0.05021.00	5.048E+03	0.7		3.7	HPGe
Co-60	1173.2	1.925E+03	2.329E+03	2.326E+03		1.7	3.7	
Co-60	1332.5	The state of the same	2.020E+03	2.329E+03	0.7	1.8 1.8	3.9 3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

SRS Number: 108578	8 g	*
Expiration Date: 06-M	Iarch-2019	
This source was wipe 9978:1992.	tested in its inactive areas with leak test res	oults < 185 Bq (5 nCi) of removable activity per ISC
Source Prepared by:	Z. Dimitrova, Radiochemist	
QC Approved by:	J. Lakr, Spectroscopist	Date: <u>02-MAR -18</u>

GAMMA

RESULTS

PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

ANALYSIS

Geo 1 / Water

Sample ID: 073118-2 FWHM Cal (1089)

SEEKER

Sampling Start: 01/01/2018 10:00:00	Counting Start: 07/31/2018 12:28:40
Sampling Stop: 01/01/2018 10:00:00	Decay Time 5.07E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 4500 Sec
Sample Size 1.00E+000 L	Real Time 4773 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 2 (Detector 2)

Energy(keV) = $-1.34 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 07/31/2018$ FWHM(keV) = $1.11 + -0.039*En + 2.65E-03*En^2 +-2.25E-05*En^3 07/31/2017$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

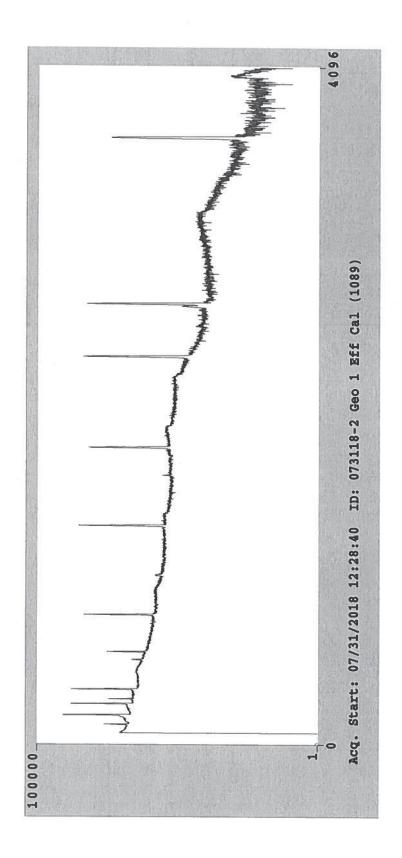
PEAK SEARCH RESULTS

PK. #	(keV)			CERTAINTY	C.L. COUNTS			FLAG
1					283	14828	1.05	a
2	87.98	178.30	77963	699	346	20431	1.07	a
3	122.08	246.37	58685	611	306	15994	1.09	a
4	136.50	275.15	7656	354	253	11865	0.98	a
5	165.86	333.76	56833	584	277	13112	1.15	a
6	255.23	512.15	1812	296	233	9274	1.20	a
7	279.22	560.05	13058	373	242	9276	1.31	a
8	391.78	784.72	42044	472	193	6871	1.38	a
9	510.34	1021.38	524	261	211	6938	1.77	a
10	511.97	1024.63	457	224	181	5677	1.42	b
11	661.79	1323.70	64182	555	187	5715	1.63	a
12	814.08	1627.69	599	189	150	4182	1.71	a
13	898.23	1795.66	47361	483	172	5228	1.87	a
14	1173.45	2345.04	69733	550	127	2876	2.13	a HiResid
15	1325.38	2648.31	1344	204	157	2797		a HiResid
								Wide Pk
16	1332.66	2662.84	63913	518	92	1450	2.29	b HiResid
17	1836.18	3667.92	29479	349	53	424		a HiResid

181215D02.SPC Analyzed by

Sample ID: 073118-2 FWHM Cal (1089) Stds. Match Tolerance: 2.00 keV

Detector Number: 02 Calibration Date. . . 07/31/2018 12:28:40


 $FWHM(keV) = 0.97 + 0.002*En + 9.30e-04*En^2 + 0.00e+00*En^3$

(Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)	
1	59.50	1.049	-0.32	1.045	-8.73	0.962	
2	88.04	1.073	0.22	1.076	-11.59	0.964	
3	122.06	1.093	1.60	1.111	-13.64	0.977	
4	165.85	1.150	0.45	1.155	-15.02	1.004	
5	279.00	1.307	-2.98	1.269	-15.49	1.099	
6	391.68	1.380	-0.01	1.380	-14.30	1.208	
7	661.64	1.629	0.89	1.644	-10.79	1.484	
8	898.02	1.873	0.01	1.873	-8.71	1.723	
9	1173.21	2.135	0.16	2.138	-7.59	1.987	
10	1332.48	2.287	0.19	2.291	-7.47	2.132	
11	1836.01	2.779	-0.23	2.773	-8.98	2.544	

Calibration Results Saved.

IL TIBILE

181215D02.SPC Analyzed by

Sample ID: 073118-2 FWHM Cal (1089) Stds. Match Tolerance: 2.00 keV

Detector Number: 02 Calibration Date. . . 07/31/2018 12:28:40

 $FWHM(keV) = 0.97 + 0.002*En + 9.30e-04*En^2 + 0.00e+00*En^3$

(Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)
1	59.50	1.049	-0.32	1.045	-8.73	0.962
2	88.04	1.073	0.22	1.076	-11.59	0.964
3	122.06	1.093	1.60	1.111	-13.64	0.977
4	165.85	1.150	0.45	1.155	-15.02	1.004
5	279.00	1.307	-2.98	1.269	-15.49	1.099
6	391.68	1.380	-0.01	1.380	-14.30	1.208
7	661.64	1.629	0.89	1.644	-10.79	1.484
8	898.02	1.873	0.01	1.873	-8.71	1.723
9	1173.21	2.135	0.16	2.138	-7.59	1.987
10	1332.48	2.287	0.19	2.291	-7.47	2.132
11	1836.01	2.779	-0.23	2.773	-8.98	2.544

1380 S ← aboard Industrial Blvd. Atlant ← Georgia 30318 Tel 40 ← 352 · 8677 Fax 40 ← 352 · 2837 www.e zag.com

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 108578

Source Description: 1.0 Liter Solid in 138G GA-MA Beaker

Product Code: 8401-EG-SD

Customer: ALS Laboratory Group

P.O. Number: FC001718, Item 1

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Density of solid matrix: $1.17 \text{ g/cm}^3 \pm 3 \%$.

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Half-Life, d	A salinda . D	===	Ur	certair	ity	Calibration
Am-241			Activity, Bq	Flux, s ⁻¹	u _A , %	u _B , %	U, %*	Method**
	69. 8	1.580E+05	3.689E+03	1.324E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.193E+04	1.921E+03	0.5	2.0	4.1	
Co-57	122.1	2.717E+02	1.179E+03	1.009E+03	0.4	1.7		HPGe
Ce-139	165.9	1.376E+02	1.774E+03	1.419E+03			3.4	HPGe
Hg-203	279.2	4.659E+01	3.823E+03		0.4	1.7	3.6	HPGe
Sn-113	391.7	1.151E+02		3.118E+03	0.3	1.7	3.5	HPGe
Cs-137			3.035E+03	1.972E+03	0.4	1.9	3.9	HPGe
	661.7	1.099E+04	1.488E+03	1.266E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.089E+03	4.768E+03	0.7	1.7	3.7	
Y-88	1836.1			5.048E+03	0.7	1.7		HPGe
Co-60	1173.2	1.925E+03	2.329E+03	2.326E+03			3.7	
Co-60	1332.5	(2) (0.000.000.000.0000.0000.00000.00000.0000	2.020ETUS		0.7	1.8	3.9	HPGe
	(1/00)			2.329E+03	0.7	1.8	3.9	

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4 II LS - 4 II Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

F-CR-32, Rev 0, 01 Nov 14

SRS Number: 108578
Expiration Date: 06-March-2019
This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity per ISO 9978:1992.
Source Prepared by:
Z. Dimitrova, Radiochemist

QC Approved by:

J. Lakr, Spectroscopist

Date: 02-MAR2-18

GAMMA ANALYSIS RESULTS

ALS Laboratory Group - Fort Collins GammaScan

Geo 1 / Water

Sample ID: 110118-3 FWHM Cal (1089)

	Counting Start: 11/01/2018 11:05:02
Sampling Stop: 01/01/2018 10:00:00	Decay Time 7.30E+003 Hrs
Buildup Time 0.00E+000 Hrs	
Sample Size 1.00E+000 L	
Collection Efficiency 1.0000	Spc. File

Detector #: 3 (Detector 3)

Energy(keV) = -1.58 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 11/01/2018 FWHM(keV) = $0.63 + 0.021*En + 8.26E-04*En^2 + 0.00E+00*En^3 11/03/2017$

Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS ______

PK. ENERGY ADDRESS NET/MDA UN-C.L. BKG FWHM (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG 59.47 121.83 25909 456 265 13017 0.96 a HiResid 2 87.95 178.65 92624 701 15079 1.00 a HiResid 286 122.06 246.73 50754 532 232 9958 1.02 a HiResid 9400 1.09 a 136.51 275.56 6616 329 235 165.85 334.12 5 36347 467 222 8377 1.15 a HiResid 6 255.29 512.60 762 205 5564 0.94 a 162 7 279.27 560.46 <u>\</u> 2870 233 170 5707 1.19 a 173 391.79 785.00 8 21187 359 5229 1.48 a HiResid 511.39 1023.68 9 547 233 188 5682 2.07 a 53445 10 661.84 1323.91 500 156 4278 1.83 a HiResid 813.82 1627.21 4352 2.21 a 11 461 199 160 12 821.25 1642.03 215 143 115 2798 1.41 b 898.29 1795.76 13 21239 352 163 4713 2.08 a HiResid 14 1113.76 2225.77 157 183 149 3795 2.23 a 4402 2.45 a HiResid 1173.60 2345.18 15 52478 500 164

65

465

230

52

135

53

563 1.46 a

385

2887 2.65 a HiResid

3.23 a HiResid

Aless Than 10,000 counts achieved due to greate Than 5 1/2-lives elapsed. OP 11/2/18

74

47307

12201

1275.06 2547.64

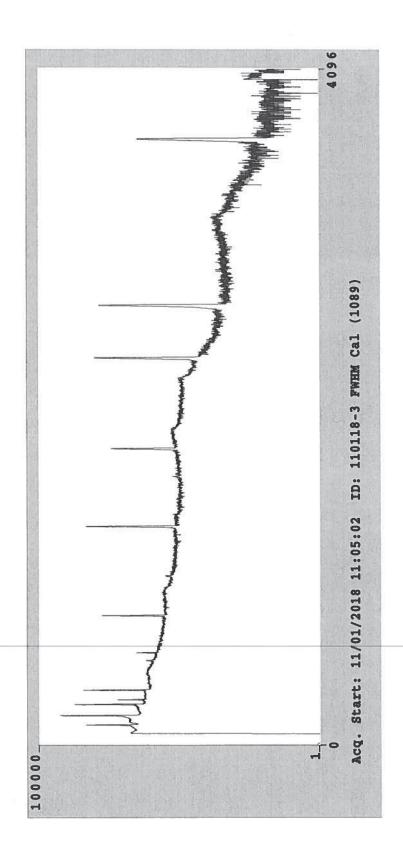
1332.83 2662.95

1836.38 3667.82

17

182393D03.SPC Analyzed by

Sample ID: 110118-3 FWHM Cal (1089) Stds. Match Tolerance: 2.00 keV


Detector Number: 03 Calibration Date. . . 11/01/2018 11:05:02

 $FWHM(keV) = 0.79 + 0.012*En + 1.05e-03*En^2 + 0.00e+00*En^3$ (Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)	
1	59.50	0.965	-2.28	0.943	-11.82	0.844	
2	88.04	0.999	-0.50	0.994	-10.11	0.903	
3	122.06	1.023	2.58	1.050	-8.71	0.966	
4	165.85	1.151	-2.92	1.118	-7.47	1.041	
5	279.00	1.195	6.93	1.284	-5.69	1.215	
6	391.68	1.476	-2.49	1.440	-4.88	1.373	
7	661.64	1.831	-1.93	1.796	-4.37	1.721	
8	898.02	2.076	1.00	2.097	-4.52	2.006	
9	1173.21	2.445	-0.29	2.438	-4.93	2.324	
10	1332.48	2.645	-0.45	2.633	-5.22	2.503	
11	1836.01	3,228	0.36	3.240	-6.15	3.052	

Calibration Results Saved.

ON TO 11/2/12

ALS Laboratory Group - Fort Collins GammaScan

Geo.9 / CHARC. FLTR

Sample ID: 092518-4 FWHM Cal (1097)

and the second second		
Sampling Start: 07/01/201	8 10:00:00 Counting Star	rt: 09/25/2018 09:26:02
a. 51 a	Councing Dear	09/45/4018 09:26:02
Sampling Stop: 07/01/201	8 10:00:00 Decay Time	· · · · · 2.06E+003 Hrs
- 14.4		· · · · · · 2.06E+003 Hrs
Buildup Time 0.0	OE+000 Hrg Live Time	4000
	TIVE I TIVE I TIME	· · · · · · · 1800 Sec
Sample Size 1.00E+	000 CAMPLE Parl mime	4.000
	and puriting vegt time	· · · · · · 1858 Sec
Collection Efficiency	1 0000 com mile	4.04.04
Collection Efficiency	· I. OUOU Spc. File	· · · · · · .181960D04.SPC

Detector #: 4 (Detector 4)

Energy(keV) = -1.55 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/25/2018 FWHM(keV) = 0.89 + 0.004*En + 1.15E-03*En^2 + 0.00E+00*En^3 01/10/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	59.50	121.89	32638	472	250	11522	0.98	HiResid
2	67.32	137.50	1758	676	551	29305		a Wide Pk
3	70.75	144.35	2840	374	295	13791	1.39 1	
4	72.87	148.58	3783	346	266	12067	1.07	3
5	82.46	167.73	2181	432	347			HiResid
								Wide Pk
6	85.66	174.11	6703	765	615	33497	3.09 1	HiResid
7	87.99	178.76	131692	791	258	11336		HiResid
8	122.09	246.85	80264	632	231	9079		A HiResid
9	136.52	275.64	9909	330	217	8023	1.15 a	
10	165.86		85874	638	207	7303	1.20 a	HiResid
11	255.12	512.43	2472	231	172	5456	1.27 ε	
12	279.19	560.49	53325	503	164	4988	1.33 a	HiResid
13	310.27	622.52	199	146	118	2917	1.03 a	
14	391.73	785.16	51982	495	159	4421	1.48 a	HiResid
15	427.09	855.75	84	119	97	2129		NET< CL
16	509.82	1020.92	343	172	139	3545	1.71 a	
17	511.77	1024.82	586	224	180	4963	2.22 b	
18	661.71	1324.17	33284	416	164	4716		HiResid
19	693.04	1386.71	148	155	126	3258	1.30 a	
20	813.86	1627.91	928	180	139	3301	2.23 a	-
		Page 001						-

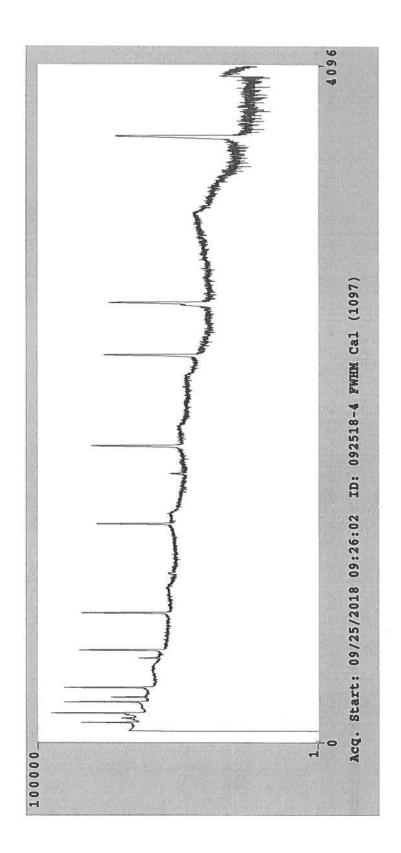
181960D04.SPC Analyzed by

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
21	898.12	1796.14	47812	473	149	3916	2.05	a HiResid
22	1173.31	2345.54	30466	375	113	2188	2.22	a HiResid
23	1332.53	2663.41	26998	361	122	2449	2.49	a HiResid
24	1835.93	3668.43	24376	335	99	1442	2.97	a HiResid

181960D04.SPC Analyzed by

Sample ID: 092518-4 FWHM Cal (1097) Stds. Match Tolerance: 2.00 keV


Detector Number: 04 Calibration Date. . . 09/25/2018 09:26:02

FWHM(keV) = $0.82 + 0.019*En + 7.17e-04*En^2 + 0.00e+00*En^3$ (Where En = SQR(Energy in keV))

Pk. # =	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)	
		:======:		========	=======		=========
1	59.50	0.983	2.78	1.011	-1.82	0.993	
2	88.04	1.072	-0.86	1.063	-2.92	1.033	
3	122.06	1.136	-1.49	1.119	-3.69	1.079	
4	165.85	1.196	-0.95	1.185	-4.18	1.137	
5	279.00	1.327	0.88	1.338	-4.24	1.284	
6	391.68	1.475	0.17	1.478	-3.55	1.427	
7	661.64	1.814	-1.73	1.783	-1.14	1.763	
8	898.02	2.055	-1.06	2.033	1.01	2.054	
9	1173.21	2.221	3.91	2.312	3.25	2.389	
10	1332.48	2.492	-0.97	2.468	4.42	2.582	
11	1836.01	2.969	-0.66	2.949	7.54	3.190	

Calibration Results Saved.

OUJP 9/25/12

Received 8/20/18

1380 Seaboard Industrial Blvd. Atlan ta, Georgia 30318 Tel 404·352·8677 Fax 404·352·2837 www.ezag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 110300

Source Description: Face Loaded Yellow Plastic Hi-Q Charcoal Cartridge

Product Code: 8401-EG-CH
Customer: ALS Laboratory Group
P.O. Number: FC001958, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-July-2018

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	بالمالة الناف يا	A # # =		Ur	certair	ity	Calibration
		Half-Life, d	Activity, Bq	Flux, s ⁻¹	u_A , %	$u_{\scriptscriptstyle R}, \%$	U, %*	Method**
Am-241	59.5	1.580E+05	1.868E+03	6.706E+02	0.1	1.8	3.6	
Cd-109	88.0	4.614E+02	2.625E+04	9.713E+02	0.5	2.0	The second secon	4π LS
Co-57	122.1	2.717E+02	5.936E+02	5.081E+02	A STATE OF THE REAL PROPERTY.	TATION OF STREET	4.1	HPGe
Ce-139	165.9	1.376E+02	8.908E+02	7.126E+02	0.4	1.7	3.4	HPGe
Hg-203	279.2	4.659E+01	1.896E+03	CONTRACTOR OF STREET,	0.4	1.7	3.6	HPGe
Sn-113	391.7	1.151E+02	The second secon	1.547E+03	0.3	1.7	3.5	HPGe
Cs-137	661.7	NOTABLE PROBEST PROCESSOR SERVICE AND ADMINISTRATION OF THE PROPERTY OF THE PR	1.546E+03	1.005E+03	0.4	1.9	3.9	HPGe
Y-88	The second secon	1.099E+04	7.596E+02	6.464E+02	0.7	1.9	4.1	HPGe
which is reasonable appropriate and resource as not to	898.0	1.066E+02	2.541E+03	2.381E+03	0.7	1.7	3.7	HPGe
Y-88	1836.1			2.521E+03	0.7	1.7	3.7	nrGe
Co-60	1173.2	1.925E+03	1.186E+03	1.184E+03	0.7	1.8	100000000000000000000000000000000000000	CL reactions devel
Co-60	1332.5			1.185E+03	0.7	1.8	3.9 3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

80 81		7	5	96
Comments:				
Active material deposit	ted on first 5 mm			
Expiration Date: 17-1	August-2019			
This source was wipe 9978: 1992.	e tested in its inactive areas with leak test	results < 185 Bq (5	nCi) of removable activity	per ISO
9910:1992.				
	10			
Source Prepared by:	Jullony J. Charlos			
	A. Chirillo, Radiochemist			
00.7	IML.			
QC Approved by:		<u> </u>	Date: 16-804-18	
	J. Laur, Spectroscopist			

SRS Number: 110300

GAMMA

RESULTS

PS Version 1.8.4

ANALYSIS

ALS Laboratory Group - Fort Collins GammaScan

Geo.9 / CHARC. FLTR

Sample ID: 041718-5 FWHM (1075)

Sampling Start: 07/01/2017 10:00:00	Counting Start: 04/17/2018 12:33:46
Sampling Stop: 07/01/2017 10:00:00	Decay Time 6.96E+003 Hrs
Buildup Time 0.00E+000 Hrs	
Sample Size 1.00E+000 SAMPLE	
Collection Efficiency 1.0000	Spc. File

Detector #: 5 (Detector 5)

Energy(keV) = -0.75 + 0.500*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 04/17/2018 FWHM(keV) = 0.48 + 0.023*En + 6.98E-04*En² + 0.00E+00*En³ 04/18/2017 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

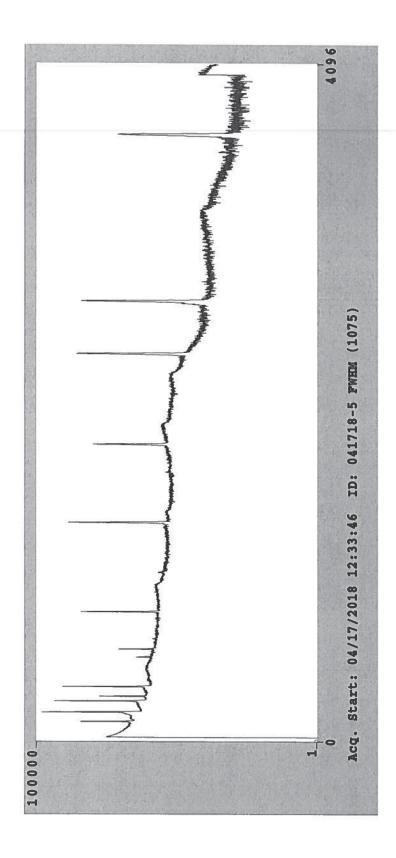
PEAK SEARCH RESULTS

PK. NET/MDA ENERGY ADDRESS UN-C.L. BKG **FWHM** (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG 1 59.52 120.43 28929 439 229 10558 0.75 a 88.01 177.37 2 152624 837 248 12353 0.79 a Wide Pk 3 89.48 180.31 3381 413 326 15733 1.50 b 121.99 245.27 4 93248 656 196 7746 0.88 a HiResid 5 136.40 274.07 12372 6765 0.94 a 322 191 165.78 332.78 6 67247 567 188 6541 0.96 a HiResid 7 167.69 336.59 503 233 188 6541 0.94 b HiResid 255.00 511.06 8 1884 247 190 6187 1.14 a 9 279.09 559.20 6094 272 183 5697 1.10 a 310.35 621.66 10 207 143 115 2927 0.65 a 11 391.59 784.01 39691 449 171 5393 1.29 a HiResid 511.19 1022.99 12 519 225 181 5383 1.70 a 13 568.27 1137.05 136 173 141 3664 1.29 a NET< CL 14 661.58 1323.52 88659 628 165 5004 1.62 a HiResid 15 813.75 1627.59 286 184 148 4071 1.57 a 898.00 1795.94 16 35417 432 174 5326 1.88 a HiResid 17 1173.17 2345.80 83992 603 2.20 a HiResid 137 3338 18 1332.47 2664.11 73418 575 158 4239 2.30 a HiResid 19 1510.35 3019.57 92 86 69 909 1.72 a 20 1836.03 3670.36 19139 296 2.65 a HiResid 87 1194

180435D05.SPC Analyzed by

Sample ID: 041718-5 FWHM (1075) Stds. Match Tolerance: 2.00 keV

Detector Number: 05 Calibration Date. . . 04/17/2018 12:33:46


 $FWHM(keV) = 0.65 + -0.002*En + 2.17e-03*En^2 + -2.42e-05*En^3$

(Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)	
					=======		========
1	59.50	0.753	0.36	0.756	-8.01	0.700	
2	88.04	0.785	2.58	0.806	-6.29	0.758	
3	122.06	0.884	-2.23	0.865	-5.33	0.821	
4	165.85	0.956	-2.03	0.937	-4.88	0.894	
5	279.00	1.102	1.15	1.115	-5.07	1.061	
6	391.68	1.286	-0.52	1.279	-5.61	1.211	
7	661.64	1.616	0.88	1.630	-6.06	1.537	
8	898.02	1.880	0.83	1.896	-5.31	1.800	
9	1173.21	2.196	-1.47	2.164	-3.46	2.092	
10	1332.48	2.295	0.22	2.301	-2.03	2.255	
11	1836.01	2.649	0.19	2.654	3.59	2.753	

Calibration Results Saved.

ONJP4/18/18

180435D05.SPC Analyzed by

Sample ID: 041718-5 FWHM (1075) Stds. Match Tolerance: 2.00 keV

Detector Number: 05 Calibration Date. . . 04/17/2018 12:33:46

FWHM(keV) = $0.65 + -0.002*En + 2.17e-03*En^2 + -2.42e-05*En^3$ (Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)
1	59.50	0.753	0.36	0.756	-8.01	0.700
2	88.04	0.785	2.58	0.806	-6.29	0.758
3	122.06	0.884	-2.23	0.865	-5.33	0.821
4	165.85	0.956	-2.03	0.937	-4.88	0.894
5	279.00	1.102	1.15	1.115	-5.07	1.061
6	391.68	1.286	-0.52	1.279	-5.61	1.211
7	661.64	1.616	0.88	1.630	-6.06	1.537
8	898.02	1.880	0.83	1.896	-5.31	1.800
9	1173.21	2.196	-1.47	2.164	-3.46	2.092
10	1332.48	2.295	0.22	2.301	-2.03	2.255
11	1836.01	2.649	0.19	2.654	3.59	2.753

RSO # 1075
Red 2 8/31/17

1380 Seabo ard Industrial Blvd. Atlanta, Ge orgia 30318 Tel 404·35 2·8677 Fax 404·35 2·2837 www.ezag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 106879

Source Description: Face Loaded Yellow Plastic Hi-Q Charcoal Cartridge

Product Code: 8401-EG-CH
Customer: ALS Laboratory Group
P.O. Number: FC001498, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-July-2017

12:00 PM EST

MGS Mixture

_	Gamma-Ray				Ur	Uncertainty		Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s [¬]	u_A , %	u_B , %	U, %*	Method**
Am-241	59.5	1.580E+05	1.868E+03	6.707E+02	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	2.600E+04	9.618E+02	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	5.993E+02	5.130E+02	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	8.934E+02	7.147E+02	0.4	1.7	3.6	HPGe
Hg-203	279.2	4.659E+01	1.890E+03	1.541E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	1.547E+03	1.005E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	7.420E+02	6.315E+02	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	2.574E+03	2.412E+03	0.7	1.7	3.7	HPGe
Y-88	1836.1		ALTO A CAMPS OF TAXABLE PARTY.	2.554E+03	0.7	1.7	3.7	A AND AND AND AND AND AND AND AND AND AN
Co-60	1173.2	1.925E+03	1.224E+03	1.222E+03	0.7	1.8	3.9	HPGe
Co-60	1332.5	at 345 - State of the State of	STATE OF THE STATE	1.224E+03	0.7	1.8	3.9	CONTRACTOR IN

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

SRS Number: 106879		#
Comments: Active material deposit	ed on first 5 mm.	
Expiration Date: 29-A	August-2018	
This source was wipe 9978:1992.	e tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity per ISO
Source Prepared by:	Z. Dimitrova, Radiochemist	
QC Approved by:	J. Lahr, Spectroscopist	Date: 25-AU4-17

GAMMA ANALYSIS

SEEKER

RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 1 / Water

Sample ID: 092418-7 FWHM Cal (1089)

	Counting Start: 09/24/2018 09:33:26
Sampling Stop: 01/01/2018 10:00:00	
Buildup Time 0.00E+000 Hrs	
Sample Size 1.00E+000 L	
Collection Efficiency 1.0000	Spc. File
Detector #: 7	(Detector 7)

Energy(keV) = $-2.37 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/24/2018$ $FWHM(keV) = 0.78 + -0.005*En + 1.72E-03*En^2 + 0.00E+00*En^3 11/08/2017$ Where En = Sgrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY	C.L. COUNTS		FWHM (keV)	FLAG
1	59.39	123.15	13576	340	204	8378	0.88	a HiResid
2	87.95	180.10	70856	603	232	10882	0.88	a HiResid
3	121.95	247.89	46497	512	226	9459	0.93	a.
4	136.38	276.65	5992	293	205	7733	0.93	a.
5	165.80	335.32	37079	454	197	7183	0.97	a HiResid
6	255.27	513.70	1102	240	190	6141	1.16	a
7	279.26	561.54	4394	240	165	5338	1.09	a.
8	391.82	785.97	23831	353	141	3945	1.19	a
9	511.18	1023.96	712	239	191	5631	2.25	a
10	621.06	1243.05	97	104	84	1729	0.89	a
11	661.97	1324.63	48724	470	132	3393	1.41	a HiResid
12	814.36	1628.46	345	140	111	2606	1.53	a
13	898.32	1795.88	25651	358	131	3461	1.66	a HiResid
14	1173.51	2344.58	52185	473	101	1877	1.94	a HiResid
15	1328.79	2654.20	1662	223	171	2398	6.87	a HiResid Wide Pk
16	1332.68	2661.94	48140	446	65	742	2.05	b HiResid
17	1835.72	3664.96	15544	253	34	188	20	a HiResid

181496D07.SPC Analyzed by

Sample ID: daily check

Stds. Match Tolerance: 2.00 keV

Detector Number: 07 Calibration Date. . . 09/24/2018 09:09:32

Energy(keV) = $-2.37 + 0.502*Ch + 0.00e+00*Ch^2 + 0.00e+00*Ch^3$

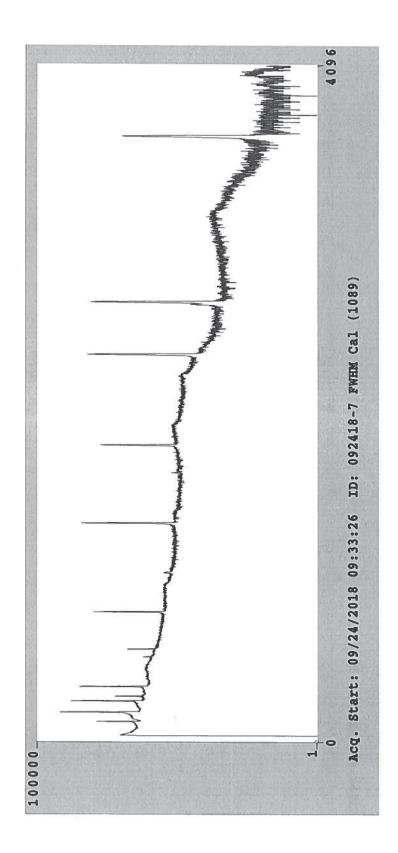
	Pk.	Measured	Calculated	Energy	%	
	#	Centroid	Energy	(keV)	Difference	
=========			=========	========		
	1	123.14	59.39	59.50	-0.19	
	2	1324.39	661.85	661.64	0.03	
	3	2661.35	1332.38	1332.48	-0.01	

Calibration Results Saved.

Sample ID: 092418-7 FWHM Cal (1089) Stds. Match Tolerance: 2.00 keV

Detector Number: 07 Calibration Date. . . 09/24/2018 09:33:26

 $FWHM(keV) = 0.77 + 0.005*En + 8.11e-04*En^2 + 0.00e+00*En^3$


(Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)
=====						*======================================
1	59.50	0.880	-2.06	0.862	-2.20	△ 0.843
2	88.04	0.878	1.72	0.894	-1.08	0.884
3	122.06	0.932	-0.28	0.930	0.48	0.934
4	165.85	0.969	0.55	0.974	2.58	1.000
5	279.00	1.092	-0.59	1.086	7.66	1.176
6	391.68	1.193	-0.05	1.193	11.92	1.354
7	661.64	1.405	2.53	1.442	19.42	1.789
8	898.02	1.657	-0.12	1.655	23.90	2.175
9	1173.21	1.935	-1.83	1.900	27.68	2.628
10	1332.48	2.055	-0.67	2.041	29.40	2.891
11	1836.01	2.461	0.83	2.482	33.40	3.726

Calibration Results Saved.

OK Malzshe A-) Different Detector
Than previous FWHM
Calibration - Detector
will be re-calibrated
for all geometries.

They all

RSU # 1089 Rec. 3-8-18

1380 Se aboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404 •352•8677 Fax 404 •352•2837 www.ez ag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 108578

Source Description: 1.0 Liter Solid in 138G GA-MA Beaker

Product Code: 8401-EG-SD
Customer: ALS Laboratory Group
P.O. Number: FC001718, Item 1

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Density of solid matrix: $1.17 \text{ g/cm}^3 \pm 3 \%$.

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

lantone	Gamma-Ray	11-16116			Ur	certair	ity	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s	u4, %	u_B , %	U, %*	Method**
Am-241	69.8	1.580E+05	3.689E+03	1.324E+03	0.1	1.8	3.6	4m LS
Cd-109	88.0	4.614E+02	5.193E+04	1.921E+03	0.5	2.0	4.1	
Co-57	122.1	2.717E+02	1.179E+03	1.009E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.774E+03	1.419E+03	0.4	1.7		HPGe
Hg-203	279.2	4.659E+01	3.823E+03	3.118E+03	0.3		3.6	HPGe
Sn-113	391.7	1.151E+02	3.035E+03	1.972E+03		1.7	3.5	HPGe
Cs-137	661.7	1.099E+04		THE RESERVE AND ADDRESS OF THE PARTY OF THE	0.4	1.9	3.9	HPGe
Y-88			1.488E+03	1.266E+03	0.7	1.9	4.1	HPGe
All the Principles of the Contract of the Cont	898.0	1.066E+02	5.089E+03	4.768E+03	0.7	1.7	3.7	HPGe
Y-88	1836.1	and the state of t		5.048E+03	0.7	1.7	3.7	The state of the s
Co-60	1173.2	1.925E+03	2.329E+03	2.326E+03	0.7	1.8	3.9	HDC.
Co-60	1332.5	and desired and discussion	as alterestication of	2.329E+03	0.7	1.8	3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4 TLS - 4 TLiquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Expiration Date: 06-M	larch-2019		
This source was wipe 9978:1992.	tested in its inactive areas with leak test re	esults < 185 Bq (5 nCi) of removable a	activity per ISO
Source Prepared by:	Z. Dimitrova, Radiochemist		
QC Approved by:	J. Lakr, Spectroscopist	Date: <u>02-MAR</u>	?-18

SRS Number: 108578

180490D08.SPC Analyzed by

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo.9 / CHARC. FLTR

Sample ID: 041718-8 FWHM (1075)

	*
Complian Charles Allegan construction	
Sampling Start: 07/01/2017 10:00:00	Counting Start: 04/17/2018 08:49:57
Sampling Stop: 07/01/2017 10:00:00	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Decay Time 6.96E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time
	1 1146 11116 3600 Sec
Sample Size 1.00E+000 SAMPLE	Real Time 4213 Sec
Collection Efficience	1213 560
COLLECTION ELLICITIES 1.0000	Spc. File

Detector #: 8 (Detector 8)

Energy(keV) = -2.42 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 04/17/2018 FWHM(keV) = 0.66 + 0.008*En + 7.24E-04*En^2 + 0.00E+00*En^3 04/18/2017 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

====:								========
PK. #	ENERGY (keV)	CHANNEL		UN- CERTAINTY			FWHM (keV)	FLAG
				645	499	50111	0.79	a HiResid Wide Pk
2	46.82	98.23	0	376	310	23604	0.49	b NET< CL HiResid
3	49.57	103.73	3066	435	346	26563	0.60	C HiResid
4	51.10	106.77	-0	668	549	47809		d NET< CL HiResid
5	51.22	107.02	0	463	381	29254	0.77	NET< CL HiResid
6	52.02	108.61	0	899	739	67293	2.04	E NET< CL HiResid
7	59.47	123.49	353464	1253	325	21326	0.77 a	a Wide Pk
8	60.40	125.33	1458	525	427	28902		-
9	66.42	137.35	6826	652	519	33202		Wide Pk
10	68.21	140.91	6000	693	555	35969		
11	70.49	145.46	6181	736	591	38736	2.21	3
12	73.03	150.53	4494	731	591	38736		
13	77.09	158.64	2852	727	591	38736	_	-
14	78.38	161.20	272	274	223	11067		
15	81.14	166.72	1177	326	262			
16	88.02	180.44	333358	1196	257		-	HiResid
	1	Page 001						

PEAK SEARCH RESULTS

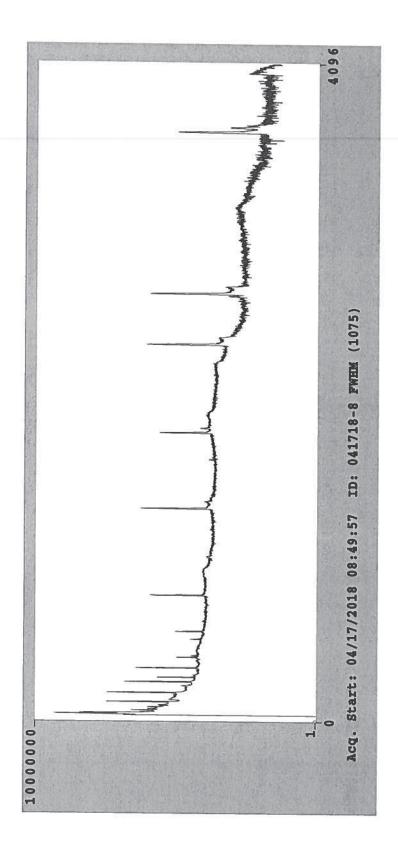
PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY		COUNTS	FWHM (keV)	FLAG
17		209.98	260	250	204	8373	0.85	A
18		223.50	1613	280	221	8992		a HiResid
19	112.52	229.33	142	166	135			b HiResid
20	122.03	248.30		713	175	6171		a HiResid
21	136.45	277.07	14823	310	158	5053	0.87	
22	143.26	290.66		353	288	10830		a Wide Pk
23	165.88	335.79	59590	530	169	5305		
24	199.20	402.27	4787	248	169			-
25	203.92	411.69	1089	216	169	5295		
26		514.19		176	133	3550		
27		562.11	5657	230	143	3758		
28		624.61		127	101	2273		
29	391.92	786.78	32637	409	157		1.14	
30	511.15	1024.68	775	291	235	6810		a Wide Pk
31	512.59	1027.56	67	102	83	1703		b NET< CL
32	572.54	1147.15	104	154	126	2913		a NET< CL
33	662.12	1325.89	71102	566	156	4250		
34	683.61	1368.76	399	179	144			- -
35	814.56	1630.04	423	153	121	2705	1.30	
36	877.88	1756.38	139	179	146	3924		a NET< CL
37	898.49	1797.50	28096	387	158	4638		
38		1825.86	1399	264	208	6657		
39	1173.71	2346.63	70003	552	129			a HiResid
40	1194.64	2388.38	686	229	184	4022		a Wide Pk
41	1198.57	2396.23	52	142	117	2092		b NET< CL
42	1325.19	2648.87	429	116	89	1246		A HiResid
43	1332.88	2664.21	62360	513	97	1752		HiResid
44	1353.30	2704.95	731	181	142	2412		a Wide Pk
45	1835.99		15578	260	61	611	2.40	
46	1850.37	3696.70	682	100	71	761	2.85	_

CALIBRATION RESULTS Version 2.0.4 ************

Sample ID: 041718-8 FWHM (1075) Stds. Match Tolerance: 2.00 keV

Detector Number: 08

Calibration Date. . . 04/17/2018 08:49:57


 $FWHM(keV) = 0.65 + 0.012*En + 6.79e-04*En^2 + 0.00e+00*En^3$

(Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)
1	59.50	0.772	0.98	0.780	-1.18	0.771
2	88.04	0.821	-0.35	0.818	-1.63	0.805
3	122.06	0.861	-0.09	0.861	-1.99	0.844
4	165.85	0.907	0.47	0.911	-2.32	
5	279.00	1.048	-1.48	1.032	-2.75	1.005
6	391.68	1.141	0.31	1.144	-2.91	1.112
7	661.64	1.400	-0.32	1.396	-2.88	
8	898.02	1.611	-0.34	1.605	-2.68	1.564
9	1173.21	1.824	0.98	1.842	-2.40	1.799
10	1332.48	1.970	0.28	1.976	-2.23	1.933
11	1836.01	2.401	-0.43	2.391	-1.73	2.350

Calibration Results Saved.

