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APPENDIX E  

1.1 Nested Component Stiffness and Strength Parameters 

The nested component parameters 𝐺𝐺𝑖𝑖
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 and 𝜏𝜏𝑖𝑖

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟are determined from discrete backbone curve 
(𝐹𝐹𝑏𝑏𝑏𝑏

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟) provided at a given  𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟  as input with 𝑛𝑛 number of shear stress – shear strain points. The 
back substitution for reference shear modulus is executed automatically by I-soil using following 
formulas: 

𝐺𝐺𝑛𝑛
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =

�𝜏𝜏𝑛𝑛
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

−  𝜏𝜏𝑛𝑛−1
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

�

(𝛾𝛾𝑛𝑛
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

−  𝛾𝛾𝑛𝑛−1
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

)
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𝐺𝐺𝑖𝑖
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =

�𝜏𝜏𝑖𝑖
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

−  𝜏𝜏𝑖𝑖−1
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

�

(𝛾𝛾𝑖𝑖
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

−  𝛾𝛾𝑖𝑖−1
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

)
 − �  𝐺𝐺𝑖𝑖∗

𝑛𝑛

𝑖𝑖∗=𝑖𝑖+1

;  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓 (𝑛𝑛 − 1) 𝑡𝑡𝑓𝑓 2    (E-2) 

  
 

𝐺𝐺1
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =

�𝜏𝜏1
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

�

(𝛾𝛾1
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

)
− �  𝐺𝐺𝑖𝑖∗

𝑛𝑛

𝑖𝑖∗=2

   (E-3) 

  

where 𝜏𝜏𝑖𝑖
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

 and 𝛾𝛾𝑖𝑖
𝐹𝐹𝑏𝑏𝑏𝑏
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

 are  ith shear stress and shear strain points in a given reference backbone 
curve and,  𝐺𝐺𝑛𝑛

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟is the 𝑛𝑛𝑡𝑡ℎ nested component of which the reference shear modulus is determined 
first using equation (E-1). Then, subsequently, equation (E-2) and (E-3) are executed to determine 
the shear moduli for remaining components. Once the shear modulus for each component is 
determined, the reference yield strength for each component is calculated via 𝜏𝜏𝑖𝑖

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =  𝐺𝐺𝑖𝑖
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝛾𝛾𝑖𝑖. 
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1.2 Radial Return Algorithm 

I-soil model takes advantage of J2 (second principal invariant of the deviatoric stress tensor) 
plasticity theory. Even though direct adoption of this approach constraints constitutive models to 
behave isotopically, it provides decent amount of versatility for modeling the cyclic behavior of 
soils. I-soil uses one step forward (explicit) Euler radial return algorithm executing closest 
projection of trial deviatoric stress onto deviatoric yield surface. Stress tensor is generalized and 
collapsed to scalar forms using two main components: 

𝐽𝐽2 = �
1
2
𝒔𝒔�
𝟏𝟏/𝟐𝟐

= �
1
2
𝑠𝑠𝒊𝒊𝒊𝒊𝑠𝑠𝒊𝒊𝒊𝒊�

1/2
   (E-4) 

  
and 

𝑝𝑝 = 𝑡𝑡𝑒𝑒 (𝝈𝝈) =
𝜎𝜎𝒊𝒊𝒊𝒊
3

    (E-5) 
  

 

Strain increments are decomposed to their elastic and plastic part as following: 

𝛥𝛥𝜀𝜀𝑞𝑞 = 𝛥𝛥𝜀𝜀𝑞𝑞𝑟𝑟 +  𝛥𝛥𝜀𝜀𝑞𝑞
𝑝𝑝   (E-6) 

  
 

𝛥𝛥𝜀𝜀𝑣𝑣 = 𝛥𝛥𝜀𝜀𝑣𝑣𝑟𝑟 +  𝛥𝛥𝜀𝜀𝑣𝑣
𝑝𝑝   (E-7) 

  
where superscripts 𝑒𝑒 and 𝑝𝑝 denote elastic and plastic respectively. Once the elastic predictor 
stresses of a component leads to fc ≥ 0 (shear failure), radial return algorithm is triggered to bring 
the stress state to yield surface to satisfy admissible stresses via fc =  0. The plastic strains are 
calculated as:  

