PERFORMANCE OF FLOOD RATED PENETRATION SEALS

W. Mark Cummings, P.E.

Fisher Engineering, Inc.

NRC PROJECT TITLE: Flood Penetration Seal Performance at NPPs

Project Team: Fire Risk Management, Inc. (*now Fisher Eng.*) Nuvia US

Project Overview:

<u>Project Objective</u>: To establish Testing Standards and Protocols to evaluate the effectiveness and performance of seals for penetrations in flood rated barriers at NPPs.

Project Tasks:

- Task 1: Development of Testing Standards, Performance Based Criteria, and Protocols
 - Task 1.1: Identify and describe the various typical seal materials for FPSs used at NPPs
 - Task 1.2: Develop standard testing procedures, performance based criteria and protocols for testing effectiveness and performance of FPSs.
- Task 2: Testing of Selected Flood Penetration Seal Types and Designs
 - Designed to "test the test protocol"
 - Use observations to determine if mods to Test Protocol are warranted

TASK 1.1 OVERVIEW

- Researched publicly-available information regarding installed Flood-rated Penetration Seals
 - ADAMS database
 - NPP responses to NRC 50.54 Letter (54)
 - NRC Audit Reports
 - LERs, NUREGs, INs. IRs (relevant info noted in 28/-/15/13)
- Wide variety of seal assemblies and materials noted
 - Concrete, Mortar, Grout
 - Mechanical seals (such as boot or link)
 - Silicone foams (high & low densities)
 - Epoxies & Elastomers
 - Urethane
 - Caulking
- Combination of "fill" materials with exterior "damming" materials applied (waterproofing)

TASK 1.1 OVERVIEW (Cont'd)

- Wide range of penetration configurations and types of penetrants
 - Rectangular & Circular
 - Sleeved and Core Bore
 - Single & Multiple Penetrants and "Blanks"
 - Pipes, Cables, Conduit, etc.
 - Varying sizes / diameters
- Both interior and exterior applications
- FPS Assessments
 - "Formed in place" seals (foams, elastomers) appear to exhibit greatest variability in performance
 - Materials / Products (formulations) vary between Manufacturers
- Summary Report Developed: *"Flood Penetration Seal Assemblies at Existing Nuclear Power Plants"* (08/2016)

TASK 1.2 OVERVIEW

- Review of NUVIA Flood Test Apparatus & Procedures
 - NUVIA is only entity currently testing FPSs; using standard procedures/protocols
- Review of UL 1479 Fire Tests of Through-Penetration Firestops
 - Section 6A Water Leakage Test (W rating)
- Review of FM Approval Standard for Flood Abatement Equipment
 - Does not address "penetrations" in flood barriers; primarily the barriers themselves, including dikes
 - Does provide some input regarding "impact" resistance
- Review of ASTM E814 Standard Test Method for Fire Tests of Penetration Firestop Systems
 - Used as a primary "template" for formatting Flood Test Procedure
 - Industry familiarity with formatting

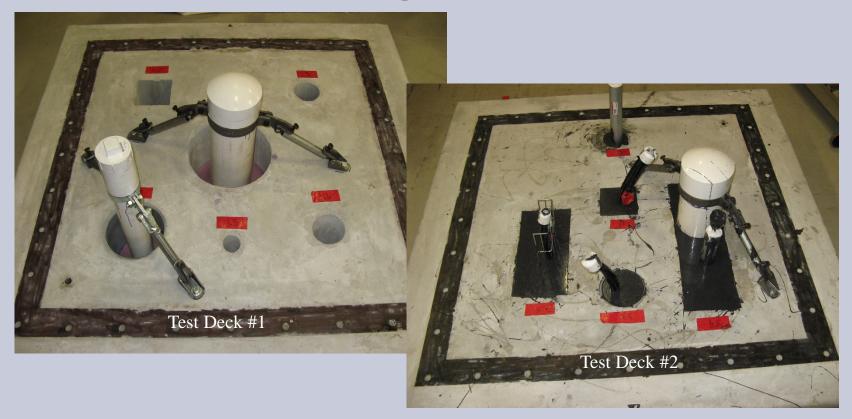
TASK 1.2 OVERVIEW (Cont'd)