OK JP 4/18/18

RSO # 1075 Red 2 8/31/17

1380 Seaboard Industrial Blvd. Atlanta, Ge orgia 30318 Tel 404·35 2·8677 Fax 404·35 2·2837 www.ezag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 106879

Source Description: Face Loaded Yellow Plastic Hi-Q Charcoal Cartridge

Product Code: 8401-EG-CH
Customer: ALS Laboratory Group
P.O. Number: FC001498, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-July-2017

12:00 PM EST

MGS Mixture

Isotono	Gamma-Ray	11-161:6			Ur	certair	ity	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s	u_A , %	u_B , %	U, %*	Method**
Am-241	59.5	1.580E+05	1.868E+03	6.707E+02	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	2.600E+04	9.618E+02	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	5.993E+02	5.130E+02	0.4	1,7	3.4	HPGe
Ce-139	165.9	1.376E+02	8.934E+02	7.147E+02	0.4	1.7	3.6	HPGe
Hg-203	279.2	4.659E+01	1.890E+03	1.541E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	1.547E+03	1.005E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	7.420E+02	6.315E+02	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	2.574E+03	2.412E+03	0.7	1.7	3.7	but a first of
Y-88	1836.1	COLDER OF SERVERS WELFT	ALL AND ASSESSMENT OF THE PERSON NAMED IN	2.554E+03	0.7	1.7	3.7	HPGe
Co-60	1173.2	1.925E+03	1.224E+03	1.222E+03	0.7	1.8	3.9	IIDO
Co-60	1332.5	in 14 to security 286 one	and the factor of the	1.224E+03	0.7	1.8	3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

EZA Certificate Program Rev. 0, 07-DEC-2015

Page 1 of 2

Comments: Active material deposit	eed on first 5 mm.	
	•	
Expiration Date: 29-	August-2018	
This source was wipe 9978:1992.	e tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity per ISO
Source Prepared by:	Z. Dimitrova, Radiochemist	
QC Approved by:	J. Lahr, Spectroscopist	Date: 25-AUG-17

SRS Number: 106879

SEEKER

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 1 / Water

Sample ID: 110118-9 FWHM CAL (1089)

	Counting Start: 11/01/2018 09:55:22
Sampling Stop: 01/08/2018 10:00:00	·
Buildup Time 0.00E+000 Hrs	Live Time 3600 Sec
Sample Size 1.00E+000 L	
Collection Efficiency 1.0000	Spc. File

Detector #: 9 (Detector 9)

Energy(keV) = -2.31 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 11/01/2018 FWHM(keV) = 0.65 + 0.015*En + 5.05E-04*En² + 0.00E+00*En³ 11/03/2017 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN- C.L. BKG FWHM

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	49.24	102.79	6820	645	513	41641	1.34 a	Wide Pk
2	50.61	105.53	1176	331	267	17527	0.41 h)
3	59.37	123.01	157566	882	315	20033	0.86 a	HiResid
4	65.09	134.40	475	292	237	12493	0.70 a	Wide Pk
5	66.84	137.89	6292	734	590	40603	2.10 b)
6	69.72	143.64	4855	822	666	46850	2.42	- 10
7	87.93	179.95	157993	866	282	16013	0.88 a	•
8	102.53	209.06	296	242	197	7838	0.74 a	•
9	105.74	215.46	196	310	254	10973	1.13 b	NET< CL
10	121.92	247.73	59031	548	208	7981	0.92 a	
11	136.33	276.46	6968	259	162	5320	0.89 a	•
12	165.77	335.16	33980	425	173	5552	0.97 a	
13	198.97	401.36	540	209	167	5179	1.05 a	
14	255.01				204	6132	1.40 a	
15	279.16	561.28 △	2622	198	140	3610	0.96 a	•
16	282.61	568.15	83	192	157	4212	1.10 b	NET< CL
17	310.58	623.93	142	140	114	2610	0.84 a	=
18	391.74	785.77	17373	310	134	3084	1.16 a	,
19	510.99	1023.56	395	228	185	4578	2.25 a	Wide Pk
20	534.60	1070.66	103	113	91	1760	1.06 a	•
21	661.84	1324.37	43138	438	115	2437	1.39 a	

Dless The 10,000 counts achieved due to greate Then 5 1/2-lives elapsed TO 11/3/18 of 624

181558D09.SPC Analyzed by

PEAK SEARCH RESULTS

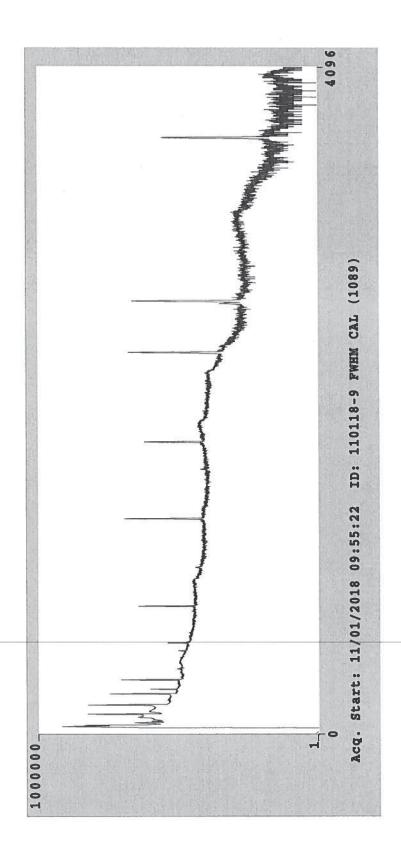
PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	814.21	1628.21	347	151	121	2386	1.61	a
23	821.86	1643.48	139	160	131	2651	1.77	a
24	898.12	1795.54	17035	297	117	2671	1.50	a
25	1048.79	2095.98	98	103	83	1499	1.15	a
26	1173.24	2344.14	43641	431	86	1311	1.78	a HiResid
27	1324.80	2646.38	401	93	69	752	2.64	a HiResid
28	1332.33	2661.40	39460	402	52	517	1.88	b HiResid
29	1835.17	3664.10	10026	203	29	150	2.20	a

181558D09.SPC Analyzed by

Sample ID: 110118-9 FWHM CAL (1089)

Stds. Match Tolerance: 2.00 keV

Detector Number: 09 Calibration Date. . . 11/01/2018 09:55:22


 $FWHM(keV) = 0.76 + 0.007*En + 6.45e-04*En^2 + 0.00e+00*En^3$

(Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)
1	59.50	0.864	-1.69	0.850	 -7.27	0.792
2	88.04	0.877	0.30	0.879	-5.67	0.832
3	122.06	0.925	-1.37	0.912	-4.30	0.874
4	165.85	0.974	-2.29	0.952	-3.02	0.924
5	279.00	0.958	8.79	1.050	-1.04	1.039
6	391.68	1.159	-1.43	1.143	0.01	1.143
7	661.64	1.389	-2.50	1.355	0.99	1.369
8	898.02	1.497	2.52	1.535	1.10	1.552
9	1173.21	1.783	-2.45	1.741	0.88	1.756
10	1332.48	1.877	-1.04	1.858	0.67	1.871
11	1836.01	2.197	1.22	2.224	-0.14	2.221

Calibration Results Saved.

ON TO WELF

GAMMA ANALYSIS PS Version 1.8.4

RESULTS

ALS Laboratory Group - Fort Collins GammaScan

Geo 1 / Water

Sample ID: 111518-10 FWHM Cal (1089)

01/01/2018 10:00:00 | Counting Start: 11/15/2018 08:17:10 Sampling Start: Sampling Stop: 01/01/2018 10:00:00 | Decay Time. 7.63E+003 Hrs Buildup Time. 0.00E+000 Hrs | Live Time Sample Size 1.00E+000 L | Real Time Collection Efficiency . . . 1.0000 | Spc. File 181841D10.SPC

Detector #: 10 (Detector 10)

Energy(keV) = -2.05 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 11/15/2018 $FWHM(keV) = 0.99 + 0.002*En + 8.54E-04*En^2 + 0.00E+00*En^3 11/15/2017$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End:

PEAK SEARCH RESULTS ______

#	(keV)	CHANNEL	COUNTS	UN- CERTAINTY	COUNTS	COUNTS		
				304				
2	59.33	122.50	53011	618	339	19546	1.11	a HiResid
3	67.18	138.16	1594	670	547	34922	2.13	a Wide Pk
4	87.87	179.46	147950	893	374	23797	1.09	a Wide Pk
5	89.40	182.51	6071	646	516	32751	2.01	b
6	121.86	247.30	74112	646	286	13967	1.10	a Wide Pk
7	122.36	248.30	6151	702	563	31925	2.70	b
8	136.29	276.09	10319	372	257	11230	1.19	a
9	165.72	334.83	54890	558	250	10640	1.21	a
10	167.59	338.57	1280	344	277	12160	1.32	b
11	254.99	513.00	1505	270	213	8949	1.17	a
12	279.16	561.23	∆ 4191	278	202	8040	1.15	a
13		563.07		323	264	11486	1.72	b NET< CL
14	373.23	748.97	150	172	140	4467	0.85	a
15	391.72	785.87	39366	472	211	7731	1.42	a Wide Pk
16	392.96	788.35	2849	522	421	18039	3.45	b
17	511.28	1024.50	1074	325	262	9235	2.21	a
18	609.45	1220.42	170	180	146	4390	1.31	a
19	661.85	1325.01	129261	756	191	6405	1.74	a HiResid Wide Pk
20	663.35	1327.99	7497	440	333	12811	3.66	b HiResid
		Page 001	- Barriera			- 11 1		

Dless Than 10,000 Counts achieved due to greate Than 5 1/2-lives elapsel, 1374 of 624

181841D10.SPC Analyzed by

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
21	775.23	1551.29	60	118	96	2287	0.86 a	NET< CL
22	814.08	1628.83	88	123	100	2470		NET< CL
23	898.22	1796.75	48828	506	202	6880	2.04 a	HiResid
24	901.20	1802.70	910	284	228	8026	2.36 b	HiResid
25	1173.38	2345.92	141972	787	186	5660	2.41 a	HiResid
26	1332.54	2663.57	130670	752	170	4766	2.52 a	HiResid
27	1336.18	2670.85	1322	144	102	2024	1.83 b	HiResid
28	1835.54	3667.47	33217	382	94	1262	3.11 a	HiResid

181841D10.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET101114.BKG (111418-10 LONG BKG CAL)

Bkg.File Detector #: 10

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
3	67.18	1594	670	547	1551	670	547	
4	87.87	147950	893	374	147936	893	374	
5	89.40	6071	646	516	6064	646	516	
17	511.28	1074	325	262	863	326	264	
18	609.45	170	180	146	57	180	148 N	ET <cl< td=""></cl<>
23	898.22	48828	506	202	48823	506	203	

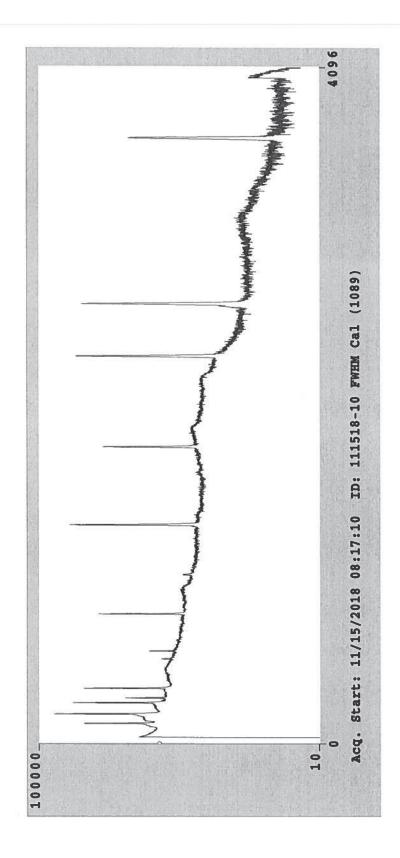
181841D10.SPC Analyzed by

Sample ID: 111518-10 FWHM Cal (1089) Stds. Match Tolerance: 2.00 keV

Debarbon Manifester 4A

Detector Number: 10 Calibration Date. . . 11/15/2018 08:17:10

 $FWHM(keV) = 1.03 + -0.007*En + 1.30e-03*En^2 + 0.00e+00*En^3$


(Where En = SQR(Energy in keV))

Pk. #	Energy (kev)	Measured FWHM(keV)	% Diff.	Calculated FWHM(keV)	% Diff.	Prev.Calc. FWHM(kev)	
1	59.50	1.110	-4.76	1.060	0.41	1.064	
2	88.04	1.087	-0.10	1.086	0.59	1.093	
3	122.06	1.098	1.93	1.120	0.54	1.126	
4	165.85	1.206	-3.54	1.165	0.23	1.168	
5	279.00	1.148	10.82	1.288	-1.09	1.274	
6	391.68	1.419	-0.30	1.415	-2.68	1.378	
7	661.64	1.743	-0.87	1.728	-6.49	1.623	
8	898.02	2.039	-1.52	2.009	-9.47	1.835	
9	1173.21	2.414	-3.17	2.340	-12.46	2.080	
10	1332.48	2.517	0.63	2.533	-13.99	2.222	
11	1836.01	3.108	1.27	3.148	-18.02	2.668	

Calibration Results Saved.

DON 2 10,000 Counts achieved due
to greate Than 5 1/2-lives elapsel.

JP 11/20/18

RSU # 1089 Pecil 3-8-18

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404·352·8677 Fax 404·352·2837

www.ezag.com

Analytics

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 108578

Source Description: 1.0 Liter Solid in 138G GA-MA Beaker

Product Code: 8401-EG-SD

Customer: ALS Laboratory Group

P.O. Number: FC001718, Item 1

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Density of solid matrix: $1.17 \text{ g/cm}^3 \pm 3 \%$.

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray	11-16116- 4			Ur	certair	ity	Calibration
	Energy, keV	Half-Life, d	Activity, Bq	Flux, s	u, %	u_B , %	U, %*	Method**
Am-241	69.5	1.580E+05	3.689E+03	1.324E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.193E+04	1.921E+03	0.5	2.0	4.1	
Co-57	122.1	2.717E+02	1.179E+03	1.009E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.774E+03	1.419E+03	0.4	1.7	3.6	HPGe
Hg-203	279.2	4.659E+01	3.823E+03	3.118E+03	0.3	1.7		HPGe
Sn-113	391,7	1.151E+02	3.035E+03	1.972E+03	0.4		3.5	HPGe
Cs-137	661.7	1.099E+04	1.488E+03	1.266E+03		1.9	3.9	HPGe
Y-88	898.0	1.066E+02	5.089E+03		0.7	1.9	4.1	HPGe
Y-88	1836.1	1.0001102	3.003E+03	4.768E+03	0.7	1.7	3.7	HPGe
Co-60	1173.2	1.0055.00	0.0007.00	5.048E+03	0.7	1.7	3.7	
CACHE - MERCHANISM COM	transfer from the plant of the Control of the Contr	1.925E+03	2.329E+03	2.326E+03	0.7	1.8	3.9	HPGe
Co-60	1332.5			2.329E+03	0.7	1.8	3.9	

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Expiration Date: 06-March-2019 This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity per ISO 9978:1992. Source Prepared by: Z. Dimitrova, Radiochemist Date: 02-MAR-18

SRS Number: 108578

QC Approved by:

SEEKER RESULTS ANALYSIS

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 091218-1 Geo 17 Eff Cal (1090)

	,
Sampling Start: 01/01/2018 10:00:00	Counting Start: 09/12/2018 08:15:00
Sampling Stop: 01/01/2018 10:00:00	Decay Time 6.09E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 3600 Sec
Sample Size 2.15E+002 g	Real Time 3723 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 1 (Detector 1)

Energy(keV) = -1.94 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 09/12/2018 $FWHM(keV) = 0.66 + 0.012*En + 6.94E-04*En^2 + 0.00E+00*En^3 08/21/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

	(keV)		COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	(keV)	
1					209	8078		
	87.93	179.45	67923	607	255	12056	1.02	a
3	122.03	247.55	44114	492	211	8218	1.05	a
4	136.45	276.34	5336	277	193	6916	0.92	a HiResid
5	165.81	334.96	34996	449	204			
6	255.17	513.40	834	176	136	3751	0.90	a
7	279.14	561.29 1	4549	244	167	4780	1.19	a
8	352.26	707.28	102	103	83	1686	0.56	a
9	391.69	786.02	21905	355	162	4143	1.32	a
10	510.14	1022.55	384	193	155	3964	1.65	a
11	511.71	1025.69	367	178	143	3567	1.51	b
12	661.65	1325.11	42159	448	147	3528	1.56	a
13	800.86	1603.10	86	136	111	2398	1.48	a NET< CL
14	813.86	1629.05	343	152	122	2735	1.67	a
15	898.05	1797.17	23918	352	138	3365	1.78	a
16	1173.22	2346.66	44534	437	92	1566	2.01	a HiResid
17	1325.28	2650.31	594	136	104	1336		a HiResid
								Wide Pk
18	1332.40	2664.53	40845	412	64	724	2.15	b HiResid
19	1607.79	3214.45	67	72	57	666		
20	1835.83	3669.82	14171	241	32	169		a HiResid

Dless Than 10,000 courts achieved due to greater Than 5 1/2-hus clapsed. They polyper

181516D01.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET010905.BKG (090518-1 LONG BKG CAL)

Bkg.File Detector #: 1

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
1	59.43	11366	332	209	11364	332	209	
2	87.93	67923	607	255	67921	607	255	
8	352.26	102	103	83	95	103	83	
10	510.14	384	193	155	309	193	156	

181516D01.SPC Analyzed by

Sample ID: 091218-1 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 01 Calibration Date. . . 09/12/2018 08:15:00

Geometry File (D01)(Sh17).EFF ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 gm

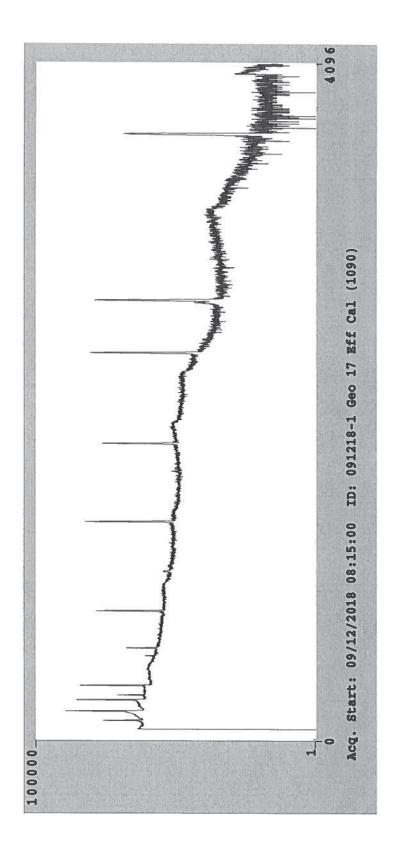
Crossover: 300.00 keV

Below Crossover Efficiency Fit:

 $Eff = 10 ^ [-1.00e+02 + 1.28e+02*En +-5.55e+01*En^2 + 7.96e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Above Knee Efficiency Fit:


 $Eff = 10 ^ [-9.85e-01 + 4.24e-01*En +-4.07e-01*En^2 + 4.46e-02*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Pk. #	Energy (kev)	Measured Efficiency	% Difference	Calculated Efficiency	% Difference	Prev.Calc. Efficiency
T	(KeV)	FILICIONCY	DILIGIANCE	FILICIANCA	Difference	FILICIENCA
====	=======					
1	59.50	2.38e-03	0.41	2.39e-03	3.55	2.48e-03
2	88.04	1.43e-02	-1.96	1.40e-02	1.21	1.42e-02
3	122.06	2.31e-02	3.01	2.38e-02	0.14	2.39e-02
4	165.85	2.45e-02	-1.77	2.41e-02	1.19	2.44e-02
5	279.00	1.76e-02	0.24	1.77e-02	10.22	1.97e-02
6	391.68	1.42e-02	0.06	1.42e-02	0.17	1.42e-02
7	661.64	9.36e-03	-0.42	9.32e-03	-0.69	9.26e-03
8	898.02	7.24e-03	0.50	7.27e-03	-1.95	7.13e-03
9	1173.21	5.81e-03	0.64	5.84e-03	-2.49	5.70e-03
10	1332.48	5.32e-03	-0.99	5.27e-03	-2.34	5.15e-03
11	1836.01	4.05e-03	0.20	4.06e-03	-0.24	4.05e-03

Calibration Results Saved.

OK 009/13/18

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration

9/12/2018

Detector

1

Geometry

17 Crossover energy=300 keV

UPPER EFFICIENCY CURVE

MEETS ALS

EFF @ CROSSOVER LOWER EFFICIENCY CURVE

% DIFF* -4.57% ACCEPTANCE CRITERIA? OK

0.017335 0.018165

4.79%

OK

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to OR within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial 10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

Α -1.000655E+02

В 1.283687E+02

C -5.552281E+01 Calculated efficiency 0.017335

D 7.961529E+00

En is energy in keV

Crossover energy

300

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3) Polynomial

-9.853056E-01

В 4.240614E-01

C -4.072964E-01

0.018165 Calculated efficiency

D 4.561320E-02

En is energy in keV

300 Crossover energy

Ok 79/13/18

Standards File. Gsstd17.std
Assay Date 01/01/2018 10:00
ID.: Geo 17 Std 1090 215g Mixed Gamma

	Halflife	Br.Ratio	dps/gm
241	20000000000000000000000000000000000000	*****	202020000
33.30	4.322E+02 y	rs 0.35900	
-4144	4.626E+02 A		17.22
57 122.06			241.06
			5.51
		YB 0.80350	8.24
	- 144 WELLOT G	YS 0.77300	18.83
	- A - A - WILL A TO		_
137 661.64			14.18
8 898.02			6.95
_	TODOMITOR Q		23.83
_		rs 0.99980	10.86
		rs 0.99990	10.87
• 1836.01	1.066E+02 d	78 0.99380	23.71
	241 59.50 109 88.04 57 122.06 139 165.85 203 279.00 113 391.68 137 661.64 8 898.02 1173.21	241 59.50 4.322E+02 y 109 88.04 4.626E+02 d 57 122.06 2.718E+02 d 139 165.85 1.376E+02 d 203 279.00 4.661E+01 d 113 391.68 1.151E+02 d 137 661.64 3.007E+01 y 8 898.02 1.056E+02 d 60 1173.21 5.271E+00 y 8	######################################

1090 Heil 3-F-11

1380 Se board Industrial Blvd.
Atlanta, Guorgia 30118
Tel 404 — 352-86//
Fax 404 — 352-783/
www.ez — g.com

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN
Customer: ALS Laboratory Group
P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a national radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emissional rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (MIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Half-Life, d	Activity, Bq	Eleve et	Ui	certair	ity	Calibratio
Am-241 Cd-109 Co-87 Ce-139 Hg-203 Sn-113 Cs-137 Y-88 Y-88 Co-80 Co-80	59.8 88.0 122.1 165.9 279.2 391.7 661.7 898.0 1836.1 1173.2 1332.8	1.680E+08 4.614E+02 2.717E+02 1.376E+02 4.659E+01 1.181E+02 1.099E+04 1.066E+02	3.703E+03 5.211E+04 1.183E+03 1.780E+03 3.837E+03 3.046E+03 1.493E+03 5.107E+03	Flux, 97 1.329E+03 1.928E+03 1.013E+03 1.424E+03 3.129E+03 1.979E+03 4.785E+03 6.066E+03 2.334E+03 2.337E+03	u _d . % 0.1 0.5 0.4 0.3 0.4 0.7 0.7	u _s , % 1.8 2.0 1.7 1.7 1.7 1.9 1.9 1.7 1.7 1.8	0,%* 3.6 4.1 3.4 3.6 3.8 3.9 4.1 3.7 3.7 3.9	Method* 4n Ls HPGe HPGe HPGe HPGe HPGe HPGe HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4n LS - 4n Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

EZA Certificate Program Rev. 0, 07-DEC-2015

Page 1 of 2

Corporate Office

Laboratory

24937 Avenue Tibbitte Valencia California 01266

ERS Number: 108679		
Comments: 215.00 g / ~120 mL of sand		
Expiration Date: 06-March-2019	90	
This source was wipe tested in it 9978: 1992.	ts inactive areas with leak test results < 185 Bq	(5 nCi) of removable activity por ISC
Source Prepared by:	Bed:	
Z. Dimitro	va, Radiochemist	•
QC Approved by: J. Lahr, Spe	ectroscopist	Date: 02-MM - 18

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source Detector 1

²¹⁵⁻grams-Mixed nuclide source in steel can

		_												
		# of Half Lives	Expired	0.01	2.13	3.62	7.16	21.14	8.56	0.09	9.24	0.51	0.51	76.0
Count Date: 9/12/2018			Pass/Fail	Pass	Pass	Pass	Pass	>5 h-lives	>5 h-lives	Pass	>5 h-lives	Pass	Pass	>5 h-live
			Recovery	100%	101%	94%	88%	>5 h-lives	>5 h-lives	100%	>5 h-lives	%66	%86	>5 h-lives
			Activity	469	6460	148	200	SC	SC	191	S	302	300	CN.
Ö			pCi/L	469.9	6393.5	157.9	227.3	525.3	389.9	190.8	6.699	305.4	305.9	666 5
1/1/2016	EXPECTED ACTIVITY		DPS	3738.2	50860.2	1256.0	1808.3	4178.5	3101.7	1517.9	5328.7	2429.5	2433.2	53019
	EXPECTE		11	Am-241	Cd-109	Co-57	Ce-139	Hg-203	Sn-113	Cs-137	Y-88	Co-60	Co-60	Y-88
		Mass of	Standard	215 g										
REF DATE: 1/1/2016	FROM ANALYTICS.LIB		Gamma Fraction:	0.3590	0.0372	0.8551	0.8035	0.7730	0.6490	0.8512	0.9340	0.9998	0.9999	0 9938
1041			Gammas/Sec.	1342	1892	1074	1453	3230	2013	1292	4977	2429	2433	5269
	FROM CALIBRATION CERTIFICATE	•	KeV Half Life(y)	432.0000	1.2666	0.7441	0.3768	0.1276	0.3151	30.0000	0.2919	5.2714	5.2714	0.2919
rce:	IBRA		KeV	59.5	88	122	166	279	392	662	868	1173	1332	1836
VERIF Source: 1041	FROM CA	٠	Isotope	Am-241	Cd-109	Co-57	Ce-139	Hg-203	Sn-113	Cs-137	Y-88	Co-60	Co-60	Y-88

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

94 Mal13/18

11/Oprtms/RAD\INST\GAMMA\Calibration\Efficiency\GEO17_CAL VER_(1041)

ANALYSIS RESULTS

PS Version 1.8.4

ALS Laboratory Group - Fort Collins
GammaScan

Geo 17/26

Sample ID: 091218-1 Geo 17 Cal Ver (1041)

GAMMA

SEEKER

Sampling Start: 01/01/2016 10:00:00	Counting Start: 09/12/2018 09:25:44
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.36E+004 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 1800 Sec
Sample Size 2.15E+002 g	Real Time 1832 Sec
Collection Efficiency 1.0000	Spc. File 181517D01.SPC

Detector #: 1 (Detector 1)

Energy(keV) = $-1.94 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/12/2018$ FWHM(keV) = $0.66 + 0.012*En + 6.94E-04*En^2 + 0.00E+00*En^3 08/21/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY			•	_
1	59.46	122.61	5753	203	110	2253	0.94	a
2	87.91	179.42	11084	250	111	2295	1.01	a
3	122.02	247.52	3474	167	97	1732	1.00	a
4	136.48	276.39	447	120	92	1565	0.94	a
5	165.69	334.73	390	116	90	1497	0.94	a
6	279.39	561.78	67	101	82	1240	1.05	a NET< CL
7	365.17	733.07	61	80	64	835	0.90	a NET< CL
8	391.69	786.03	88	82	66	870	0.89	a
9	470.99	944.38	92	98	79	1224	1.08	a
10	546.71	1095.58	152	134	108	1511	2.44	a Wide Pk
11	566.40	1134.91	146	135	109	1470	2.58	a Wide Pk
12	661.64	1325.09	20407	298	69	825	1.53	a
13	712.13	1425.92	33	66	54	567	1.11	a NET< CL
14	821.35	1644.00	55	55	44	469	0.85	a
15	898.18	1797.44	58	74	59	764	1.15	a NET< CL
16	1173.21	2346.64	17740	273	51	478	1.99	a HiResid
17	1332.39	2664.49	15859	254	26	124		a HiResid
18	1836.13	3670.41	52	19	10	22	1.37	

181517D01.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins
GammaScan

Background File: DET010905.BKG (090518-1 LONG BKG CAL)

Bkg.File Detector #: 1

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
1 2	59.46 87.91	5753 11084	203 250	110 111	5752 11083	203 250	110 111	

181517D01.SPC Analyzed by **************************** FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ****************** Geo 17/26 Sample ID: 091218-1 Geo 17 Cal Ver (1041) -----01/01/2016 10:00:00 | Counting Start: 09/12/2018 09:25:44 Sampling Start: Sampling Stop: 01/01/2016 10:00:00 | Decay Time. 2.36e+004 Hrs Sample Size 2.15e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % ------Detector #: 1 (Detector 1) Efficiency File: (D01)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-1.00E+02 +1.28E+02*L +-5.55E+01*L^2 +7.96E+00*L^3] 09/12/2018 Eff.=10^[-9.85E-01 +4.24E-01*L +-4.07E-01*L^2 +4.46E-02*L^3] Above 300.00 keV ______ Library File: ANALYTICAL.LIB (Analytical) MEASURED or MDA CONCENTRATIONS _______ N ENERGY E Concentration Critical Halflife Nuclide (keV) T (pCi/g) MDA Level (hrs) 59.54 4.69E+02 +- 1.65E+01 1.82E+01 9.00E+00 3.79E+06 Am-241 Cd-109 88.02 6.46E+03 +- 1.46E+02 1.31E+02 6.50E+01 1.11E+04 122.07 1.48E+02 +- 7.09E+00 8.36E+00 4.12E+00 6.50E+03 Co-57 Ce-139 165.85 2.00E+02 +- 5.97E+01 9.38E+01 4.62E+01 3.30E+03 Cs-137 661.62 1.91E+02 +- 2.78E+00 1.31E+00 6.44E-01 2.64E+05 Co-60 Average:x 3.01E+02 +- 3.34E+00 4.62E+04 1173.21 3.02E+02 +- 4.66E+00 1.78E+00 8.67E-01 4.62E+04 1332.48 3.00E+02 +- 4.80E+00 1.05E+00 4.99E-01 4.62E+04 Hg-203 279.18 MDA 1.98E+06 9.72E+05 1.12E+03 Sn-113 391.68 MDA 3.30E+02r 1.61E+02 2.76E+03 Y-88 898.02 MDA ... 9.56E+02 4.69E+02 2.56E+03 MEASURED TOTAL: 7.77E+03 +- 2.35E+02 pCi/g ______ UNKNOWN, SUM or ESCAPE PEAKS PK. ENERGY ADDRESS NET UN-C.L. BKG FWHM # (keV) CHANNEL COUNTS CERTAINTY COUNTS (keV) FLAG

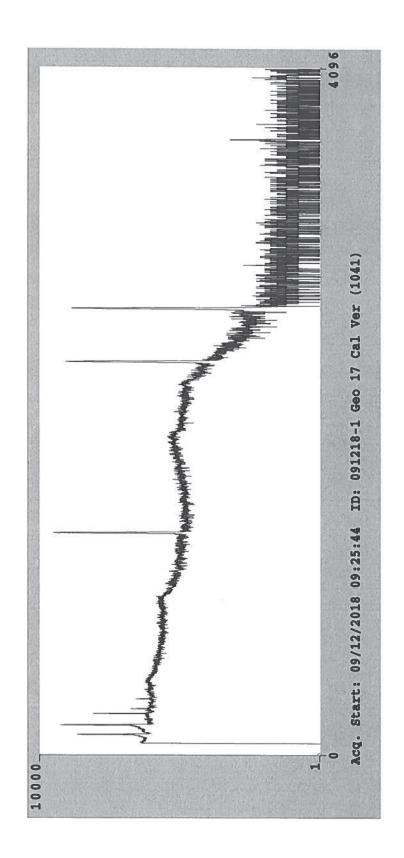
92

447 120

4 136.48 276.39

Page 003

392 of 624


1565 0.94 Unknown

181517D01.SPC Analyzed by

UNKNOWN, SUM OT ESCAPE PEAKS

PK. ENERGY ADDRESS NET UN-C.L. BKG FWHM (keV) CHANNEL COUNTS CERTAINTY COUNTS (keV) FLAG 279.39 561.78 67 6 101 82 1240 1.05 Deleted 61 88 7 365.17 733.07 80 64 835 0.90 Deleted 79 108 109 8 391.69 786.03 66 870 0.89 Unknown 79 1224 1.08 Unknown 82 92 9 470.99 944.38 98 134 152 10 546.71 1095.58 1511 2.44 Unknown 146 11 566.40 1134.91 135 1470 2.58 Unknown 13 712.13 1425.92 33 66 54 567 1.11 Deleted 14 821.35 1644.00 55 55 44 469 0.85 1332SEsc 15 898.18 1797.44 58 74 59 764 1.15 Deleted 18 1836.13 3670.41 52 19 10 22 1.37 Unknown

c:\SEEKER\BIN\181517d01.res Analysis Results Saved.

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC000928, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a mastem xradionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radion a clides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or lica uid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry - At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Rea dioactive

Reference Date: 01-january-2016

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Haif-Life, d	Activity, Bq	E1	Ur	certair	ity	Calibration
Am-241 Cd-109 Co-57 Ce-139 Hg-203 Sn-113 Cs-137 Y-88 Y-88 Co-80 Co-60	69.6 88.0 122.1 165.9 279.2 391.7 661.7 898.0 1836.1 1173.2 1332.8	1.680E+08 4.614E+02 2.717E+02 1.376E+02 4.669E+01 1.181E+02 1.099E+04 1.066E+02	3.737E+03 6.114E+04 1.255E+03 1.816E+03 3.960E+03 3.098E+03 1.519E+03 5.312E+03	Flux, 87 1.342E+03 1.892E+03 1.074E+03 1.453E+03 3.230E+03 2.013E+03 1.292E+03 4.977E+03 5.269E+03 2.429E+03 2.433E+03	0.1 0.8 0.4 0.3 0.4 0.7 0.7	1.8 2.0 1.7 1.7 1.7 1.9 1.9 1.7	U. %* 3.6 4.1 3.4 3.6 3.8 3.9 4.1 3.7 3.7	Method** 4n LS HPGe HPGe HPGe HPGe HPGe HPGe HPGe HPGe HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-87, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4n LS - 4n Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, 1C - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified 3/27/2018 New Exo. Date =) 03/27/2019

EZA Certificate Program Rev. 0, 07-DEC-2015

Corporate Office

24937 Avenue Tibbitts Valencia, California 91355

Laboratory

1 380 Seaboard Industrial Blvd. Atlanta, Georgia, 30318

SRS Number: 102367

Comments:

~120 mi / 215.0 g of sand

Expiration Date: 24-February-2017

This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable ac ivity por ISO

Source Prepared by:

A. Herron, Radiochemist

QC Approved by:

Lahr, Spectroscopist

Date: 24-FEB-F

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 090618-2 Geo 17 Eff Cal (1090)

Sampling Start: 01/01/2018 10:00:00 Counting Start: 09/06/2018 07:46:5
Sampling Stop: 01/01/2018 10:00:00 Decay Time 5.95E+003 Hrs
Buildup Time 0.00E+000 Hrs Live Time
Sample Size \dots 2.15E+002 g Real Time \dots 4675 Sec
Collection Efficiency 1.0000 Spc. File
Detector #: 2 (Detector 2)
Energy(keV) = $-1.36 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/06/2018$
$FWHM(keV) = 0.97 + 0.002*En + 9.30E-04*En^2 + 0.00E+00*En^3 07/31/2018$
Where En = Sqrt(Energy in keV)
Search Congitivity, 1 00 Giana Maliana a contract of the con

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY			FWHM (keV)	FLAG
1	59.46	121.40	10970	348	229	10533	0.89 a	HiResid
2	86.31	174.99	3339	643	520	35329		Wide Pk
3	87.98	178.32	93652	732		18547	1.09 b	
4	122.08	246.38	66075	630		15332		HiResid
5	136.50	275.17	8794	380		12635	1.11 a	
6	165.86	333.76	54805	567	263	11814	1.15 a	
7	255.13	511.96	1734	340	271	12078	1.57 a	
8	279.22	560.05 △	8110	321	218	8819	1.30 a	
9	391.77	784.70	37039	462	211	7724	1.43 a	
10	511.32	1023.33	1080	322	259	9011	2.36 a	
11	661.77	1323.63	70977	575	178	5846	1.71 a	
12	814.21	1627.92	423	150	119	3065	1.11 a	
13	822.15	1643.77	204	161	131	3503	1.33 b	
14	898.19	1795.54	40856	459	179	5951	1.98 a	
15	955.33	1909.59	13	168	138	4240		NET< CL
16	1173.41	2344.90	75280	574	138	3231		HiResid
17	1324.32	2646.12	120	108	87	1583	1.47 a	
18	1332.64	2662.72	68264	541	116	2198		HiResid
19	1836.11	3667.67	25370	327	60	508	3.05 a	
	aless TI	nm 10,000	Count	achievel	due to greate	Than		1

Page 001 COUND a Chiever due lu greate Than

5 1/2-1/105 elapses. OP 9/7/18

397 of 624

181481D02.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins
GammaScan

Background File: DET020815.BKG (081518-2 LONG BKG CAL)

Bkg.File Detector #: 2

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET COUNTS	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
10	511.32	1080	322	259	960	322	260	
14	898.19	40856	45 9	179	4 0851	459	180	

181481D02.SPC Analyzed by

Sample ID: 090618-2 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 02 Calibration Date. . . 09/06/2018 07:46:57

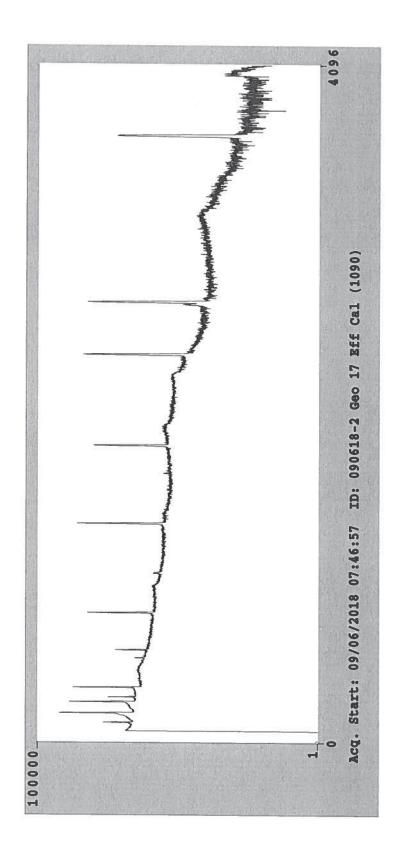
Geometry File (D02)(Sh17).EFF ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 gm

Crossover: 300.00 keV

Below Crossover Efficiency Fit:

Eff = $10 ^ [-1.25e+02 + 1.62e+02*En +-7.06e+01*En^2 + 1.02e+01*En^3]$ (Where En = LOG(Energy in keV)) (Polynomial)

Above Knee Efficiency Fit:


 $Eff = 10 ^ [-1.14e+01 + 1.13e+01*En +-4.16e+00*En^2 + 4.74e-01*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Pk.	Energy	Measured	%	Calculated	%	Prev.Calc.
#	(kev)	Efficiency	Difference	Efficiency	Difference	Efficiency
====			=========	========	========	
1	59.50	1.84e-03	0.54	1.85e-03	0.00	1.85e-03
2	88.04	1.56e-02	-2.60	1.53e-02	0.00	1.53e-02
3	122.06	2.73e-02	3.95	2.84e-02	0.00	2.84e-02
4	165.85	2.98e-02	-2.34	2.91e-02	0.00	2.91e-02
5	279.00	2.30e-02	0.32	2.30e-02	-0.00	2.30e-02
6	391.68	1.85e-02	0.15	1.85e-02	-0.00	1.85e-02
7	661.64	1.26e-02	-1.11	1.25e-02	-0.00	1.25e-02
8	898.02	9.51e-03	1.90	9.69e-03	-0.00	9.69e-03
9	1173.21	7.8 4e- 03	-0.58	7.79e-03	-0.00	7.79e-03
10	1332.48	7.10e-03	-0.67	7.05e-03	-0.00	7.05e-03
11	1836.01	5.58e-03	0.29	5.59e-03	-0.00	5.59e-03

Calibration Results Saved.