∆𝜀𝜀𝑞𝑞
𝑝𝑝 =  𝜆𝜆

𝜕𝜕𝑓𝑓𝑐𝑐
𝜕𝜕𝐽𝐽2

   (E-8) 

  
where 𝜆𝜆 = positive multiplier to e determined and: 

∆𝜀𝜀𝑣𝑣
𝑝𝑝 = 𝐴𝐴0(𝜂𝜂𝑝𝑝𝑡𝑡 − 𝜂𝜂)∆𝜀𝜀𝑞𝑞

𝑝𝑝   (E-9) 
  

Once the yielding occurs, admissible stress state should obey fc =  0. Thus: 

𝑓𝑓𝑐𝑐 = [𝐽𝐽2]𝑡𝑡+∆𝑡𝑡 −  𝑘𝑘𝑐𝑐∗ = 0 
   (E-10) 

  
where 𝑘𝑘𝑐𝑐∗ = 𝑔𝑔�𝑘𝑘𝑐𝑐

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑝𝑝𝑡𝑡 ,𝑎𝑎0,𝑎𝑎1,  𝑎𝑎2,𝑝𝑝0�. Plugging in equation (E-10) in (E-8) gives ∆ε𝑞𝑞
𝑝𝑝 =  𝜆𝜆 and 

∆ε𝑣𝑣
𝑝𝑝 = 𝐴𝐴0(𝜂𝜂𝑝𝑝𝑡𝑡 − 𝜂𝜂)𝜆𝜆. Using equation (E-6) and (E-7) as well as �̇�𝝈 = 𝑬𝑬 (�̇�𝜺 − 𝜺𝜺�̇�𝒑) it is deduced that: 

∆𝐽𝐽2 = 𝐺𝐺 ∆𝜀𝜀𝑞𝑞 − 𝐺𝐺 𝜆𝜆 
   (E-11) 

  
and  

∆𝑝𝑝 = 𝐾𝐾 ∆𝜀𝜀𝑣𝑣  −𝐾𝐾𝐴𝐴0�𝜂𝜂𝑝𝑝𝑡𝑡 − 𝜂𝜂� 𝜆𝜆   (E-12) 
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Now the condition fc =  0 can be written as: 

𝑓𝑓𝑐𝑐 = [𝐽𝐽2]𝑡𝑡 + ∆𝐽𝐽2 − 𝑘𝑘𝑐𝑐∗ = 0   (E-13) 
  

Plugging equation (E-11) into (E-13) one can obtain the following form: 

[𝐽𝐽2]𝑡𝑡 + 𝐺𝐺 ∆𝜀𝜀𝑞𝑞 − 𝐺𝐺 𝜆𝜆 − 𝑘𝑘𝑐𝑐∗ = 0   (E-14) 
  

where [𝐽𝐽2]𝑡𝑡 + 𝐺𝐺 ∆𝜀𝜀𝑞𝑞 =  [𝐽𝐽2]𝑡𝑡+∆𝑡𝑡(𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡), thus: 

[𝐽𝐽2]𝑡𝑡+∆𝑡𝑡(𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡) − 𝐺𝐺 𝜆𝜆 − 𝑘𝑘𝑐𝑐∗ = 0   (E-15) 
  

Combination of first and third term of the left hand-side of (E-15) is equal to [𝑓𝑓𝑐𝑐]𝑡𝑡+∆𝑡𝑡(𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡). This 
leads to: 

𝜆𝜆 =
[𝑓𝑓𝑐𝑐]𝑡𝑡+∆𝑡𝑡(𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡)

𝐺𝐺
   (E-16) 

  
Equation (E-16) determines the positive scalar 𝜆𝜆. Thus all the scalar unknowns can be found. 
Now, new stresses in tensorial form can be written as: 

[𝜎𝜎𝑖𝑖𝑖𝑖𝑐𝑐 ]𝑡𝑡+∆𝑡𝑡 = �[𝜎𝜎𝑖𝑖𝑖𝑖𝑐𝑐 ]𝑡𝑡+∆𝑡𝑡(𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡) −
[𝜎𝜎𝑘𝑘𝑘𝑘𝑐𝑐 ]𝑡𝑡+∆𝑡𝑡(𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡)

3
𝛿𝛿𝑖𝑖𝑖𝑖� �

[𝐽𝐽2]𝑡𝑡+∆𝑡𝑡

[𝐽𝐽2]𝑡𝑡+∆𝑡𝑡(𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡)� +
[𝜎𝜎𝑘𝑘𝑘𝑘𝑐𝑐 ]𝑡𝑡+∆𝑡𝑡

3
𝛿𝛿𝑖𝑖𝑖𝑖 

 
  (E-17) 

  
Accurate use of stress integration via forward Euler method requires small strain increments. Time 
step determined for a stable explicit solver generally satisfies the accuracy due to time step and 
thus strain increment being small for most of the geotechnical earthquake engineering related 
applications. For implicit solver, most of the time, time step of the ground motion and thus the 
strain increments are small enough for forward Euler type integration. However, to assure the 
accuracy of the solution, it is useful to conduct convergence analysis. 

