

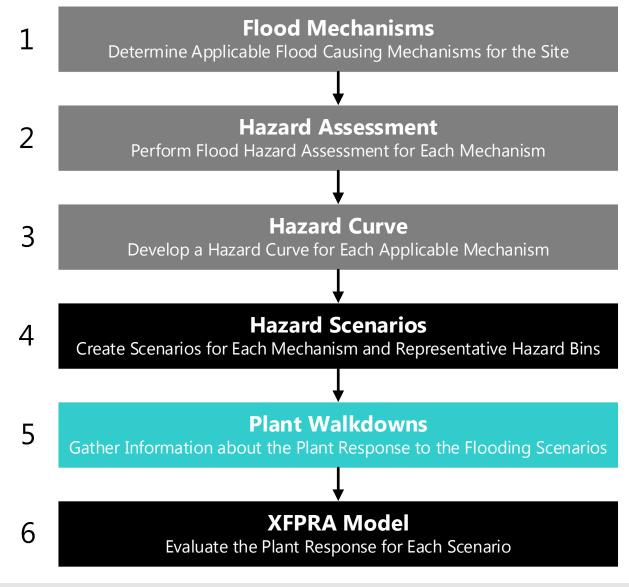
External Flooding PRA Walkdown Guidance Overview

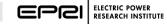
Andrew Miller, Senior Engineer, Jensen Hughes Marko Randelovic, Senior Technical Leader, EPRI

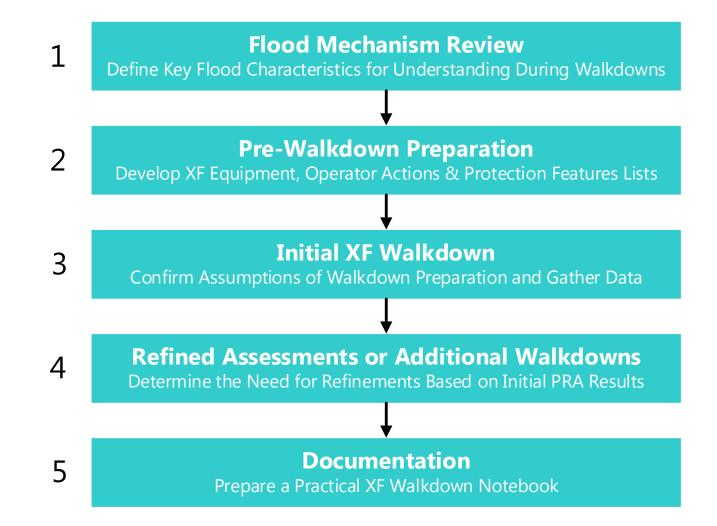
4th Annual Probabilistic Flood hazard Assessment Workshop April 30th - May 2nd, 2019

 Image: margin f
 Image: margin f

 www.epri.com
 © 2019 Electric Power Research Institute, Inc. All rights reserved.


External Flooding PRA Process Overview


PRA Modeling and Walkdowns



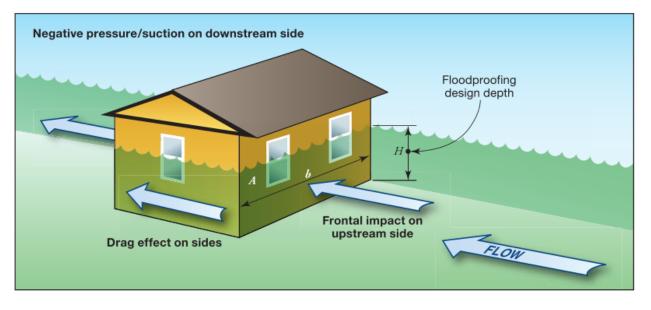
Process Flowchart

Walkdown Process Flowchart



Understanding Flooding Scenarios

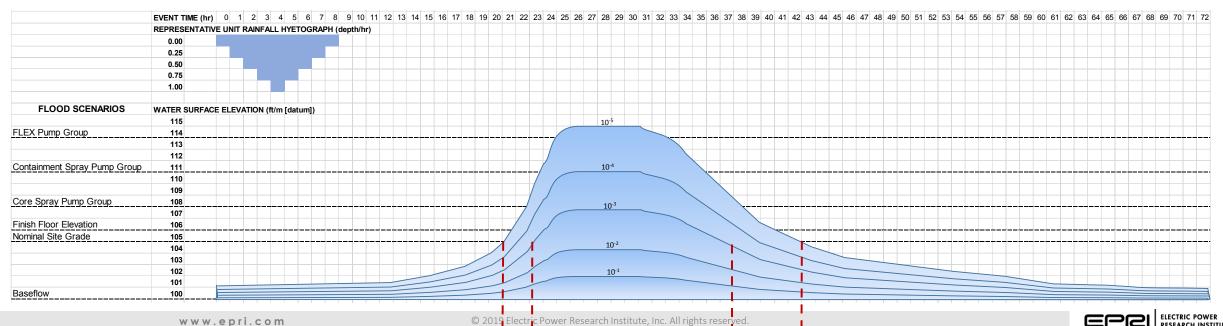
Key Flood Parameters


Define Mechanisms Applicable to Site

- Local Intense Precipitation
- Flooding in Streams and Rivers
- Dam Failure
- Storm Surge
- Seiche
- Tsunami
- Ice-Induced Flooding
- Channel Migration
- Combined Effects

Understanding Key Flood Parameters

- Sources for Flood Analysis
- Defining and Interpreting Key Flood Parameters
- Characterizing Associated Effects
- Developing Flood Scenarios