OK JP 9/7/12

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration

9/6/2018

Detector

2

Geometry

17

Crossover energy=300 keV

MEETS ALS

EFF @ CROSSOVER

% DIFF* 2.33% ACCEPTANCE CRITERIA? OK

LOWER EFFICIENCY CURVE UPPER EFFICIENCY CURVE

0.022325 0.021817

-2.27%

OK

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to OR within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

Α -1.246279E+02

В 1.617768E+02 С

-7.063768E+01

Calculated efficiency

0.022325

1.024201E+01 D

En is energy in keV Crossover energy

300

300

Polynomial

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

Α -1.141093E+01

> В 1.132590E+01

> C -4.157520E+00

Calculated efficiency

0.021817

D 4.740273E-01 En is energy in keV

Crossover energy

OUTO 9/7/12

401 of 624

Standards File. Gsstd17.std
Assay Date 01/01/2018 10:00
ID.: Geo 17 Std 1090 215g Mixed Gamma

Pk a	# Nuclide	Energy	Halflife		Br.Ratio	Am with a second
m 851				27 - 2704270-1	DE . WALTO	dps/gm
1	Am-241		5225232 2 50			20000000000
_	WIII_2#T	59.50	4.322E+02	Vrs	0.35900	
2	Cd-109	88.04	4.626E+02			17.22
3	Co-57				0.03720	241.06
_		122.06	2.718E+02	dvs	0.85510	
4	Ce-139	165.85	1.376E+02		_	5.51
5	Hg-203				0.80350	8.24
_	MQ-203	279.00	4.661E+01	dva	0.77300	_
= 6	Sn-113	391.68	1.151E+02			18.83
7	Cs-137				0.64900	14.18
•		661.64	3.007E+01	Vrs	0.85120	6 AP
8	Y-88	898.02	1.066E+02			6.95
9	Co-60	-			0.93400	23.83
_	CO-00	1173.21	5,271E+00	Vrs	0.99980	10.86
10	Co-60	1332.48	5.271E+00		-	TA.90
11	Y-88				0.99990	10.87
	1-00	1836.01	1.066E+02	dys	0.99380	23.71
				- 70		43./1

1380 Se board Industrial Blvd. Atlanta, Guorgia 30318 Tel 404 - 352-86// Fax 404 - 357-7837 www.ez a g.com

Analytics

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a malaster radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radial onuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, $\bigcirc x$ liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrom etry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emissio = rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability 🗢 f Radioactive

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixtura

Isotope	Gamma-Ray Energy, keV	Haif-Life, d	Activity Ba	Elm		certair	ity	Calibration
Am-241 Cd-109 Co-57 Ce-139 Hg-203 Sn-113 Cs-137 Y-88 Y-88 Co-60 Co-60	59.5 88.0 122.1 165.9 279.2 391.7 661.7 898.0 1836.1 1173.2 1332.5	1.580E+08 4.614E+02 2.717E+02 1.376E+02 4.659E+01 1.151E+02 1.099E+04 1.066E+02	Activity, Bq 3.703E+03 5.211E+04 1.183E+03 1.780E+03 3.837E+03 3.046E+03 1.493E+03 6.107E+03 2.337E+03	Flux, s ⁻¹ 1.329E+03 1.928E+03 1.013E+03 1.424E+03 1.979E+03 1.271E+03 4.785E+03 6.066E+03 2.334E+03 2.337E+03	0.1 0.5 0.4 0.3 0.4 0.7 0.7 0.7	u _g , % 1.8 2.0 1.7 1.7 1.7 1.9 1.9 1.7 1.7 1.8	U.%* 3.6 4.1 3.4 3.6 3.5 3.9 4.1 3.7 3.7 3.9	Method** 4π LS HPGe HPGe HPGe HPGe HPGe HPGe HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty. k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4n LS - 4n Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber. 2-14-54

(Certificate continued on reverse side)

EZA Certificate Program Rev. 0, 07-DEC-2015

Page 1 of 2

215.0O g / ~120 mL of s	sand			
Expiration Date: 06-1	March-2019			
This source was wipe 9978: 1992.	e tested in its inactive areas with	leak test results < 185 Bq	(5 nCi) of removable	activity per ISO
Source Prepared by:	Z. Dimitrova, Radiochemist		_	
QC Approved by:	J. Lahr, Spectroscopist	·"	Date: <u>02-mn</u>	-/8

SRS Number: 108579

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source Detector 2
215-grams-Mixed nuclide source in steel can

								1341						
		# of Half Lives	Expired	0.01	2.12	3.60				0.09	9.18	0.51	0.51	9.18
	2		Pass/Fail	Pass	Pass	Pass	Pass	>5 h-lives	>5 h-lives	Pass	>5 h-lives	Pass	Pass	>5 h-lives
9/6/2018			Recovery	106%	102%	%96	101%	>5 h-lives	>5 h-lives	101%	>5 h-lives	100%	101%	>5 h-lives
Count Date: 9/6/2018			Activity	497	6520	151	230	SC	323	192	S	305	310	NC
Ö		pCi/L	469.9	6393.5	157.9	227.3	525.3	389.9	190.8	6.699	305.4	305.9	666.5	
	EXPECTED ACTIVITY		DPS	3738.2	50860.2	1256.0	1808.3	4178.5	3101.7	1517.9	5328.7	2429.5	2433.2	5301.9
	EXPECTE			Am-241	Cd-109	Co-57	Ce-139	Hg-203	Sn-113	Cs-137	Y-88	Co-60	Co-60	Y-88
1/1/2016		Mass of	Standard	215 g										
REF DATE: 1/1/2016	FROM ANALYTICS.LIB		Gamma Fraction:	0.3590	0.0372	0.8551	0.8035	0.7730	0.6490	0.8512	0.9340	0.9998	0.9999	0.9938
	:ICATE		Gammas/Sec.	1342	1892	1074	1453	3230	2013	1292	4977	2429	2433	5269
1041	FROM CALIBRATION CERTIFICATE		Half Life(y)	432.0000	1.2666	0.7441	0.3768	0.1276	0.3151	30.0000	0.2919	5.2714	5.2714	0.2919
irce:	LIBRA		KeV	59.5	88	122	166	279	392	662	868	1173	1332	1836
VERIF Source: 1041	FROM CA		Isotope	Am-241	Cd-109	Co-57	Ce-139	Hg-203	Sn-113	Cs-137	Y-88	Co-60	Co-60	Y-88

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

3/14 De 2/1/16

!\Oprtns\RAD\\INST\GAMMA\Calibration\Efficiency\GEO17_CAL VER_(1041)

181482D02.SPC Analyzed by

******* ********** SEEKER

ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 090618-2 Geo 17 Cal Ver (1041)

GAMMA

	·
Sampling Start: 01/01/2016 10:00:00	Counting Start: 09/06/2018 09:28:46
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.35E+004 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 1800 Sec
Sample Size 2.15E+002 g	Real Time 1831 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 2 (Detector 2)

Energy(keV) = -1.36 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 09/06/2018 $FWHM(keV) = 0.97 + 0.002*En + 9.30E-04*En^2 + 0.00E+00*En^3 07/31/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 _______

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	CERTAINTY	C.L. COUNTS	COUNTS	FWHM (keV)	FLAG
1	59.47	121.41	4723	198	117	2522		a HiResid
2	65.84	134.14	80	150	122	2559		a NET< CL
3	87.98	178.33	12266	275	135	3091	1.10	
4	122.07	246.37	4291	195	119	2423	1.14	
5	136.54	275.26	448	132	103	1971	0.91	a
6	165.75	333.56	558	131	100	1862	1.00	a
7	188.96	379.89	92	107	86	1689	0.87	a
8	218.03	437.92	111	108	87	1728	0.83	a
9	391.64	784.44	130	110	89	1557	1.10	a
10	413.68	828.44	41	73	59	872	0.70	a NET< CL
11	661.77	1323.64	27398	345	80	1179	1.69	a .
12	898.56	1796.28	138	101	80	1305	1.64	a.
13	1173.42	2344.92	23948	320	68	792	2.26	a .
14	1332.64	2662.72	21998	300	37	229	2.47	а.
15	1836.31	3668.08	73	28	18	51	2.72	a .

181482D02.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET020905.BKG (090518-2 LONG BKG CAL)

Bkg.File Detector #: 2

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR. LEVEL	FLAG
2	65.84	80	150	122	76	150	123 N	ET <cl< td=""></cl<>
12	898.56	138	101	80	137	101	81	

181482D02.SPC Analyzed by **************** SEEKER FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ******************* Geo 17/26 Sample ID: 090618-2 Geo 17 Cal Ver (1041) Sampling Start: 01/01/2016 10:00:00 | Counting Start: 09/06/2018 09:28:46 Sampling Stop: 01/01/2016 10:00:00 | Decay Time. 2.35e+004 Hrs Buildup Time. 0.00e+000 Hrs | Live Time Sample Size 2.15e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % Detector #: 2 (Detector 2) Efficiency File: (D02)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-1.25E+02 +1.62E+02*L +-7.06E+01*L^2 +1.02E+01*L^3] 09/06/2018

Eff.=10^[-1.14E+01 +1.13E+01*L +-4.16E+00*L^2 +4.74E-01*L^3] Above 300.00 keV

Library File: ANALYTICAL.LIB (Analytical)

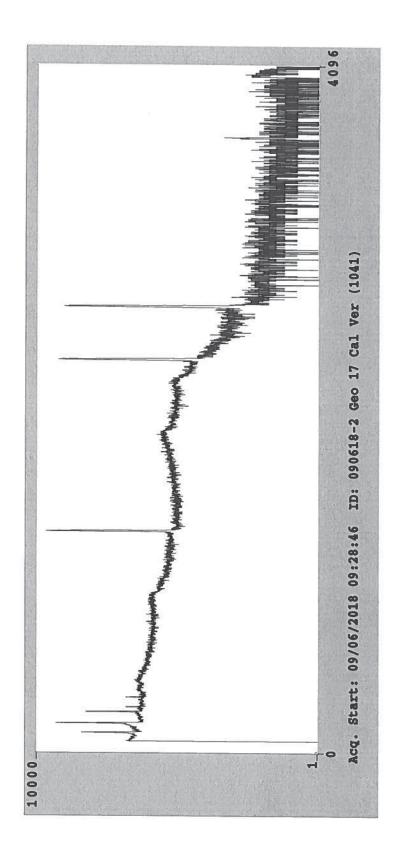
MEASURED or MDA CONCENTRATIONS

N

	7.4					
	ENERGY E	Concentr	ation		Critical	Halflife
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)
Am-241	59.54	4.97E+02 +-	2.08E+01	2.49E+01	1.23E+01	3.79E+06
Cd-109	88.02	6.52E+03 +-	1.46E+02	1.45E+02	7.16E+01	1.11E+04
Co-57	122.07	1.51E+02 +-	6.87E+00	8.48E+00	4.19E+00	6.50E+03
Ce-139	165.85	2.30E+02 +-	5.39E+01	8.39E+01	4.14E+01	3.30E+03
Cs-137	661.62	1.92E+02 +-	2.41E+00	1.14E+00	5.58E-01	2.64E+05
Co-60	Average:x	3.08E+02 +-	2.94E+00			4.62E+04
	1173.21	3.05E+02 +-	4.09E+00	1.77E+00	8.69E-01	4.62E+04
	1332.48	3.10E+02 +-	4.23E+00	1.09E+00	5.26E-01	4.62E+04
Hg-203	279.18	MDA		1.82E+06	8.97E+05	1.12E+03
Sn-113	391.68	MDA		2.65E+02r	1.30E+02	2.76E+03
Y-88	898.02	MDA		5.19E+02r		2.56E+03

MEASURED TOTAL: 7.90E+03 +- 2.33E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS


PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	65.84	134.14 Page 003	76	150	123		1.07	Deleted

181482D02.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	Address Channel	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
5	136.54	275.26	448	133	103	1971	0.91	Unknown
7	188.96	379.89	92	107	86	1689	0.87	Unknown
8	218.03	437.92	111	108	87	1728	0.83	Unknown
9	391.64	784.44	130	110	89	1557	1.10	Unknown
10	413.68	828.44	41	73	59	872	0.70	Deleted
12	898.56	1796.28	137	101	81	1305	1.64	Unknown
15	1836.31	3668.08	73	28	18	51	2.72	Unknown

c:\SEEKER\BIN\181482d02.res Analysis Results Saved.

1380 Seaboas and Industrial Blvd Atlanta, Geo Fgla 30318 Tel 404-352 -867/ Fax 404-352 - 2837 www.ezag.c

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC000928, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a masie x radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radion Laclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or licaruid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (MIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Regulatory

Reference Date: 01-January-2016

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Half-Life, d	Anthre D		Ur	certair	ity	Calibration
Am-241 Cd-109 Co-57 Ce-139 Hg-203 Sn-113 Cs-137 Y-88 Y-88 Co-60 Co-60	59.6 88.0 122.1 165.9 279.2 391.7 661.7 898.0 1836.1 1173.2 1332.5	1.680E+08 4.614E+02 2.717E+02 1.376E+02 4.669E+01 1.161E+02 1.099E+04 1.066E+02	Activity, Bq 3.737E+03 6.114E+04 1.255E+03 1.816E+03 3.960E+03 3.098E+03 1.519E+03 5.312E+03 2.433E+03	Flux, s ⁻⁷ 1.342E+03 1.892E+03 1.074E+03 1.453E+03 3.230E+03 2.013E+03 1.292E+03 4.977E+03 5.269E+03 2.429E+03 2.433E+03	0.1 0.8 0.4 0.4 0.3 0.4 0.7 0.7 0.7	u _g , % 1.8 2.0 1.7 1.7 1.7 1.9 1.9 1.7 1.7 1.8 1.8	U, %* 3.6 4.1 3.4 3.6 3.8 3.9 4.1 3.7 3.7 3.9 3.9	Method** 4n LS HPGe HPGe HPGe HPGe HPGe HPGe HPGe HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, 1C - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified 3/27/2018 New Exp. Date =) 03/27/2019

EZA Certificate Program Rev. 0, 07-DEC-2015

Corporate Office

Laboratory

24937 Avenue Tibbitts Valencia, California 91355

SRS Number: 102367

Comments:

~120 mL / 215.0 g of sand

Expiration Date: 24-February-2017

This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity por ISO 9978:1992.

Source Prepared by:

A. Herron, Radiochemist

QC Approved by:

J. Lahr, Spectroscopist

Date: 24-FEB-16

GAMMA ANALYSIS

RESULTS

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 110118-3 Geo 17 Eff Cal (1090)

Sampling Start: 01/01/2018 10:00:00	Counting Start: 11/01/2018 07:53:30
Sampling Stop: 01/01/2018 10:00:00	Decay Time 7.29E+003 Hrs
Buildup Time 0.00E+000 Hrs	
Sample Size 2.15E+002 g	
Collection Efficiency 1.0000	Spc. File

Detector #: 3 (Detector 3)

Energy(keV) = -1.58 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/01/2018 $FWHM(keV) = 0.63 + 0.021*En + 8.26E-04*En^2 + 0.00E+00*En^3 11/03/2017$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End:

PEAK SEARCH RESULTS

_______ ENERGY ADDRESS NET/MDA UN-C.L. BKG **FWHM** COUNTS CERTAINTY COUNTS COUNTS (keV)

59.46 0.97 a HiResid 121.80 23635 438 256 12149 87.92 178.61 94415 707 287 15235 1.01 a 122.03 246.66 9979 1.04 a HiResid 51650 535 232 136.45 275.44 6647 322 228 8874 1.10 a 334.03 5 165.80 35586 461 217 8068 1.20 a 255.27 512.57 806 241 193 6876 1.28 a 7 279.15 560.23 / 2785 244 181 6060 1.32 a 391.70 784.83 194 6194 1.60 a HiResid 8 20255 370 929.05 2996 0.88 a 9 463.97 144 142 115 511.13 1023.16 10 497 253 205 6482 2.24 a 661.70 1323.64 4435 1.79 a HiResid 11 50545 489 159 12 814.05 1627.66 243 148 2982 1.49 a 119 898.16 1795.52 13 20312 358 178 5403 2.26 a HiResid 1173.45 2344.88 50854 494 4390 2.66 a HiResid 166 1332.69 2662.66 15 44843 464 155 3682 2.77 a HiResid 224 1836.17 3667.40 11195 503 3.33 a HiResid

Dless Than 10,000 counts achieved due to greater Than 5 Verling clapsed.

182390D03.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins
GammaScan

Background File: DET031031.BKG (103118-3 LONG BKG CAL)

Bkg.File Detector #: 3

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
10	511.13	497	253	205	407	25 4	206	
13	898.16	20312	358	178	20310	358	178	

182390D03.SPC Analyzed by

Sample ID: 110118-3 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 03 Calibration Date. . . 11/01/2018 07:53:30

Geometry File (D03)(Sh17).EFF ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 gm

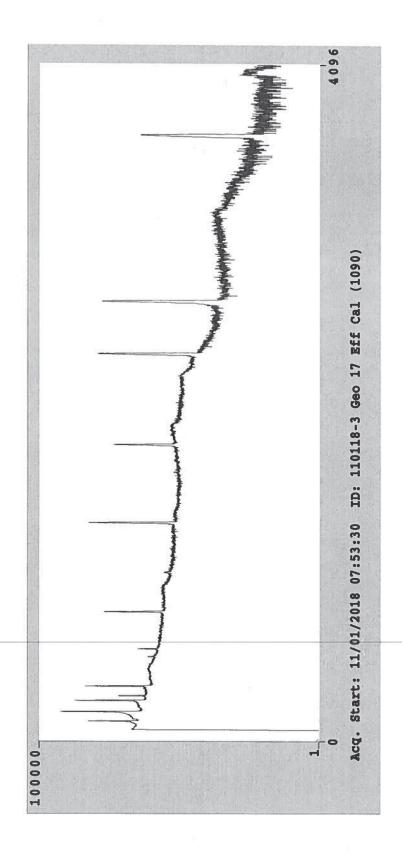
Crossover: 300.00 keV

Below Crossover Efficiency Fit:

 $Eff = 10 ^ [-8.15e+01 + 1.04e+02*En +-4.49e+01*En^2 + 6.40e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Above Knee Efficiency Fit:


 $Eff = 10 ^ [-2.02e-01 +-3.44e-01*En +-1.27e-01*En^2 + 7.29e-03*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Pk.	Energy	Measured	%	Calculated	%	Prev.Calc.
#	(kev)	Efficiency	Difference	Efficiency	Difference	Efficiency
		=========	=======================================			
1	59.50	4.24e-03	0.48	4.26e-03	0.00	4.26e-03
2	88.04	1.84e-02	-2.29	1.80e-02	0.00	1.80e-02
3	122.06	2.63e-02	3.51	2.73e-02	0.00	2.73e-02
4	165.85	2.75e-02	-2.07	2.69e-02	0.01	2.69e-02
5	279.00	1.94e-02	0.28	1.95e-02	0.01	1.95e-02
6	391.68	1.52e-02	0.03	1.52e-02	-0.00	1.52e-02
7	661.64	9.65e-03	-0.24	9.63e-03	-0.00	9.63e-03
8	898.02	7.29e-03	0.56	7.33e-03	-0.00	7.33e-03
9	1173.21	5.79e-03	-0.68	5.75e-03	-0.00	5.75e-03
10	1332.48	5.10e-03	0.33	5.11e-03	-0.00	5.11e-03
11	1836.01	3.79e-03	0.00	3.79e-03	-0.00	3.79e-03

Calibration Results Saved.

Oh 7911/2/12

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration

11/1/2018

Detector Geometry 3 1

Crossover energy=300 keV

LOWER EFFICIENCY CURVE

UPPER EFFICIENCY CURVE

MEETS ALS

EFF @ CROSSOVER

% DIFF* -0.47%

ACCEPTANCE CRITERIA?

0.018947 0.019037

0.48%

OK OK

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to OR within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial

 $10^{A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3}$

-8.147170E+01

В 1.040020E+02

С -4.485402E+01

Calculated efficiency

0.018947

D 6.404879E+00

En is energy in keV

Crossover energy

D

300

Polynomial 10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

-2.016041E-01

В -3.438270E-01

С -1.267765E-01

7.291130E-03

Calculated efficiency

0.019037

En is energy in keV

Crossover energy

300

On Trible

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source

Detector 3 215-grams-Mixed nuclide source in steel can

VERIF Source: 1041	urce:	1041		REF DATE: 1/1/2016	1/1/2016			ŏ	Count Date: 11/1/2018	11/1/2018		
FROM CA	LIBRA.	FROM CALIBRATION CERTIFICATE	FICATE	FROM ANALYTICS.LIB	~	EXPECTE	EXPECTED ACTIVITY					
					Mass of							# of Half Lives
Isotope	KeV	Half Life(y)	KeV Half Life(y) Gammas/Sec.	Gamma Fraction:	Standard		DPS	pCi/L	Activity	Recovery	Pass/Fail	Expired
Am-241	59.5	432.0000	1342	0.3590	215 g	J Am-241	3738.2	469.9	474	101%	Pass	0.01
Cd-109	88	1.2666	1892	0.0372		Cd-109	50860.2	6393.5	0699	105%	Pass	2.24
Co-57	122	0.7441	1074	0.8551		Co-57	1256.0	157.9	151	%96	Pass	3.81
Ce-139	166	0.3768	1453	0.8035		Ce-139	1808.3	227.3	300	>5 h-lives	>5 h-lives	7.52
Hg-203	279	0.1276	3230	0.7730		Hg-203	4178.5	525.3	NC	>5 h-lives	>5 h-lives	22.21
Sn-113	392	0.3151	2013	0.6490		Sn-113	3101.7	389.9	NC	>5 h-lives	>5 h-lives	8.99
Cs-137	662	30.0000	1292	0.8512		Cs-137	1517.9	190.8	192	101%	Pass	0.09
Y-88	868	0.2919	4977	0.9340		Y-88	5328.7	6.699	NC	>5 h-lives	>5 h-lives	9.71
Co-60	1173	5.2714	2429	0.9998		Co-60	2429.5	305.4	305	100%	Pass	0.54
Co-60	1332	5.2714	2433	0.9999		Co-60	2433.2	305.9	308	101%	Pass	0.54
Y-88	1836	0.2919	5269	0.9938		Y-88	5301.9	666.5	NC	>5 h-lives	>5 h-lives	9.71

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

CHERRE

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 110118-3 Geo 17 Cal Ver (1041)

Sampling Start:	01/01/2016 10:00:00	Counting Start:	1	1/0:	1/2018 09:56:44
Sampling Stop:	01/01/2016 10:00:00	Decay Time	•		2.48E+004 Hrs
	0.00E+000 Hrs				
Sample Size	2.15E+002 g	Real Time	•		. 1860 Sec
Collection Efficier	ncy 1.0000	Spc. File	•		.182391D03.SPC

Detector #: 3 (Detector 3)

Energy(keV) = $-1.58 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/01/2018$ FWHM(keV) = $0.63 + 0.021*En + 8.26E-04*En^2 + 0.00E+00*En^3 11/03/2017$

Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	59.48	121.84	10382	258	130	3099	0.97	a.
2	87.92	178.60	13650	275	119	2620	1.02	a.
3	122.06	246.72	3586	170	99	1814	1.06	a
4	136.46	275.48	458	163	130	2489	1.42	a
5	165.59	333.61	508	193	154	2940	2.00	a Wide Pk
6	208.60	419.44	51	73	59	853	0.56	a NET< CL
7_	212.38	426.98	33	117	96	1706	1.04	D NET < CL
8	391.24	783.91	80	151	123	2252		NET< CL
9	500.82	1002.57	77	98	79	1211		a NET< CL
10	661.70	1323.64	21090	308	84	1234		a HiResid
11	1173.40	2344.78	17297	285	90	1271	2.59	a HiResid
12	1332.60	2662.49	15547	256	47	343		a HiResid
13	1836.83	3668.71	38	23	16	43	2.56	

182391D03.SPC Analyzed by ************ SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ************** Background File: DET031031.BKG (103118-3 LONG BKG CAL) Bkg.File Detector #: 3 BACKGROUND SUBTRACT RESULTS ENERGY OLD NET OLD UN- OLD NEW NET NEW UN-NEW (keV) COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG PK# ------

182391D03.SPC Analyzed by

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 110118-3 Geo 17 Cal Ver (1041)

Sampling Start: 01/01/2016 10:00:00	
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.48e+004 Hrs
Buildup Time 0.00e+000 Hrs	Live Time 1800 Sec
	Real Time 1860 Sec
Collection Efficiency 1.0000	
Cr. Level Confidence Interval: 95 %	
Detector #: 3	(Detector 3)
Efficiency File: (D03)(Sh17).EFF (Geo 17 Eff=10^[-8.15E+01 +1.04E+02*L +-4.49E+0	
Eff.=10^[-2.02E-01 +-3.44E-01*L +-1.27E-	

Library File: ANALYTICAL.LIB (Analytical)

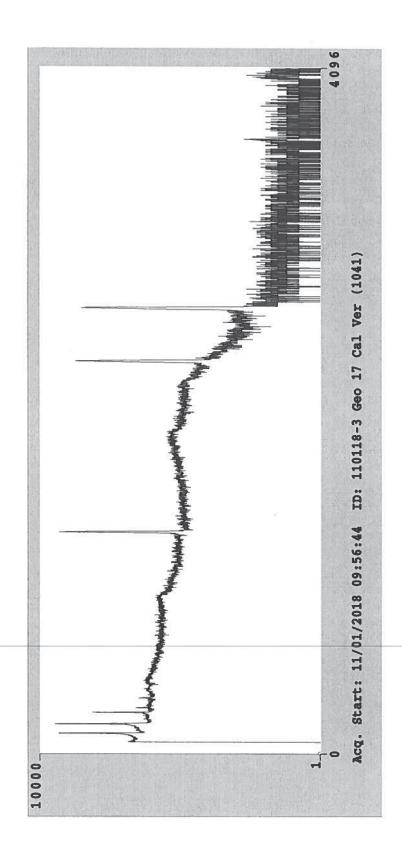
MEASURED or MDA CONCENTRATIONS

	Ŋ						
	ENERGY E	Concentr	ation		Critical	Halflife	
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)	
- 044		4 54-00					
Am-241	59.54	4.74E+02 +-	1.18E+01	1.20E+01	5.92E+00	3.79E+06	
Cd-109	88.02	6.69E+03 +-	1.35E+02	1.18E+02	5.84E+01	1.11E+04	
Co-57	122.07	1.51E+02 +-	7.17E+00	8.48E+00	4.18E+00	6.50E+03	
Ce-139	165.85	3.00E+02 +-	1.14E+02	1.84E+02	9.13E+01	3.30E+03	
Cs-137	661.62	1.92E+02 +-	2.80E+00	1.55E+00	7.61E-01	2.64E+05	
Co-60	Average:x	3.07E+02 +-	3.57E+00			4.62E+04	
	1173.21	3.05E+02 +-	5.02E+00	3.21E+00	1.58E+00	4.62E+04	
	1332.48	3.08E+02 +-	5.07E+00	1.93E+00	9.39E-01	4.62E+04	
Hg-203	279.18	MDA		4.01E+06	1.97E+06	1.12E+03	
Sn-113	391.68	MDA		6.51E+02	3.20E+02	2.76E+03	
Y-88	898.02	MDA		1.50E+03	7.40E+02	2.56E+03	

MEASURED TOTAL: 8.12E+03 +- 2.74E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK. #		ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
4	136.46	275.48 Page 003	458	163	130	2489	1.42	Unknown


182391D03.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	address Channel	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG	
6	208.60	419.44	51	73	59	853	0.56	Deleted	
7	212.38	426.98	33	117	96	1706	1.04	Deleted	
8	391.24	783.91	80	151	123	2252	2.03	Deleted	
9	500.82	1002.57	77	98	79	1211	1.54	Deleted	
13	1836.83	3668.71	38	23	16	43	2.56	Unknown	

c:\SEEKER\BIN\182391d03.res Analysis Results Saved.

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 092518-4 Geo 17 Eff Cal (1090)

9:45								
Hrs								
Sec								
Sec								
.SPC								

Detector #: 4 (Detector 4)

Energy(keV) = -1.55 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/25/2018 FWHM(keV) = 0.82 + 0.019*En + 7.17E-04*En^2 + 0.00E+00*En^3 09/25/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	59.40	121.70	30338	483	275	13960	0.96 8	HiResid
2	66.49	135.84	411	369	301	15479	1.21 8	
3	87.89	178.56	111793	762	300	16608	1.02 a	ı.
4	121.98	246.62	61283	574	240	10613	1.05 a	HiResid
5	136.40	275.41	7807	342	241	9921	1.10 a	1.
6	165.74	333.98	44788	495	211	8789	1.15 a	A HiResid
7	254.96	512.10	1184	273	217	8222	1.40 a	L.
8	279.06	560.23 Д	4864	268	189	6570	1.26 a	
9	310.23	622.46	130	135	109	2943	0.69 a	ı
10	371.28	744.33	129	129	104	2671	0.73 a	ı
11	391.53	784.76	24663	374	168	5185	1.39 a	HiResid
12	423.96	849.51	55	136	111	3059	0.76 8	NET< CL
13	510.46	1022.21	565	247	199	6369	2.14 a	ı
14	661.44	1323.63	49912	486	157	4534	1.72 a	HiResid
15	813.63	1627.46	347	162	130	3399	1.60 a	ı
16	897.77	1795.45	24739	369	159	4689	2.02 E	HiResid
17	1172.89	2344.72	48666	476	147	3703	2.26 a	HiResid
18	1332.02	2662.40	43934	446	126	2588	2.50 a	HiResid
19	1835.26	3667.10	13601	244	59	540		HiResid
	1				-1 D			

19 1835.26 3667.10 13601 200 D less Than 10,000 counts achieved due to greater Than 5 /2-11 ves elapson.

Page 001

The 9/2/4/20f 624

181964D04.SPC Analyzed by

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins
GammaScan

Background File: DET040924.BKG (092418-4 LONG BKG CAL)

Bkg.File Detector #: 4

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
2	66. 4 9	411	369	301	408	369	301	
13	510. 4 6	565	2 4 7	199	479	247	200	

181964D04.SPC Analyzed by

Sample ID: 092518-4 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 04 Calibration Date. . . 09/25/2018 10:39:45

Geometry File (D04)(Sh17).EFF ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 gm

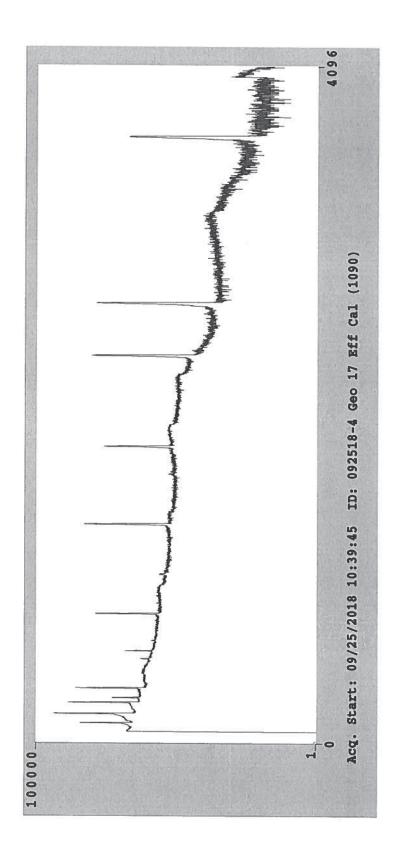
Crossover: 300.00 keV

Below Crossover Efficiency Fit:

 $Eff = 10 ^ [-7.41e+01 + 9.43e+01*En +-4.05e+01*En^2 + 5.76e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Above Knee Efficiency Fit:


 $Eff = 10 ^ [-8.67e+00 + 8.41e+00*En +-3.13e+00*En^2 + 3.49e-01*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Pk.	Energy	Measured	%	Calculated	%	Prev.Calc.
#	(kev)	Efficiency	Difference	Efficiency	Difference	Efficiency
====			=========			
1	59.50	5.44e-03	0.37	5.46e-03	7.01	5.87e-03
2	88.04	2.06e-02	-1.81	2.02e-02	3.22	2.09e-02
3	122.06	2.85e-02	2.78	2.93e-02	0.32	2.94e-02
4	165.85	2.87e-02	-1.63	2.83e-02	-1.58	2.78e-02
5	279.00	1.96e-02	0.22	1.97e-02	-1.39	1.94e-02
6	391.68	1.48e-02	0.12	1.48e-02	-0.19	1.48e-02
7	661.64	9.51e-03	-0.87	9.43e-03	-6.02	8.89e-03
8	898.02	6.98e-03	1.27	7.07e-03	-8.42	6.52e-03
9	1173.21	5.47e-03	0.38	5.49e-03	-9.90	4.99e-03
10	1332.48	4.93e-03	-1.24	4.87e-03	-10.40	4.41e-03
11	1836.01	3.63e-03	0.31	3.64e-03	-11.08	3.28e-03

Calibration Results Saved.

ON Malzula

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration

9/25/2018

Detector

4

Geometry

17

Crossover energy=300 keV

MEETS ALS

EFF @ CROSSOVER

% DIFF*

ACCEPTANCE CRITERIA?

LOWER EFFICIENCY CURVE UPPER EFFICIENCY CURVE

0.0189 0.018037

4.78% -4.57% OK OK

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to OR within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial

D

D

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

-7.413745E+01 А

В 9.430037E+01

С -4.054200E+01 Calculated efficiency 0.018900

5.762618E+00 En is energy in keV

Crossover energy

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

Polynomial -8.668339E+00 A

B 8.408918E+00

C

-3.130553E+00 Calculated efficiency 0.018037

3.489539E-01 En is energy in keV

Crossover energy

300

300

On or abolie

Pk #	Nuclide	Energy	Halflife		Br.Ratio	dps/gm
		~========	=========	====		
1	Am-241	59.50	4.322E+02	yrs	0.35900	17.22
2	Cd-109	88.04	4.626E+02	dys	0.03720	241.06
் 3	Co-57	122.06	2.718E+02	dys	0.85510	5.51
4	Ce-139	165.85	1.376E+02	dys	0.80350	8.24
5	Hg-203	279.00	4.661E+01	dys	0.77300	18.83
6	Sn-113	391.68	1.151E+02	dys	0.64900	14.18
7	Cs-137	661.64	3.007E+01	yrs	0.85120	6.95
8	X-88	898.02	1.066E+02	dys	0.93400	23.83
9	Co-60	1173.21	5.271E+00	yrs	0.99980	10.86
10	Co-60	1332.48	5.271E+00	yrs	0.99990	10.87
11	Y-88	1836.01	1.066E+02	dys	0.99380	23.71

1090 Hail 3-8-18

1380 Se board industrial Blvd.
Atlanta, Georgia 30318
Tel 404 - 352-8677
Fax 404 - 352-2837
www.ez g.com

Analytics

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN
Customer: ALS Laboratory Group
P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Lieff Life of			Ur	certair	ity	Calibration
		Half-Life, d	Activity, Bq	Flux, s¬	u_A , %	$u_B, \%$	U, %=	Method**
Am-241	59.5	1.580E+05	3.703E+03	1.329E+03	0.1	1.8	3.6	
Cd-109	88.0	4.614E+02	5.211E+04	1.928E+03	0.5			4π LS
Co-57	122.1	2.717E+02	1.183E+03	1.013E+03		2.0	4.1	HPGe
Ce-139	165.9	1.376E+02			0.4	1.7	3.4	HPGe
Hg-203	279.2		1.780E+03	1.424E+03	0.4	1.7	3.6	HPGe
Sn-113		4.659E+01	3.837E+03	3.129E+03	0.3	1.7	3.5	HPGe
2415 4-115	391.7	1.151E+02	3.046E+03	1.979E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.493E+03	1.271E+03	0.7	1.9	4.1	
Y-88	898.0	1.066E+02	5.107E+03	4.785E+03	0.7		•	HPGe
Y-88	1836.1	A. L.M. Property -				1.7	3.7	HPGe
Co-60	1173.2	1.925E+03	0.22771.00	5.066E+03	0.7	1.7	3.7	
Co-60	1332.5	1.020ETU3	2.337E+03	2.334E+03	0.7	1.8	3.9	HPGe
	1002.0			2.337E+03	0.7	1.8	3.9	USS NIII

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

SRS Number: 108579				
Comments: 215.00 g /~120 mL of sa	and			
Expiration Date: 06-N	March-2019			
This source was wipe 9978: 1992.	tested in its inactive areas with le	eak test results < 185 Bq (5	nCi) of removable	activity por ISO
Source Prepared by:	Z. Dimitrova, Radiochemist	- 1		
QC Approved by:	J. Lahr, Spectroscopist		Date: <u>02-mn</u>	-18

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source Detector 4
215-grams-Mixed nuclide source in steel can

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

M Mobale

I:\Oprtns\RAD\INST\GAMMA\Calibration\Efficiency\GEO17_CAL VER_(1041)_Det4_09.25.18

181965D04.SPC Analyzed h

********* SEEKER

RESULTS

PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

ANALYSIS

Geo 17/26

Sample ID: 092518-4A Geo 17 Cal Ver (1041)

GAMMA

Sampling Start: 01/01/2016 10:00:00	Counting Start: 09/25/2018 12:19:43
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.40E+004 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 1800 Sec
Sample Size 2.15E+002 g	Real Time 1827 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 4 (Detector 4)

Energy(keV) = $-1.55 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/25/2018$ $FWHM(keV) = 0.82 + 0.019*En + 7.17E-04*En^2 + 0.00E+00*En^3 09/25/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 ______

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	48.96	100.83	47	96	78	1513	0.50	NET< CL
2	59.44	121.77	13397	282	133	3245	0.99	
3	87.90	178.59	15757	290	119	2612	1.04	-
4	122.00	246.67	4218	179	101	1895	1.06	~
5	136.45	275.52	493	124	96	1690	0.92	a
6	165.62	333.75	452	113	86	1556	1.01	3.
7	391.53	784.77	84	112	91	1515	1.31	NET< CL
8	661.49	1323.73	20598	301	76	1058		HiResid
9	1172.98	2344.88	16508	276	83	1171		HiResid
10	1272.40	2543.37	27	30	23	110	1.71 8	a.
11	1332.11	2662.59	14826	249	43	300	2.41 8	HiResid
12	1835.57	3667.71	48	28	20	56	3.41 &	a

181965D04.SPC Analyzed by ************* BACKGROUND SUBTRACT RESULTS Vers. 2.2.1 SEEKER ALS Laboratory Group - Fort Collins GammaScan ***************** Background File: DET040924.BKG (092418-4 LONG BKG CAL) Bkg.File Detector #: 4 BACKGROUND SUBTRACT RESULTS OLD UN- OLD NEW NET ENERGY OLD NET NEW UN-NEW (keV) PK# COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG

181965D04.SPC Analyzed by ********************* SEEKER FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ****************** Geo 17/26 Sample ID: 092518-4A Geo 17 Cal Ver (1041) 01/01/2016 10:00:00 | Counting Start: 09/25/2018 12:19:43 Sampling Start: Sampling Stop: 01/01/2016 10:00:00 | Decay Time. 2.40e+004 Hrs Buildup Time. 0.00e+000 Hrs | Live Time Sample Size 2.15e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % Detector #: 4 (Detector 4) Efficiency File: (D04)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-7.41E+01 +9.43E+01*L +-4.05E+01*L^2 +5.76E+00*L^3] 09/25/2018 Eff.=10^[-8.67E+00 +8.41E+00*L +-3.13E+00*L^2 +3.49E-01*L^3] Above Library File: ANALYTICAL.LIB (Analytical) ______ MEASURED or MDA CONCENTRATIONS N ENERGY E Concentration Critical Halflife (keV) T (pCi/g) MDA Nuclide Level (hrs) ------59.54 4.78E+02 +- 1.01E+01 9.55E+00 4.73E+00 3.79E+06 Am-241 Cd-109 88.02 6.50E+03 +- 1.19E+02 9.92E+01 4.90E+01 1.11E+04 Co-57 122.07 1.51E+02 +- 6.42E+00 7.36E+00 3.63E+00 6.50E+03 Ce-139 165.85 2.11E+02 +- 5.27E+01 8.15E+01 4.01E+01 3.30E+03 1.91E+02 +- 2.79E+00 1.43E+00 7.00E-01 2.64E+05 Cs-137 661.62 Co-60 Average:x 3.03E+02 +- 3.59E+00 4.62E+04 1173.21 3.01E+02 +- 5.03E+00 3.07E+00 1.51E+00 4.62E+04 1332.48 3.05E+02 +- 5.12E+00 1.81E+00 8.79E-01 4.62E+04 Hg-203 279.18 MDA 2.53E+06 1.25E+06 1.12E+03 Sn-113 391.68 MDA ... 5.92E+02 2.92E+02 2.76E+03 Y-88 898.02 MDA ... 1.24E+03 6.12E+02 2.56E+03 MEASURED TOTAL: 7.83E+03 +- 1.95E+02 pCi/g UNKNOWN, SUM or ESCAPE PEAKS

PK. #		ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	48.96	100.83 Page 003	47	96	78	1513	0.50	Deleted

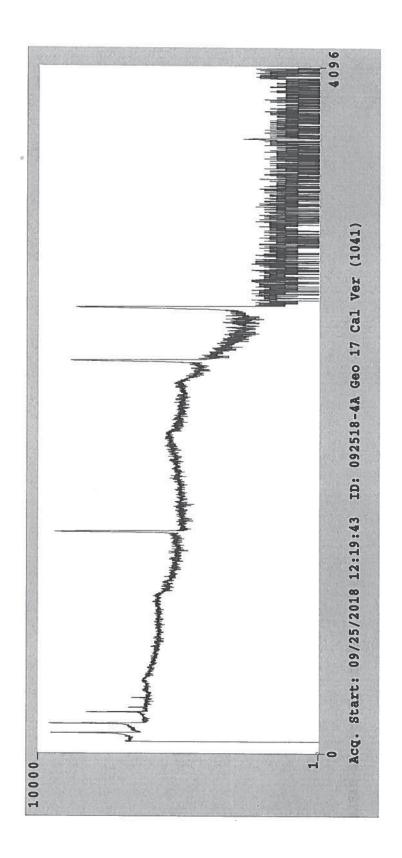
435 of 624

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
5	136.45	275.52	493	124	96	1690	0.92	Unknown
7	391.53	784.77	84	112	91	1515	1.31	Deleted
10	1272.40	2543.37	27	30	23	110	1.71	Unknown
12	1835.57	3667.71	48	28	20	56	3.41	Unknown

c:\SEEKER\BIN\181965d04.res Analysis Results Saved.

Sample ID: DAILY CHECK


Stds. Match Tolerance: 2.00 keV

Detector Number: 04 Calibration Date. . . 09/25/2018 08:23:59

Theorem (Just) and the second
Energy(keV) = $-1.55 + 0.501*Ch + 0.00e+00*Ch^2 + 0.00e+00*Ch^3$

										
	Pk.	Measured	Calculated	Energy	%					
	#	Centroid	Energy	(keV)	Difference					
	_									
	1	121.85	59.48	59.50	-0.03					
	2	1324.08	661.67	661.64	0.00					
	3	2663.29	1332.47	1332.48	-0.00					

Calibration Results Saved.