1.3 MRDF type Non-Masing Formulation 

Masing-type hysteretic behavior is defined by a set of rules commonly stated as: 

1. For initial loading, the stress-strain curve follows the backbone curve: 

𝜏𝜏 = 𝐹𝐹𝑏𝑏𝑏𝑏(𝛾𝛾)  (E-18) 
   

where 𝜏𝜏 is the shear stress and 𝐹𝐹𝑏𝑏𝑏𝑏(𝛾𝛾) is the backbone curve function as a function of 
shear strain, 𝛾𝛾. 
 

2. If a stress reversal occurs at a point (𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣 , 𝜏𝜏𝑟𝑟𝑟𝑟𝑣𝑣), the stress-strain curves follows a path 
defined by: 
 

𝜏𝜏 − 𝜏𝜏𝑟𝑟𝑟𝑟𝑣𝑣
2

= 𝐹𝐹𝑏𝑏𝑏𝑏 �
𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣

2
�  (E-19) 

 
3. If an unloading or reloading curve intersects the backbone curve, it follows the 

backbone until the next stress reversal. 
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4. If an unloading or reloading curve crosses an unloading or reloading curve from the 

previous cycle, it follows the stress-strain curve of that previous cycle. 
To better capture the hysteretic behavior at moderate-to-large strain levels, the hysteretic loops 
obtained from the second Masing rule using 𝐹𝐹𝑏𝑏𝑏𝑏 should be reduced in size. Phillips and Hashash 
(2009) derived an unloading-reloading stress-strain path for the MKZ model as: 

 

𝜏𝜏 = 𝐹𝐹(𝛾𝛾𝑚𝑚) �
2𝐺𝐺0 �

𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣
2 �

1 + 𝛽𝛽 �𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣
2𝛾𝛾𝑟𝑟

�
𝑠𝑠 −

𝐺𝐺0(𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣)

1 + 𝛽𝛽 �𝛾𝛾𝑚𝑚𝛾𝛾𝑟𝑟
�
𝑠𝑠 � +

𝐺𝐺0(𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣)

1 + 𝛽𝛽 �𝛾𝛾𝑚𝑚𝛾𝛾𝑟𝑟
�
𝑠𝑠 + 𝜏𝜏𝑟𝑟𝑟𝑟𝑣𝑣  (E-20) 

 

where 𝐺𝐺0 is the initial shear modulus, 𝛾𝛾𝑟𝑟 is the pseudoreference shear strain, 𝛽𝛽 and 𝑠𝑠 are curve 
fitting parameters, 𝛾𝛾𝑚𝑚 is the current maximum shear strain, 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣 is the current reversal shear strain, 
𝛾𝛾 is the current shear strain, and 𝜏𝜏𝑟𝑟𝑟𝑟𝑣𝑣 is the current reversal shear stress, and 𝐹𝐹(𝛾𝛾𝑚𝑚) is the 
reduction factor as defined by Darendeli (2001) in equation (E-21) or Phillips and Hashash (2009) 
in equation (E-22) as: 

 

𝐹𝐹(𝛾𝛾𝑚𝑚) = 𝑝𝑝1 �
𝐺𝐺𝛾𝛾𝑚𝑚
𝐺𝐺0

�
𝑝𝑝2

  (E-21) 

 

𝐹𝐹(𝛾𝛾𝑚𝑚) = 𝑝𝑝1 − 𝑝𝑝2 �1 −
𝐺𝐺𝛾𝛾𝑚𝑚
𝐺𝐺0

�
𝑝𝑝3

  (E-22) 

 

where 𝐺𝐺𝛾𝛾𝑚𝑚 is the secant shear modulus at the maximum strain experienced by the soil, 𝐺𝐺0 is the 
initial shear modulus, and 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3 are non-dimensional curve-fitting parameters. Additional 
functional forms of the reduction factor may be used interchangeably. 