- Development of draft Protocol complete ready for use in Phase II
 - Provided "guidance" and standardized methodology for testing flood-rated penetration seals
 - Test apparatus design; including data acquisition
 - Performance-based approach to metrics (no specific pass/fail criteria)
 - Manufacturers will need to specify limitations of their products
 - Use Task 2 testing to assess Protocol flexibility with the p-based approach
 - NRC Issued Draft for public review/comment 02/2018 "Draft Methodology for Testing and Evaluating the Performance of Flood Penetration Seals"

TASK 2 OVERVIEW

- Updated Draft Test Methodology
 - Updates based on public comment
 - Final draft developed for use during Task 2 testing series; 06/2018
- Development of Test Plan
 - Selection of candidate FPSs; types and numbers to be tested
 - Final design for Test Decks (Installed Penetrations & Seal Assemblies)
 - Location for testing (Framatome Lab in Lynchburg, VA)
 - Inclusive of Test Matrix
 - Range of seal assemblies/materials
 - Greater emphasis on "formed in place" (including configurations noted during Task 1)
 - Specific penetrations assigned to participating Mfgrs
 - Final Test Plan submitted to NRC 07/2018; "Test Plan for Flood-rated Penetration Seal Performance Testing"
- Test Objective(s)
 - Exercise & evaluate Flood Test Procedure ("test the test")
 - Research/Evaluation of specific FPS assemblies/materials noted as installed at NPPs

TASK 2 – Test Series


Candidate Test Decks

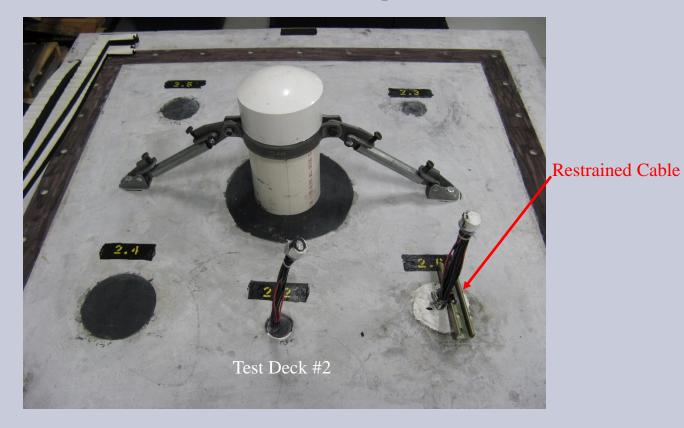
- General design/configuration predicated on Framatome Test Apparatus
- 12" concrete "slabs"
- 5 Sample Decks included in Test Series
- Variety of circular & rectangular/square penetrations
- Sleeved & core drilled
- "blanks" & variety of penetrants: pipe (PVC), cable, cable & cable trays, conduit
- Low & High density foam & silicone materials
- Mechanical seals; boot & link types
- Restrained & unrestrained penetrants
- Penetrants sealed to prevent leakage "through" penetrating item