1380 Seaboan rd Industrial Blvd. Atlanta, Georgia 30318 Tel 404·35≥ -8677 Fax 404-352 - 2837 www.ezag.c n

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC000928, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radion aclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as describecal in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2016

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray	Male Life J	A . 15 41		Ur	certair	nty	Calibration
	Energy, keV	Half-Life, d	Activity, Bq	Flux, s ⁻¹	u _A , %	un, %	U, %"	Method**
Am-241	59.5	1.580E+05	3.737E+03	1.342E+03	0.1	1.8	3.6	
Cd-109	88.0	4.614E+02	5.114E+04	1.892E+03	0.5	2.0	4.1	4n LS
Co-57	122.1	2.717E+02	1.255E+03	1.074E+03				HPGe
Ce-139	165.9	1.376E+02	1.816E+03		0.4	1.7	3.4	HPGe
Hg-203	279.2	4.659E+01		1.453E+03	0.4	1.7	3.6	HPGe
Sn-113			3.960E+03	3.230E+03	0.3	1.7	3.5	HPGe
	391.7	1.151E+02	3.098E+03	2.013E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.519E+03	1.292E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.312E+03	4.977E+03	0.7	1.7	3.7	
Y-88	1836.1		11	5.269E+03	0.7			HPGe
Co-60	1173.2	1.925E+03	2.433E+03			1.7	3.7	
Co-60	1332.5	1.05001.00	2.700ETUS	2.429E+03	0.7	1.8	3.9	HPGe
	1002.0			2.433E+03	0.7	1 2	30	

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4n LS - 4n Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified 3/27/2018 New Exp. Date =) 03/27/2019

EZA Certificate Program Rev. 0, 07-DEC-2015

Comments: ~120 mL / 215.0 g of sand		
Expiration Date: 24-Fe)	oruary-2017	
This source was wipe to 9978:1992.	ested in its inactive areas with leak test results < 185 Bq (5	nCi) of removable activity per ISO
Source Prepared by: _A	. Herron, Radiochemist	
QC Approved by:	All Lahr, Spectroscopist	Date: 24-FEB-16

SRS Number: 102367

GAMMA ANALYSIS

RESULTS

PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 051718-5 Geo 17 Eff Cal (1090)

Page 001

SEEKER

Sampling Start: 01/01/2018 10:00:00	Counting Start: 05/17/2018 11:06:33
Sampling Stop: 01/01/2018 10:00:00	Decay Time 3.27E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 3600 Sec
Sample Size 2.15E+002 g	Real Time 3821 Sec
Collection Efficiency 1.0000	Spc. File
Detector #: 5	
Energy(keV) = -0.69 + 0.500*Ch + 0.00E+0	0*Ch^2 + 0.00E+00*Ch^3 05/17/2018

Energy(keV) = -0.69 + 0.500*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 05/17/2018 FWHM(keV) = 0.65 + -0.002*En + 2.17E-03*En^2 +-2.42E-05*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
1	58.42	118.14	1666	675	551	35488	2.10 a	Wide Pk
2	59.50	120.32	12065	385	260	13649	0.76 h	
3	72.81	146.92	753	291	235	12282	0.71 a	L
4	87.97	177.22	94809	722	310	19429	0.80 a	ı
5	121.96	245.16	74762	662	307	17398	0.90 a	HiResid
6	136.39	273.98	9834	358	245	12094	0.90 a	
7	165.76	332.70	81956	660	270	13498	0.97 ε	HiResid
8	254.99	511.03	2830	285	218	8756	1.01 a	
9	257.54	516.14	209	233	190	7297	0.74 h	
10	279.07	559.17	36389	476	234	9328	1.13 a	HiResid
11	369.39	739.70	246	228	186	6791	1.18 a	
12	391.52	783.92	10661	427	308	12716	2.33 a	Wide Pk
13	391.60	784.09	52262	507	180	6358	1.14 b	
14	402.49	805.86	143	212	173	5894	1.11 a	NET< CL
15	511.02	1022.78	1713	353	282	10211		Wide Pk
16	661.59	1323.72	61009	546	191	6740		HiResid
17	813.79	1627.93	896	235	187	5637	2.20 a	
18	851.02	1702.35	121	197	161	4980		NET< CL
19	898.00	1796.26	71645	577	177	5807		HiResid
20	1173.20	2346.30	64996	539	145			HiResid
21	1332.49	2664.68	57963	511	140			HiResid

====	- 										
PEAK SEARCH RESULTS											
====											
PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM				
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG			
22	1836.08	3671.21	42648	435	112	1933	2 70				
			-2010	=33	112	1333	4.70	a HiResid			

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET050516.BKG (051618-5 WEEKLY BKG)

Bkg.File Detector #: 5

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET COUNTS	NEW UN- CERTAINTY	new Cr.Level	FLAG
4	87.97	94809	722	310	94807	722	310	
15	511.02	1713	353	282	1609	353	283	
19	898.00	71645	577	177	71641	577	177	

Sample ID: 051718-5 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 05 Calibration Date. . . 05/17/2018 11:06:33

Geometry File (D05)(Sh17).eff ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 cm

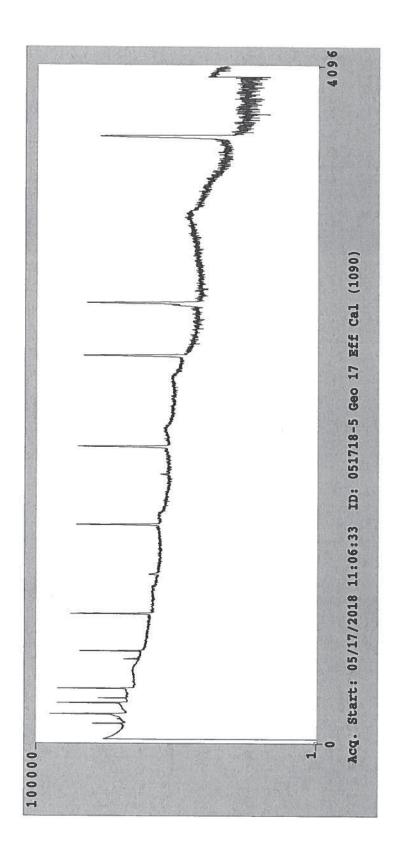
Crossover: 300.00 keV

Below Crossover Efficiency Fit:

 $Eff = 10 ^ [-1.03e+02 + 1.32e+02*En +-5.73e+01*En^2 + 8.21e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Above Knee Efficiency Fit:


 $Eff = 10 ^ [-4.57e+01 + 4.54e+01*En +-1.54e+01*En^2 + 1.70e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Pk. #	Energy (kev)	Measured Efficiency	% Difference	Calculated Efficiency	% Difference	Prev.Calc. Efficiency
====		_	========			
1	59.50	2.52e-03	0.31	2.53e-03	1.91	2.58e-03
2	88.04	1.67e-02	-1.50	1.65e-02	9.06	1.81e-02
3	122.06	2.90e-02	2.32	2.97e-02	6.30	3.17e-02
4	165.85	3.17e-02	-1.35	3.13e-02	2.05	3.20e-02
5	279.00	2.44e-02	0.18	2.45e-02	5.90	2.60e-02
6	391.68	1.66e-02	0.16	1.67e-02	16.90	2.01e-02
7	661.64	1.34e-02	-1.20	1.33e-02	-3.12	1.29e-02
8	898.02	1.01e-02	2.11	1.03e-02	-3.41	9.95e-03
9	1173.21	8.12e-03	-0.88	8.05e-03	-1.58	7.93e-03
10	1332.48	7.24e-03	-0.52	7.20e-03	-1.18	7.11e-03
11	1836.01	5.66e-03	0.28	5.68e-03	-4.94	5.41e-03

Calibration Results Saved.

OK 3P/18

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration 5/17/2018 Detector 5 17 Geometry Crossover energy=300 keV

MEETS ALS % DIFF* EFF @ CROSSOVER **ACCEPTANCE CRITERIA?** LOWER EFFICIENCY CURVE 0.023107 OK UPPER EFFICIENCY CURVE 0.022221 -3.84% OK

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to OR within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial 10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

-1.032613E+02 A В

1.324744E+02

С -5.726396E+01 Calculated efficiency 0.023107

D 8.213783E+00

En is energy in keV

300 Crossover energy

Polynomial 10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

-4.568304E+01 В 4.535038E+01

С -1.537548E+01 Calculated efficiency 0.022221

D 1.712991E+00

En is energy in keV

Crossover energy 300

On JUSIZILIE

Standards File. Gsstd17.std
Assay Date 01/01/2018 10:00
ID.: Geo 17 Std 1090 215g Mixed Gamma

Pk #	Nuclide	Energy	Halflife	Br.Ratio	dps/gm
====		=========		========	
1	Am-241	59.50	4.322E+02 yrs	0.35900	17.22
2	Cd-109	88.04	4.626E+02 dys	0.03720	241.06
3	Co-57	122.06	2.718E+02 dys	0.85510	5.51
4	Ce-139	165.85	1.376E+02 dys	0.80350	8.24
5	Hg-203	279.00	4.661E+01 dys	0.77300	18.83
6	Sn-113	391.68	1.151E+02 dys	0.64900	14.18
7	Cs-137	661.64	3.007E+01 yrs	0.85120	6.95
8	Y-88	898.02	1.066E+02 dys	0.93400	23.83
9	Co-60	1173.21	5.271E+00 yrs	0.99980	10.86
10	Co-60	1332.48	5.271E+00 yrs	0.99990	10.87
11	Y-88	1836.01	1.066E+02 dys	0.99380	23.71

1380 Sea board Industrial Blvd. Atlanta, Georgia 30318 Tel 404 - 352.8677 Fax 404 - 352-2837 www.ez a g.com

Analytics

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional ractionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, $\circ r$ liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

lactore	Gamma-Ray	11-16116			Ur	certair	ity	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s ⁻¹	u_A , %	u_{B} , %	U, %*	Method**
Am-241	59.5	1.580E+05	3.703E+03	1.329E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.211E+04	1.928E+03	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	1.183E+03	1.013E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.780E+03	1.424E+03	0.4	1.7	3.6	
Hg-203	279.2	4.659E+01	3.837E+03	3.129E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	3.046E+03	1.979E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.493E+03	1.271E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.107E+03	4.785E+03	0.7	1.7		HPGe
Y-88	1836.1	dispresibility and the second	0.1011100	5.066E+03	0.7		3.7	HPGe
Co-60	1173.2	1.925E+03	2.337E+03	2.334E+03		1.7	3.7	
Co-60	1332.5	N. OZOL TOS	2.331E+03	2.337E+03	0.7 0.7	1.8 1.8	3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4 TLS - 4 TLiquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

EZA Certificate Program Rev. 0, 07-DEC-2015

Page 1 of 2 448 of 624

Corporate Office

SRS Number: 108579	
Comments: 215.0O g / ~120 mL of sand	
Expiration Date: 06-March-2019	
This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 9978: 1992.	nCi) of removable activity per ISO
Source Prepared by: Z. Dimitrova, Radiochemist	
QC Approved by: J. Lahr, Spectroscopist	Date: <u>02-mm</u> -18

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source Detector 5 215-grams-Mixed nuclide source in steel can

VERIF Source: 1041	urce:	1041		REF DATE: 1/1/2016	1/1/2016			ŏ	Count Date: 5/17/2018	5/17/2018		
FROM CA	LIBRA'	FROM CALIBRATION CERTIFICATE	FICATE	FROM ANALYTICS.LIB		EXPECTED ACTIVITY	ACTIVITY O					
					Mass of							# of Half Lives
Isotope	KeV	KeV Half Life(y)	Gammas/Sec.	Gamma Fraction:	Standard		DPS	pCi/L	Activity	Recovery	Pass/Fail	Expired
Am-241	59.5	432.0000	1342	0.3590	215 g	Am-241	3738.2	469.9	440	94%	Pass	0.01
Cd-109	88	1.2666	1892	0.0372		Cd-109	50860.2	6393.5	6730	105%	Pass	1.87
Co-57	122	0.7441	1074	0.8551		Co-57	1256.0	157.9	157	%66	Pass	3.19
Ce-139	166	0.3768	1453	0.8035		Ce-139	1808.3	227.3	222	%86	Pass	
Hg-203	279	0.1276	3230	0.7730		Hg-203	4178.5	525.3	SC	>5 h-lives	>5 h-lives	~
Sn-113	392	0.3151	2013	0.6490		Sn-113	3101.7	389.9	362	93%	Pass	7.53
Cs-137	662	30.000	1292	0.8512		Cs-137	1517.9	190.8	192	101%	Pass	0.08
Y-88	868	0.2919	4977	0.9340		Y-88	5328.7	6.699	SC	>5 h-lives	>5 h-lives	
Co-60	1173	5.2714	2429	0.9998		Co-60	2429.5	305.4	297	%26	Pass	0.45
Co-60	1332	5.2714	2433	0.9999		Co-60	2433.2	305.9	310	101%	Pass	
Y-88	1836	0.2919	5269	0.9938		Y-88	5301.9	666.5	NC	>5 h-lives	>5 h-lives	

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

3/12/2 S/21/18

L\Oprtns\RAD\INST\GAMMA\Calibration\Efficiency\GEO17_CAL VER_(1041)

SEEKER GAMMA ANALYSIS

RESULTS

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 051718-5A Geo 17 Cal Ver (1041)

		·
Sampling Start: 01/01/2016 10:00:00	Counting Start.	05/17/2010 12.22.17
02,02,2020 20.00.00	Codificating product.	03/11/2010 17:33:11
Sampling Stop: 01/01/2016 10:00:00	Decay Time	2 0001004 1100
02,02,2020 20:00:00	Decay rime	· · · 2.VOLTVU4 HIS
Buildup Time 0.00E+000 Hrs	Live Time	1000 000
		· · · · Tour pec
Sample Size 2.15E+002 g	Real Time	1944 000
		· · · · Toas Sec
Collection Efficiency 1.0000	Spc. File	190546D05 CDC
2.0000	nba	• • • • • • • • • • • • • • • • • • •

Detector #: 5 (Detector 5)

Energy(keV) = -0.69 + 0.500*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 05/17/2018 $FWHM(keV) = 0.65 + -0.002*En + 2.17E-03*En^2 + -2.42E-05*En^3 04/17/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
							(X64)	FIAG
1	59.50	120.30	5734	193	99	2171	0.72 a	Wide Pk
2	60.95	123.20	-0	299	246	7055	2.18 h	NET< CL
3	87.98	177.23	16194	290	115	2654	0.81 a	L .
4	89.88	181.03	138	121	98	1917	0.84 h	
5	121.96	245.16	6221	199	100	2023	0.87 a	L
6	136.32	273.86	828	129	95	1832	0.82 a	ı
7	165.81	332.80	1018	129	92	1713	0.88 a	i.
8	234.93	470.94	61	131	107	2107	0.99 a	NET< CL
9	391.76	784.41	303	104	81	1370	1.01 a	ı
10	489.45	979.66	43	90	73	1127	0.91 a	NET< CL
11	661.56	1323.66	29503	359	85	1322	1.59 a	HiResid
12	898.12	1796.49	312	102	79	1303	1.51 a	L
13	1173.17	2346.25	25023	333	86	1368	2.02 a	HiResid
14	1332.43	2664.57	23367	311	49	410	2.27 a	HiResid
15	1836.06	3671.17	172	34	18	53	2.69 a	L

PS Version 1.8.4

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

Background File: DET050516.BKG (051618-5 WEEKLY BKG)

Bkg.File Detector #: 5

BACKGROUND SUBTRACT RESULTS

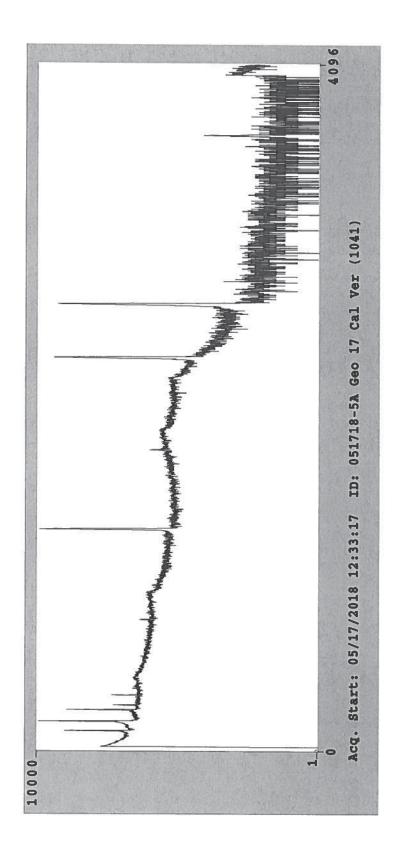
PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
3	87.98	1619 4	290	115	16193	290	115	
12	898.12	312	102	79	311	102	79	

2 60.95 123.20

Page 003

****************** SEEKER FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ********************** Geo 17/26 Sample ID: 051718-5A Geo 17 Cal Ver (1041) Sampling Start: 01/01/2016 10:00:00 | Counting Start: 05/17/2018 12:33:17 Sampling Stop: 01/01/2016 10:00:00 | Decay Time. 2.08e+004 Hrs Buildup Time. 0.00e+000 Hrs | Live Time Sample Size 2.15e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % Detector #: 5 (Detector 5) Efficiency File: (D05)(Sh17).eff (Geo 17 Eff Cal) *Eff=10^[-1.03E+02 +1.32E+02*L +-5.73E+01*L^2 +8.21E+00*L^3] 05/17/2018 Eff.=10^[-4.57E+01 +4.54E+01*L +-1.54E+01*L^2 +1.70E+00*L^3] Above 300.00 keV Library File: ANALYTICAL.LIB (Analytical) MEASURED or MDA CONCENTRATIONS ______ ENERGY E Concentration Critical Halflife (keV) T (pCi/g) Nuclide Level (hrs) MDA -----Am-241 59.54 4.40E+02 +- 1.49E+01 1.54E+01 7.60E+00 3.79E+06 88.02 6.73E+03 +- 1.21E+02 9.65E+01 4.77E+01 1.11E+04 Cd-109 122.07 1.57E+02 +- 5.04E+00 5.13E+00 2.53E+00 6.50E+03 Co-57 165.85 2.22E+02 +- 2.82E+01 4.09E+01 2.01E+01 3.30E+03 Ce-139 391.68 3.62E+02 +- 1.24E+02 1.96E+02 9.63E+01 2.76E+03 Sn-113 661.62 1.92E+02 +- 2.34E+00 1.12E+00 5.51E-01 2.64E+05 Cs-137 Co-60 Average:x 3.03E+02 +- 2.85E+00 4.62E+04 1173.21 2.97E+02 +- 3.95E+00 2.07E+00 1.02E+00 4.62E+04 1332.48 3.10E+02 +- 4.13E+00 1.34E+00 6.50E-01 4.62E+04 279.18 MDA Hg-203 ... 3.25E+05 1.61E+05 1.12E+03 Y-88 898.02 MDA . . . 2.53E+02r 1.24E+02 2.56E+03 MEASURED TOTAL: 8.41E+03 +- 2.98E+02 pCi/g UNKNOWN, SUM or ESCAPE PEAKS _______ PK. ENERGY ADDRESS NET UN-BKG FWHM C.L. # (keV) CHANNEL COUNTS CERTAINTY COUNTS (keV) FLAG

-0 299


453 of 624

246 7055 2.18 Deleted

UNKNOWN, SUM OR ESCAPE PEAKS

PK. #	ENERGY (keV)	Address Channel	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
4	89.88	181.03	138	121	98	1917	0.84	Unknown
6	136.32	273.86	828	129	95	1832	0.82	Unknown
8	234.93	470.94	61	131	107	2107	0.99	Deleted
10	489.45	979.66	43	90	73	1127	0.91	Deleted
12	898.12	1796.49	311	102	79	1303	1.51	Unknown
15	1836.06	3671.17	172	34	18	53	2.69	Unknown

c:\SEEKER\BIN\180546d05.res Analysis Results Saved.

1041 Rec'd 2-27-16

1380 Seabo ard Industrial Blvd. Atlanta, Georgia 30318 Tel 404·352 - 8677 Fax 404·352 - 2837 www.ezag.c o m

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN

Customer: ALS Laboratory Group

P.O. Number: FC000928, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2016

12:00 PM EST

MGS Mixture

Instance	Gamma-Ray				Ur	certair	ity	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s ⁻¹	u_A , %	$u_R, \%$	U, %*	Method**
Am-241	59.5	1.580E+05	3.737E+03	1.342E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.114E+04	1.892E+03	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	1.255E+03	1.074E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.816E+03	1.453E+03	0.4	1.7	3.6	
Hg-203	279.2	4.659E+01	3.960E+03	3.230E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	3.098E+03	2.013E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.519E+03	1.292E+03	0.7	1.9		HPGe
Y-88	898.0	1.066E+02	5.312E+03	4.977E+03	0.7		4.1	HPGe
Y-88	1836.1	1.0001.01	0.0146+00			1.7	3.7	HPGe
Co-60	1173.2	1.925E+03	0.42217.00	5.269E+03	0.7	1.7	3.7	
Co-60	1332.5	1.3405703	2.433E+03	2.429E+03	0.7	1.8	3.9	HPGe
	1004.0			2.433E+03	0.7	1.8	3.9	

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4n LS - 4n Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified 3/27/2018 New Exp. Date => 03/27/2019 Tr 5/21/18

EZA Certificate Program Rev. 0, 07-DEC-2015

Comments:
~12 OmL / 215.0 g of sand

Expiration Date: 24-February-2017

This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity per ISO 9978:1992.

Source Prepared by:

A. Herron, Radiochemist

OC Approved by:

J. Lahr, Spectroscopist

SRS Number: 102367

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins
GammaScan

Geo 17/26

Sample ID: 092518-7 Geo 17 Eff Cal (1090)

Sampling Start: 01/01/2018 10:00:00	Counting Start: 09/25/2018 07:55:25
Sampling Stop: 01/01/2018 10:00:00	
Buildup Time 0.00E+000 Hrs	
Sample Size 2.15E+002 g	
Collection Efficiency 1.0000	Spc. File

Detector #: 7 (Detector 7)

Energy(keV) = -2.39 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/25/2018 FWHM(keV) = 0.77 + 0.005*En + 8.11E-04*En^2 + 0.00E+00*En^3 09/24/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY		BKG COUNTS	FWHM (keV)	FLAG
1	59.40	123.22	12031	342	216	9418	0.89	a HiResid
2	87.95	180.15	87491	669	257	13351	0.87	a HiResid
3	121.95	247.94	60159	585	262	12714	0.93	a HiResid
4	136.35	276.66	7903	335	234	10107	1.00	a
5	165.77	335.34	46189	510	226	9444	0.97	a HiResid
6	228.71	460.84	204	295	242	9968	1.23	a NET< CL
7	255.07	513.41	1391	271	215	7848	1.15	a.
8	279.21	561.54	5769	289	202	6993	1.21	B.
9	391.76	785.98	30298	416	187	6474	1.25	a HiResid
10	511.40	1024.57	988	276	221	7242	1.99	а.
11	661.86	1324.61	62457	541	170	5007	1.42	a HiResid
12	813.64	1627.28	483	227	183	5382	2.15	a .
13	898.20	1795.91	32697	413	163	4929	1.69	a HiResid
14	1173.36	2344.62	67638	549	144	3854	1.98	a HiResid
15	1324.24	2645.50	382	123	96	1640	2.13	a .
16	1332.50	2661.98	61771	513	105	1959	2.18	a HiResid
17	1835.51	3665.06	20439	292	50	396	2.55	a HiResid

Aless Than 10,000 counts achieved due to greate Than 51/2-lives expsep.

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET070919.BKG (091918-7 LONG BKG CAL)

Bkg.File Detector #: 7

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
2	87.95	87 4 91	669	257	87 4 85	669	258	
10	511.40	988	276	221	833	277	223	

SEEKER CALIBRATION RESULTS Version 2.0.4

Sample ID: 092518-7 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 07 Calibration Date. . . 09/25/2018 07:55:25

Geometry File (D07)(Sh17).EFF ID. DET 7 GEO 17 Eff Cal

Amount of Std. in Calib. Source: 215.000000 gm

Crossover: 300.00 keV

Below Crossover Efficiency Fit:

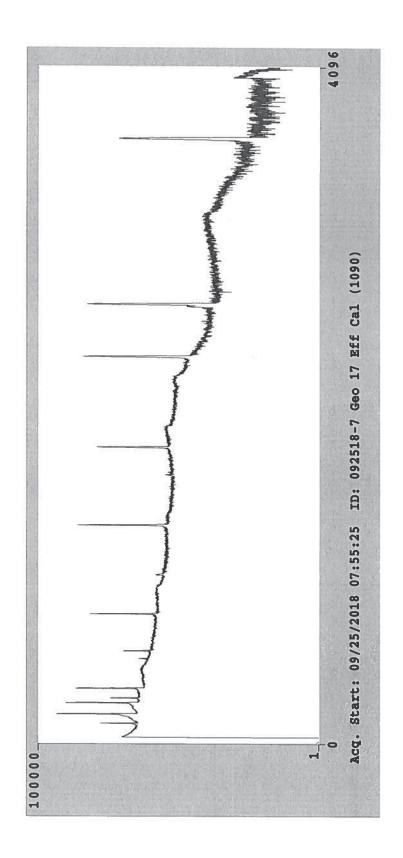
 $Eff = 10 ^ [-1.18e+02 + 1.52e+02*En +-6.65e+01*En^2 + 9.63e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Above Knee Efficiency Fit:

 $Eff = 10 ^ [9.78e-01 +-1.35e+00*En + 1.03e-01*En^2 +-1.37e-03*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)



Pk. #	Energy (kev)	Measured Efficiency	% Difference	Calculated Efficiency	% Difference	Prev.Calc.
====	(=======================================	=========	=======================================
1	59.50	1.68e-03	0.30	1.68e-03	69.20 △	5.47e-03
2	88.04	1.25e-02	-1.45	1.24e-02	39.92	2.06e-02
3	122.06	2.17e-02	2.25	2.22e-02	29.45	3.15e-02
4	165.85	2.30e-02	-1.31	2.27e-02	24.20	3.00e-02
5	279.00	1.81e-02	0.18	1.81e-02	14.38	2.11e-02
6	391.68	1.41e-02	0.07	1.42e-02	13.37	1.63e-02
7	661.64	9.25e-03	-0.53	9.21e-03	15.76	1.09e-02
8	898.02	7.17e-03	0.88	7.24e-03	16.25	8.64e-03
9	1173.21	5.91e-03	-0.12	5.90e-03	16.18	7.04e-03
10	1332.48	5.39e-03	-0.46	5.36e-03	15.97	6.38e-03
11	1836.01	4.24e-03	0.15	4.24e-03	14.98	4.99e-03

Calibration Results Saved.

ONTPAlzelle

1 % Difference > 10% due to being a different Delector TP9/26/12

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration

9/25/2018

Detector

7

Geometry

17 Crossover energy=300 keV

MEETS ALS

LOWER EFFICIENCY CURVE UPPER EFFICIENCY CURVE

EFF @ CROSSOVER

% DIFF* 3.40% **ACCEPTANCE CRITERIA?**

0.018304 0.017702

-3.29%

OK OK

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to **OR** within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial 10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

A -1.175258E+02

B 1.522638E+02

C -6.645202E+01 Calculated efficiency 0.018304

D 9.629689E+00

En is energy in keV

Crossover energy

300

Polynomial 10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

9.761600E-01 В

-1.348446E+00

-1.373180E-03

С 1.031581E-01 Calculated efficiency

0.017702

En is energy in keV

Crossover energy

D

300

ON 79 9/26/12

Pk :	# Nuclide	Energy	Halflife		Br.Ratio	dps/gm
===		*********	=======================================	====		
1	Am-241	59.50	4.322E+02	yrs	0.35900	17.22
2	Cd-109	88.04	4.626E+02	dys	0.03720	241.06
3	Co-57	122.06	2.718E+02	dys	0.85510	5.51
4	Ce-139	165.85	1.376E+02	dvs	0.80350	8.24
5	Hg-203	279.00	4.661E+01	_	0.77300	18.83
6	Sn-113	391.68	1.151E+02	_	0.64900	14.18
7	Cs-137	661.64	3.007E+01	_	0.85120	6.95
8	Y-88	898.02	1.066E+02		0.93400	23.83
9	Co-60	1173.21		_	0.99980	10.86
10	Co-60	1332.48	5.271E+00	_	0.99990	
11	Y-88	1836.01				10.87
	. 00	1030.01	1.0005402	dys	0.99380	23.71

1380 Se board Industrial Blvd. Atlanta, Georgia 30318 Tel 404 - 352-8677 Fax 404 - 352.2837

www.ez 🚗 g.com

Analytics

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a naster radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional ractionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrom etry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emissio ${f x}$ rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Lieff 1 16 a	A . 42 44		Ur	certair	ity	Calibration
		Half-Life, d	Activity, Bq	Flux, s	u4. %	u _B , %	U. %*	Method**
Am-241	59.5	1.580E+05	3.703E+03	1.329E+03	0.1	1.8	3.6	
Cd-109	88.0	4.614E+02	5.211E+04	1.928E+03	0.5	2.0		4π LS
Co-57	122.1	2.717E+02	1.183E+03	1.013E+03			4.1	HPGe
Ce-139	165.9	1.376E+02	1.780E+03	1.424E+03	0.4	1.7	3.4	HPGe
Hg-203	279.2	4.659E+01			0.4	1.7	3.6	HPGe
Sn-113	391.7	1.151E+02	3.837E+03	3.129E+03	0.3	1.7	3.5	HPGe
Cs-137			3.046E+03	1.979E+03	0.4	1.9	3.9	HPGe
	661.7	1.099E+04	1.493E+03	1.271E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.107E+03	4.785E+03	0.7	1.7	3.7	
Y-88	1836.1	7.4.20.4.00		5.066E+03	0.7	1.7		HPGe
Co-60	1173.2	1.925E+03	2.337E+03	2.334E+03			3.7	
Co-60	1332.5	H. S. Sterley A. S. Service	5.5572105		0.7	1.8	3.9	HPGe
				2.337E+03	0.7	1.8	3.9	Dec 200100

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4 ILS - 4 ILiquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

SRS Number: 108579	61
Comments: 215.00 g / ~120 mL of sand	
Expiration Date: 06-March-2019	
This source was wipe tested in its inactive areas with leak test results < 185 Bq 9978: 1992.	(5 nCi) of removable activity por ISO
Source Prepared by: Z. Dimitrova, Radiochemist	
QC Approved by: J. Lahr, Spectroscopist	Date: 02-MAR -18

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source Detector 7 215-grams-Mixed nuclide source in steel can

			1/1/2016			ŭ	Count Date: 9/25/2018	9/25/2018		
FROM CALIBRATION CERTIFICATE	=	FROM ANALYTICS.LIB	~	EXPECTE	EXPECTED ACTIVITY					
			Mass of							# of Half Lives
KeV Half Life(y) Gammas/Sec.		Gamma Fraction:	Standard		DPS	pCi/L	Activity	Recovery	Pass/Fail	Expired
1342		0.3590	215 g	J Am-241	3738.2	469.9	460	%86	Pass	0.01
1892		0.0372		Cd-109	50860.2	6393.5	6460	101%	Pass	2.16
1074		0.8551		Co-57	1256.0	157.9	154	%86	Pass	3.67
1453		0.8035		Ce-139	1808.3	227.3	204	%06	Pass	
3230		0.7730		Hg-203	4178.5	525.3	S	>5 h-lives	>5 h-lives	
2013		0.6490		Sn-113	3101.7	389.9	SC	>5 h-lives	>5 h-lives	
1292		0.8512		Cs-137	1517.9	190.8	197	103%	Pass	0.09
4977		0.9340		Y-88	5328.7	6.699	S	>5 h-lives	>5 h-lives	9:36
2429		0.9998		Co-60	2429.5	305.4	303	%66	Pass	0.52
2433		0.9999		Co-60	2433.2	305.9	307	100%	Pass	0.52
5269		0.9938		Y-88	5301.9	666.5	SC	>5 h-lives	>5 h-lives	9.36

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

IAOprins\RAD\INST\GAMMA\Calibration\Efficiency\GEO17_CAL_VER_(1041)_Det7_09.25.18

ANALYSIS RESULTS

PS Version 1.8.4

ALS Laboratory Group - Fort Collins

Geo 17/26

Sample ID: 092518-7A Geo 17 Cal Ver (1041)

GAMMA

SEEKER

Sampling Start: 01/01/2016 10:00:00	Counting Start: 09/25/2018 10:18:31
Sampling Stop: 01/01/2016 10:00:00	
Buildup Time 0.00E+000 Hrs	
Sample Size 2.15E+002 g	Real Time 1856 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 7 (Detector 7)

Energy(keV)= $-2.39 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 09/25/2018$ FWHM(keV) = $0.77 + 0.005*En + 8.11E-04*En^2 + 0.00E+00*En^3 09/24/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL			C.L. COUNTS			FLAG
1	47.98	100.43	61	94	76	1293	0.67	a NET< CL
2	51.49	107.44	24	77	63	970	0.48	b NET< CL
3	59.35	123.11	3986	167	90	1628	0.89	a
4	87.89	180.03	9566	228	96	1853	0.89	a
5	121.88	247.80	3255	163	95	1680	0.93	a
6	136.27	276.49	339	106	82	1352	0.82	a
7	165.74	335.28	351	103	79	1258	0.89	a
8	215.75	434.99	121	129	105	1878	1.15	a
9	419.24	840.79	60	68	54	728	0.71	a
10	570.19	1141.82	62	91	74	946	1.48	a NET< CL
11	619.85	1240.84	57	51	40	389	0.74	
12	648.45	1297.86	65	88	71	876	1.48	a NET< CL
13	661.81	1324.52	20788	301	70	845		a HiResid
14	815.39	1630.78	33	55	44	474		a NET< CL
15	820.35	1640.67	44	88	72	948	1.56	b NET< CL
16	898.49	1796.50	73	75	60	793	1.12	
17	1173.28	2344.47	17875	281	71	936	1.91	a HiResid
18	1332.39	2661.76	16478	259	30	159		a HiResid
19	1835.85	3665.74	45	19	11	23	1.68	

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins
GammaScan

Background File: DET070919.BKG (091918-7 LONG BKG CAL)

Bkg.File Detector #: 7

BACKGROUND SUBTRACT RESULTS

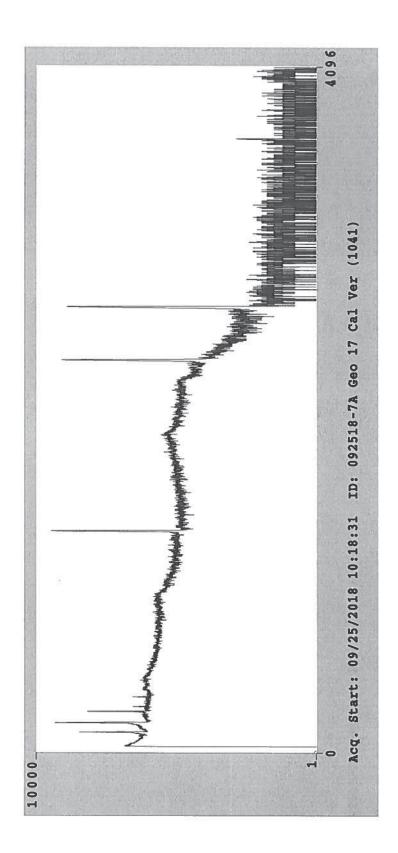
PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
2	51.49	24	77	63				
4	31.49	24	//	63	23	77	63 N	ET <cl< td=""></cl<>
4	87.89	9566	228	96	9564	228	96	
10	570.19	62	91	74	58	91	74 N	ET <cl< td=""></cl<>

181505D07.SPC Analyzed by ********************** SEEKER FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins GammaScan ********************** Geo 17/26 Sample ID: 092518-7A Geo 17 Cal Ver (1041) Sampling Start: 01/01/2016 10:00:00 | Counting Start: 09/25/2018 10:18:31 Sampling Stop: 01/01/2016 10:00:00 | Decay Time. 2.40e+004 Hrs Buildup Time. 0.00e+000 Hrs | Live Time 1800 Sec Sample Size 2.15e+002 g | Real Time Cr. Level Confidence Interval: 95 % | Det. Limit Confidence Interval: 95 % Detector #: 7 (Detector 7) Efficiency File: (D07)(Sh17).EFF (DET 7 GEO 17 Eff Cal) Eff=10^[-1.18E+02 +1.52E+02*L +-6.65E+01*L^2 +9.63E+00*L^3] 09/25/2018 Eff.=10^[9.78E-01 +-1.35E+00*L +1.03E-01*L^2 +-1.37E-03*L^3] Above 300.00 keV _______ Library File: . . . ANALYTICAL.LIB (Analytical) MEASURED or MDA CONCENTRATIONS N ENERGY E Concentration Critical Halflife Nuclide (keV) T (pCi/g) MDA Level (hrs) Am-241 59.54 4.60E+02 +- 1.93E+01 2.11E+01 1.04E+01 3.79E+06 88.02 6.46E+03 +- 1.54E+02 1.31E+02 6.48E+01 1.11E+04 Cd-109 Co-57 1.54E+02 +- 7.68E+00 9.13E+00 4.50E+00 6.50E+03 122.07 Ce-139 165.85 2.04E+02 +- 5.99E+01 9.34E+01 4.59E+01 3.30E+03 Cs-137 661.62 1.97E+02 +- 2.85E+00 1.35E+00 6.61E-01 2.64E+05 Co-60 Average:x 3.05E+02 +- 3.39E+00 4.62E+04 1173.21 3.03E+02 +- 4.77E+00 2.46E+00 1.21E+00 4.62E+04 1332.48 3.07E+02 +- 4.84E+00 1.17E+00 5.59E-01 4.62E+04 Hg-203 279.18 MDA . . . 2.65E+06 1.31E+06 1.12E+03 Sn-113 391.68 MDA ... 5.03E+02 2.47E+02 2.76E+03 Y-88 898.02 MDA . . . 6.76E+02r 3.29E+02 2.56E+03 MEASURED TOTAL: 7.78E+03 +- 2.47E+02 pCi/g ______ UNKNOWN, SUM or ESCAPE PEAKS PK. ENERGY ADDRESS NET UN-C.L. BKG **FWHM** (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG

61 94 76

1 47.98 100.43

Page 003


1293 0.67 Deleted

181505D07.SPC Analyzed by

UNKNOWN, SUM or ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	51.49	107.44	23	77	63	970	0.48	Deleted
6	136.27	276.49	339	106	82	1352	0.82	Unknown
8	215.75	434.99	121	129	105	1878	1.15	Unknown
9	419.24	840.79	60	68	54	728	0.71	Unknown
10	570.19	1141.82	58	91	74	946	1.48	Deleted
11	619.85	1240.84	57	51	40	389	0.74	Unknown
12	648.45	1297.86	65	88	71	876	1.48	Deleted
14	815.39	1630.78	33	55	44	474	0.79	Deleted
15	820.35	1640.67	44	88	72	948	1.56	Deleted
16	898.49	1796.50	73	75	60	793	1.12	Unknown
19	1835.85	3665.74	45	19	11	23	1.68	Unknown

c:\SEEKER\BIN\181505d07.res Analysis Results Saved.

Rec'd 2-25-16

1380 Seaboan rd Industrial Blvd Atlanta, Georgia 30318 Tel 404·35≥ -8677 Fax 404-352 - 2837 www.ezag.c 🗢 m

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC000928, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radion aclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to MIST."

Reference Date: 01-January-2016

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Holf Life d	A - No day - Pa		Ur	certair	ity	Calibration
		Half-Life, d	Activity, Bq	Flux, s ⁻¹	uA, %	un, %	U, %*	Method**
Am-241	59.5	1.580E+05	3.737E+03	1.342E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.114E+04	1.892E+03	0.5	2.0	4.1	
Co-57	122.1	2.717E+02	1.255E+03	1.074E+03	0.4			HPGe
Ce-139	165.9	1.376E+02	1.816E+03			1.7	3.4	HPGe
Hg-203	279.2	4.659E+01		1.453E+03	0.4	1.7	3.6	HPGe
Sn-113			3.960E+03	3.230E+03	0.3	1.7	3.5	HPGe
	391.7	1.151E+02	3.098E+03	2.013E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.519E+03	1.292E+03	0.7	1.9	4.1	
Y-88	898.0	1.066E+02	5.312E+03	4.977E+03	0.7	1.7		HPGe
Y-88	1836.1			5.269E+03			3.7	HPGe
Co-60	1173.2	1.925E+03	0.40001.00		0.7	1.7	3.7	
Co-60	1332.5	1.000ETUS	2.433E+03	2.429E+03	0.7	1.8	3.9	HPGe
	1004.0			2.433E+03	0.7	1.8	3.9	

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified 3/27/2018 New Exp. Date =) 03/27/2019

EZA Certificate Program Rev. 0, 07-DEC-2015

F-CR-32, Rev 0, 01 Nov 14

Comments:
~120 mL / 215.0 g of sand

Expiration Date: 24-February-2017

This source was wipe tested in its inactive areas with leak test results < 185 Bq (6 nCi) of removable activity por ISO 9978:1992.