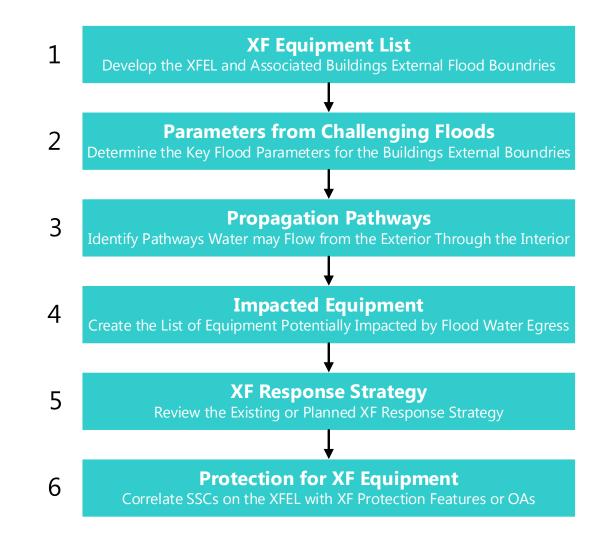


Importance of Understanding Scenarios

- Guidance provided for translating parameters into scenarios
- Things for consideration
 - Warning Time
 - Flood Progression
 - Period of Inundation

- Propagation Pathways
- Period of Recession
- Plant Configuration and Elevations

Pre-Walkdown Preparation


Information for a Successful Walkdown

9

Process Flowchart

Utilizing Previously Completed Walkdowns

Rec. 2.3 Walkdowns

- Provides information on Flood Protection Features
- Location, critical height and condition of seals
- Available Physical Margin Assessment for all FPF
- Considerations Before Using
 - Focused on confirming design/licensing basis commitments
 - Limited walkdowns to design/licensing basis flood heights
 - Did not consider failure modes or collect data for PRA model development

Detailed Guidance

- Utilizing Previous Analyses
 - Internal Flooding PRA, IPEEE, MSA, FHRR, Focused Evaluation, etc
- Developing the XFEL
 - Determine risk-significant SSCs, their location and desired state
 - Identify XF boundaries and propagation pathways to determine SSCs susceptible to flooding

Example of XFEL Entries											
Equipment ID	Equipment Description	Associated Flood Mechanism	OSP Dependent?	Flood Susceptible?	Building/ Elevation (ft or m)	SSC Elevation (ft or m)	Room or Row/ Column	Normal Position	PRA Desired Position	MOV/AOV Failed Position	Permanently Installed?
IA-001	IA Compressor Outlet Valve	LIP	Yes	Yes	Turbine/ 240	244	TH/12	Open	Open	N/A	Yes
SW-P01A	Service Water Pump A	LIP	No	No	Intake/200	207	IA/14	On	On	N/A	Yes
MFW-P01B	Main Feedwater Pump B	LIP/Riverine Flood	Yes	Yes	Turbine/ 219	222	TC/8	On	On	N/A	Yes

Reviewing XF Response Strategy

- Identifying appropriate procedures for each scenario
- Determining XF operator actions required
- Creating an XF Operator Action List

Example of Operator Action Feasibility Walkdown Notes									
Operator Action/ HFE BE	Description	Governing Procedure/ Step	Included in IE HRA?	Action Performance Location	Accessible Location and Environmental Factors	Alternate Paths	Extra Timing Required?		
HRAOPER1	Failure to manually isolate Service Water to Turbine Building	EOP-001/4.2	Yes	CCW Room	No effects on action due to High Winds. Access path will remain clear.	Multiple	No		
HRAOPER2	Failure to provide alternate cooling to AFW Pumps	EOP-001/6.3	Yes	AFW Pump Room and Turbine Building	Part of this action is performed in the Turbine Building, so access path may be blocked due to debris or action may be hindered due to building or component damage.	Multiple paths through Turbine Building, only one path into AFW Pump Room	Yes		
Install Flood Barrier to Aux. Building	Operator fails to install temporary flood gate for Aux Building	FSG-001/3.4	No	Turbine Building door leading to Aux Building	Pump will be staged in a protected location. Pathway should be free of flooding and debris if performed according to procedure during warning time period.	Two paths identified in FSG	No		

Guidelines for External Flooding Walkdowns

14

Guidance for Performing Walkdowns

- Assembling a knowledgeable team
- Performing an exterior site walkdown
- Confirming building ingress pathways
- Performing a detailed walkdown of the protection features
- Confirming interior flood propagation pathways
- Performing a confirmatory walkdown of affected equipment

© 2019 Electric Power Research Institute. Inc. All rights reserved

ELECTRIC POWER RESEARCH INSTITUTI

Guidance for Performing Refined Walkdowns

- Determining when refined walkdowns are necessary
- Identifying the types of refinements available
 - Detailed inundation/propagation modeling
 - New or modified operator actions
 - Detailed fragility/stability analysis
 - PRA Model updates/changes

www.epri.com

 Performing walkdowns to support or confirm differences from refinements

Guidelines for Preparing Walkdown Notebook

17

Notebook Organization and Overview

- Purpose and Scope
- Walkdown Team Composition
- Summary of Walkdown Findings
- Applicable Flood Mechanisms
- Results of Pre-Walkdown Preparation
- Results of the Walkdown
- Results of Additional Walkdowns

External Flooding PRA Walkdown Forms

- Summary Form
- Applicable flood causing mechanisms
- Flooding effects
- Visual Inspections
- Functional Testing/Periodic Monitoring
- Activity or Procedure Walk-through/reasonable simulation

Together...Shaping the Future of Electricity