TASK 2 – Test Series

Candidate Test Decks – Pre-test Preparation

TASK 2 – Test Series

Candidate Test Decks – Pre-test Preparation

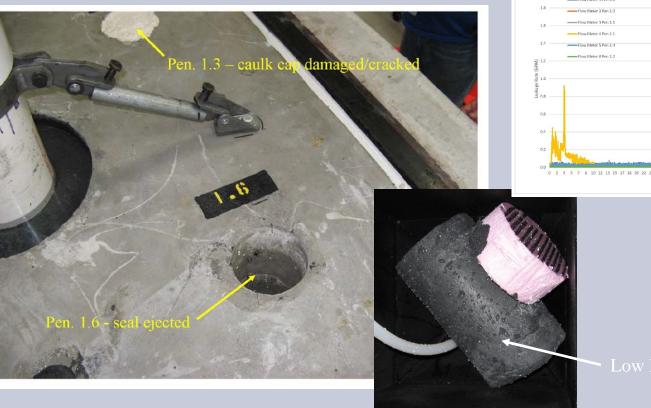


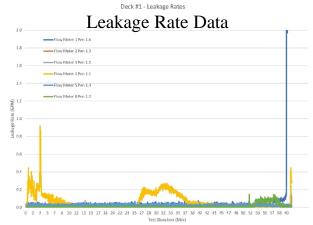
Sealed Cable Penetrant

TASK 2 – Test Series

Candidate Test Decks – Pre-test Preparation

TASK 2 – Test Series


Candidate Test Decks – Pre-test Preparation



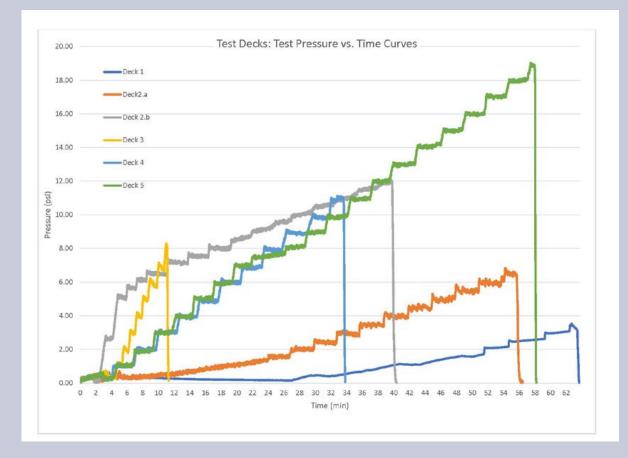
TASK 2 RESULTS

Candidate Test Decks – Post-test Results

Low Density Foam

TASK 2 RESULTS

Candidate Test Decks – Post-test Results



	Deck #5 - Leakage Rates
	Leakage Rate Data
2.00	
1.80	
1.60	Flow Meter #1 Pen 5.2
	Flow Meter #2 Pen 5.3
1.40	Flow Meter #3 Pen 5.6
1.20	Flow Meter #4 Pen 5.1
1.20	Flow Meter #5 Pen 5.5
1.00	Flow Meter #6 Pen 5.4
0.80	
0.60	
0.40	
0.20	
0.00	na di mana manan samatan danta mentaka mana kata mana kata na matakana data dan ana dan ana na makata manaka
	0 2 3 5 7 8 10 12 13 15 17 18 20 22 23 25 27 28 30 32 33 35 37 38 40 42 43 45 47 48 50 52 53 55 57 58 Test Duration (Min)

TASK 2 RESULTS

Candidate Test Decks – Post-test Results

TASK 2 RESULTS

- Candidate Test Decks Post-test Results
 - Lessons Learned
 - Mechanical Seals performed well (link & boot seals \geq 19 psig)
 - Performance of low density foam dependant on numerous variables
 - Number/type of penetrant(s)
 - Sleeved vs. unsleeved and sleeve material
 - Small "free area" to circumference ratio (higher density fill ratio)
 - Silicone elastomer did not adhere well to PVC penetrant or sleeve
 - Better performance with restrained penetrant(s) (low density foams/high density elastomers)
 - Test Methodology Appears Adequate and Flexible to Support Seal Performance Data
- Final Task 2 Testing (Summary) Report Submitted
 - *"Flood-Rated Penetration Seal Performance Testing"* (09/2018)

PATH FORWARD

- Promulgation of Test Methodology for Industry Use
 - Issued via NUREG (NRC action)
 - Provide guidance to Industry for standardized process for evaluating/quantifying FPS performance
 - Support NRC oversight requirements
 - FPS pass/fail criteria will be function of Flood PRA requirements; NPP-specific

Presenter Info

Mr. W. Mark Cummings, P.E.

FISHER ENGINEERING, INC. 1 Front St., Bath, ME 04530 mark.cummings@feifire.com 207/442-7200 www.feifire.com

NRC Contact Info

Mr. Thomas Aird

U.S. NRC Office of Nuclear Regulatory Research Mailstop: TWFN-10A12 1555 Rockville Pike, Rockville, MD 20852-2738 thomas.aird@nrc.gov 301/415-2442