Source Prepared by:

A. Herron, Radiochemist

QC Approved by:

J. Lahr, Spectroscopist

Date: 24-FEB-16

SEEKER

ANALYSIS RESULTS

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 051718-8 Geo 17 Eff Cal (1090)

GAMMA

Sampling Start: 01/01/2018 10:00:00	Counting Start: 05/17/2018 09:21:56
Sampling Stop: 01/01/2018 10:00:00	Decay Time 3.26E+003 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 1800 Sec
Sample Size 2.15E+002 g	Real Time 1907 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 8 (Detector 8)

Energy(keV) = -2.38 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 05/17/2018 $FWHM(keV) = 0.65 + 0.012*En + 6.79E-04*En^2 + 0.00E+00*En^3 04/17/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

	ENERGY (keV)			UN- CERTAINTY	COUNTS		(keV)	FLAG
1	49.27	103.09	1052	326	263			<u> </u>
2	58.06	120.64	2367	488	394			Wide Pk
3	59.41	123.33	61870	547	187	7720		
4	66.31	137.12	2307	587	476	25158		Wide Pk
5	68.53	141.54	1801	446	360	17970	1.72 1	
6	70.70	145.88	1844	341	272		1.17	3
7	72.73	149.93	2406	310	242	10782	1.04	1
8	74.86	154.17	327	222	180	7188	0.69	
9	82.56	169.55	1508	410	331			HiResid
								Wide Pk
10	84.98	174.39	3705	659	532	29924	2.44 1	HiResid
11	87.95	180.31	97807	670	198	7869		HiResid
12	121.93	248.14	44145	468	170	5808		HiResid
13	136.35	276.93	5360	237	154	4758	0.87 ε	
14	165.75	335.61	38201	427	141	4004	0.75 ε	HiResid
15	198.96	401.91	265	207	168	4808	1.22 a	
16	199.92	403.82	39	112	91	2061	0.48 h	NET< CL
17	255.15	514.09	1013	154	115	2677	0.78 a	
18	272.74	549.19	52	95	77	1454	0.51 a	NET< CL
19	279.16	562.00	15787	292	123	2793	0.97 a	_
20	391.72	786.71	25417	349	116	2312	1.10 a	
		Page 001						

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
21	511.05	1024.93	608	196	156	3422	2.11	a Wide Pk
22	661.82	1325.90	24109	336	104	2017	1.37	a
23	814.18	1630.04	393	100	76	1250	1.21	a
24	898.12	1797.59	28878	362	102	1927	1.57	a.
25	1173.24	2346.81	26260	335	71	976	1.82	HiResid
26	1283.58	2567.08	57	65	52	523	1.76	a
27	1324.86	2649.47	778	120	87	1017	3.46	HiResid Wide Pk
28	1332.36	2664.44	24216	319	56	581	1.96 1	HiResid
29	1835.28	3668.40	17530	267	31	155		HiResid

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET080516.BKG (051618-8 WEEKLY BKG)

Bkg.File Detector #: 8

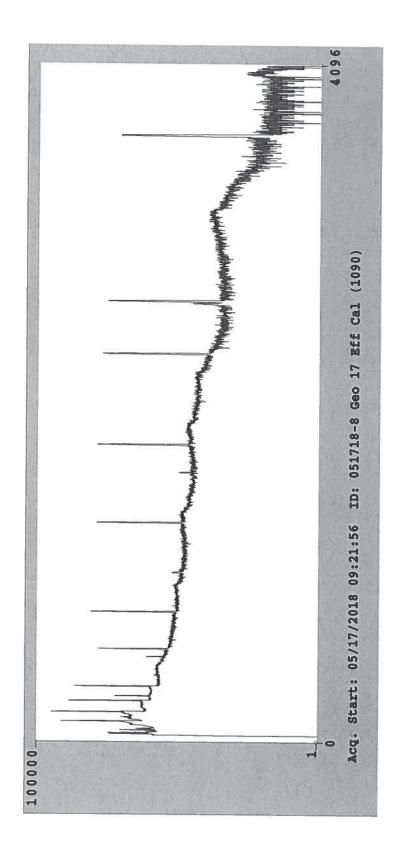
BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
4	66.31	2307	587	476	2302	587	476	
5	68.53	1801	446	360	1799	446	360	
7	72.73	2406	310	242	2400	310	242	
9	82.56	1508	410	331	1508	410	331	
10	84.98	3705	659	532	3700	659	532	
15	198.96	265	207	168	258	207	168	
21	511.05	608	196	156	558	196	156	

Sample ID: 051718-8 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 08 Calibration Date. . . 05/17/2018 09:21:56


Geometry File (D08)(Sh17).eff ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 gm

Eff = 1 / [$5.03e-02*En^-2.20e+00 + 1.32e+02*En^-8.10e-01$] (Where En = Energy in MeV)) (Exponential)

Pk. #	Energy (kev)	Measured Efficiency	% Difference	Calculated Efficiency	% Difference	Prev.Calc. Efficiency
====	========	===========	=========	========	========	
1	59.50	2.59e-02	0.17	2.59e-02	4.04	2.70e-02
2	88.04	3.46e-02	-0.40	3.44e-02	-2.36	3.36e-02
3	122.06	3.42e-02	-0.01	3.42e-02	-0.99	3.39e-02
4	165.85	2.96e-02	1.14	2.99e-02	1.59	3.04e-02
5	279.00	2.12e-02	-1.17	2.09e-02	3.52	2.17e-02
6	391.68	1.62e-02	-0.65	1.61e-02	3.11	1.66e-02
7	661.64	1.06e-02	-0.60	1.06e-02	1.14	1.07e-02
8	898.02	8.12e-03	1.71	8.26e-03	-0.38	8.22e-03
9	1173.21	6.56e-03	1.30	6.65e-03	-1.82	6.53e-03
10	1332.48	6.05e-03	-0.77	6.00e-03	-2.54	5.85e-03
11	1836.01	4.65e-03	-0.54	4.63e-03	-4.39	4.43e-03

ON JO 5/21/18

Calibration Results Saved.

Standards File. Gsstd17.std
Assay Date 01/01/2018 10:00

ID.: Geo 17 Std 1090 215g Mixed Gamma

Pk #	Nuclide	Energy	Halflife	Br.Ratio	dps/gm
====		========			
1	Am-241	59.50	4.322E+02 yrs	0.35900	17.22
2	Cd-109	88.04	4.626E+02 dys	0.03720	241.06
3	Co-57	122.06	2.718E+02 dys	0.85510	5.51
4	Ce-139	165.85	1.376E+02 dys	0.80350	8.24
5	Hg-203	279.00	4.661E+01 dys	0.77300	18.83
6	Sn-113	391.68	1.151E+02 dys	0.64900	14.18
7	Cs-137	661.64	3.007E+01 yrs	0.85120	6.95
8	Y-88	898.02	1.066E+02 dys	0.93400	23.83
9	Co-60	1173.21	5.271E+00 yrs	0.99980	10.86
10	Co-60	1332.48	5.271E+00 yrs	0.99990	10.87
11	Y-88	1836.01	1.066E+02 dys	0.99380	23.71

1380 Sea board Industrial Blvd. Atlanta, Georgia 30318 Tel 404 - 352.8677 Fax 404 - 352-2837 www.ez a g.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

Inches	Gamma-Ray	11.16.116			Ur	certair	ity	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s ^{¬₁}	u_A , %	u_R , %	U, %*	Method**
Am-241	59.5	1.580E+05	3.703E+03	1.329E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.211E+04	1.928E+03	0.5	2.0	4.1	
Co-57	122.1	2.717E+02	1.183E+03	1.013E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.780E+03	1.424E+03	0.4	1.7	3.6	HPGe
Hg-203	279.2	4.659E+01	3.837E+03	3.129E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	3.046E+03	1.979E+03	0.4	1.9		HPGe
Cs-137	661.7	1.099E+04	1.493E+03	1.271E+03	0.7	TIGHT U	3.9	HPGe
Y-88	898.0	1.066E+02	5.107E+03	4.785E+03		1.9	4.1	HPGe
Y-88	1836.1	TO SENS THE PROPERTY OF	0.1011100		0.7	1.7	3.7	HPGe
Co-60	1173.2	1.925E+03	0.2275+02	5.066E+03	0.7	1.7	3.7	
Co-60	1332.5	1.923ETU3	2.337E+03	2.334E+03 2.337E+03	0.7 0.7	1.8	3.9 3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

EZA Certificate Program Rev. 0, 07-DEC-2015

Page 1 of 2

480 of 624

SRS Number: 10857	9	
Comments: 215.00 g / ~120 mL of	sand	
Expiration Date: 06-	-March-2019	
This source was wip 9978: 1992.	be tested in its inactive areas with leak test results $<$ 185 Bq (5	5 nCi) of removable activity per ISC
Source Prepared by	Z. Dimitrova, Radiochemist	
QC Approved by:	J. Lahr, Spectroscopist	Date: <u>02-mm</u> -18

INOprtns/RAD\INST\GAMMA\Calibration\Efficiency\GEO17_CAL VER_(1041)

M Mosalle

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source Detector 8

215-grams-Mixed nuclide source in steel can

VERIF Source: 1041	1041		REF DATE: 1/1/2016	1/1/2016			Ö	Count Date: 5/17/2018	5/17/2018		
	FROM CALIBRATION CERTIFICATE	FICATE	FROM ANALYTICS.LIB	m	EXPECTE	EXPECTED ACTIVITY					
				Mass of							# of Half Lives
	Half Life(y)	KeV Half Life(y) Gammas/Sec.	Gamma Fraction:	Standard	***	DPS	pCi/L	Activity	Recovery	Pass/Fail	Expired
	432.0000	1342	0.3590	215	g Am-241	3738.2	469.9	469	100%	Pass	0.01
	1.2666	1892	0.0372		Cd-109	50860.2	6393.5	6160	%96	Pass	1.87
	0.7441	1074	0.8551		Co-57	1256.0	157.9	155	%86	Pass	3.19
	0.3768	1453	0.8035		Ce-139	1808.3	227.3	253	111%	Pass	6.30
	0.1276	3230	0.7730		Hg-203	4178.5	525.3	SC	>5 h-lives	>5 h-lives	18.61
	0.3151	2013	0.6490		Sn-113	3101.7	389.9	484	>5 h-lives	>5 h-lives	7.53
	30.0000	1292	0.8512		Cs-137	1517.9	190.8	194	102%	Pass	0.08
868	0.2919	4977	0.9340		Y-88	5328.7	6.699	S	>5 h-lives	>5 h-lives	8.13
1173	5.2714	2429	0.9998		Co-60	2429.5	305.4	304	100%	Pass	0.45
1332	5.2714	2433	0.9999		Co-60	2433.2	305.9	305	100%	Pass	0.45
1836	0.2919	5269	0.9938		Y-88	5301.9	666.5	S N	>5 h-lives	>5 h-lives	2,7

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

ANALYSIS RESULTS

PS Version 1.8.4

ALS Laboratory Group - Fort Collins

Geo 17/26

Sample ID: 051718-8A Geo 17 Cal Ver (1041)

GAMMA

SEEKER

Sampling Start: 01/01/2016 10:00:00	Counting Start: 05/17/2018 10:04:55
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.08E+004 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 1800 Sec
Sample Size 2.15E+002 g	Real Time 1883 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 8 (Detector 8)

Energy(keV) = -2.38 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 05/17/2018 FWHM(keV) = 0.65 + 0.012*En + 6.79E-04*En^2 + 0.00E+00*En^3 04/17/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY	COUNTS	COUNTS	FWHM (keV)	FLAG
1	49.13	102.82	1068	299	240	9122		a Wide Pk
2	59.41	123.35	62291	536	160	5666	0.73	
3	65.84	136.17	200	167	135	3390	1.05	
4	87.96	180.33	30934	375	107	2519		a HiResid
5	121.93	248.15	7093	199	88	1543	0.78	
6	128.94	262.14	135	144	117	2173	1.35	a .
7	136.34	276.91	1002	129	93	1593	0.95	a .
8	165.79	335.70	1105	114	77	1180	0.88	a
9	283.30	570.28	86	111	90	1387	1.20	NET< CL
10	310.70	624.98	62	99	80	1195		NET< CL
11	391.85	786.96	391	131	103	1565	1.48	
12	577.46	1157.49	48	52	41	415	0.66	a
13	661.83	1325.91	23696	318	64	765	1.37	a
14	898.25	1797.87	209	80	61	817	1.22	
15	955.64	1912.42	-0	61	50	625		NET< CL
16	961.45	1924.02	163	89	70	1000	1.39 1	
17	1173.24	2346.81	21157	297	49	457		a HiResid
18	1332.37	2664.47	19155	278	23	100		A HiResid
19	1835.43	3668.70	161	31	14	34	2.22	

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins

GammaScan

Background File: DET080516.BKG (051618-8 WEEKLY BKG)

Bkg.File Detector #: 8

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
3	65.84	200	167	135	19 4	167	136	
16	961.45	163	89	70	162	89	70	

SEEKER FINAL ACTIVITY REPORT

Version 2.2.1

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 051718-8A Geo 17 Cal Ver (1041)

Detector #: 8 (Detector 8)

Efficiency File: (D08)(Sh17).eff (Geo 17 Eff Cal)

*Eff.=1/[5.03E-02*En^-2.20E+00 + 1.32E+02*En^8.10E-01] 05/17/2018

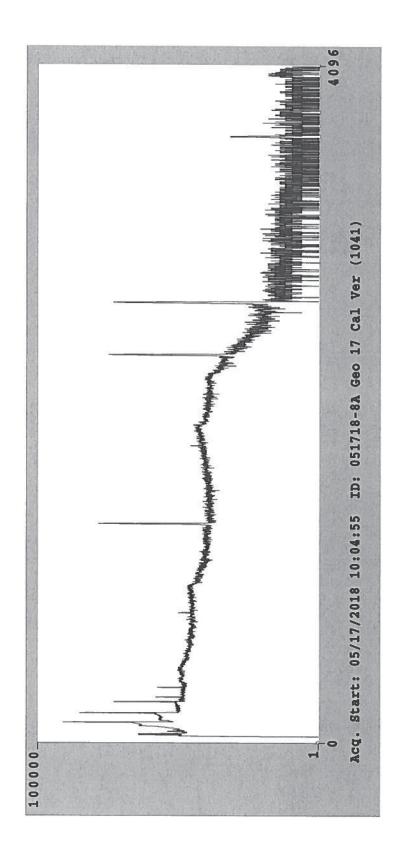
Library File: ANALYTICAL.LIB (Analytical)

MEASURED or MDA CONCENTRATIONS

ENERGY E Concentration Critical Halflife Nuclide) MDA (keV) T (pCi/g Level (hrs) 59.54 Am-241 4.69E+02 +- 4.03E+00 2.43E+00 1.20E+00 3.79E+06 Cd-109 88.02 6.16E+03 +- 7.47E+01 4.30E+01 2.12E+01 1.11E+04 122.07 1.55E+02 +- 4.37E+00 3.89E+00 1.92E+00 6.50E+03 Co-57 Ce-139 165.85 2.53E+02 +- 2.61E+01 3.56E+01 1.75E+01 3.30E+03 Sn-113 391.68 4.84E+02 +- 1.62E+02 2.58E+02 1.27E+02 2.76E+03 Cs-137 661.62 1.94E+02 +- 2.60E+00 1.08E+00 5.27E-01 2.64E+05 Co-60 Average:x 3.04E+02 +- 3.07E+00 4.62E+04 1173.21 3.04E+02 +- 4.26E+00 1.44E+00 6.99E-01 4.62E+04 1332.48 3.05E+02 +- 4.43E+00 7.83E-01 3.70E-01 4.62E+04 Hg-203 279.18 MDA . . . 2.90E+05 1.43E+05 1.12E+03 Y-88 898.02 MDA . . . 2.58E+02r 1.26E+02 2.56E+03

MEASURED TOTAL: 8.02E+03 +- 2.77E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS


PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	FLAG
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	
1 3	49.13 65.84	102.82 136.17 Page 003	1068 194	299 167	240 136	9122 3390	1.30 1.05	Unknown Unknown

180602D08.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	net Counts	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
6	128.94	262.14	135	144	117	2173	1.35	Unknown
7	136.34	276.91	1002	129	93	1593	0.95	Unknown
9	283.30	570.28	86	111	90	1387	1.20	Deleted
10	310.70	624.98	62	99	80	1195	1.01	Deleted
12	577.46	1157.49	48	52	41	415	0.66	Unknown
14	898.25	1797.87	209	80	61	817	1.22	Unknown
15	955.64	1912.42	-0	61	50	625	0.83	Deleted
16	961.45	1924.02	162	89	70	1000	1.39	Unknown
19	1835.43	3668.70	161	31	14	34	2.22	Unknown

c:\SEEKER\BIN\180602d08.res Analysis Results Saved.

1380 Seaboa rd Industrial Blvd. Atlanta, Geo rgla 30318 Tel 404·352 - 8677 Fax 404·352 - 2837 www.ezag.c⊙m

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN
Customer: ALS Laboratory Group
P.O. Number: FC000928, Item 2

Analytics

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2016

12:00 PM EST

MGS Mixture

lastana	Gamma-Ray				Ur	certair	ıty	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s ⁻¹	u_A , %	$u_R, \%$	U, %*	Method**
Am-241	59.5	1.580E+05	3.737E+03	1.342E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.114E+04	1.892E+03	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	1,255E+03	1.074E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.816E+03	1.453E+03	0.4	1.7	3.6	HPGe
Hg-203	279.2	4.659E+01	3.960E+03	3.230E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	3.098E+03	2.013E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.519E+03	1.292E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.312E+03	4.977E+03	0.7	1.7	3.7	
Y-88	1836.1	2000 069	0.0102.00	5.269E+03	0.7	1.7	3.7	HPGe
Co-60	1173.2	1.925E+03	2.433E+03	2.429E+03	0.7	1.8		IIDO
Co-60	1332.5		2.4000100	2.433E+03	0.7	1.8	3.9 3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified
3/27/2018

New Exp. Date
=> 03/27/2019
Tr 5/21/18

EZA Certificate Program Rev. 0, 07-DEC-2015

Comments: ~1.20 mL / 215.0 g of sa	nd	
Expiration Date: 24-1	February-2017	
This source was wipe 9978:1992.	e tested in its inactive areas with leak test results < 185 Bq (8	5 nCi) of removable activity per IS(
Source Prepared by:	A. Herron, Radiochemist	
QC Approved by:	J. Lahr, Spectroscopist	Date: <u>24-FEB-16</u>

SRS Number: 102367

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 110618-9 Geo 17 Eff Cal (1090)

Sampling Start: 01/01/2018 10:00:00	Counting Start: 11/06/2018 08:13:44
Sampling Stop: 01/01/2018 10:00:00	Decay Time 7.41E+003 Hrs
Buildup Time 0.00E+000 Hrs	
Sample Size 2.15E+002 g	
Collection Efficiency 1.0000	Spc. File

Detector #: 9 (Detector 9)

Energy(keV) = $-2.31 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/06/2018$ FWHM(keV) = $0.76 + 0.007*En + 6.45E-04*En^2 + 0.00E+00*En^3 11/01/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	49.19	102.68	2503	483	389	23937	1.26 a	1
2	59.39	123.02	135345	812	282	16063	0.86 a	L
3	66.06	136.32	851	364	296	16169	1.04 a	L
4	87.95	179.94	158775	864	274	15121	0.88	L .
5	121.93	247.70	61213	559	213	8387	0.91 a	HiResid
6	136.38	276.51	7106	262	165	5458	0.85 a	HiResid
7	165.77	335.09	34143	427	177	5772	0.92 a	HiResid
8	198.72	400.79	185	209	170	5350	0.94 a	ı
9	255.07	513.13	693	148	114	2891	0.72 ε	ı
10	279.17	561.16	2172	200	145	3903	1.01 a	ı
11	391.76	785.63	17777	320	145	3605	1.15 a	L
12	511.19	1023.72	559	279	226	6296	2.61 a	Wide Pk
13	661.87	1324.13	47117	462	130	2944	1.42 a	HiResid
14	709.88	1419.85	122	136	110	2244	1.39 a	L
15	814.28	1627.97	487	163	129	2738	1.64 a	L
16	898.18	1795.23	18013	307	123	2927	1.55 a	ı
17	910.16	1819.12	116	149	122	2873	1.49 ε	NET< CL
18	1173.30	2343.72	47801	451	89	1406		HiResid
19	1324.95	2646.05	521	112	84	950	3.39 ε	HiResid Wide Pk
20	1332.40	2660.91	43361	422	54	543	1.97 b	HiResid

Aless Than 10,000 Counts achieved due to greate Than 5 /z-lives elapsed; 49/19/1624

			PI	EAK SEARCH	RESULTS			
PK.	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
21	1835.27	3663.44	10729	210	29	144	2.32	a HiResid

BACKGROUND SUBTRACT RESULTS Version 1.8.2 SEEKER

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET091031.BKG (103118-9 LONG BKG CAL)

Bkg.File Detector #: 9

BACKGROUND SUBTRACT RESULTS

ENERGY OLD NET OLD UN- OLD NEW NET NEW UN-NEW COUNTS CERTAINTY CR.LEVEL COUNTS CERTAINTY CR.LEVEL FLAG (keV) PK# 3 66.06 851 364 296 838 365 296 4 864 864

87.95 158775 274 158770 274 198.72 8 185 209 170 167 209 171 NET<CL 12 511.19 559 279 226 458 279 227 661.87 47117 13 462 130 47114 462 130 123 18009 18013 16 898.18 307 307 123 122 17 910.16 116 149

112

149

122 NET<CL

Sample ID: 110618-9 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 09 Calibration Date. . . 11/06/2018 08:13:44

Geometry File (D09)(Sh17).EFF ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 gm

Crossover: 300.00 keV

Below Crossover Efficiency Fit:

 $Eff = 10 ^ [-1.47e+01 + 1.58e+01*En +-5.94e+00*En^2 + 6.70e-01*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Above Knee Efficiency Fit:


 $Eff = 10 ^ [-4.97e+00 + 4.67e+00*En +-1.91e+00*En^2 + 2.19e-01*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Pk. #	Energy (kev)	Measured Efficiency	% Difference	Calculated Efficiency	% Difference	Prev.Calc. Efficiency
1	59.50	2.43e-02	-0.10	2.43e-02	-0.97	2.40e-02
2	88.04	3.11e-02				
4	00.04	3.11e-U2	0.47	3.13e-02	-1.10	3.10 e -02
3	122.06	3.16e-02	-0.74	3.14e-02	0.11	3.14e-02
4	165.85	2.71e-02	0.42	2.72e-02	3.60	2.82e-02
5	279.00	1.63e-02	-0.06	1.63e-02	16.88	1.96e-02
6	391.68	1.37e-02	0.18	1.38e-02	1.22	1.39e-02
7	661.64	9.00e-03	-1.33	8.88e-03	-1.39	8.76e-03
8	898.02	6.68e-03	2.18	6.83e-03	-0.95	6.76e-03
9	1173.21	5.45e-03	-0.33	5.43e-03	-0.24	5.42e-03
10	1332.48	4.94e-03	-1.12	4.88e-03	0.02	4.88e-03
11	1836.01	3.76e-03	0.38	3.77e-03	-0.09	3.77e-03

Calibration Results Saved.

OK JO 11/1/12

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration

11/6/2018

Detector

9 17

Geometry

Crossover energy=300 keV

MEETS ALS

EFF @ CROSSOVER

% DIFF* -4.61% ACCEPTANCE CRITERIA?

0.015937

OK

LOWER EFFICIENCY CURVE UPPER EFFICIENCY CURVE

0.016707

4.83%

OK

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to OR within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

-1.466460E+01

В 1.579560E+01

С -5.939207E+00

Calculated efficiency

0.015937

D 6.699466E-01

En is energy in keV

Crossover energy

Polynomial

 $10^{A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3}$

-4.969571E+00

В 4.672936E+00

С -1.909453E+00

Calculated efficiency

0.016707

D 2.193232E-01 En is energy in keV

Crossover energy

300

300

On To 11/7/12

Standards File. Gsstd17.std
Assay Date 01/01/2018 10:00
ID.: Geo 17 Std 1090 215g Mixed Gamma

Pk #	Nuclide	Energy	Halflife		Br.Ratio	dps/gm
=000	*******	2202220000	==========	===:		
1	Am-241	59.50	4.322E+02	*****		
•	08 400				0.35900	17.22
2	Cd-109	88.04	4.626E+02	dys	0.03720	241.06
3	Co-57	122.06	2.718E+02	dvs	0.85510	
4	Ce-139	460 00			0.03310	5.51
	CG-133	165.85	1.376E+02	dys	0.80350	8.24
5	Hg-203	279.00	4.661E+01	dvs	0.77300	
_	- 440			100	0.77300	18.83
6	Sn-113	391.68	1.151E+02	dys	0.64900	14.18
7	Cs-137	661.64		900		44.70
•		001.04	3.007E+01	Yrs	0.85120	6.95
8	Y-88	898.02	1.066E+02	dys	0.93400	
9	G- C0			uya	0.93400	23.83
9	Co-60	1173.21	5.271E+00	yrs	0.99980	10.86
10	Co-60	1332.48				10.00
			5.271E+00	yrs	0.99990	10.87
11	Y-88	1836.01	1.066E+02	dvs	0.00200	
			~.0002702	CYB	0.99380	23.71

1090 # 1090 Hail 3-5-18

1380 Se board industrial Blvd.
Atlanta, Georgia 30318
Tel 404 - 352-8677
Fax 404 - 352-2837
www.ez a g.com

Analytics

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN
Customer: ALS Laboratory Group
P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray	Lieff t Ma et	A 11 41 5		Un	certain	ity	Calibration
	Energy, keV	Half-Life, d	Activity, Bq	Flux, s	ил. %	ua, %	U. %~	Method**
Am-241	5 9.5	1.580E+05	3.703E+03	1.329E+03	0.1	1.8	3.6	
Cd-109	88.0	4.614E+02	5.211E+04	1.928E+03	0.5			4π LS
Co-57	122.1	2.717E+02	1.183E+03			2.0	4.1	HPGe
Ce-139	165.9	1.376E+02		1.013E+03	0.4	1.7	3.4	HPGe
Hg-203			1.780E+03	1.424E+03	0.4	1.7	3.6	HPGe
_	279.2	4.659E+01	3.837E+03	3.129E+03	0.3	1.7	3.5	
Sn-113	391.7	1.151E+02	3.046E+03	1.979E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.493E+03	1.271E+03	0.7			HPGe
Y-88	898.0	1.066E+02	5.107E+03			1.9	4.1	HPGe
Y-88	1836.1	***************************************	0.101E+03	4.785E+03	0.7	1.7	3.7	HPGe
Co-60		1.00071.00		5.066E+03	0.7	1.7	3.7	
	1173.2	1.925E+03	2.337E+03	2.334E+03	0.7	1.8	3.9	IIDO:
Co-80	1332.5			2.337E+03	0.7	1.8	3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4 n LS - 4 n Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

EZA Certificate

EZA Certificate Program Rev. 0, 07-DEC-2015

Page 1 of 2

Comments:										
215.00 g/~120 mL of sand										
Expiration Date: 06-March-2019										
This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity por ISO 9978: 1992.										
Source Prepared by: Z. Dimitrova, Radiochemist										
QC Approved by: J. Lahr, Spectroscopist Date: 02-mn - 18										

SRS Number: 108579

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source Detector 9 215-grams-Mixed nuclide source in steel can

							\cup							
		# of Half Lives	Expired	0.01	2.25	3.83	7.56	22.32	9.04	0.09	9.75	0.54	0.54	9.75
			Pass/Fail	Pass	Pass	Pass	Pass	>5 h-lives	>5 h-lives	Pass	>5 h-lives	Pass	Pass	>5 h-lives
11/6/2018			Recovery	114%	101%	%66	100%	>5 h-lives	>5 h-lives	%66	>5 h-lives	100%	100%	>5 h-lives
Count Date: 11/6/2018			Activity	537	6440	157	227	SC	SC	189	SC	305	305	SC
ŭ			pCi/L	469.9	6393.5	157.9	227.3	525.3	389.9	190.8	6.699	305.4	305.9	666.5
) ACTIVITY		DPS	3738.2	50860.2	1256.0	1808.3	4178.5	3101.7	1517.9	5328.7	2429.5	2433.2	5301.9
	EXPECTED ACTIVITY			g Am-241	Cd-109	Co-57	Ce-139	Hg-203	Sn-113	Cs-137	Y-88	Co-60	Co-60	Υ-88
F DATE: 1/1/2016		Mass of	Standard	215 g				8						
REF DATE:	FROM ANALYTICS.LIB		Gamma Fraction:	0.3590	0.0372	0.8551	0.8035	0.7730	0.6490	0.8512	0.9340	0.9998	0.9999	0.9938
1041			KeV Half Life(y) Gammas/Sec.	1342	1892	1074	1453	3230	2013	1292	4977	2429	2433	5269
	FROM CALIBRATION CERTIFICATE		Half Life(y)	432.0000	1.2666	0.7441	0.3768	0.1276	0.3151	30.0000	0.2919	5.2714	5.2714	0.2919
Irce:	IBRA		KeV	59.5	88	122	166	279	392	662	868	1173	1332	1836
VERIF Source: 1041	FROM CAL		Isotope	Am-241	Cd-109	Co-57	Ce-139	Hg-203	Sn-113	Cs-137	Y-88	Co-60	Co-60	Y-88

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

M J 11/19

LiOprins/RAD\INST\GAMMA\Calibration\Efficiency\GE017_CAL_VER_(1041)_Det7_09.25.18

SEEKER

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 110618-9 Geo 17 Cal Ver (1041)

Sampling Start: 01/01/2016 10:00:00	Counting Start: 11/06/2018 09:47:44
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.50E+004 Hrs
Buildup Time 0.00E+000 Hrs	
Sample Size 2.15E+002 g	Real Time 1889 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 9 (Detector 9)

Energy(keV) = -2.31 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/06/2018 FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En^2 + 0.00E+00*En^3 11/01/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)			CERTAINTY	C.L. COUNTS		, ,	FLAG
1	49.13		-39		86			NET< CL HiResid
								Wide Pk
2	49.23	102.77	-62	104	86	1830	0.43 h	NET< CL HiResid
3	56.89	118.02	6247	330	239	6650	2.19	HiResid
4	59.37	122.97	66716	536	118	2570		HiResid
5	74.45	153.05	149	136	110	2454	0.89 a	
6	87.95	179.95	22698	328	107	2297	0.89 a	L
7	102.85	209.65	73	71	57	790	0.45 €	L
8	121.93	247.69	4217	163	81	1335	0.88 ε	ı
9	136.36	276.46	575	114	85	1340	0.96 €	ı
10	165.83	335.21	377	98	74	1107	0.85 ε	ı
11	278.23	559.30	41	59	47	548	0.53 ε	NET< CL
12	310.39	623.42	45	113	93	1361	1.37 a	NET< CL
13	391.95	786.02	82	89	72	947	0.99 a	ı
14	511.20	1023.74	93	89	71	934	1.39 ε	L .
15	601.09	1202.96	47	88	72	846	1.58 €	NET< CL
16	633.20	1266.97	17	67	55	596	1.07 ε	NET< CL
17	661.87	1324.12	19203	288	65	738	1.43 a	HiResid
18	897.87	1794.61	56	72	58	739	1.19 a	NET< CL
		Page 001						5 00 66

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
19	1173.29	2343.71	16288	262	48	414	1.82	
20	1332.40	2660.91	14679	244	23	101		a HiResid
21	1834.97	3662.83	40	17	9	17	1.36	

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins
GammaScan

Background File: DET091031.BKG (103118-9 LONG BKG CAL)

Bkg.File Detector #: 9

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET COUNTS	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
5	74.45	149	136	110	143	136	110	
6	87.95	22698	328	107	22696	328	107	
14	511.20	93	89	71	50	89	72 1	NET <cl< td=""></cl<>
17	661.87	19203	288	65	19202	288	65	
18	897.87	56	72	58	54	72	58 1	NET <cl< td=""></cl<>

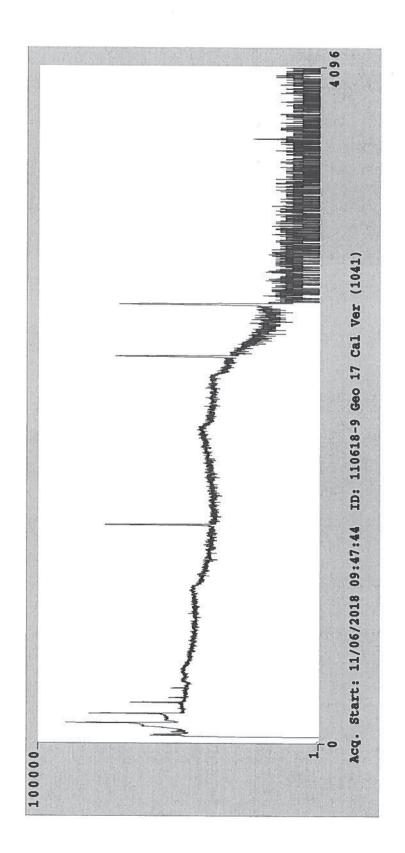
181593D09.SPC Analyzed by **************** SEEKER FINAL ACTIVITY REPORT Version 2.2.1 ALS Laboratory Group - Fort Collins

GammaScan *****************

Geo 17/26

Sample ID: 110618-9 Geo 17 Cal Ver (1041)										
Sampling Start: 01/01/2016 10:00:00 Counting Start: 11/06/2018 09:47:4 Sampling Stop: 01/01/2016 10:00:00 Decay Time 2.50e+004 Hr Buildup Time 0.00e+000 Hrs Live Time 1800 Se Sample Size 2.15e+002 g Real Time 1889 Se Collection Efficiency 1.0000 Spectrum File										
Detector #: 9 (Detector 9) Efficiency File: (D09)(Sh17).EFF (Geo 17 Eff Cal) Eff=10^[-1.47E+01 +1.58E+01*L +-5.94E+00*L^2 +6.70E-01*L^3] 11/06/2018 Eff.=10^[-4.97E+00 +4.67E+00*L +-1.91E+00*L^2 +2.19E-01*L^3] Above 300.00 keV										
Library	File:	ANAT.VTT	CAL.LIB (Ar							
_			:========			=======				
			SURED or MDA							
			=========	========			=======			
	N									
			tration		Critical	Halflife				
	(keV) T)		Level	•				
			+- 4.32E+00							
Cd-109	88.02	6.44E+03	+- 9.31E+01	6.14E+01	3.03E+01	1.11E+04				
Co-57	122.07	1.57E+02	+- 6.07E+00	6.16E+00	3.03E+00	6.50E+03				
		2.27E+02	+- 5.90E+01	9.07E+01	4.45E+01	3.30E+03				
Cs-137	661.62	1.89E+02	+- 2.84E+00	1.31E+00	6.42E-01	2.64E+05				
Co-60	_		+- 3.52E+00							
			+- 4.90E+00							
			+- 5.08E+00							
Hg-203	279.18	MDA		4.39E+06						
Sn-113	391.68	MDA MDA		4.40E+02r						
Y-88	898.02	MDA	• • • •	1.34E+03	6.58E+02	2.56E+03				
	MEASURED TOTAL: 7.85E+03 +- 1.69E+02 pCi/g									
UNKNOWN, SUM or ESCAPE PEAKS										

PK. #	(keV)	ADDRESS CHANNEL		UN- CERTAINTY	C.L. COUNTS	 ,,	FLAG
1		102.55 Page 004	-39	104	86		Deleted


503 of 624

181593D09.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	net Counts	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
2	49.23	102.77	-62	104	86	1830	0.43	Deleted
3	56.89	118.02	6247	330	239	6650	2.19	Unknown
5	74.45	153.05	143	136	110	2454	0.89	Unknown
7	102.85	209.65	73	71	57	790	0.45	Unknown
9	136.36	276.46	575	114	85	1340	0.96	Unknown
11	278.23	559.30	41	59	47	548	0.53	Deleted
12	310.39	623.42	45	113	93	1361	1.37	Deleted
13	391.95	786.02	82	89	72	947	0.99	Unknown
14	511.20	1023.74	50	89	72	934	1.39	Deleted
15	601.09	1202.96	47	88	72	846	1.58	Deleted
16	633.20	1266.97	17	67	55	596	1.07	Deleted
18	897.87	1794.61	54	72	58	739	1.19	Deleted
21	1834.97	3662.83	40	17	9	17	1.36	Unknown

c:\SEEKER\BIN\181593d09.res Analysis Results Saved.

Bai, 9-92-119

1380 Seabo ⇒ rd Industrial Blvd Atlanta, Ge⇔ rgla 30318 Tel 404-352 = 8677 Fax 404-352 = 2837 www.ezag.c ⇔ m

CERTIFICATE OF CALIBRATION Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN
Customer: ALS Laboratory Group
P.O. Number: FC000928, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (MIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to MIST."

Reference Date: 01-January-2016

12:00 PM EST

MGS Mixture

Isotope	Gamma-Ray Energy, keV	Half-Life, d	Antibide D-		Un	certair	nty	Calibration
Am-241	59.6	1.580E+05	Activity, Bq	Flux, s ⁻¹	ид, %	ug, %	U, %°	Method**
Cd-109	88.0		3.737E+03	1.342E+03	0.1	1.8	3.6	4n LS
Co-57	122.1	4.614E+02	5.114E+04	1.892E+03	0.5	2.0	4.1	HPGe
Ce-139	165.9	2.717E+02	1.255E+03	1.074E+03	0.4	1.7	3.4	HPGe
Hg-203		1.376E+02	1.816E+03	1.453E+03	0.4	1.7	3.6	HPGe
Sn-113	279.2	4.659E+01	3.960E+03	3.230E+03	0.3	1.7	3.5	HPGe
Cs-137	391.7	1.151E+02	3.098E+03	2.013E+03	0.4	1.9	3.9	HPGe
Y-88	661.7	1.099E+04	1.519E+03	1.292E+03	0.7	1.9	4.1	HPGe
	898.0	1.066E+02	5.312E+03	4.977E+03	0.7	1.7	3.7	HPGe
Y-88	1836.1			5.269E+03	0.7	1.7	3.7	nrGe
Co-60	1173.2	1.926E+03	2.433E+03	2.429E+03	0.7	1.8	3.9	LIDO
Co-60	1332.5			2.433E+03	0.7	1.8	3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified 3/27/2018 New Exp. Date => 03/27/2019

EZA Certificate Program Rev. 0, 07-DEC-2015

Corporate Office

Laboratory 1380 Seaboard Industrial Blvd. Atlanta, Georgia, 30318 Cornments:
-120 mL / 215.0 g of sand

Expiration Date: 24-February-2017

This source was wipe tested in its inactive areas with leak test results < 185 Bq (5 nCi) of removable activity por ISO 9978:1992.

Source Prepared by:

A. Herron, Radiochemist

OC Approved by:

Date: 24-FEB-16

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Billable To:

ALS Group USA, Corp.
Accounts Payable Department
10450 Stancliff Road Suite 210
Houston, TX 77099

Purchase Order FC002121

Requested By Steven White

11/12/2018 Date

Net 30 Days Submitted Status **Terms**

Location Fort Collins Env Radio

Chem

Vendor	Shipping
VWR International Inc	ALS Enviromental Laboratory
P.O. Box 640169	Fort Collins Env Radio Chem
Pittsburgh, PA 15264-0169	225 Commerce Dr Fort Collins, CO 80524
Email: Prashant.Chukoury@vwr.com	Phone: (970) 490-1511 Fax:

Qty	Unit	Vendor Item	Manuf. Number	Unit Price	SubTotal
300	EA	71000-006 - Cap PTFE Silicone Septa White, 24-414, ea	CAH242005104	\$0.47	\$141.00
Comments: 3 b	Comments: 3 bags of 100 lids per	per bag - Aaron's request			
9	EA	EM1.09535.0007 - pH strips, 0-14 600/PK 6/pk	800/PK	\$93.97	\$563.82
comments: 6 p	Comments: 6 packages of 6 please.	ease.			
12	SO	21008-771 - CENTRIFUGE TUBE 430776 PP 250ML CS102	430776	\$119.56	\$1,434.72
Comments: 12 cases please	cases please				
_	A Y	89097-930 - VWR TAPE GRN 1/2X500 PK6RL	Q#8030717219 THRU 12/31/18	\$12.89	\$12.89
Commence of manufactures of the second	. 05				

\$2152.43

Vendor Total

508 of 624

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 112018-10 Geo 17 Eff Cal (1090)

Detector #: 10 (Detector 10)

Energy(keV) = -2.00 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/20/2018 FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En^2 + 0.00E+00*En^3 11/15/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)		NET/MDA COUNTS	CERTAINTY	C.L. COUNTS		FWHM (keV)	FLAG
1		119.41			652	37756	3.17 a	HiResid Wide Pk
2	59.43	122.59	50122	567	286	13910	1.07 b	HiResid
3	67.11	137.92	936	574	469			Wide Pk
4	87.96	179.55	120939	803	331			Wide Pk
5	89.51	182.64	5018	723	583	34261		
6	121.94	247.37	59529	575	250	10687		
7	123.39	250.26	1755	420	338	14933	1.83 h	
8	136.37	276.16	7400	316	218	8084		
9	165.77	334.83	37238	478	232	8501	1.23 a	Wide Pk
10	167.19	337.68	823	422	344	13815	2.14 t	
11	255.14	513.21	1062	219	172	5842	1.22 a	L
12	265.74	534.37	139	139	113	3147	0.69 a	ı
13	279.16	561.16	2754	261	196	6696	1.45 a	ı
14	351.99	706.51	93	125	102	2541	0.68 a	NET< CL
15	391.72	785.80	25681	387	179	5571	1.52 a	ı
16	393.79	789.93	577	241	194	6190	1.64 h	
17	511.53	1024.94	636	217	173	5291	1.77 a	ı
18	661.81	1324.87	83708	615	172	4961	1.93 a	HiResid Wide Pk
19	662.77	1326.79	4153	389	302	9922	3.89 t	HiResid
		Page 001						

Dless Than 10,000 counts achieved due to greater Than 5 1/2 tives elapsed 10/6/62

PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN- C.L. BKG FWHM # (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG 20 813.29 1627.20 233 250 204 6141 2.87 a 21 898.14 1796.55 30649 415 183 5725 2.34 a HiResid 22 1173.27 2345.68 92455 638 158 3794 2.74 a HiResid 23 1332.42 2663.32 82954 612 170 4401 2.78 a HiResid 24 1835.40 3667.20 21089 308 83 909 3.59 a HiResid

SEEKER BACKGROUND SUBTRACT RESULTS Version 1.8.2

ALS Laboratory Group - Fort Collins GammaScan

Background File: DET101114.BKG (111418-10 LONG BKG CAL)

Bkg.File Detector #: 10

BACKGROUND SUBTRACT RESULTS

PK#	ENERGY (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	OLD CR.LEVEL	NEW NET COUNTS	NEW UN- CERTAINTY	NEW CR.LEVEL	FLAG
3	67.11	936	574	469	899	574	469	
4	87.96	120939	803	331	120926	803	331	
5	89.51	5018	723	583	5012	723	583	
14	351.99	93	125	102	-34	126	104	NET <cl< td=""></cl<>
17	511.53	636	217	173	448	217	175	
21	898.14	30649	415	183	30645	415	183	

Sample ID: 112018-10 Geo 17 Eff Cal (1090)

Stds. Match Tolerance: 2.00 keV

Detector Number: 10 Calibration Date. . . 11/20/2018 08:24:08

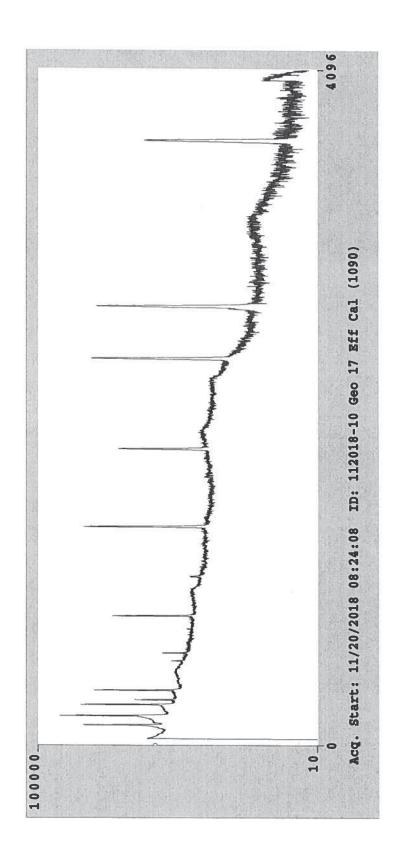
Geometry File (D10)(Sh17).eff ID. Geo 17 Eff Cal Amount of Std. in Calib. Source: 215.000000 gm

Crossover: 300.00 keV

Below Crossover Efficiency Fit:

 $Eff = 10 ^ [-5.73e+01 + 7.32e+01*En +-3.17e+01*En^2 + 4.54e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)


Above Knee Efficiency Fit:

 $Eff = 10 ^ [-2.63e+01 + 2.68e+01*En +-9.41e+00*En^2 + 1.07e+00*En^3]$

(Where En = LOG(Energy in keV)) (Polynomial)

Pk. #	Energy (kev)	Measured Efficiency	% Difference	Calculated Efficiency	% Difference	Prev.Calc. Efficiency
	EO EO	1 57. 00				=======================================
_	59.50	1.57e-02	0.06	1.57e-02	-6.73	1.48e-02
2	88.04	4.24e-02	-0.28	4.23e-02	-1.77	4.15e-02
3	122.06	5.58e-02	0.44	5.60e-02	-0.59	5.57e-02
4	165.85	5.54e-02	-0.25	5.53e-02	-0.42	5.50e-02
5	279.00	4.46e-02	0.03	4.46e-02	1.25	4.52e-02
6	391.68	3.78e-02	0.08	3.78e-02	-0.07	3.78e-02
7	661.64	2.80e-02	-0.72	2.78e-02	-1.84	2.73e-02
8	898.02	2.18e-02	1.62	2.21e-02	-1.23	2.19e-02
9	1173.21	1.85e-02	-1.80	1.82e-02	-0.95	1.80e-02
10	1332.48	1.66e-02	0.75	1.67e-02	-1.17	1.65e-02
11	1836.01	1.42e-02	0.04	1.42e-02	-3.52	1.37e-02

Calibration Results Saved.

