RECLAMATION Managing Water in the West

Modeling Overtopping Erosion Tests of Zoned Rockfill Embankments

Tony L. Wahl

Hydraulics Laboratory, Denver, Colorado

U.S. Department of the Interior Bureau of Reclamation

Overview

- Previously reported on three dam breach physical model tests performed for NRC by Reclamation's Hydraulics Lab
- Today: Focus on an overtopping flow test from that project
 - Discuss computational modeling of that test using two dam breach models
 - WinDAM C
 - DL Breach

Dam Breach Test Facility

- 13-ft wide, 3-ft high embankment
- Silty clay core (CL-ML)
- Upstream and downstream "rockfill" zones (Well-graded gravel with clay) (a GW-GC roadbase soil)

Embankment under construction

Objectives

- Observe erosion and breach development mechanics
- Study relationships between applied stress, erosion resistance of embankment materials, and observed erosion rates

$$\boldsymbol{\varepsilon}_r = \boldsymbol{k}_d(\boldsymbol{\tau} - \boldsymbol{\tau}_c)$$

Compare to numerical dam breach models

5 of 44

Overtopping Test – 3 minutes

Overtopping Test – 5 minutes

Overtopping Test – 7 minutes

Overtopping Test – 14 minutes

Overtopping Test – 19 minutes

Overtopping Test – 26 minutes

Overtopping Test – 33 minutes

Overtopping Test – 37 minutes

Overtopping Test – 47 minutes

Overtopping Test – 77 minutes

Overtopping Test – 120 minutes

Overtopping Test – 180 minutes

End of Test

End of Test

Material Behavior - cohesive

Observations

- Despite cohesive behavior (near-vertical sidewalls), a headcut "step" did not develop. Dominant process was surface erosion of the breach channel invert.
 - Why no headcut?
 - Lack of tailwater pool to recirculate and erode toe
 - Erodible crest did not allow establishment of a free overfall

Examples of headcutting (USDA-ARS tests)

Post-Test Analysis

• Estimated erosion rates and hydraulic stresses from photo records and used these to estimate values of k_d and τ_c

- Compared to JET tests
- Core and rockfill zones had similar erodibility k_d ≈ 0.7 to 2.5 ft/hr/psf

Applying Dam Breach Models

- WinDAM C Model developed by USDA – Available since 2011
- DL Breach Model developed by Dr. Weiming Wu (Clarkson University)
 - Available since about 2013
 - Algorithms being added to next HEC-RAS

WinDAM C (2011-2016)

- WinDAM C simulates overtopping and internal erosion failures of <u>homogeneous</u>, <u>cohesive</u> embankments
- For overtopping failures, breach development is by headcutting
- No surface erosion of crest

WinDAM C Modeling Results

- For this application, because the crest does not erode down and there is a constant upstream reservoir level, the model predicts no increase in discharge until the headcut advances into the reservoir, then a rapid spike
- In contrast, in the lab experiment there was no headcut development or headcut advance. Instead, we observed significant surface erosion and lowering of the crest...with gradually increasing outflow

WinDAM C Modeling Results

- WinDAM C did not accurately model our overtopping test
- WinDAM C was developed for USDA dams, which tend to have enough initial erosion resistance of the crest (τ_c) that they consistently develop headcuts.

DL Breach

- DL Breach dam and levee (DL) breach model https://adweb.clarkson.edu/~wwu/DLBreach.html
- Many options:
 - Overtopping and internal erosion
 - Homogeneous and zoned embankments
 - Surface erosion, headcut erosion, and mass wasting mechanisms
 - Erosion models for cohesive and granular soils

DL Breach – Surface Erosion

- Erosion of crest surface and downstream slope are both possible
- With an erosion-resistant core this can give the appearance of headcutting, but mechanism is different
- May choose surface erosion models for either cohesive soil or granular soil (by zone)

27 of 44

DL Breach – Headcut Erosion

- Can only be used for a homogeneous embankment
- Surface erosion of crest can also occur (cohesive or granular equations)
 - There is no surface erosion of downstream slope
- Three headcut model options:
 - 1. SITES model that uses headcut erodibility index K_h
 - 2. Temple (1992) model (the suggested option)
 - 3. Temple et al. (2005)
 - Similar to WinDAM C's energy-based model