Equation (E-20) can be simplified to: 

 

𝜏𝜏 = 𝐹𝐹(𝛾𝛾𝑚𝑚)�
2𝐺𝐺0 �

𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣
2 �

1 + 𝛽𝛽 �𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣
2𝛾𝛾𝑟𝑟

�
𝑠𝑠� + [1 − 𝐹𝐹(𝛾𝛾𝑚𝑚)]�

𝐺𝐺0(𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣)

1 + 𝛽𝛽 �𝛾𝛾𝑚𝑚𝛾𝛾𝑟𝑟
�
𝑠𝑠� + 𝜏𝜏𝑟𝑟𝑟𝑟𝑣𝑣  (E-23) 

 

Equation (E-23) defines an unloading/reloading stress path for a hysteresis loop starting at 
(𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣, 𝜏𝜏𝑟𝑟𝑟𝑟𝑣𝑣). The first term on the right-hand side of equation (E-23) scales the Masing unloading-
reloading stress path vertically while the second term skews the Masing unloading-reloading 
stress path causing the tangent shear modulus to approach the secant shear modulus 
corresponding to the maximum shear strain.  

The backbone formulation of the MKZ model is given by: 
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𝐹𝐹𝑏𝑏𝑏𝑏(𝛾𝛾) =
𝛾𝛾𝐺𝐺0

1 + 𝛽𝛽 � 𝛾𝛾𝛾𝛾𝑟𝑟
�
𝑠𝑠  (E-24) 

 

Substituting equation (E-24) into equation (E-23), the unload-reload stress-strain path simplifies 
to: 

 

𝜏𝜏 = 2[𝐹𝐹(𝛾𝛾𝑚𝑚)] �𝐹𝐹𝑏𝑏𝑏𝑏 �
𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣

2
�� + [1 − 𝐹𝐹(𝛾𝛾𝑚𝑚)]�𝐺𝐺𝛾𝛾𝑚𝑚�[𝛾𝛾 − 𝛾𝛾𝑟𝑟𝑟𝑟𝑣𝑣] + 𝜏𝜏𝑟𝑟𝑟𝑟𝑣𝑣  (E-25) 

 

Equation (E-25) presents a generalized unloading-reloading model with MRDF-type non-Masing 
hysteretic behavior independent of the functional form of 𝐹𝐹𝑏𝑏𝑏𝑏. Equation (E-25) can be used to 
calculate the shear stress during unloading-reloading so long as the reduction factor and the 𝐹𝐹𝑏𝑏𝑏𝑏 
function or discrete points are defined. Equation (E-25) reduces to the second Masing rule applied 
using 𝐹𝐹𝑏𝑏𝑏𝑏 when the reduction factor is unity. Moreover, equation (E-25) can be further simplified 
by undoing the coordinate transformation and second Masing rule on 𝐹𝐹𝑏𝑏𝑏𝑏. This operation maps 
𝐹𝐹𝑏𝑏𝑏𝑏 to a separate backbone curve termed the mapped backbone, 𝐹𝐹𝑏𝑏𝑏𝑏′: 

 

𝐹𝐹𝑏𝑏𝑏𝑏′(𝛾𝛾) = [𝐹𝐹(𝛾𝛾𝑚𝑚)][𝐹𝐹𝑏𝑏𝑏𝑏(𝛾𝛾)] + [1 − 𝐹𝐹(𝛾𝛾𝑚𝑚)]�𝐺𝐺𝛾𝛾𝑚𝑚�[𝛾𝛾]  (E-26) 
 

The mapped backbone curve can be used directly with the second Masing rule in place of the 
backbone curve 𝐹𝐹𝑏𝑏𝑏𝑏(𝛾𝛾) during unloading-reloading to obtain MRDF-type non-Masing hysteretic 
behavior. The second Masing rule can be directly applied to 𝐹𝐹𝑏𝑏𝑏𝑏′ and results in MRDF-type non-
Masing hysteretic behavior. Equation (E-26) can be used for both 3D elasto-plastic models and 
1D hyperbolic models as long as a backbone and reduction factor are defined. Since I-soil is a 
backbone driven model, it conveniently uses the backbone mapping function defined in equation 
(E-26) at strain reversals to achieve MRDF type hysteretic behavior. 
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