Gamma Efficiency Calibration - Crossover energy efficiency difference

Calibration

11/20/2018

Detector

10

Geometry

17

Crossover energy=300 keV

MEETS ALS

LOWER EFFICIENCY CURVE

EFF @ CROSSOVER

% DIFF*

ACCEPTANCE CRITERIA?

0.042379

4.57%

OK OK

UPPER EFFICIENCY CURVE 0.040526 -4.37%

*When a single calibration curve does not meet ALS acceptance criteria, a split-fit efficiency calibration may be employed. This entails the use of two separate energy range calibrations, a low energy efficiency curve and a high energy efficiency curve. A crossover energy must be specified that marks where the software will use either the low energy efficiency curve or the high energy efficiency curve. It should be noted that if a nuclide is specified that has a gamma photon energy that is equal to OR within 15 keV of the crossover energy, the potential exists for the calculated efficiencies at the crossover energy to be significantly different than the true detection efficiency of the detector. At times by as much as 20%. This is an artifact of the non-equivalency of the calibration equations specified for each energy range. This may result in an effective high or low bias to the analytical results. This bias is reflected in the above calculated % difference. ALS Environmental Fort Collins will not accept any calibration with an effective % difference of greater than 5% without supervisory approval. Results are submitted without further qualification.

Efficiency equations

Polynomial

В

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

-5.729612E+01 Α

7.315619E+01

C -3.167205E+01 Calculated efficiency

0.042379

D 4.542803E+00 En is energy in keV

Crossover energy

300

Polynomial

 \square

10^(A+B*(LOG(En))+C*(LOG(En))^2+D*(LOG(En))^3)

-2.628528E+01 Α В

2.677837E+01

1.071349E+00

С -9.407346E+00 Calculated efficiency

0.040526

En is energy in keV

Crossover energy

300

ONT Whole

Standards File. Gsstd17.std
Assay Date 01/01/2018 10:00
ID.: Geo 17 Std 1090 215g Mixed Gamma

Pk#	Nuclide	Energy	Halflife		Br.Ratio	dps/gm
====		222222222	==========	====		
1	Am-241	59.50	4.322E+02		0.35900	17.22
2	Cd-109	88.04	4.626E+02		0.03720	241.06
3	Co-57	122.06	2.718E+02	_	0.85510	5.51
4	Ce-139	165.85	1.376E+02	dys	0.80350	8.24
5	Hg-203	279.00	4.661E+01		0.77300	18.83
6	Sn-113	391.68	1.151E+02	-	0.64900	14.18
7	Cs-137	661.64	3.007E+01		0.85120	6.95
8	X-88	898.02	1.066E+02		0.93400	23.83
9	Co-60	1173.21		yrs	0.99980	
10	Co-60	1332.48		yrs	0.99990	10.86
11	Y-88	1836.01		-	0.99380	10.87 23.71

4 1090 Heil 3-8-11

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404 •35 2 • 8677 Fax 404 • 35 2 • 2837 www.ezag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 108579

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN

Customer: ALS Laboratory Group

P.O. Number: FC001718, Item 2

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2018

12:00 PM EST

MGS Mixture

In alama	Gamma-Ray	11.101.00			Ur	certair	ity	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s [¬] ¹	u4, %	u_R , %	U, %*	Method**
Am-241	59.5	1.580E+05	3.703E+03	1.329E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.211E+04	1.928E+03	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	1.183E+03	1.013E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.780E+03	1.424E+03	0.4	1.7	3.6	HPGe
Hg-203	279.2	4.659E+01	3.837E+03	3.129E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	3.046E+03	1.979E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.493E+03	1.271E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.107E+03	4.785E+03	0.7	1.7	3.7	
Y-88	1836.1	· SACIMINATION -	- H- () h	5.066E+03	0.7	1.7	3.7	HPGe
Co-60	1173.2	1.925E+03	2.337E+03	2.334E+03	0.7	1.8	3.9	IIDCI .
Co-60	1332.5	With Mits Consequent		2.337E+03	0.7	1.8	3.9	HPGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." **Calibration Methods: 4π LS - 4π Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Comments: 215.00 g / ~120 mL of s	sand =	
Expiration Date: 06-	March-2019	
This source was wip	e tested in its inactive areas with leak test results < 185 Bq (5	nCi) of removable activity per ISO
9978:1992.		
Source Prepared by	Z. Dimitrova, Radiochemist	
QC Approved by:	J. Lahr, Spectroscopist	Date: 02-MA -18

SRS Number: 108579

Geometry 17 Calibration Verification: Gamma Mixed Nuclide Source

Detector 10

²¹⁵⁻grams-Mixed nuclide source in steel can

DPS pCi/L Activity Recovery Pass/Fail Expired	Sovi glott go #
Pass/Fall	<u> </u>
\ X \ X	
AM-/4	_
	7,000
08000	
1347	Common C
432.0000	Last 1 if a (1)
5.00	Koy
147.117	lentone

NC = NOT CALCULATED DUE TO ACTIVITY BEING BELOW THE MDCa

ON Jr 11/20/12

I:\Oprtns\RAD\\\NST\GAMMA\Calibration\Efficiency\GEO17_CAL VER_(1041)_Det10_11,20,18

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Geo 17/26

Sample ID: 112018-10 Geo 17 Cal Ver (1041)

SEEKER

	,
Sampling Start: 01/01/2016 10:00:00	Counting Start: 11/20/2018 09:15:57
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.53E+004 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 1800 Sec
Sample Size 2.15E+002 g	Real Time 1875 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 10 (Detector 10)

Energy(keV) = -2.00 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/20/2018 FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En^2 + 0.00E+00*En^3 11/15/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS		FWHM (keV)	FLAG
1	57.62	118.98	1196	352	284	11939	1.47 a	à
2	59.44	122.62	38775	465	204	7069	1.07 1	o
3	87.97	179.56	30176	398	159	4695	1.06 8	a.
4	121.97	247.41	7259	244	144	3542	1.12 8	ı.
5	136.37	276.15	776	173	135	3099	1.12 8	a.
6	165.68	334.67	659	135	102	2110	0.90 a	ı
7	222.49	448.05	112	165	135	3578	1.19	NET< CL
8	351.92	706.37	163	159	129	2898	1.42 8	
9	391.85	786.07	137	106	85	1658	0.86 8	L
10	510.59	1023.05	252	164	132	2924	1.94 8	L .
11	609.71	1220.89	90	90	72	1196	0.90 a	
12	661.81	1324.86	63148	523	119	2390		HiResid
13	821.46	1643.52	108	133	108	2152		NET< CL
14	898.17	1796.62	268	191	155	3679	2.78 8	
15	1173.25	2345.63	54737	486	108	1864		HiResid
16	1332.41	2663.29	50075	467	109	1821		HiResid
17	1835.86	3668.12	98	47	35	188	2.82 8	

SEEKER BACKGROUND SUBTRACT RESULTS Vers. 2.2.1

ALS Laboratory Group - Fort Collins
GammaScan

Background File: DET101114.BKG (111418-10 LONG BKG CAL)

Bkg.File Detector #: 10

BACKGROUND SUBTRACT RESULTS

	ENERGY	OLD NET	OLD UN-	OLD	NEW NET	NEW UN-	NEW	
PK#	(keV)	COUNTS	CERTAINTY	CR.LEVEL	COUNTS	CERTAINTY	CR.LEVEL	FLAG
3	87.97	30176	398	159	30167	398	160	
8	351.92	163	159	129	67	159	130	NET <cl< td=""></cl<>
10	510.59	252	164	132	112	164	134	NET <cl< td=""></cl<>
11	609.71	90	90	72	15	90	74	NET <cl< td=""></cl<>
14	898.17	268	191	155	264	192	155	

ALS Laboratory Group - Fort Collins
GammaScan

Geo 17/26

Sample ID: 112018-10 Geo 17 Cal Ver (1041)

	Counting Start: 11/20/2018 09:15:57
Sampling Stop: 01/01/2016 10:00:00	Decay Time 2.53e+004 Hrs
	Live Time 1800 Sec
	Real Time 1875 Sec
Collection Efficiency 1.0000	Spectrum File
Cr. Level Confidence Interval: 95 %	Det. Limit Confidence Interval: 95 %

Detector #: 10 (Detector 10)

Efficiency File: (D10)(Sh17).eff (Geo 17 Eff Cal)

*Eff=10^[-5.73E+01 +7.32E+01*L +-3.17E+01*L^2 +4.54E+00*L^3] 11/20/2018

Eff.=10^[-2.63E+01 +2.68E+01*L +-9.41E+00*L^2 +1.07E+00*L^3] Above 300.00 keV

Library File: ANALYTICAL.LIB (Analytical)

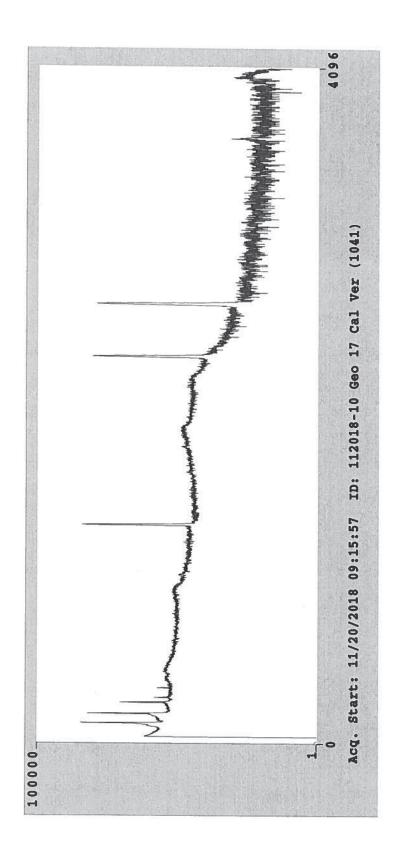
MEASURED or MDA CONCENTRATIONS

	ENERGY E	Concentr	ation		Critical	Halflife
Nuclide	(keV) T	(pCi/g)	MDA	Level	(hrs)
Am-241	59.54	4.80E+02 +-	5.76E+00	5.07E+00	2.52E+00	3.79E+06
Cd-109	88.02	6.47E+03 +-	8.53E+01	6.90E+01	3.42E+01	1.11E+04
Co-57	122.07	1.57E+02 +-	5.28E+00	6.29E+00	3.11E+00	6.50E+03
Ce-139	165.85	2.09E+02 +-	4.26E+01	6.57E+01	3.24E+01	3.30E+03
Cs-137	661.62	1.99E+02 +-	1.65E+00	7.60E-01	3.76E-01	2.64E+05
Co-60	Average:x	3.06E+02 +-	1.97E+00			4.62E+04
	1173.21	3.07E+02 +-	2.73E+00	1.23E+00	6.08E-01	4.62E+04
	1332.48	3.05E+02 +-	2.85E+00	1.35E+00	6.66E-01	4.62E+04
Hg-203	279.18	MDA		3.29E+06	1.63E+06	1.12E+03
Sn-113	391.68	MDA		2.80E+02r	1.38E+02	2.76E+03
Y-88	898.02	MDA		7.63E+02	3.77E+02	2.56E+03

MEASURED TOTAL: 7.82E+03 +- 1.43E+02 pCi/g

UNKNOWN, SUM or ESCAPE PEAKS

PK.	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	57.62	118.98 Page 003	1196	352	284		1.47	Unknown


181877D10.SPC Analyzed by

UNKNOWN, SUM OF ESCAPE PEAKS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
5	136.37	276.15	776	173	135	3099	1.12	Unknown
7	222.49	448.05	112	165	135	3578	1.19	Deleted
8	351.92	706.37	67	159	130	2898	1.42	Deleted
9	391.85	786.07	137	106	85	1658	0.86	Unknown
10	510.59	1023.05	112	164	134	2924	1.94	Deleted
11	609.71	1220.89	15	90	74	1196	0.90	Deleted
13	821.46	1643.52	108	133	108	2152	2.00	Deleted
14	898.17	1796.62	264	192	155	3679	2.78	Unknown
17	1835.86	3668.12	98	47	35	188	2.82	Unknown

c:\SEEKER\BIN\181877d10.res Analysis Results Saved.

Racif 2-25-16

1380 Seaboard Industrial Blvd. Atlanta, Georg €a 30318 Tel 404.352.8677 Fax 404-352-2837 www.ezag.com

CERTIFICATE OF CALIBRATION

Standard Reference Source

SRS Number: 102367

Source Description: Sand in Metal Can

Product Code: 8401-EG-SAN Customer: ALS Laboratory Group P.O. Number: FC000928, Item 2

Analytics

This standard radionuclide source was prepared from an aliquot measured gravimetrically from a master radionuclide solution calibrated with a germanium gamma-ray spectrometer system. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using germanium gamma-ray spectrometry. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology (NIST) through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST."

Reference Date: 01-January-2016

12:00 PM EST

MGS Mixture

A A	Gamma-Ray				Ur	certair	ity.	Calibration
Isotope	Energy, keľ	Half-Life, d	Activity, Bq	Flux, s ⁻¹	ид, %	u _B , %	U, %*	Method**
Am-241	59.5	1.580E+05	3.737E+03	1.342E+03	0.1	1.8	3.6	4π LS
Cd-109	88.0	4.614E+02	5.114E+04	1.892E+03	0.5	2.0	4.1	HPGe
Co-57	122.1	2.717E+02	1.255E+03	1.074E+03	0.4	1.7	3.4	HPGe
Ce-139	165.9	1.376E+02	1.816E+03	1.453E+03	0.4	1.7	3.6	HPGe
Hg-203	279.2	4.659E+01	3.960E+03	3.230E+03	0.3	1.7	3.5	HPGe
Sn-113	391.7	1.151E+02	3.098E+03	2.013E+03	0.4	1.9	3.9	HPGe
Cs-137	661.7	1.099E+04	1.519E+03	1.292E+03	0.7	1.9	4.1	HPGe
Y-88	898.0	1.066E+02	5.312E+03	4.977E+03	0.7	1.7	3.7	HPGe
Y-88	1836.1			5.269E+03	0.7	1.7	3.7	111-06
Co-60	1173.2	1.925E+03	2,433E+03	2.429E+03	0.7	1.8	3.9	HPGe
Co-60	1332.5	3		2.433E+03	0.7	1.8	3.9	HFGe

Mixed Gamma (MGS) master solution is EZA's eight isotope mixture which is calibrated quarterly and consists of Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Cs-137, Y-88, and Co-60. *Uncertainty: U - Relative expanded uncertainty, k = 2. See MST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of MST Measurement Results." **Calibration Methods: 4n LS - 4n Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber.

(Certificate continued on reverse side)

Standard Re-Verified 3/27/2018 New Exp. Date =) 03/27/2019

EZA Certificate Program Rev. 0, 07-DEC-2015

Comments: ~120 mL / 215.0 g of	sand	
Expiration Date: 2- This source was was 9978:1992.	4-February-2017 ipe tested in its inactive areas with leak test results < 18	35 Bq (5 nCi) of removable activity per ISO
Source Prepared k	py: A. Herron, Radiochemist	
QC Approved by:	J. Lahr, Spectroscopist	Date: <u>24-FEB-/6</u>

SRS Number: 102367

Gamma Spectroscopy

Quality Control Data Weekly Background Calibrations

Gamma Spectrometer Calibration Log

4/18
ļ

Reviewed By/Date: 30 1114/18

		Backg	round		Source	Chaole	Daniel Co. Cl. 1					
		Dackg	Journa		Source	T		Repeat !	eat Source Check			
Det:: No.	Out Of Service	Started	OK	Started	ОК	Failed Parameter(s)	OK	Failed Parameter(s)	Corrective Action Taken **	Removed from Service		
1.		35	JR	35	80							
2.			JV		3							
3.			JP		75							
4.			JP	l '	3		4					
5.			JP		8							
6.	55								Ti di			
7.		35	JP	85	85				1			
8,			JP		85							
9.			JP	(75		-					
10.	1	V	JP	V	8				65			

^{.**} Corrective Action:

*** Due to detector	failing two	different OC	C parameters o	n the first	and se	cond daily	check a third
daily check was perform	ed. All QC	parameters	passed for the	third daily	check	Detector	is online
for the date of			•			. 20.00.01	13 Offiffic

481701 A

Form 754r16a.doc (10/27/11)

GAMMA ANALYSIS

RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Weekly Background Check

Sample ID: 111418-9 LONG BKG CAL

	Counting Start: 11/14/2018 14:31:39
	Decay Time 5.27E-001 Hrs
Buildup Time 0.00E+000 Hrs	
Sample Size 1.00E+000 L	
Collection Efficiency 1.0000	Spc. File

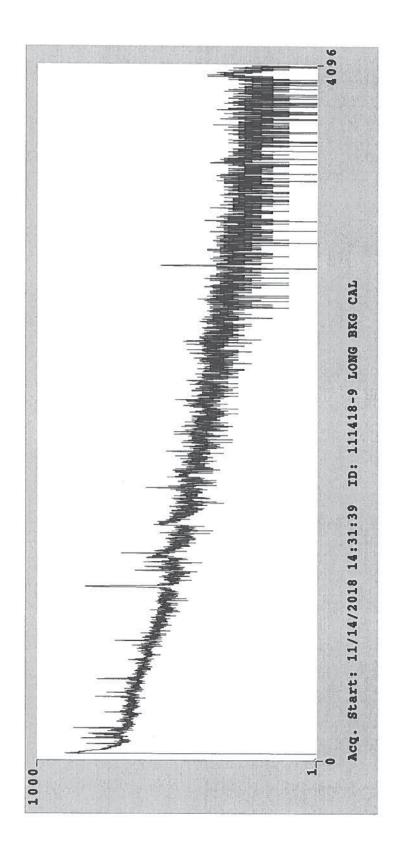
Detector #: 9 (Detector 9)

Energy(keV) = $-2.33 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/14/2018$ $FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En^2 + 0.00E+00*En^3 11/01/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 ______

PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL			UN- C.L. BE ERTAINTY COUNTS COU		FWHM (keV)	FLAG	
1	46.30	96.96	321	76	55	620	0.84 a	L	
2	52.90	110.10	47	58	46	473	0.73 ε	L	
3	63.04	130.33	481	80	55	601	0.77 ε	Wide	Pk
4	65.94	136.12	227	99	78	961	1.31 k		
5	69.76	143.73	107	97	78	961	1.33	3	
6	72.34	148.87	146	107	86	1082	1.52 6	l	
7	74.81	153.80	299	75	55	601	0.83 €		
8	76.92	157.99	281	66	47	481	0.72 1		
9	84.47	173.05	79	71	57	646	0.82 a	L	
10	87.23	178.55	56	50	40	388	0.45 1		
11	92.51	189.08	651	92	63	744	1.07 a	L	
12	112.27	228.47	35	54	43	417	0.64 a	NET<	CL
13	139.69	283.15	140	57	43	407	0.74 ε	L	
14	143.48	290.72	67	89	72	815	1.25 k	NET<	CL
15	158.85	321.36	26	44	35	308	0.49 a	NET<	CL
16	182.68	368.87	41	69	55	568	0.98 8	NET<	CL
17	185.72	374.93	278	75	55	568	0.99 1		
18	198.33	400.06	144	80	63	679	1.19 a	L	
19	223.70	450.66	31	40	32	250	0.50 ε	NET<	CL
20	227.70	458.62	47	41	32	250	0.51 k		
21	238.61	480.38	265	67	48	465	0.88 a	L.	
		Page 001							



PEAK SEARCH RESULTS

PK. #	ENERGY (keV)			UN- CERTAINTY	COUNTS	COUNTS	(keV)	
22	295.22	593.25	62	55	43	374		
23	338.69	679.91	64	51	40	315	0.83	a .
24	351.98	706.41	238	68	49	417	1.18	9.
25	374.47	751.25	69	81	66	561	1.80	9.
26	511.22	1023.91	1397	119	76	712	2.57 a	a Wide Pk
27	558.70	1118.57	187	56	40	276	1.45	a.
28	569.80	1140.70	90	46	35	241	1.11	a .
29	583.54	1168.11	102	51	39	277	1.37	a .
30	596.43	1193.80	52	39	30	208	0.82	a .
31	609.65	1220.16	170	55	40	320	1.09	9.
32	651.97	1304.53	38	48	38	250	1.47	a NET< CL
33	669.93	1340.35	21	28	22	116	0.68	a NET< CL
34	803.28	1606.23	92	39	28	164	1.03	a.
35	911.18	1821.35	78	44	33	190	1.86	a.
36	962.14	1922.97	40	28	21	101	0.95	а
37	969.56	1937.76	37	33	26	135	1.30	b
38	1120.15	2237.99	46	41	32	169	2.04	a.
39	1460.59	2916.77	147	35	21	87	1.76	a

ID: 111418-9 LONG BKG CAL
Detector # 9 Background Q.C. Analysis for 11/14/2018 14:31:39

Q.C. Results Saved.

SEEKER

GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Weekly Background Check

Sample ID: 111418-10 LONG BKG CAL

	Counting Start: 11/14/2018 14:31:47
Sampling Stop: 11/14/2018 14:00:00	Decay Time 5.30E-001 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.00E+000 L	Real Time 60180 Sec
Collection Efficiency 1.0000	Spc. File

Detector #: 10 (Detector 10)

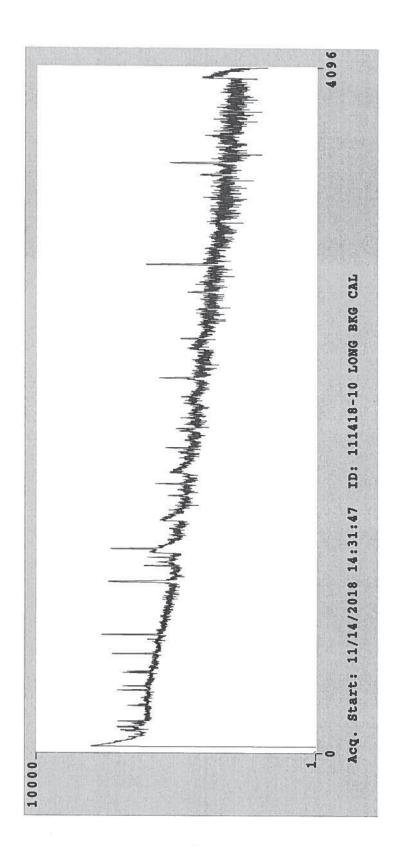
Energy(keV) = $-2.06 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/14/2018$ FWHM(keV) = $0.99 + 0.002*En + 8.54E-04*En^2 + 0.00E+00*En^3 11/15/2017$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PEAK SEARCH RESULTS

					C.L. COUNTS			FLAG
1	46.31	96.54	271	134	107	2100	0.93 a	L
2	53.45	110.80	285	155	125	2464	1.30 a	
3	63.34	130.53	655	162	127	2543	1.39 a	HiResid
								Wide Pk
4	66.08	135.99	939	152	114	2225	1.21 b	HiResid
5	71.57	146.95	531	335	273	6357	3.22	HiResid
6	74.73	153.27	892	137	102	1907	1.04 d	HiResid
7	76.91	157.62	1222	169	127	2543	1.31 €	HiResid
8	84.22	172.21	200	121	97	1741	0.93 a	
9	87.00	177.75	313	123	97	1741	0.94 b	•
10	89.82	183.38	153	121	97	1741	0.95 c	!
11	92.58	188.88	1275	177	133	2612	1.40 d	l
12	139.77	283.08	725	147	113	2013	1.24 a	•
13	143.75	291.01	233	127	102	1762	1.09 b)
14	163.13	329.70	56	85	69	1063	0.58 a	NET< CL
15	185.78	374.91	1314	147	105	2027	1.39 a	,
16	198.30	399.89	807	130	96	1831	1.16 a	•
17	205.15	413.56	95	116	94	1735	1.15 a	,
18	238.64	480.40	981	125	89	1551	1.13 a	,
19	241.83	486.76	799	132	98	1773	1.23 b	1
20	258.59	520.22	99	117	94	1649	1.35 a	,
		Page 001						

PEAK SEARCH RESULTS


PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	*	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
21	295.18	593.23	1791	140	92	1559	1.28 a	a.
22	338.36	679.41	203	91	71	1076	0.97 a	a.
23	351.96	706.56	3181	152	83	1282	1.38 8	a
24	511.15	1024.27	4684	217	139	2272	2.78	a Wide Pk
25	558.53	1118.84	586	92	64	840	1.33 a	a.
26	569.94	1141.60	321	137	109	1758	2.52	a Wide Pk
27	583.48	1168.63	482	102	76	1057	1.60 a	a
28	596.24	1194.09	129	71	55	696	1.02	a Wide Pk
29	598.28	1198.17	374	163	131	2423	2.70 1	5
30	609.51	1220.58	2512	158	100	1847	1.62 8	a
31	651.18	1303.75	77	63	50	572	0.97	a
32	670.06	1341.43	93	89	71	941	1.70 a	a
33	692.99	1387.19	131	56	42	433	0.90 a	a Wide Pk
34	695.60	1392.39	518	177	141	2287	3.65 1	o
35	768.50	1537.89	291	119	94	1204	2.72	a Wide Pk
36	786.48	1573.77	85	72	57	639	1.40	a.
37	803.28	1607.30	448	84	60	668	1.69	a
38	881.60	1763.61	53	63	50	522	1.23	a.
39	898.89	1798.13	110	107	86	1062	2.62	a .
40	911.47	1823.22	296	71	51	560	1.45	a
41	934.40	1869.00	63	67	53	573	1.57	a .
42	962.44	1924.96	274	105	82	964	3.09	a Wide Pk
43	969.02	1938.10	283	85	65	711	2.29	b
44	1001.58	2003.07	103	75	59	621	2.07	a
45	1063.92	2127.49	61	88	71	838	2.38	a NET< CL
46	1120.51	2240.44	505	85	59	646	1.96	a .
47	1210.25	2419.53	55	54	43	409	1.24	a .
48	1238.17	2475.25	188	70	53	521	2.02	a .
49	1326.96	2652.46	60	76	61	568	2.82	a NET< CL
50	1377.34	2753.01	226	82	63	568	3.15	a
51	1460.75	2919.48	1179	91	49	418	2.32	a .
52	1509.24	3016.26	58	52	41	314	1.90	a.
53	1729.34	3455.54	146	62	47	332	2.73	a .
54	1764.28	3525.27	592	74	46	322	2.83	a .
55	1846.85	3690.06	65	37	28	164	1.46	a .

ID: 111418-10 LONG BKG CAL

Detector # 10 Background Q.C. Analysis for 11/14/2018 14:31:47

#	Parameter	Value	n Sigma Test	Bounds Test	T- Test	
10	50-> 150 keV Bkg	63.570	N.A.	Pass	N.A.	
11	150-> 250 keV Bkg	52.990	N.A.	Pass	N.A.	
12	250-> 500 keV Bkg	84.548	N.A.	Pass	N.A.	
13	500->1000 keV Bkg	100.114	N.A.	Pass	N.A.	
14	1000->2000 keV Bkg	62.713	N.A.	Pass	N.A.	
15	40-> 50 keV Bkg	8.156	N.A.	Pass	N.A.	

Q.C. Results Saved.

Gamma Spectrometer Calibration Log

Date:	Ш	28	18
-------	---	----	----

Reviewed By/Date: & 11128118

		Background S			Source (Source Check		Repeat Source Check				
Det. No.	Out Of Service	Started	ОК	Started	OK	Failed Parameter(s)	OK	Failed Parameter(s)	Corrective Action Taken **	Removed from Service		
1.		5	5	80	3			,				
2.			25		85			,				
3.			85		35	1						
4.	ı		8		B							
5.	1 .		85	OK	8							
6.	8											
7.		26.	35	25	30							
8.			35		35							
9.			3									
10.				V	85							

** Corrective Action:	
Det 5 failed 250	1-7 500 BEY BILG
- ren Backgran	S-11120
	OK_

*** Due to detector failing two different QC parameters on the first and sec	and daily about a 11 1
& parameters on the first and sec	ond daily check, a third
daily check was performed. All QC parameters passed for the third daily check.	Detector is online
for the data of	Detector is offiffie
for the date of	

481739 **A**

Form 754r16a.doc (10/27/11)

SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

ALS Laboratory Group - Fort Collins GammaScan

Weekly Background Check

Sample ID: 112818-1 LONG BKG CAL

Sampling Start: 11/28/2018 13:00:00	Counting Start: 11/28/2018 13:52:56
Sampling Stop: 11/28/2018 13:00:00	Decay Time 8.82E-001 Hrs
Buildup Time 0.00E+000 Hrs	Live Time 60000 Sec
Sample Size 1.00E+000 L	Real Time 60079 Sec
Collection Efficiency 1.0000	Spc. File
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Detector #: 1 (Detector 1)

Energy(keV) =  $-1.97 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018$ FWHM(keV) =  $0.66 + 0.012*En + 6.94E-04*En^2 + 0.00E+00*En^3 08/21/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

## PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN-C.L. BKG FWHM (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) 65.95 1 135.61 98 101 81 1133 1.19 a 2 69.57 142.83 38 78 63 809 0.84 b NET< CL 74.95 153.57 3 76 44 34 314 0.40 a 736 0.95 a 92.39 188.39 109 4 79 63 5 139.91 283.25 144 70 54 598 0.80 a 6 185.59 374.46 105 70 55 614 0.85 a 7 198.38 400.00 110 69 55 599 0.85 a 8 238.63 480.35 151 75 59 635 1.01 a 264.52 532.04 9 53 58 46 0.90 a 433 10 295.17 593.23 40 68 55 558 1.04 a NET< CL 351.82 706.34 11 176 81 63 582 1.43 a 12 378.49 759.58 261 27 43 34 0.57 a NET< CL 13 511.15 1024.45 1316 127 86 902 2.56 a Wide Pk 14 558.50 1118.97 208 53 37 270 1.20 a 15 569.82 1141.58 74 37 27 179 0.67 a 583.63 1169.14 16 76 62 49 396 1.60 a 17 596.11 1194.06 57 70 56 523 1.61 a 609.28 1220.36 18 107 48 36 291 0.88 a

45

37

50

32

29

40

203 1.42 a

1.37 a

2.06 a

171

251

Page 001

124

32

59

803.08 1607.28

898.08 1796.94

911.94 1824.61

19

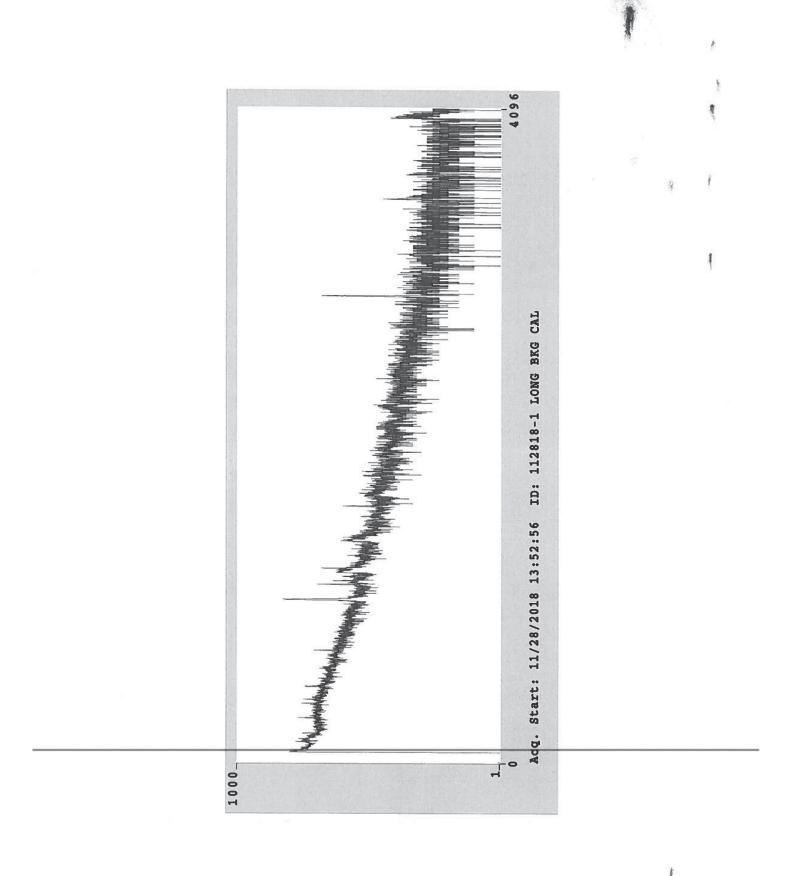
20

21

## 

## PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL		UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	1461.09 1764.77	2920.99	<b>4</b> 32	49 29	21 20		1.94	-


ID: 112818-1 LONG BKG CAL

Detector # 1 Background Q.C. Analysis for 11/28/2018 13:52:56

#	Parameter	Value	n Sigma Test	Bounds Test	T- Test	
10	40-> 50 keV Bkg	3.631	N.A.	Pass	N.A.	
11	50-> 150 keV Bkg	26.393	N.A.	Pass	N.A.	
12	250-> 500 keV Bkg	33.643	N.A.	Pass	N.A.	
13	500->1000 keV Bkg	32.696	N.A.	Pass	N.A.	
14	1000->2000 keV Bkg	18.074	N.A.	Pass	N.A.	
15	150-> 250 keV Bkg	23.003	N.A.	Pass	N.A.	

Q.C. Results Saved.

RE-CALC QC HEADER for Overwritten Results.



ALS Laboratory Group - Fort Collins
GammaScan

*********************

#### Weekly Background Check

Sample ID: 112818-2 LONG BKG CAL

·

Detector #: 2 (Detector 2)

Energy(keV) = -1.37 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018 FWHM(keV) = 0.97 + 0.002*En + 9.30E-04*En^2 + 0.00E+00*En^3 07/31/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

______

## PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN-C.L. BKG **FWHM** # (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) 53.44 109.43 60 61 49 587 0.53 a 1 2 66.15 134.80 289 131 104 1.45 a Wide Pk 1612 3 70.05 142.59 103 106 86 1254 1.07 b 4 71.44 145.37 121 184 150 2508 2.26 c NET< CL 5 75.01 152.50 232 207 169 2867 2.60 d 6 92.47 187.35 214 90 70 904 0.95 a 7 139.76 281.77 125 77 60 733 0.76 a91 74 8 158.25 318.68 65 923 1.18 a NET< CL 9 373 92 185.74 373.55 69 929 1.22 a 10 198.30 398.63 220 89 69 938 1.13 a 238.62 479.13 322 102 79 1072 1.46 a 11 592.41 12 295.36 76 67 53 595 0.96 a 351.82 705.13 229 81 62 672 1.39 a 13 511.18 1023.29 85 2.45 a Wide Pk 14 1644 131 932 60 44 396 1.35 a 15 558.45 1117.66 198 569.62 1139.95 74 58 1.75 a 16 115 592 17 583.21 1167.09 109 49 36 305 0.95 a 36 303 18 595.54 1191.71 80 48 1.03 a 85 1.93 b 19 597.16 1194.94 94 68 784 20 609.27 1219.13 152 74 57 631 1.46 a 21 669.86 1340.08 42 38 29 210 0.86 a

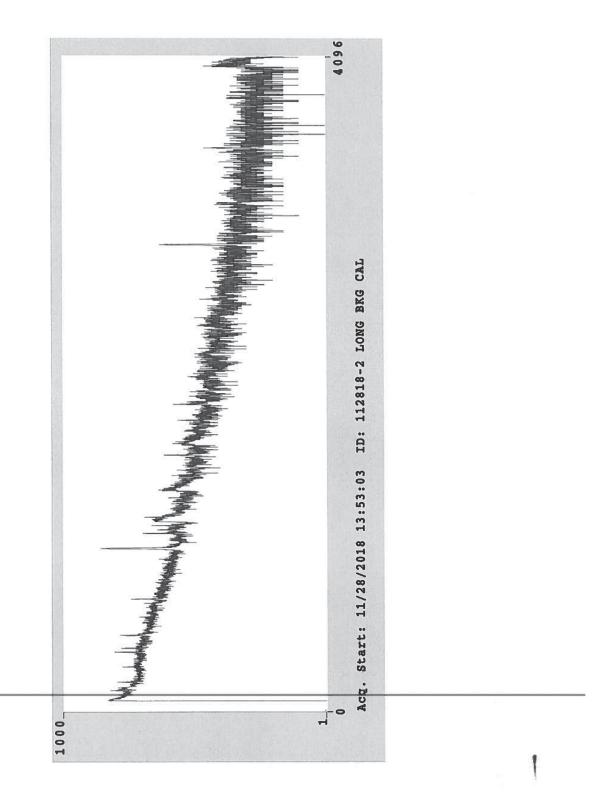
Page 001

## 182143D02.SPC Analyzed by

## ______

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	803.03	1605.96	173	68	52	412	2.23	a.
23	911.39	1822.28	81	42	32	211	1.52	a
24	961.68	1922.69	89	49	37	261	1.81	a.
25	1461.02	2919.61	359	53	31	154	2.50	a
26	1764.83	3526.15	59	32	24	99	2.20	a

#### 182143D02.SPC Analyzed by


ID: 112818-2 LONG BKG CAL

Detector # 2 Background Q.C. Analysis for 11/28/2018 13:53:03

n Sigma Bounds T-Test Parameter Value Test Test N.A. N.A. Pass 10 50-> 150 keV Bkg 32.201 N.A. 26.419 11 150-> 250 keV Bkg Pass N.A. N.A. 12 250-> 500 keV Bkg 39.403 Pass N.A. 13 500->1000 keV Bkg Pass N.A. 40.799 14 1000->2000 keV Bkg N.A. 23.239 Pass N.A. 15 40-> 50 keV Bkg 4.702 Pass N.A. N.A.

______

Q.C. Results Saved.