Headcut Models - Comparison

- Although DL Breach option 3 and WinDAM C Energy-Based headcut appear outwardly "the same", there are important differences.
 - Different initiation locations
 - Different head definitions (H)
 - Crest lowering
 - DL Breach uses multiplier (*H*/*h_x*) to accelerate initial headcut advance

DL Breach Mass Wasting

- In headcut mode (a), sliding failure of whole dam body is possible
- In surface erosion of zoned embankment (b), sliding failure through core is possible
- Slope failure of breach-channel sides is also possible – geotechnical force balance

30 of 44

Mass Wasting – WinDAM C

- Headcut advance is a continuous mass wasting process at the headcut face, with rate of advance determined from forcebalance
- No method for sliding of whole embankment or top section like DL Breach
- Breach channel widens in proportion to headcut advance rate

Erosion Equations Comparison

DL Breach

- Non-cohesive (granular) sediment transport equation
- Cohesive sediment erosion by excess stress equation

WinDAM C

 Excess stress equation for initial erosion of downstream slope and deepening of headcuts

RECLAMATION

32 of 44

DL Breach – Granular Sediment

- Total transport capacity is the sum of suspended load (Zhang 1961) and bed-load (Wu et al. 2000) capacities
- Bed load transport rate is a function of "grain shear stress"

$$au_b' = \left(rac{n'}{n}
ight)^{3/2} au_b$$

 τ_b is total bed shear stress

n' is Manning's *n* of sediment grains, *n* is Manning's *n* of whole channel

 The ratio (n'/ n)^{3/2} "partitions" the stress into the part that actively causes transport of soil grains vs. the part that acts upon bed forms

DL Breach – Cohesive Sediment

 Does not partition the stress...total bed stress is used to calculate detachment rates using the linear excess stress equation

$$\varepsilon_r = k_d(\tau_b - \tau_c)$$

 In contrast, WinDAM C uses "erosionally effective stress" to develop and deepen headcuts

$$au_b' = \left(rac{n'}{n}
ight)^2 au_b$$

$$\varepsilon_r = k_d(\tau_b' - \tau_c)$$

RECLAMATION

34 of 44

Applying DL Breach to the NRC zoned embankment overtopping test

- Zoned embankment with surface erosion, using cohesive soil erosion equations for all zones
 - Seemed like good match to observed soil behavior
- Zoned embankment with surface erosion, using granular sediment transport equations
 - Because this might be more appropriate for gravel zones
- Homogeneous embankment with headcut
 - (Not relevant since no headcutting was observed)
- Homogeneous embankment with surface erosion
 - (Cohesive equations)

A real challenge is no graphical output, only time series of breach bottom elevation and width, upstream and downstream slope, and breach outflow...hard to visualize what is happening

Results

- Zoned embankment with surface erosion, using cohesive soil erosion equations
 - Initial runs made using erodibility parameters estimated from test results did not match well
 - Problem was that test results were analyzed with effective stress methods (WinDAM approach), but DL Breach uses total stress
 - Significant reduction of erodibility coefficients (k_d) was needed

Poor Result – breach forms too quickly and grows too large, too fast

RECLAMATION

37 of 44

Better Result

DL Breach Simulation - Zoned Embankment, Surface Erosion with Cohesive Soil Equations

RECLAMATIC

Results

- Zoned embankment with surface erosion, using granular sediment transport equations
 - No suitable combination of inputs could be found that produced a realistic result
 - A large mass-wasting event seemed to be occurring in some runs (big change in outflow), but was difficult to interpret from limited output

Results

- Homogeneous embankment, surface erosion
 - Similar result as zoned embankment with surface erosion of cohesive soils
 - In this experiment the different zones had similar erodibility (even though much different soil types), so zoned vs. homogeneous did not make much difference.

Model Comparison Summary

- Some obvious differences, plus some significant differences even in parts that seem outwardly similar
- Crucial for modeler to know algorithm details and how erosion mechanisms interact
- Ability to "see" intermediate stages of breach development is important for knowing what the models are doing

– This is difficult in DL Breach…better in WinDAM C

HEC-RAS implementation may improve this