ALS Laboratory Group - Fort Collins

GammaScan 

RESULTS

PS Version 1.8.4

#### Weekly Background Check

Sample ID: 112818-3 LONG BKG CAL

Sampling Start: 11/28/2018 13:00:00 | Counting Start: 11/28/2018 13:04:14 Sampling Stop: 11/28/2018 13:00:00 | Decay Time. . . . . . 7.06E-002 Hrs Buildup Time. . . . . 0.00E+000 Hrs | Live Time . . . . . . . 60000 Sec Sample Size . . . . . . 1.00E+000 L | Real Time . . . . . . . . 60086 Sec 

Detector #: 3 (Detector 3)

Energy(keV) =  $-1.42 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018$  $FWHM(keV) = 0.79 + 0.012*En + 1.05E-03*En^2 + 0.00E+00*En^3 11/01/2018$ Where En = Sqrt(Energy in keV)

______

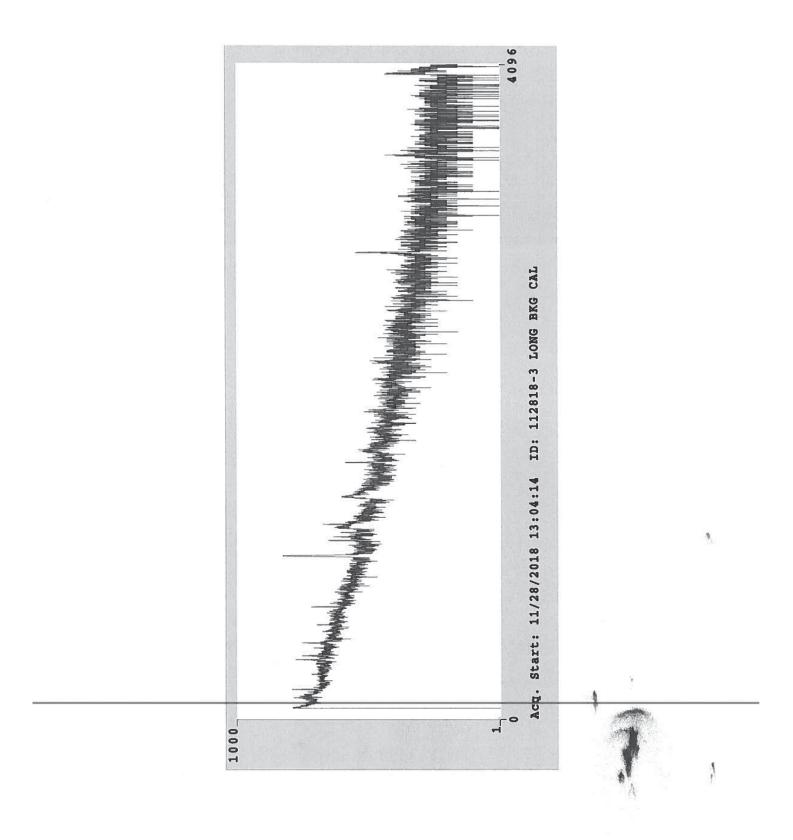
______ Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

PK.	<b>ENERGY</b>	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM		
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG	
								4	
1	53.97	110.50	51	91	74	939	1.11	NET<	CL
2	63.28	129.07	96	75	60	723	0.87	1	
3	66.43	135.36	227	98	77	1013	1.11 1	0	
4	69.76	141.99	59	74	60	723	0.82	NET<	CL
5	71.46	145.39	73	64	51	579	0.57	ī.	
6	77.17	156.78	62	85	69	881	1.04	NET<	CL
7	84.66	171.72	57	70	56	631	0.75	a.	
8	92.60	187.56	318	82	61	684	1.02	a.	
9	139.87	281.86	133	99	79	932	1.49	a.	
10	185.77	373.43	309	103	80	941	1.44	a.	
11	198.30	398.44	226	107	85	995	1.57 a	<b>a</b> .	
12	221.55	444.81	35	48	38	364	0.74	NET<	CL
13	238.88	479.38	232	69	51	552	0.98	1	
14	242.05	485.72	63	85	69	828	1.54	NET<	CL
15	295.47	592.29	122	66	52	524	1.18	ı	
16	338.38	677.90	32	57	46	447	0.97	NET<	CL
17	351.94	704.95	251	70	51	480	1.36	a.	
18	432.20	865.07	34	46	37	283	1.01	a NET<	CL
19	511.17	1022.61	1545	124	79	826	2.93	a Wide	Pk
20	558.72	1117.47	152	53	38	299	1.30	a.	
21	570.10	1140.18	84	39	28	199	0.85	ı	
		Page 001							

## 182626D03.SPC Analyzed by

## ______

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	583.58	1167.07	130	69	54	460	2.07 8	a
23	609.62	1219.01	161	60	44	406	1.33 8	<b>a</b> .
24	803.70	1606.19	144	57	43	315	2.28 8	a
25	911.79	1821.84	61	53	42	285	2.38 8	a.
26	962.24	1922.49	33	38	30	190	1.51 8	a.
27	1461.48	2918.47	162	40	26	116	2.08 8	<b>1</b>
28	1765.72	3525.42	45	27	20	71	2.02 a	a


### 182626D03.SPC Analyzed by

ID: 112818-3 LONG BKG CAL

Detector # 3 Background Q.C. Analysis for 11/28/2018 13:04:14

#	Parameter	Value	n Sigma Test	Bounds Test	T- Test	
10	50-> 150 keV Bkg	24.816	N.A.	Pass	N.A.	
11	150-> 250 keV Bkg	20.265	N.A.	Pass	N.A.	
12	250-> 500 keV Bkg	30.299	N.A.	Pass	N.A.	
13	500->1000 keV Bkg	31.238	N.A.	Pass	N.A.	
14	1000->2000 keV Bkg	17.574	N.A.	Pass	N.A.	
15	40-> 50 keV Bkg	3.387	N.A.	Pagg	NI A	

Q.C. Results Saved.



## ALS Laboratory Group - Fort Collins GammaScan

******************

#### Weekly Background Check

Sample ID: 112818-4 LONG BKG CAL

Detector #: 4 (Detector 4)

Energy(keV) = -1.56 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018 FWHM(keV) = 0.82 + 0.019*En + 7.17E-04*En^2 + 0.00E+00*En^3 09/25/2018 Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

#### PEAK SEARCH RESULTS

______

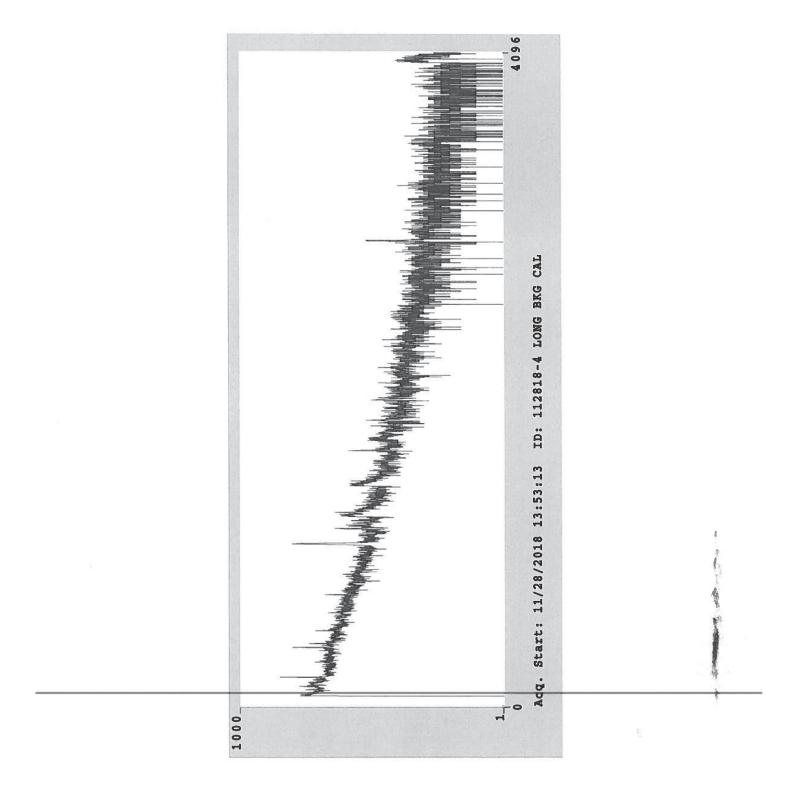
PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
1	53.63	110.17	132	82	65	781	0.99 a	1
2	63.25	129.37	182	87	68	853	1.04 a	L
3	66.32	135.51	65	53	42	426	0.53 l	•
4	84.02	170.83	67	68	54	589	0.82 a	L "
5	92.47	187.71	569	89	62	708	1.01 a	L
6	132.16	266.93	51	69	55	567	0.91 a	NET< CL
7	139.85	282.28	152	80	62	662	1.19 a	ı
8	144.00	290.56	61	53	41	378	0.58 h	•
9	185.65	373.70	410	76	53	592	1.04 a	ι
10	191.75	385.89	44	58	47	493	0.82 1	NET< CL
11	198.28	398.91	152	82	65	770	1.24 a	ı
12	238.75	479.70	109	50	37	341	0.73 ε	L .
13	295.00	591.98	80	62	49	468	1.21 €	
14	324.93	651.73	29	46	37	307	0.81 a	NET< CL
15	351.77	705.30	128	64	49	450	1.32 a	L
16	416.17	833.87	53	59	47	437	1.43 a	L
17	511.07	1023.30	1306	115	74	724	2.93 8	wide Pk
18	558.45	1117.89	162	57	42	327	1.60 a	L
19	569.55	1140.05	40	36	28	196	0.86 8	L
20	575.97	1152.85	26	57	46	391	1.56 h	NET< CL
21	583.34	1167.57	47	49	39	313	1.23	2
		Page 001						

550 of 624

## 182624D04.SPC Analyzed by

# PEAK SEARCH RESULTS

PK. #	ENERGY (keV)	ADDRESS CHANNEL	NET/MDA COUNTS	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG	*
22	596.24	1193.31	50	48	38	306	1.07 a	\$ c	
23	598.56	1197.94	80	62	49	437	1.60 b		
24	609.06	1218.90	117	65	51	472	1.70 a		4
25	692.88	1386.23	67	56	44	360	1.61 a		
26	803.17	1606.39	110	43	31	197	1.40 a		
27	898.28	1796.25	80	60	47	317	3.17 a		
28	962.30	1924.05	67	45	34	209	2.18 a		
29	1460.99	2919.51	139	36	23	91	2.09 a		


### 182624D04.SPC Analyzed by

ID: 112818-4 LONG BKG CAL

Detector # 4 Background Q.C. Analysis for 11/28/2018 13:53:13

#	Parameter	Value	n Sigma Test	Bounds Test	T- Test	
10	50-> 150 keV Bkg	23.888	N.A.	Pass	N.A.	
11	150-> 250 keV Bkg	18.715	N.A.	Pass	N.A.	
12	250-> 500 keV Bkg	26.724	N.A.	Pass	N.A.	
13	500->1000 keV Bkg	27.855	N.A.	Pass	N.A.	
14	1000->2000 keV Bkg	15.319	N.A.	Pass	N.A.	
15	40-> 50 keV Bkg	3.069	N A	Dagg	N A	

Q.C. Results Saved.



SEEKER GAMMA ANALYSIS RESULTS PS Version 1.8.4

## ALS Laboratory Group - Fort Collins GammaScan

*********************

#### Weekly Background Check

Sample ID: 112818-5 LONG BKG CAL

Detector #: 5 (Detector 5)

Energy(keV) =  $-0.69 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018$ FWHM(keV) =  $0.65 + -0.002*En + 2.17E-03*En^2 +-2.42E-05*En^3 04/17/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

______

### PEAK SEARCH RESULTS

_____

PK. #	ENERGY (keV)			UN- CERTAINTY				FLAG	
1	52.09					587			CL
2	62.92				70				
3	66.25		227		<b>~</b> -	1200			
4	69.52	140.24	21	47	38	400	0.40	NET<	CL
5	75.13	151.46	71	74	59	776	0.66 ε	l.	
6	92.60	186.36	202	89	69	881	1.01 a	ı	
7	96.93	195.00	39	51	40	404	0.41 a	NET<	CL
8	101.50	204.14	34	61	49	539	0.60 l	NET<	CL
9	128.92	258.92	39	71	58	672	0.79 a	NET<	CL
10	139.86	280.77	225	77	58	688	0.81 a	i	
11	163.60	328.19	57	91	73	919	1.10 a	NET<	CL
12	185.84	372.62	295	85	64	762	0.97 ε	i	
13	198.39	397.70	268	77	57	663	0.89 €	1	
14	238.61	478.03	200	72	55	608	0.75 a	1	
15	295.11	590.92	78	62	49	488	0.77 ε	i	
16	319.46	639.56	69	77	62	716	1.28 a	a.	
17	338.24	677.08	65	62	49	511	0.93 a	ı	
18	352.05	704.65	186	59	43	416	0.81 8	a.	
19	493.23	986.69	33	37	29	207	0.71 8	1	
20	507.58		69		39	320	0.92 a	a Wide	Pk
21	510.99					852	2.61 1	<b>o</b>	

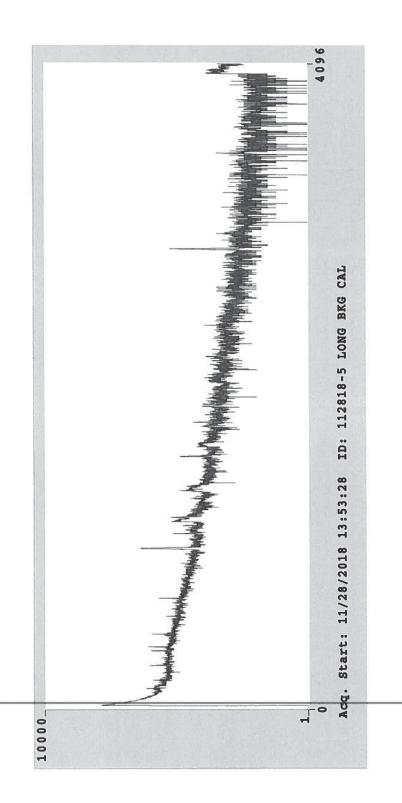
Page 001

## 181865D05.SPC Analyzed by

PEAR SEARCH RESULTS	Šť.
	1=

PK. #	ENERGY (keV)	ADDRESS CHANNEL	-	UN- CERTAINTY	C.L. COUNTS	BKG COUNTS	FWHM (keV)	FLAG
22	558.42	1116.93	186	62	46	408	1.43	a
23	570.12	1140.29	74	67	53	524	1.61	a
24	583.34	1166.70	88	47	35	289	1.06	a
25	596.64	1193.27	189	73	56	579	1.60	a
26	609.52	1219.00	187	78	61	677	1.65	a.
27	693.72	1387.21	73	51	40	347	1.15	a Wide Pk
28	694.62	1389.00	113	120	97	1091	3.65	b
29	802.97	1605.46	180	52	37	259	1.39	a
30	898.29	1795.87	89	67	53	425	2.81	a
31	911.46	1822.19	62	37	27	173	1.16	a
32	962.45	1924.05	79	54	42	309	2.06	a.
33	969.24	1937.61	25	46	37	261	1.80	b NET< CL
34	1120.27	2239.32	34	36	28	175	1.39	a
35	1327.04	2652.39	32	31	24	122	1.41	a
36	1461.12	2920.23	440	53	27	126	2.06	a HiResid
37	1765.06	3527.41	35	30	23	97	1.89	a.




### 181865D05.SPC Analyzed by

ID: 112818-5 LONG BKG CAL

Detector # 5 Background Q.C. Analysis for 11/28/2018 13:53:28

#	Parameter	Value	n Sigma Test	Bounds Test	T- Test	
10	50-> 150 keV Bkg	32.226	N.A.	Pass	N.A.	
11	150-> 250 keV Bkg	26.156	N.A.	Pass	N.A.	
12	250-> 500 keV Bkg	39.677	N.A.	Pass	N.A.	
13	500->1000 keV Bkg	40.304	N.A.	Pass	N.A.	
14	1000->2000 keV Bkg	22.832	N.A.	Pass	N.A.	
15	40-> 50 keV Bkg	4.931	N.A.	Pass	N.A.	

Q.C. Results Saved.



SEEKER GAMMA ANALYSIS RESULTS

#### ALS Laboratory Group - Fort Collins GammaScan

**********************************

#### Weekly Background Check

Sample ID: 112818-7 LONG BKG CAL

11/28/2018 13:00:00 | Counting Start: Sampling Start: 11/28/2018 13:53:38 Sampling Stop: 11/28/2018 13:00:00 | Decay Time. . . . . . 8.94E-001 Hrs Buildup Time. . . . . 0.00E+000 Hrs | Live Time . . . . . . . 60000 Sec Sample Size . . . . . . 1.00E+000 L | Real Time . . . . . . . . 60195 Sec 

Detector #: 7 (Detector 7)

Energy(keV) =  $-2.46 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018$  $FWHM(keV) = 0.77 + 0.005*En + 8.11E-04*En^2 + 0.00E+00*En^3 09/24/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 

______

#### PEAK SEARCH RESULTS

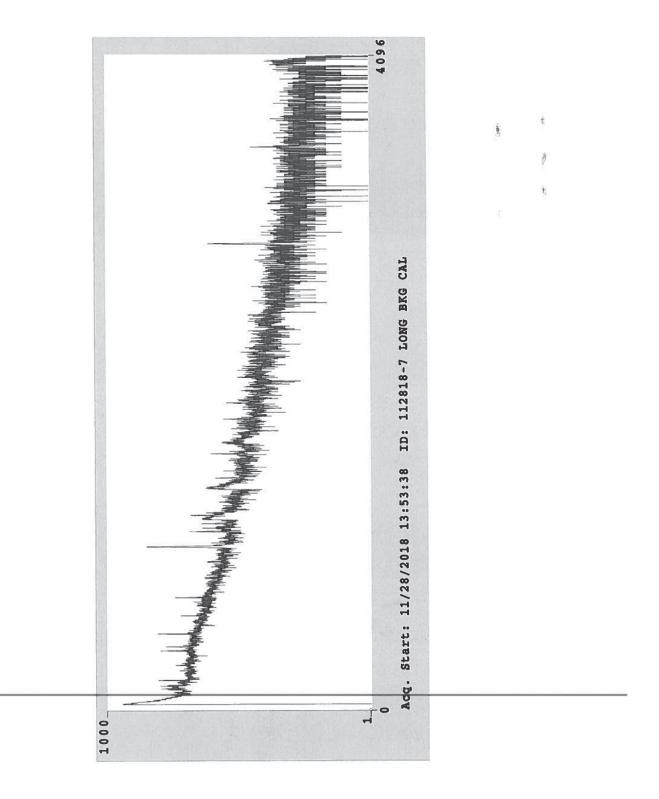
________

PK. #	ENERGY (keV)			UN- CERTAINTY			FWHM (keV)	FLAG
1	46.04	96.71	89	95	77	1009	1.07 a	Ĺ
2	53.62	111.82	70	72	57	665	0.79 a	L.
3	55.22	115.01	64	72	57	665	0.76 b	
4	63.05	130.64	142	89	70	918	1.01 a	<b>L</b>
5	66.29	137.09	186	80	62	765	0.84 b	
6	69.58	143.66	38	76	62	765	0.88	NET< CL
7	74.90	154.26	140	69	53	626	0.65 a	L
8	76.98	158.42	130	90	71	939	0.95 b	•
9	84.55	173.51	73	92	74	935	1.14 a	NET< CL
10	92.63	189.63	358	86	64	747	0.99 a	
11	95.10	194.54	35	49	39	374	0.46 b	NET< CL
12	122.91	250.00	21	45	37	331	0.47 a	NET< CL
13	139.70	283.49	132	78	62	703	1.04 a	
14	146.66	297.36	32	48	· 38	358	0.48 a	NET< CL
15	185.61	375.03	264	73	53	576	0.83 a	i
16	198.52	400.78	276	79	59	650	1.06 a	L.
17	202.98	409.66	51	46	36	325	0.51 b	•
18	238.76	481.03	280	72	52	547	0.78 a	L
19	282.79	568.82	39		52	498	0.90 a	NET< CL
20	295.40	593.97	102	60	47	443	0.82 a	i.
21	338.47	679.86	38	47	37	305	0.63 a	L
		Page 001						

### 181973D07.SPC Analyzed by

### 

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
22	351.96	706.74	178	 58	43	369	0.79 8	
23	511.19	1024.27	1679		78	778		a Wide Pk
24	558.75	1119.12		58	41	309	1.37 8	
25	569.82	1141.20	109	56	43	338	1.27 8	a.
26	583.90	1169.26	154	65	49	400	1.56	a
27	596.82	1195.04	69	68	54	514	1.44	a.
28	609.54	1220.39	151	67	51	478	1.25 8	a.
29	618.39	1238.05	49	61	49	419	1.54	a
30	651.55	1304.18	39	36	28	177	0.88	<b>a</b> .
31	670.40	1341.75	29	44	35	247	1.14	a NET< CL
32	691.96	1384.74	6	33	27	182	0.74	a NET< CL
33	693.68	1388.17	40	46	36	273	0.90	Ь
34	727.74	1456.09	57	44	34	219	1.32	a
35	749.33	1499.15	19	30	24	138	0.76	a NET< CL
36	802.96	1606.10	109	46	33	227	1.34	<b>a</b> .
37	880.98	1761.67	51	39	30	177	1.45	a
38	911.71	1822.95	86	48	36	230	1.85	a
39	961.88	1923.00	46	43	34	208	1.59	a.
40	1460.65	2917.60	266	47	27	132	2.13	a.
41	1764.15	3522.81	43	26	19	69	1.64	a


#### 181973D07.SPC Analyzed by

ID: 112818-7 LONG BKG CAL

Detector # 7 Background Q.C. Analysis for 11/28/2018 13:53:38

n Sigma Bounds T-Parameter Value Test Test Test 10 50-> 150 keV Bkg 26.758 N.A. Pass N.A. 11 150-> 250 keV Bkg N.A. Pass N.A. 22.502 33.367 N.A. 12 250-> 500 keV Bkg Pass N.A. N.A. Pass N.A. N.A. Pass N.A. N.A. Pass N.A. 13 500->1000 keV Bkg 35.073 14 1000->2000 keV Bkg 19.353 15 40-> 50 keV Bkg 3.294

#### Q.C. Results Saved.



*********

SEEKER ANALYSIS GAMMA RESULTS

#### ALS Laboratory Group - Fort Collins GammaScan

#### Weekly Background Check

Sample ID: 112818-8 LONG BKG CAL

	13:00:00   Counting St		
	13:00:00   Decay Time.		
Buildup Time 0.00			
Sample Size 1.			
Collection Efficiency	1.0000   Spc. File .	 	.181912D08.SPC

Detector #: 8 (Detector 8)

Energy(keV) = -2.34 + 0.501*Ch + 0.00E+00*Ch² + 0.00E+00*Ch³ 11/28/2018  $FWHM(keV) = 0.65 + 0.012*En + 6.79E-04*En^2 + 0.00E+00*En^3 04/17/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 _______

______

#### PEAK SEARCH RESULTS ______

PK. ENERGY ADDRESS NET/MDA IIN-C.L. BKG **FWHM** COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG # (keV) CHANNEL 1 46.42 97.24 345 73 52 595 0.74 a 96 95 76 994 1.07 a 2 53.46 111.29 92 65 842 0.82 a HiResid 3 63.20 130.70 582 65 0.78 b HiResid 66.32 136.93 171 83 842 4 5 69.53 143.34 26 56 45 505 0.42 c NET< CL HiResid 256 73 54 635 0.70 a 6 74.79 153.83 7 77.16 158.55 265 83 63 794 0.74 b 8 84.39 172.97 195 98 77 1007 1.20 a 75 0.83 b 86.98 178.14 87 60 719 9 10 92.60 189.35 781 91 59 711 0.88 a 200.42 18 68 56 622 0.75 a NET< CL 11 98.15 102.46 209.00 -8 48 39 373 0.42 b NET< CL 12 49 40 0.42 a NET< CL 13 108.47 221.00 16 385 229.24 59 48 513 0.62 b NET< CL 112.61 15 14 36 319 0.44 a NET< CL 15 135.06 274.03 28 45 283.11 247 86 66 744 1.08 Ъ 16 139.61 17 143.73 291.31 157 84 66 744 1.18 c 0.45 a159.43 322.64 51 48 38 353 18 45 0.70 a 375.15 316 65 451 19 185.76

71

53

569

0.83 a

400.03 Page 001

224

20

198.24

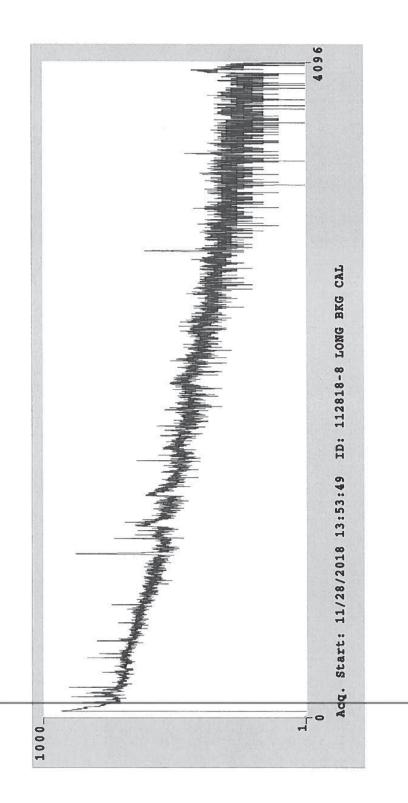
### 181912D08.SPC Analyzed by

### -----

PK.	ENERGY	ADDRESS	NET/MDA	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
21	238.60	480.52	345	79	57	600	0.95 a	
22	245.36	494.00	40	45	35	309	0.53 a	ı
23	295.27	593.55	143	68	52	505	1.02 a	L
24	338.59	679.95	72	61	48	434	0.92 a	L .
25	352.11	706.90	202	59	42	360	0.87 a	L .
26	368.10	738.80	54	57	45	381	1.02 a	L .
27	386.76	776.01	29	57	46	389	1.05 a	NET< CL
28	411.77	825.90	41	61	49	413	1.07 a	NET< CL
29	470.09	942.22	49	48	38	299	0.97 ε	L
30	511.25	1024.30	1763	126	78	809	2.37 ε	Wide Pk
31	525.54	1052.80	41	57	46	368	1.52 a	NET< CL
32	558.75	1119.03	238	56	39	297	1.08 a	L
33	569.99	1141.44	110	49	37	287	1.06 a	L
34	583.64	1168.66	100	61	48	396	1.54 a	L
35	609.58	1220.41	189	73	56	543	1.48 a	L g g
36	618.02	1237.23	46	52	41	339	1.12 a	ı
37	651.44	1303.89	45	40	31	206	0.96 a	ı
38	669.83	1340.56	40	46	36	263	1.19 a	ı.
39	692.32	1385.42	20	<b>34</b>	27	176	0.71 a	NET< CL
40	694.69	1390.14	92	66	52	439	1.72 h	<b>)</b>
41	803.20	1606.55	173	47	32	215	1.36 a	ı.
42	881.37	1762.47	50	41	32	206	1.31 a	1.
43	898.67	1796.95	93	76	61	439	3.51 a	a Wide Pk
44	911.43	1822.41	78	40	29	178	1.38 a	i.
45	962.48	1924.22	68	43	33	202	1.65 a	a.
46	1120.79	2239.96	25	30	23	125	1.06 8	i
47	1460.75	2917.97	204	41	24	116	1.75 a	a.
48	1764.82	3524.40	44	23	16	57	1.36 a	1

#### 181912D08.SPC Analyzed by

ID: 112818-8 LONG BKG CAL


Detector # 8 Background Q.C. Analysis for 11/28/2018 13:53:49

n Sigma Bounds T-Test Value Test Parameter Test 10 50-> 150 keV Bkg 29.260 N.A. Pass N.A. N.A. 11 150-> 250 keV Bkg Pass N.A. 22.775 12 250-> 500 keV Bkg 34.208 N.A. Pass N.A. N.A. Pass N.A. N.A. Pass N.A. N.A. Pass N.A. 13 500->1000 keV Bkg 37.184 14 1000->2000 keV Bkg 21.663 15 40-> 50 keV Bkg 3.743

Q.C. Results Saved.

RE-CALC QC HEADER for Overwritten Results.

4



*********

SEEKER ANALYSIS GAMMA RESULTS

#### ALS Laboratory Group - Fort Collins GammaScan

******************

#### Weekly Background Check

Sample ID: 112818-9 LONG BKG CAL

Sampling Start: 11/28/2018 13:00:00 | Counting Start: 11/28/2018 13:04:30 Sampling Stop: 11/28/2018 13:00:00 | Decay Time. . . . . . 7.50E-002 Hrs Buildup Time. . . . . 0.00E+000 Hrs | Live Time . . . . . . . 60000 Sec Sample Size . . . . . . 1.00E+000 L | Real Time . . . . . . . . 60237 Sec 

Detector #: 9 (Detector 9)

Energy(keV) =  $-2.29 + 0.502*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018$  $FWHM(keV) = 0.76 + 0.007*En + 6.45E-04*En^2 + 0.00E+00*En^3 11/01/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000

______

#### _______ PEAK SEARCH RESULTS ______

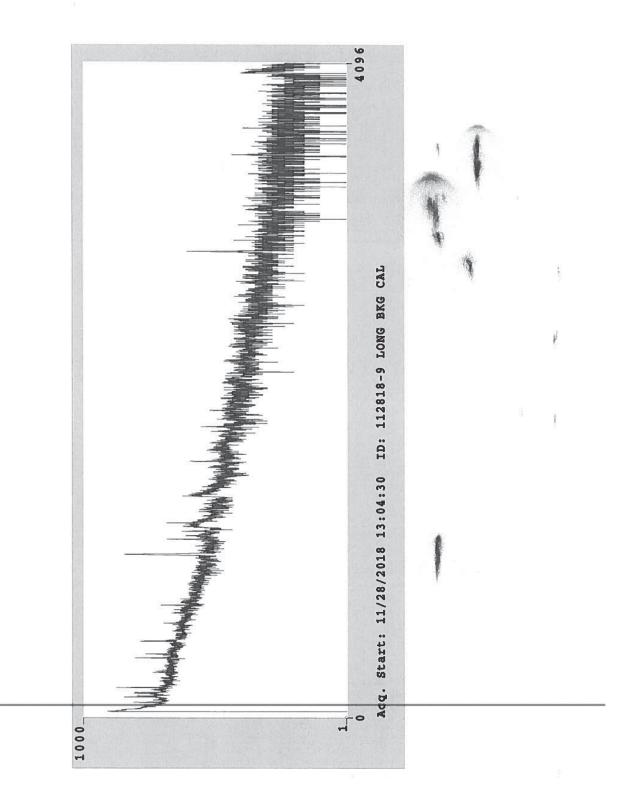
C.L. PK. ENERGY ADDRESS NET/MDA IIN-BKG MHWT (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) # ______ 46.32 96.94 332 93 70 846 1.16 a 1 53.36 110.97 77 69 55 0.85 a 2 617 3 338 84 62 773 0.85 a HiResid 62.99 130.17 Wide Pk 4 65.42 135.02 -0 710 584 10363 10.94 b NET< CL HiResid 86 109 88 1237 1.24 c NET< CL 5 65.88 135.94 HiResid 6 74.82 153.77 195 68 51 580 0.69 a 7 207 78 60 725 0.74 b 76.98 158.07 8 84.49 173.05 81 90 72 888 1.15 a 87.03 178.10 87 71 56 634 0.83 b 9 55 604 0.90 a 10 92.61 189.25 610 83 0.77 a 11 139.72 283.18 120 64 50 499 97 399 12 143.80 291.31 55 42 0.71₈ b 0.85 a NET< CL 477 13 179.87 363.23 36 60 49 374.91 304 69 49 488 0.83 a 14 185.73 15 198.28 399.94 206 66 49 481 0.86 a 0.79 a 16 238.50 480.15 263 68 49 482 42 62 50 467 0.91 a NET < CL 17 270.50 543.94 18 295.21 593.22 80 56 44 388 0.80 a Page 001

### 181776D09.SPC Analyzed by

### 

#### PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN-C.L. BKG FWHM # (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG -----327.03 656.67 0.55 a 338.43 679.39 0.55 a 352.08 706.61 0.96 a 371.20 744.74 1.02 a 511.15 1023.80 2.67 a Wide Pk 537.72 1076.79 0.97 a 558.71 1118.63 1.12 a 570.08 1141.31 1.58 a 583.66 1168.38 1.39 a 28 609.58 1220.08 0.97 a 692.31 1385.03 1.15 a NET< CL Wide Pk 694.01 1388.42 2.54 b 803.07 1605.89 1.14 a 911.61 1822.33 0.89 a 961.97 1922.74 1.28 a NET< CL 34 1460.50 2916.80 1.78 a 35 1763.73 3521.43 2.72 a


### 181776D09.SPC Analyzed by

ID: 112818-9 LONG BKG CAL

Detector # 9 Background Q.C. Analysis for 11/28/2018 13:04:30

#	Parameter	Value	n Sigma Test	Bounds Test	T- Test	
10	50-> 150 keV Bkg	25.455	N.A.	Pass	N.A.	
11	150-> 250 keV Bkg	19.781	N.A.	Pass	N.A.	
12	250-> 500 keV Bkg	29.138	N.A.	Pass	N.A.	
13	500->1000 keV Bkg	30.963	N.A.	Pass	N.A.	
14	1000->2000 keV Bkg	17.634	N.A.	Pass	N.A.	
15	40-> 50 keV Bkg	3.055	N.A.	Pass	N.A.	

Q.C. Results Saved.



SEEKER GAMMA ANALYSIS RESULTS

#### ALS Laboratory Group - Fort Collins GammaScan

*****************

#### Weekly Background Check

Sample ID: 112818-10 LONG BKG CAL

Page 001

	Counting Start: 11/28/2018 14:49:53
	Decay Time 8.31E-001 Hrs
Buildup Time 0.00E+000 Hrs	
Sample Size 1.00E+000 L	
Collection Efficiency 1.0000	Spc. File

Detector #: 10 (Detector 10)

Energy (keV) =  $-2.10 + 0.501*Ch + 0.00E+00*Ch^2 + 0.00E+00*Ch^3 11/28/2018$  $FWHM(keV) = 1.03 + -0.007*En + 1.30E-03*En^2 + 0.00E+00*En^3 11/15/2018$ Where En = Sqrt(Energy in keV)

Search Sensitivity: 1.00 | Sigma Multiplier: 2.00 | Search Start/End: 80/4000 

PK. #		ADDRESS CHANNEL	COUNTS	UN- CERTAINTY		COUNTS		FLAG
1	46.34	96.67	298		163			a
2	53.60	111.16	205	159	128	2612	1.25	a.
3	63.25	130.42	459	172	137	2964	1.24	a
4	66.17	136.24	632	143	110	2223	1.06	b
5	74.78	153.43	741	176	138	2999	1.27	a.
6	77.03	157.92	937	163	124	2624	1.10	b
7	84.37	172.57	163	129			1.03	a.
8	87.11	178.04	205	114	91	1656	0.77	ь
9	92.60	188.99	1193	167	125	2471	1.31	a
10	139.54	282.67	506	122	93	1611	0.95	a
11	143.80	291.17	146	130	105	1880	1.09	b
12	185.75	374.89	1328	169	125	2576	1.56	a.
13	190.33	399.99	927	134	98	1099	1.15	a
14	238.70	480.56	1049	138	100	1840	1.35	a
15	241.85	486.85	812	134	100	1840	1.26	b
16	258.65	520.37	60	74	60	875	0.64	a
17	269.20	541.43	53	72	58	830	0.64	a NET< CL
18	270.74	544.52	95	95	77	1245	1.01	b
19	295.13	593.18	1576	138	92	1577	1.28	a
20	338.56	679.86	195	83	64	936	0.79	a
21	351.97	706.62	3138	159	93	1503	1.51	a.

#### 181951D10.SPC Analyzed by

### 

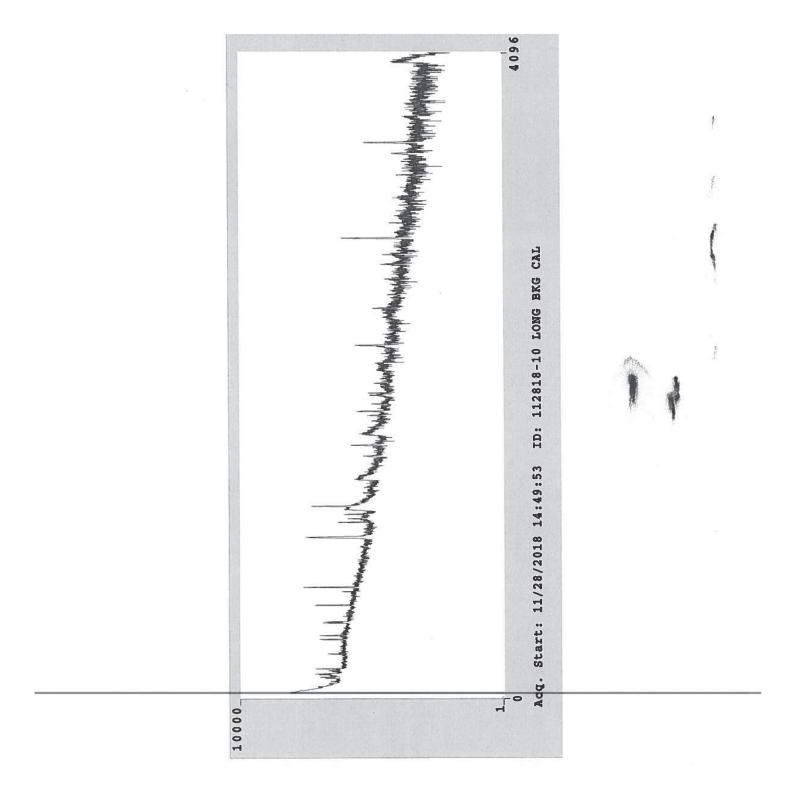
## PEAK SEARCH RESULTS

PK. ENERGY ADDRESS NET/MDA UN-C.L. BKG **FWHM** # (keV) CHANNEL COUNTS CERTAINTY COUNTS COUNTS (keV) FLAG 439.31 880.92 1.55 a 511.09 1024.19 2.82 a Wide Pk 537.56 1077.01 1.50 a 558.61 1119.01 1.47 a 569.85 1141.45 1.75 a 583.61 1168.91 1.74 a 596.25 1194.14 1.82 a Wide Pk 599.00 1199.64 3.27 b 609.50 1220.58 1.68 a 651.31 1304.04 1.57 a 669.75 1340.83 1.03 a 692.26 1385.76 0.91 a Wide Pk 694.55 1390.32 3.29 b 768.17 1537.25 2.90 a Wide Pk 803.29 1607.34 1.82 a 3.93 a Wide Pk 836.19 1672.99 839.39 1679.38 2.21 b 1.47 a 860.96 1722.43 880.69 1761.80 1.59 a 898.10 1796.56 1.63 a 1.73 a 911.46 1823.21 1.50 a 934.39 1868.97 1925.19 3.41 a Wide Pk 962.55 969.31 1938.68 1.78 b 1.07 a NET< CL 1001.02 2001.95 2.24 a NET< CL 1063.87 2127.40 1116.14 2231.71 3.58 a Wide Pk 2.00 b 1120.39 2240.19 1237.93 2474.76 1.91 a 1280.82 2560.37 1.71 a 2.12 a 1377.66 2753.63 1408.03 2814.23 1.98 a 1460.60 2919.16 2.34 a 1509.14 3016.04 1.41 a 2.87 a 1660.97 3319.05 3.04 a 1729.16 3455.13 2.57 a 1763.96 3524.58 

*

p

#### 181951D10.SPC Analyzed by


-----

ID: 112818-10 LONG BKG CAL

Detector # 10 Background Q.C. Analysis for 11/28/2018 14:49:53

n Sigma Bounds T-Parameter Value Test Test Test 10 50-> 150 keV Bkg 65.940 N.A. Pass N.A. 11 150-> 250 keV Bkg N.A. 55.040 Pass N.A. 12 250-> 500 keV Bkg 87.468 N.A. Pass N.A. N.A. N.A. N.A. 13 500->1000 keV Bkg 106.254 Pass N.A. Pass N.A. 14 1000->2000 keV Bkg 65.865 15 40-> 50 keV Bkg 8.211 Pass N.A.

Q.C. Results Saved.



## **Gamma Spectroscopy**

# **Quality Control Data**

# Daily Instrument Performance Checks

Phone (404) 352-8677 Fax (404) 352-2837



## CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

PAII0 0720

66354A-307

215 Grams of Sand in Metal Can

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solution sources. The Am-241 was calibrated by 4 pi alpha liquid scintillation counting. All other radionuclides were calibrated using a germanium gamma spectrometer system. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Analytics maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Rev. 1, February, 1979.

Calibration date: July 1, 2003 12:00 EST

ISOTOPE	GAMMA-RAY ENERGY	HALF-LIFE	GAMMA-RAYS PER SECOND	TOTAL UNCERTAINTY %
Am-241	59.5	432 y	1316	3.0
Cd-109	88	462.6 d	1879	3.3
Co-57	122	271.79 d	1042	2.8
Ce-139	166	137.6 d	1432	2.8
Hg-203	279	46.61 d	3223	2.7
Sn-113	392	115.1 d	1978	2.6
Cs-137	662	30.07 y	1272	3.0
Y-88	898	106.6 d	5106	2.6
Co-60	1173	5.2714 y	2424	2.7
Co-60	1332	$5.2714 \dot{y}$	2449	2.6
Y-88	1836	106.6 d	5335	2.6

Approximately 126.5 mL of customer supplied sand. P O NUMBER EW060303, Item 4

SOURCE PREPARED BY:

M. D. Currie, Radiochemist

Q A APPROVED:

LM. May 8-1.03

This standard will expire one year after the calibration date.

## **ANALYTICS**

RSO#767 Read 8/13/04

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

> Phone (404) 352-8677 Fax (404) 352-2837



## CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

68681-307

215 Grams of Sand in Metal Can

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solution sources. The Am-241 was calibrated by 4 pi alpha liquid scintillation counting. All other radionuclides were calibrated using a germanium gamma spectrometer system. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Analytics maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Rev. 1, February, 1979.

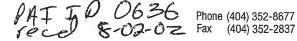
Calibration date: July 1, 2004 12:00 EST

ISOTOPE	GAMMA-RAY ENERGY	HALF-LIFE	GAMMA-RAYS PER SECOND	TOTAL UNCERTAINTY %
Am-241	59.5	432 y	1355	3.0
Cd-109	88	462.6 d	1900	3.3
Co-57	122	271.79 d	995.1	3.0
Ce-139	166	137.6 d	1411	2.8
Hg-203	279	46.61 d	3241	2.7
Sn-113	. 392	115.1 d	1939	2.6
Cs-137	662	30.07 у	1247	3.0
Y-88	898	106.6 d	4853	2.6
Co-60	1173	5.2714 y	2457	2.7
Co60	1332	5.2714 y	2474	2.6
Y-88	1836	106.6 d	5064	2.6

140 mL of customer supplied sand.

P O NUMBER 70564, Item 4

SOURCE PREPARED BY:


M. D. Currie, Radiochemist

Q A APPROVED:

m 25 8-404

This standard will expire one year after the calibration date.

= 203 pa





### CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

64122-307

215 Grams of Sand in Metal Can

This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solution sources. The Am-241 was calibrated by 4 pi alpha liquid scintillation counting. All other radionuclides were calibrated using a germanium gamma spectrometer system. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gammaray emission rates for the most intense gamma-ray lines are given. Analytics maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Rev. 1, February, 1979.

Calibration date: July 1, 2002 12:00 EST

ISOTOPE	GAMMA-RAY ENERGY	HALF-LIFE	GAMMA-RAYS PER SECOND	TOTAL UNCERTAINTY %
Am-241	59.5	432 y	1301	5.0
Cd-109	88	462.6 d	1882	5.0
Co-57	122	271.79 d	994.2	4.7
Ce-139	166	137.6 d	1420	4.3
Hg-203	279	46.61 d	3085	4.1
Sn-113	392	115.1 d	2094	4.1
Cs-137	662	30.07 y	1320	4.8
Y-88	898	106.6 d	4847	4.2
Co-60	1173	5.2714 y	2354	4.1
Co-60	1332	$5.2714  {y}$	2382	4.2
Y-88	1836	106.6 đ	5068	4.0

Approximately 140 mL customer supplied sand. P O NUMBER EW060602, Item 4

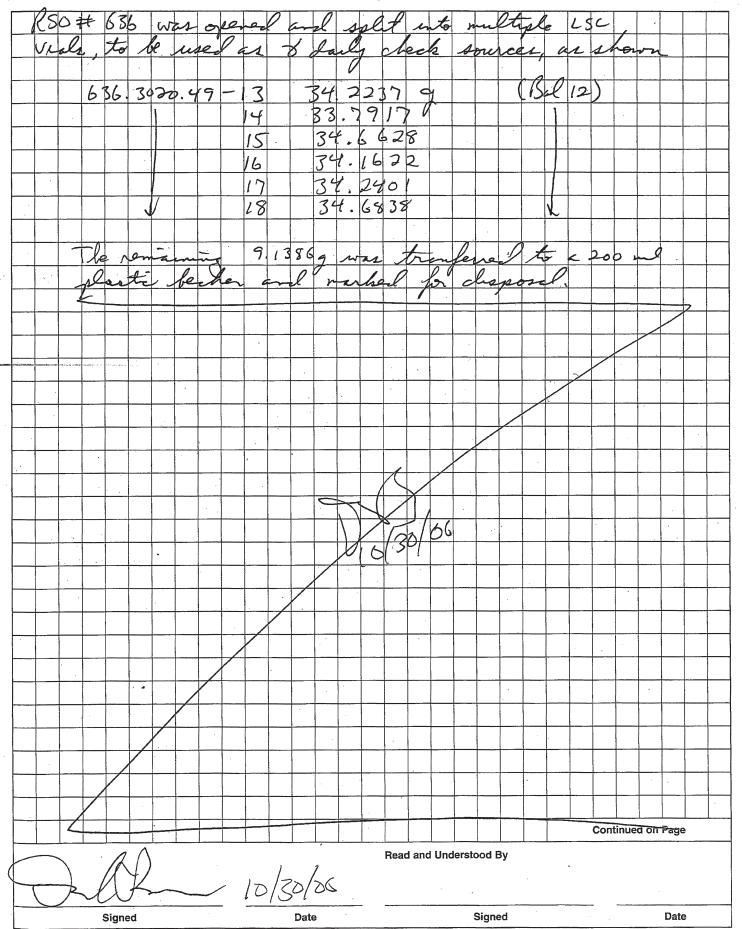
SOURCE PREPARED BY: M. Taskaeva Radiochemist

Q A APPROVED:

Acalul 7/3/10L

This standard will expire one year after the calibration date.

Signed


PROJECT 720, 3020:47 MIXED 8 Notebook No. __ 47 Continued From Page RS0#720 Ball2 35.8071 720.3020.47 36.1586 36.1325 36.0040 .4197 34,5663 Continued on Page Read and Understood By 10/30/06

Date

Signed

48 PROJECT 767. 3020.48 Notebook No. __ Continued From Page _ 250 7767 50 6640 Bal (2 767.3020.48 36.1858 36. 33969 35 99379 0 6. 7952 3 11000 .. ساملل Centinued on Page Read and Understood By Signed 579 of 624 Date

Continued From Page _



# Gamma Spectrometer Calibration Log

Date: 11 22018
----------------

Reviewed By/Date: 11/2018

		Backg	Background Source Check Repeat Source Check							
Det. No.	Out Of Service	Started	OK	Started	ОК	Failed Parameter(s)	OK	Failed Parameter(s)	Corrective Action Taken **	Removed from Service
1.				97	8					
2.						1332 FUHM	8	-		
3.					B					
4.					(V)					
5.					T.					
6.	56					~				
7.			***	35	85					
8.					85					
9.					35					
10.	,				3					

ملہ ملہ	Correc	2.0	A 49	
~ ~	4 OFFEC	P1370	A Oftic	
	CULLU	LIVE		7 K H .

*** Due to detector failing two different QC parameters on the first and second daily	check, a third
daily check was performed. All QC parameters passed for the third daily check. Detector for the date of	is online

481732 **A** 

Form 754r16a.doc (10/27/11)

181742D09.SPC Analyzed by

ID: daily check
Detector # 9 Detector Q.C. Analysis for 11/26/2018 07:31:45
Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
1	60 keV Centroid	122.668	N.A.	Pass	N.A.	
2	60 keV FWHM	8.615E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	5.438E-02	N.A.	Pass	N.A.	
4	662 keV Centroid	1324.033	N.A.	Pass	N.A.	
5	662 keV FWHM	1.410	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.373E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2660.956	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.041	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.989E-03	N.A.	Pass	N.A.	

### Gamma Spectrometer Calibration Log

Date:	$\pi$	27/1	8
-------	-------	------	---

Reviewed By/Date: 50 11127118

		Backg	round		Source (	Check	Repeat Source Check		ource Check		
Det. No.	Out Of Service	Started	OK	Started	ОК	Failed Parameter(s)	OK	Failed Parameter(s)	Corrective Action Taken **	Removed from Service	
1.				30	3)						
2.					8						
3.					35						
4.					T						
5.					50						
6.	8					~					
7.				85	8						
8.					J'i						
9.		90			3						
10.					80						

^{.**} Corrective Action:

*** Due to detector	failing two	different QC	parameters on the	first and sec	ond daily	check, a third
daily check was perform	ed. All QC	parameters pa	assed for the third	daily check.	Detector	is online
for the date of						

481736 **A** 

Form 754r16a.doc (10/27/11)

181754D09.SPC Analyzed by

ID: daily check
Detector # 9 Detector Q.C. Analysis for 11/27/2018 07:22:49
Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

						<b></b> -	
			n	Sigma	Bounds	<b>T</b> -	
#		Parameter	Value	Test	Test	Test	
-							
	1	60 keV Centroid	122.807	N.A.	Pass	N.A.	
	2	60 keV FWHM	8.632E-01	N.A.	Pass	N.A.	
	3	60 keV Efficiency	5.253E-02	N.A.	Pass	N.A.	
	4	662 keV Centroid	1324.243	N.A.	Pass	N.A.	
	5	662 keV FWHM	1.390	N.A.	Pass	N.A.	
	6	662 keV Efficiency	1.361E-02	N.A.	Pass	N.A.	
	7	1332 keV Centroid	2661.286	N.A.	Pass	N.A.	
	8	1332 keV FWHM	1.919	N.A.	Pass	N.A.	
	9	1332 keV Efficiency	7.362E-03	N.A.	Pass	N.A.	

ID: daily check

Detector # 10 Detector Q.C. Analysis for 11/27/2018 07:22:56

Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
 1	60 keV Centroid	122.628	N.A.	Pass	N.A.	
2	60 keV FWHM	1.007	N.A.	Pass	N.A.	
3	60 keV Efficiency	3.908E-02	N.A.	Pass	N.A.	
4	662 keV Centroid	1324.759	N.A.	Pass	N.A.	
5	662 keV FWHM	1.907	N.A.	Pass	N.A.	
6	662 keV Efficiency	4.412E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2663.013	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.778	N.A.	Pass	N.A.	
9	1332 keV Efficiency	2.641E-02	N.A.	Pass	N.A.	

# Gamma Spectrometer Calibration Log

Date:		28	18
-------	--	----	----

Reviewed By/Date: \$\sqrt{11128118}

		Backg	round		Source (	Check		Reneat S	Source Check	
Det. No.	Out Of Service	Started	ОК	Started	OK	Failed Parameter(s)	OK	Failed Parameter(s)	Corrective Action Taken **	Removed from Service
1.				85	8					
2.			-		85					
3.					YS					
4.					VX.					
5.				V	15					
6.	3									
7.		**		85	Po					
8.					85					
9.										
10.				V	8					

^{.**} Corrective Action:

*** Due to detector failing two different QC parameters on the first and second daily daily check was performed. All QC parameters passed for the third daily check. Detector	-
for the date of	is online

481739 **A** 

Form 754r16a.doc (10/27/11)

181942D10.SPC Analyzed by

ID: DAILY CHECK

Detector # 10 Detector Q.C. Analysis for 11/28/2018 07:56:05

Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#		Parameter	n Value	Sigma Test	Bounds Test	T- Test	
	1	60 keV Centroid	122.777	N.A.	Pass	N.A.	
	2	60 keV FWHM	1.027	N.A.	Pass	N.A.	
	3	60 keV Efficiency	3.908E-02	N.A.	Pass	N.A.	
	4	662 keV Centroid	1324.936	N.A.	Pass	N.A.	
	5	662 keV FWHM	1.824	N.A.	Pass	N.A.	
	6	662 keV Efficiency	4.483E-02	N.A.	Pass	N.A.	
	7	1332 keV Centroid	2663.322	N.A.	Pass	N.A.	
	8	1332 keV FWHM	2.807	N.A.	Pass	N.A.	
	9	1332 keV Efficiency	2.620E-02	N.A.	Pass	N.A.	

### Gamma Spectrometer Calibration Log

Date:	12	4	18
		CONT. 10.00 CO. 10.00	

Reviewed By/Date:	5612	4	118
			-

		Backg	round		Source (	Check		Repeat S	Source Check	
Det. No.	Out Of Service	Started	ОК	Started	OK	Failed Parameter(s)	ОК	Failed Parameter(s)	Corrective Action Taken **	Removed from Service
1.	-			35	35					
2.					262			,		
3.					85					
4.	- 1				K.					
5.				V	7					
6.	85							,		
7.	,			2	85					
8.				1	35					
9.					37					
10.				V	5					

^{.**} Corrective Action:

*** Due to detector	failing two	different QC para	meters on the	e first and	l second	daily ch	neck, a third
daily check was performed	d. All QC	parameters passed	I for the third	daily cho	eck. Det	ector	is online
for the date of	_						

481754 **A** 

Form 754r16a.doc (10/27/11)

#### 182150D01.SPC Analyzed by

ID: DAILY CHECK

Detector # 1 Detector Q.C. Analysis for 12/04/2018 07:48:38 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test
1	60 keV Centroid	122.491	N.A.	Pass	N.A.
2	60 keV FWHM	8.584E-01	N.A.	Pass	N.A.
3	60 keV Efficiency	5.766E-03	N.A.	Pass	N.A.
4	662 keV Centroid	1324.602	N.A.	Pass	N.A.
5	662 keV FWHM	1.474	N.A.	Pass	N.A.
6	662 keV Efficiency	1.528E-02	N.A.	Pass	N.A.
7	1332 keV Centroid	2663.527	N.A.	Pass	N.A.
8	1332 keV FWHM	2.190	N.A.	Pass	N.A.
9	1332 keV Efficiency	6.728E-03	N.A.	Pass	N.A.

182180D02.SPC Analyzed by

*****************

ID: DAILY CHECK

Detector # 2 Detector Q.C. Analysis for 12/04/2018 07:48:45 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
1	60 keV Centroid	121.337	N.A.	Pass	N.A.	
2	60 keV FWHM	1.102	N.A.	Pass	N.A.	
3	60 keV Efficiency	4.198E-03	N.A.	Pass	N.A.	
4	662 keV Centroid	1323.280	N.A.	Pass	N.A.	
5	662 keV FWHM	1.731	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.875E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2662.124	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.599	N.A.	Pass	N.A.	
9	1332 keV Efficiency	9.254E-03	N.A.	Pass	N.A.	

182662D03.SPC Analyzed by

SEEKER DETECTOR Q.C. ANALYSIS Version 2.2.2

ID: DAILY CHECK

Detector # 3 Detector Q.C. Analysis for 12/04/2018 07:48:51 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -	
#_	Parameter	Value	Test	Test	Test	
1	60 keV Centroid	121.392	N.A.	Pass	N.A.	
2	60 keV FWHM	9.253E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	9.588E-03	N.A.	Pass	N.A.	
4	662 keV Centroid	1322.423	N.A.	Pass	N.A.	
5	662 keV FWHM	1.981	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.582E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2660.404	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.953	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.687E-03	N.A.	Pass	N.A.	

Q.C. Results Saved.

RE-CALC QC HEADER for Overwritten Results.

182677D04.SPC Analyzed by

*****************

ID: DAILY CHECK

Detector # 4 Detector Q.C. Analysis for 12/04/2018 07:48:56 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
1	60 keV Centroid	121.633	N.A.	Pass	N.A.	,
2	60 keV FWHM	9.452E-01	N.A.	Pass	N.A.	Į.
3	60 keV Efficiency	1.388E-02	N.A.	Pass	N.A.	9
4	662 keV Centroid	1323.373	N.A.	Pass	N.A.	i i
5	662 keV FWHM	1.782	N.A.	Pass	N.A.	7
6	662 keV Efficiency	1.604E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2662.031	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.481	N.A.	Pass	N.A.	1
9	1332 keV Efficiency	7.533E-03	N.A.	Pass	N.A.	

181892D05.SPC Analyzed by

ID: DAILY CHECK

Detector # 5 Detector Q.C. Analysis for 12/04/2018 07:49:01 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

# Parameter	n Value	Sigma Test	Bounds Test	T- Test
1 60 keV Centroid	120.133	N.A.	Pass	N.A.
2 60 keV FWHM	6.750E-01	N.A.	Pass	N.A.
3 60 keV Efficiency	5.738E-03	N.A.	Pass	N.A.
4 662 keV Centroid	1322.873	N.A.	Pass	N.A.
5 662 keV FWHM	1.505	N.A.	Pass	N.A.
6 662 keV Efficiency	2.016E-02	N.A.	Pass	N.A.
7 1332 keV Centroid	2663.145	N.A.	Pass	N.A.
8 1332 keV FWHM	2.357	N.A.	Pass	N.A.
9 1332 keV Efficiency	9.174E-03	N.A.	Pass	N.A.

182010D07.SPC Analyzed by

******************

ID: DAILY CHECK

Detector # 7 Detector Q.C. Analysis for 12/04/2018 07:49:08 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

n Sigma Bounds Parameter Value Test Test Test 1 60 keV Centroid 123.234 N.A. Pass N.A. 8.123E-01 N.A. 2 60 keV FWHM Pass N.A. 3 60 keV Efficiency 4.104E-03 N.A. Pass N.A. 4 662 keV Centroid N.A. 1324.196 Pass N.A. 5 662 keV FWHM 1.565 N.A. Pass N.A. 1.567E-02 N.A. 6 662 keV Efficiency Pass N.A. 7 1332 keV Centroid 2660.916 N.A. Pass N.A. N.A. 8 1332 keV FWHM 2.252 Pass N.A. 9 1332 keV Efficiency 8.498E-03 N.A. Pass N.A.

181950D08.SPC Analyzed by

*****************

ID: DAILY CHECK

Detector # 8 Detector Q.C. Analysis for 12/04/2018 07:49:14

Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -
#	Parameter	Value	Test	Test	Test
1	60 keV Centroid	122.976	N.A.	Pass	N.A.
2	60 keV FWHM	7.134E-01	N.A.	Pass	N.A.
3	60 keV Efficiency	5.577E-02	N.A.	Pass	N.A.
4	662 keV Centroid	1324.354	N.A.	Pass	N.A.
5	662 keV FWHM	1.282	N.A.	Pass	N.A.
6	662 keV Efficiency	1.569E-02	N.A.	Pass	N.A.
7	1332 keV Centroid	2661.583	N.A.	Pass	N.A.
8	1332 keV FWHM	1.858	N.A.	Pass	N.A.
9	1332 keV Efficiency	8.386E-03	N.A.	Pass	N.A.

#### 181811D09.SPC Analyzed by

******************

ID: DAILY CHECK

Detector # 9 Detector Q.C. Analysis for 12/04/2018 07:49:19 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

			Sigma	Bounds	<b>T</b> -		
#	Parameter	Value	Test	Test	Test		
1	60 keV Centroid	122.855	N.A.	Pass	N.A.		
2	60 keV FWHM	8.534E-01	N.A.	Pass	N.A.		
3	60 keV Efficiency	5.354E-02	N.A.	Pass	N.A.	45	1
4	662 keV Centroid	1324.605	N.A.	Pass	N.A.		
5	662 keV FWHM	1.418	N.A.	Pass	N.A.		
6	662 keV Efficiency	1.383E-02	N.A.	Pass	N.A.		.3
7	1332 keV Centroid	2662.227	N.A.	Pass	N.A.		1
8	1332 keV FWHM	1.826	N.A.	Pass	N.A.		
9	1332 keV Efficiency	7.902E-03	N.A.	Pagg	N.A.		9.

## 181985D10.SPC Analyzed by

SEEKER DETECTOR Q.C. ANALYSIS Version 2.2.2

ID: DAILY CHECK

Detector # 10 Detector Q.C. Analysis for 12/04/2018 07:49:27 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	;	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
~	1	60 keV Centroid	122.596	N.A.	Pass	N.A.	
	2	60 keV FWHM	1.033	N.A.	Pass	N.A.	
	3	60 keV Efficiency	3.944E-02	N.A.	Pass	N.A.	
	4	662 keV Centroid	1324.708	N.A.	Pass	N.A.	
	5	662 keV FWHM	1.920	N.A.	Pass	N.A.	
	6	662 keV Efficiency	4.508E-02	N.A.	Pass	N.A.	
	7	1332 keV Centroid	2662.880	N.A.	Pass	N.A.	
	8	1332 keV FWHM	2.905	N.A.	Pass	N.A.	
	9	1332 keV Efficiency	2.618E-02	N.A.	Pass	N.A.	

### Gamma Spectrometer Calibration Log

Date:  2 5   8	Date:	12	5	18
----------------	-------	----	---	----

Reviewed By/Date: SG 12/5/18

		Backg	round		Source (	Check		Repeat S	Source Check	
Det. No.	Out Of Service	Started	OK	Started	OK	Failed Parameter(s)	ок	Failed Parameter(s)	Corrective Action Taken **	Removed from Service
1.				2	36			· ·		
2.					33					
3.		,			3,					
4.	ı				80					
5.					33					
6.	8									
7.				35	B					
8.					25					
9.					35					
10.				1	35					-

^{.**} Corrective Action:

*** Due to detector	failing two	different QC	parameters o	n the first	and sec	cond daily	check, a third
daily check was perform	ed. All QC	parameters p	bassed for the	third daily	check.	Detector	is online
for the date of							

481755 **A** 

Form 754r16a.doc (10/27/11)

#### 182160D01.SPC Analyzed by

ID: DAILY CHECK

Detector # 1 Detector Q.C. Analysis for 12/05/2018 07:59:43 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	T-	
#	Parameter	Value	Test	Test	Test	
	60 keV Centroid	122.561	N.A.	Pass	N.A.	
2	2 60 keV FWHM	8.356E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	5.863E-03	N.A.	Pass	N.A.	(4)
4	1 662 keV Centroid	1324.685	N.A.	Pass	N.A.	
5	662 keV FWHM	1.535	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.613E-02	N.A.	Pass	N.A.	
7	7 1332 keV Centroid	2663.755	N.A.	Pass	N.A.	
8	3 1332 keV FWHM	2.044	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.632E-03	N.A.	Pass	N.A.	

#### 182190D02.SPC Analyzed by

ID: DAILY CHECK

Detector # 2 Detector Q.C. Analysis for 12/05/2018 07:59:50 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -	
#	Parameter	Value	Test	Test	Test	
		101 210				
Τ.	60 keV Centroid	121.312	N.A.	Pass	N.A.	
2	60 keV FWHM	1.098	N.A.	Pass	N.A.	
3	60 keV Efficiency	4.146E-03	N.A.	Pass	N.A.	
4	662 keV Centroid	1323.365	N.A.	Pass	N.A.	
5	662 keV FWHM	1.750	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.827E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2662.371	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.505	N.A.	Pass	N.A.	
9	1332 keV Efficiency	9.118E-03	N.A.	Pass	N.A.	

#### 182670D03.SPC Analyzed by

ID: DAILY CHECK

Detector # 3 Detector Q.C. Analysis for 12/05/2018 07:59:55 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

<b>‡</b>	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
1	60 keV Centroid	121.358	N.A.	Pass	N.A.	,
2	60 keV FWHM	9.368E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	1.025E-02	N.A.	Pass	N.A.	
4	662 keV Centroid	1322.387	N.A.	Pass	N.A.	
5	662 keV FWHM	2.011	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.550E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2660.827	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.554	N.A.	Pass	N.A.	
9	1332 keV Efficiency	6.672E-03	N.A.	Pass	N.A.	

#### 182686D04.SPC Analyzed by

ID: DAILY CHECK

Detector # 4 Detector Q.C. Analysis for 12/05/2018 08:00:00 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

			n	Sigma	Bounds	T-	
#		Parameter	Value	Test	Test	Test	
	1	60 keV Centroid	121.626	N.A.	Pass	N.A.	
	2	60 keV FWHM	1.033	N.A.	Pass	N.A.	
	3	60 keV Efficiency	1.450E-02	N.A.	Pass	N.A.	
	4	662 keV Centroid	1323.382	N.A.	Pass	N.A.	
	5	662 keV FWHM	1.769	N.A.	Pass	N.A.	
	6	662 keV Efficiency	1.540E-02	N.A.	Pass	N.A.	
	7	1332 keV Centroid	2662.122	N.A.	Pass	N.A.	
	8	1332 keV FWHM	2.352	N.A.	Pass	N.A.	
	9	1332 keV Efficiency	6.680E-03	N.A.	Pass	N.A.	

SEEKER DETECTOR OC ANALVETE Version 2.2.2

ID: DAILY CHECK

Detector # 5 Detector Q.C. Analysis for 12/05/2018 08:00:05 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test		Consta
1	60 keV Centroid	120.145	N.A.	Pass	N.A.		
2	60 keV FWHM	6.644E-01	N.A.	Pass	N.A.		*
3	60 keV Efficiency	5.958E-03	N.A.	Pass	N.A.	9	1
4	662 keV Centroid	1322.967	N.A.	Pass	N.A.	¥.	
5	662 keV FWHM	1.595	N.A.	Pass	N.A.	T	
6	662 keV Efficiency	2.000E-02	N.A.	Pass	N.A.		
7	1332 keV Centroid	2663.213	N.A.	Pass	N.A.		
8	1332 keV FWHM	2.276	N.A.	Pass	N.A.		
9	1332 keV Efficiency	9.440E-03	N.A.	Pass	N.A.		

182019D07.SPC Analyzed by

SEEKER DETECTOR Q.C. ANALYSIS Version 2.2.2

**********************

ID: DAILY CHECK

Detector # 7 Detector Q.C. Analysis for 12/05/2018 08:00:11 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test
1	60 keV Centroid	123.286	N.A.	Pass	N.A.
2	60 keV FWHM	8.468E-01	N.A.	Pass	N.A.
3	60 keV Efficiency	3.862E-03	N.A.	Pass	N.A.
4	662 keV Centroid	1324.296	N.A.	Pass	N.A.
5	662 keV FWHM	1.541	N.A.	Pass	N.A.
6	662 keV Efficiency	1.502E-02	N.A.	Pass	N.A.
7	1332 keV Centroid	2661.265	N.A.	Pass	N.A.
8	1332 keV FWHM	2.169	N.A.	Pass	N.A.
9	1332 keV Efficiency	7.694E-03	N.A.	Pass	N.A.

181955D08.SPC Analyzed by

SEEKER DETECTOR Q.C. ANALYSIS Version 2.2.

*****************

ID: DAILY CHECK

Detector # 8 Detector Q.C. Analysis for 12/05/2018 08:00:16 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
1	60 keV Centroid	122.993	N.A.	Pass	N.A.	
2	60 keV FWHM	7.121E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	5.700E-02	N.A.	Pass	N.A.	1
4	662 keV Centroid	1324.418	N.A.	Pass	N.A.	
5	662 keV FWHM	1.344	N.A.	Pass	N.A.	1
6	662 keV Efficiency	1.651E-02	N.A.	Pass	N.A.	1
7	1332 keV Centroid	2661.785	N.A.	Pass	N.A.	6
8	1332 keV FWHM	1.903	N.A.	Pass	N.A.	
9	1332 keV Efficiency	9.285E-03	N.A.	Pass	N.A.	

181817D09.SPC Analyzed by

ID: DAILY CHECK

Detector # 9 Detector Q.C. Analysis for 12/05/2018 08:00:21 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

 $\mathbf{T}$ n Sigma Bounds Parameter Value Test Test Test 122.862 1 60 keV Centroid N.A. Pass N.A. 8.489E-01 N.A. 2 60 keV FWHM N.A. Pass 3 60 keV Efficiency 5.244E-02 N.A. N.A. Pass 4 662 keV Centroid 1324.615 N.A. Pass N.A. 5 662 keV FWHM 1.369 N.A. N.A. Pass 1.339E-02 N.A. 6 662 keV Efficiency Pass N.A. 7 1332 keV Centroid 2662.098 N.A. N.A. Pass N.A. 8 1332 keV FWHM 1.939 Pass N.A. 9 1332 keV Efficiency 6.971E-03 N.A. Pass N.A.

181995D10.	SPC	Analyzed	by
------------	-----	----------	----

******	*******************	*****
SEEKER	DETECTOR Q.C. ANALYSIS '	Version 2.2.2

ID: DAILY CHECK

Detector # 10 Detector Q.C. Analysis for 12/05/2018 08:00:26 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test	
1	60 keV Centroid	122.631	N.A.	Pass	N.A.	
2	60 keV FWHM	1.001	N.A.	Pass	N.A.	
3	60 keV Efficiency	3.891E-02	N.A.	Pass	N.A.	
4	662 keV Centroid	1324.622	N.A.	Pass	N.A.	
5	662 keV FWHM	1.868	N.A.	Pass	N.A.	
6	662 keV Efficiency	4.512E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2662.785	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.770	N.A.	Pass	N.A.	
9	1332 keV Efficiency	2.481E-02	N.A.	Pass	N.A.	G

### Gamma Spectrometer Calibration Log

Date: 12/018

Reviewed By/Date: S51216118

		Background		Source Check		Repeat Source Check				
Det. No.	Out Of Service	Started	OK	Started	ОК	Failed Parameter(s)	ОК	Failed Parameter(s)	Corrective Action Taken **	Removed from Service
1.		4,		9	5					
2.		. : .		1	S			ı		
3.						1332 FWHM	8,			
4.	j.	-			8	1001 110	134			
5.	. 1			V	5					
6.	3,									
7.				Dr.	3					
8.				1	73					
9.					56					
10.				1	A					

^{.**} Corrective Action:

*** Due to detector fa	iling two different	QC parameters on	the first and sec	ond daily	check, a third
daily check was performed	. All QC paramete	ers passed for the th	hird daily check.	Detector	is online
for the date of					

481756 **A** 

Form 754r16a.doc (10/27/11)

182196D02.SPC Analyzed by

******************

ID: DAILY CHECK

Detector # 2 Detector Q.C. Analysis for 12/06/2018 07:30:53 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test		
1	60 keV Centroid	121.344	N.A.	Pass	N.A.		
2	60 keV FWHM	1.009	N.A.	Pass	N.A.		
3	60 keV Efficiency	4.091E-03	N.A.	Pass	N.A.		
4	662 keV Centroid	1323.488	N.A.	Pass	N.A.		
5	662 keV FWHM	1.743	N.A.	Pass	N.A.		
6	662 keV Efficiency	1.890E-02	N.A.	Pass	N.A.		
7	1332 keV Centroid	2662.491	N.A.	Pass	N.A.		
8	1332 keV FWHM	2.502	N.A.	Pass	N.A.	774	
9	1332 keV Efficiency	9.137E-03	N.A.	Pass	N.A.		

#### 182673D03.SPC Analyzed by

************************

ID: DAILY CHECK

Detector # 3 Detector Q.C. Analysis for 12/06/2018 07:30:58 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -
#	Parameter	Value	Test	Test	Test
1	60 keV Centroid	121.439	N.A.	Pass	N.A.
2	60 keV FWHM	9.494E-01	N.A.	Pass	N.A.
3	60 keV Efficiency	1.010E-02	N.A.	Pass	N.A.
4	662 keV Centroid	1322.473	N.A.	Pass	N.A.
5	662 keV FWHM	1.931	N.A.	Pass	N.A.
6	662 keV Efficiency	1.557E-02	N.A.	Pass	N.A.
7	1332 keV Centroid	2660.425	N.A.	Pass	N.A.
8	1332 keV FWHM	3.122	N.A.	<fail></fail>	N.A.
9	1332 keV Efficiency	6.922E-03	N.A.	Pass	N.A.

182675D03.SPC Analyzed by

ID: DAILY CHECK

Detector # 3 Detector Q.C. Analysis for 12/06/2018 08:05:25 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -	
#	Parameter	Value	Test	Test	Test	,
1	60 keV Centroid	121.449	N.A.	Pass	N.A.	
2	60 keV FWHM	9.922E-01	N.A.	Pass	N.A.	100
3	60 keV Efficiency	1.047E-02	N.A.	Pass	N.A.	ţ
4	662 keV Centroid	1322.533	N.A.	Pass	N.A.	9
5	662 keV FWHM	1.972	N.A.	Pass	N.A.	41
6	662 keV Efficiency	1.591E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2660.135	N.A.	Pass	N.A.	
8	1332 keV FWHM	3.033	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.143E-03	N.A.	Pass	N.A.	

182695D04.SPC Analyzed by

ID: DAILY CHECK

Detector # 4 Detector Q.C. Analysis for 12/06/2018 07:31:05 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	T-	
#	Parameter	Value	Test	Test	Test	
1	60 keV Centroid	121.685	N.A.	Pass	N.A.	
2	60 keV FWHM	9.782E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	1.364E-02	N.A.	Pass	N.A.	
4	662 keV Centroid	1323.624	N.A.	Pass	N.A.	
5	662 keV FWHM	1.693	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.550E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2662.483	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.559	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.251E~03	N.A.	Pagg	N.A.	

181906D05.SPC Analyzed by

******************

ID: DAILY CHECK

Detector # 5 Detector Q.C. Analysis for 12/06/2018 07:31:10 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test
1 6	0 keV Centroid	120.228	N.A.	Pass	N.A.
2 6	0 keV FWHM	7.147E-01	N.A.	Pass	N.A.
3 6	0 keV Efficiency	5.922E-03	N.A.	Pass	N.A.
4 6	662 keV Centroid	1322.932	N.A.	Pass	N.A.
5 6	562 keV FWHM	1.587	N.A.	Pass	N.A.
6 6	562 keV Efficiency	1.962E-02	N.A.	Pass	N.A.
7 1	1332 keV Centroid	2663.183	N.A.	Pass	N.A.
8 1	1332 keV FWHM	2.432	N.A.	Pass	N.A.
9 1	1332 keV Efficiency	9.068E-03	N.A.	Pass	N.A.

### Q.C. Results Saved.

RE-CALC QC HEADER for Overwritten Results.

182024D07.SPC Analyzed by

******************************

SEEKER DETECTOR Q. C. ANALYSIS Version 2.2.2

ID: DAILY CHECK

Detector # 7 Detector Q.C. Analysis for 12/06/2018 07:31:16 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -	
#	Parameter	Value	Test	Test	Test	
1	60 keV Centroid	123.259	N.A.	Pass	N.A.	
2	60 keV FWHM	9.000E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	4.137E-03	N.A.	Pass	N.A.	
4	662 keV Centroid	1324.346	N.A.	Pass	N.A.	
5	662 keV FWHM	1.564	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.531E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2661.480	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.038	N.A.	Pass	N.A.	i i
9	1332 keV Efficiency	8.041E-03	N.A.	Pass	N.A.	

181960D08.SPC Analyzed by

********************

ID: DAILY CHECK

Detector # 8 Detector Q.C. Analysis for 12/06/2018 07:31:22 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

n Sigma Bounds T-Parameter Value Test Test Test 1 60 keV Centroid 123.045 N.A. Pass N.A. 7.205E-01 N.A. 2 60 keV FWHM Pass N.A. 5.779E-02 N.A. Pass N.A. 1324.592 N.A. Pass N.A. 3 60 keV Efficiency 1.320 N.A. Pass
1.657E-02 N.A. Pass N.A.

1.051 N.A. Pass N.A.

Pass N.A.

N.A. N.A. 4 662 keV Centroid 5 662 keV FWHM 6 662 keV Efficiency 2662.051 7 1332 keV Centroid 8 1332 keV FWHM 9 1332 keV Efficiency 8.992E-03 N.A. Pass N.A.

ID: DAILY CHECK

Detector # 9 Detector Q.C. Analysis for 12/06/2018 07:31:27 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	Т-	
#	Parameter	Value	Test	Test	Test	
1	60 keV Centroid	122.922	N.A.	Pass	N.A.	
2	60 keV FWHM	8.562E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	5.200E-02	N.A.	Pass	N.A.	
4	662 keV Centroid	1324.691	N.A.	Pass	N.A.	
5	662 keV FWHM	1.417	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.354E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2662.439	N.A.	Pass	N.A.	
8	1332 keV FWHM	1.825	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.732E-03	N.A.	Pass	N.A.	

## 182001D10.SPC Analyzed by

ID: DAILY CHECK

Detector # 10 Detector Q.C. Analysis for 12/06/2018 07:31:33 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test
1	60 keV Centroid	122.676	N.A.	Pass	N.A.
2	60 keV FWHM	1.047	N.A.	Pass	N.A.
3	60 keV Efficiency	4.009E-02	N.A.	Pass	N.A.
4	662 keV Centroid	1324.693	N.A.	Pass	N.A.
5	662 keV FWHM	1.883	N.A.	Pass	N.A.
6	662 keV Efficiency	4.468E-02	N.A.	Pass	N.A.
7	1332 keV Centroid	2662.920	N.A.	Pass	N.A.
8	1332 keV FWHM	2.881	N.A.	Pass	N.A.
9	1332 keV Efficiency	2.546E-02	N.A.	Pass	N.A.

# Gamma Spectrometer Calibration Log

Date:	2	7	1	8

Reviewed By/Date: \$\\ 12|7|18

		Backg	round	Source Check			Repeat Source Check			
Det. No.	Out Of Service	Started	OK	Started	OK	Failed Parameter(s)	OK	Failed Parameter(s)	Corrective Action Taken **	Removed from Service
1.		*1		85	56					
2.				1		1332 Cent.	Sa		Gein Adj	4,
3.		=	9		Ca				3	
4.	-				3					
5.	11			V	3	3				
6.	563			1	/					
7.		19		95	25					
8.					3	S.				
9.				1	B					
10.	4			V	Vo					

^{.**} Corrective Action:

*** Due to detector	failing two	different Q	C parameters	on the first a	and sec	ond daily	check, a third
daily check was performed	ed. All QC	parameters	s passed for th	e third daily	check.	Detector	is online
for the date of	_						

481761 **A** 

Form 754r16a.doc (10/27/11)

182684D03.SPC Analyzed by

ID: DAILY CHECK

Detector # 3 Detector Q.C. Analysis for 12/07/2018 07:59:45 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test
1	60 keV Centroid	121.302	N.A.	Pass	N.A.
2	60 keV FWHM	9.557E-01	N.A.	Pass	N.A.
3	60 keV Efficiency	1.056E-02	N.A.	Pass	N.A.
4	662 keV Centroid	1322.226	N.A.	Pass	N.A.
5	662 keV FWHM	2.004	N.A.	Pass	N.A.
6	662 keV Efficiency	1.545E-02	N.A.	Pass	N.A.
7	1332 keV Centroid	2659.964	N.A.	Pass	N.A.
8	1332 keV FWHM	3.092	N.A.	Pass	N.A.
9	1332 keV Efficiency	7.064E-03	N.A.	Pass	N.A.

182733D04.SPC Analyzed by

ID: DAILY CHECK

Detector # 4 Detector Q.C. Analysis for 12/07/2018 07:59:51 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test		
1	60 keV Centroid	121.550	N.A.	Pass	N.A.		
2	60 keV FWHM	9.415E-01	N.A.	Pass	N.A.		
3	60 keV Efficiency	1.377E-02	N.A.	Pass	N.A.		
4	662 keV Centroid	1323.206	N.A.	Pass	N.A.		
5	662 keV FWHM	1.734	N.A.	Pass	N.A.		
6	662 keV Efficiency	1.580E-02	N.A.	Pass	N.A.		
7	1332 keV Centroid	2661.475	N.A.	Pass	N.A.	9	
8	1332 keV FWHM	2.744	N.A.	Pass	N.A.	•	
9	1332 keV Efficiency	7.014E-03	N.A.	Pass	N.A.		

## 181915D05.SPC Analyzed by

SEEKER DETECTOR Q.C. ANALYSIS Version 2.2.2

ID: DAILY CHECK

Detector # 5 Detector Q.C. Analysis for 12/07/2018 07:59:58 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

#	Parameter	n Value	Sigma Test	Bounds Test	T- Test
1	60 keV Centroid	120.139	N.A.	Pass	N.A.
2	60 keV FWHM	6.766E-01	N.A.	Pass	N.A.
3	60 keV Efficiency	5.458E-03	N.A.	Pass	N.A.
4	662 keV Centroid	1322.778	N.A.	Pass	N.A.
5	662 keV FWHM	1.529	N.A.	Pass	N.A.
6	662 keV Efficiency	1.951E-02	N.A.	Pass	N.A.
7	1332 keV Centroid	2662.808	N.A.	Pass	N.A.
8	1332 keV FWHM	2.477	N.A.	Pass	N.A.
9	1332 keV Efficiency	9.364E-03	N.A.	Pass	N.A.

182033D07.SPC Analyzed by

ID: DAILY CHECK

Detector # 7 Detector Q.C. Analysis for 12/07/2018 08:00:04 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -	
#	Parameter	Value	Test	Test	Test	
	60 how Controld	122 072		Do		
	60 keV Centroid	123.073	N.A.	Pass	N.A.	
2	60 keV FWHM	8.547E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	4.083E-03	N.A.	Pass	N.A.	
4	662 keV Centroid	1323.735	N.A.	Pass	N.A.	
5	662 keV FWHM	1.553	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.550E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2660.142	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.243	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.998E-03	N.A.	Pagg	N.A.	

#### 181831D09.SPC Analyzed by

*******************************

ID: DAILY CHECK

Detector # 9 Detector Q.C. Analysis for 12/07/2018 08:00:18 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

		n	Sigma	Bounds	<b>T</b> -	
#	Parameter	Value	Test	Test	Test	
1	60 keV Centroid	122.704	N.A.	Pass	N.A.	
2	60 keV FWHM	8.756E-01	N.A.	Pass	N.A.	
3	60 keV Efficiency	5.322E-02	N.A.	Pass	N.A.	1
4	662 keV Centroid	1324.166	N.A.	Pass	N.A.	A.
5	662 keV FWHM	1.406	N.A.	Pass	N.A.	
6	662 keV Efficiency	1.374E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2661.545	N.A.	Pass	N.A.	
8	1332 keV FWHM	1.936	N.A.	Pass	N.A.	
9	1332 keV Efficiency	7.608E-03	N.A.	Pass	N.A.	

### 182008D10.SPC Analyzed by

SEEKER DETECTOR Q.C. ANALYSIS Version 2.2.2

ID: DAILY CHECK

Detector # 10 Detector Q.C. Analysis for 12/07/2018 08:00:24 Standards File #: 97 (Daily Performance Check( S SOURCES 1-12))

	Parameter	n	Sigma Test	Bounds Test	<b>T</b> -	
#		Value			Test	
1	60 keV Centroid	122 <b>.4</b> 06	N.A.	Pass	N.A.	
2	60 keV FWHM	1.032	N.A.	Pass	N.A.	
3	60 keV Efficiency	4.007E-02	N.A.	Pass	N.A.	
4	662 keV Centroid	1324.069	N.A.	Pass	N.A.	
5	662 keV FWHM	1.888	N.A.	Pass	N.A.	
6	662 keV Efficiency	4.638E-02	N.A.	Pass	N.A.	
7	1332 keV Centroid	2661.721	N.A.	Pass	N.A.	
8	1332 keV FWHM	2.689	N.A.	Pass	N.A.	
9	1332 keV Efficiency	2.621E-02	N.A.	Pass	N.A.	