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DOE — IRP project overview

Task 1: Validation Methodology Development

1.1: RISMC Requirement
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Risk Informed Safety Margin Characterization - RISMC

Safety margin

n

» Well-Established PRA )

e Statistical ana|ySiS Deterministic Simulation

. e e, . M H H d- tl t. I d
« Estimate initiating frequency argin  indirectly/not involve

* Core damage frequency

.................................... Load Capacity

* Risk-Informed Safety
Margins Characterization

* Use multi-physics, 3D +t P“;\'nf’:':;'i:tic Simuliisglr:’:;rectlv
simulations

* Dynamically monitor event
initiation and progression

*  More comprehensive/detailed descriptions

* More effective and informative for risk ¢ HOW tO aSSess CrEdlblhty Of SimUIation?

menagement and mitigation purposes * How does it affect the safety decision?
e Core damage frequency




Validation = Decision under uncertainties

Evaluation Model Development and

Assessment Process, NRC,2005
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Validation = Decision under uncertainties

Predictive Capability Maturity

Evaluation Model Development and
Model, Oberkampf, 2007

Assessment Process, NRC,2005
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Predictive Capability Maturity Quantification by Bayesian Net -
PCMQBN

* Motivation

1. How to formalize and evaluate the subjective component of validation?

* Subjective assessment
* Scaling: sufficiency and relevancy of database
* Physical processes involved

e (Qualitative judgement
* Model adequacy
2. How to adapt validation goals/requirements to risk-informed concept?
* Uncertain scenario
* Decision-dependent safety goal

* How to make convincing adequacy decision under large uncertainties?

* Transparent
e Robust
* Consistent



Validation Result
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Validation results (VR;)
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Code Adequacy
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Type | data (grade

<U>=1)

Potentially large bias

Type |l data
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Single point measurements without
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Type IV data Both the model prediction and the high-

(grade <U>=4)

fidelity data has uncertainty information

Channel Flow Reynolds number

Validation database Application
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Insufficient 1 x 10%




Flooding scenarios

* Local Intense Precipitation (LIP)
+ Stream & River Rise Flooding

* Dam Failure

+ Storm Surge

* Wave (Rouge, Tsunami, Seiche)

* Pipe Rupture

Ice-Induced Flooding



RISMC Simulations Confidence Increase

Flooding
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Smoothed Particle Hydrodynamics

* Initially developed by Monaghan in 1977, Smoothed Particle Hydrodynamics method is a
computational method for simulating the mechanics of continuum media

F@) = [ FEWE =707 = Y FEWE =T ) MV = Y 22 FEIWE = )
b

b

Smoothing Discretized Particle Approximation

* As a mesh-free method, SPH is found to be capable of dealing with complex boundary and
interface. It’s also found to be naturally conserved and easily parallelizable.

. . (rem\s!::ing :‘:XtEr:; (rem;’fn":lng (rem::nh:ing (reﬁf&zﬂng
i S P H h a S bee n a p pl |ed | n t h e fleauency and izopressnting failures or not) Ecanaio core melt or not)
magnitude) impact of water) evolution)
RISMC analysis as the simulation
e . SSC
tool for external floods Initiating Plant SSC Eailures Scenario Scenario
Event Response (Flood or Simulation Outcomes
(Tsunami) to Initiator -
Stochastic)
Bayesian Site and 3D facility Simulation to

frequency and track states

magnitude building g model to tra(f:k and process
deling of response an progress o trigger events
mo . boundary flooding +
tsunami conditions failure models such as H “p;i H
hazards failures C. Smith, et al., “Risk-Informed Safety Margin

Characterization (RISMC) Path Technical Program Plan”,
Flooding Analysis 2015




NEUTRINO — SPH code

* Neutrino’s Boundary Implicit Incompressible SPH Solver

Rest Density based formulation of Incompressibility
Iterative Pressure Solver
Hydrostatic/Hydrodynamic Coupled Simulation
Rigid/Fluid Coupling

* Requirements for flooding

Deal with Complex Geometry
Robust

Fast Realization of Simulations
Tracking Interfaces

* Free Surface (For Measuring Fluid Height)
* Fluid-Structure. (Computing Forces/Pressure etc)

Verification & Validation
Ability to couple with PRA Simulations



NEUTRINO — case study: Dam Break

e Couple SPH to shallow water model (GeoClaw)

e Shallow Water model for dam break until region of interest
* Solve the Navier-Stokes equations with SPH — Flow Structure

* Couple Domains - In/out flow boundaries 0
Surface at time t = 1.20000000e+03

* Horizontal velocity components + Height. 3100 105
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NEUTRINO — case study: Dam Break







Requirements for Validation Data for Safety Margin
Analysis

1. Need data that complement existing validation
studies
* Literature review

2. Need data with high statistical significance

* Highly repeatable measurements with well characterized
boundary condition and initial values

3. Need high quality data with quantified uncertainty

Flexible experiment to address specific needs
as they are identified

> Large scale experiment (can also be adapted

for smaller scale tests)
Scaling parameters can also be used (e.g.

vUQ Grade

uality
Q : 4 3 2 1
Relevance | Very High High W Tow
IR] (direct)
Scaling Prototypic Adequately Medium | Inadequatety |
[S] (full-scale) scaled scaled (large

L ) distortions)

Uncertainty | Well- Characterized | Medium Poorly-
|U] Characterized Characterized

Froude number)

—> Measurements performed by trained
experimentalists



Quantities of interest

Event Confidence - Scenario Dependent
(high impact scenarios)

Pressure/| Max Height / | Velocity Turbulence
mpulse Splash

Door Failure High
High Med Med -
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Penetration - High
Exhaust Vent - High - -

Ducting High - - - -
Debris Impact - - Low High Med

usn

Type Dependent

(Example - needs to be developed and approved by a standards committee/NRC)
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Quantities of interest

* First phase focuses on wave impacts
* Pressure ~ Force ~ Structural damage
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In-house design

By doing the design in-house, and already having access to some of the
infrastructure, a large scale facility has been built at modest cost

 Location

 GWU Tompkins Hall: In a former civil engineering lab,
equipped with a strong floor and hydraulic controllers

* Tank
e 200x8 x4 (bBmx2.4mx1.2m)LxW x H
* 10 tons (10 m3) of water
e Structural steel frame with acrylic walls
* Forcing
 Upto 10” (25 cm) amplitude
* Upto 20”/s (0.5 m/s) velocity
e Upto 0.5g (5 m/s?)
e 22 kips Hydraulic actuator, linear bearings on precision rails



Construction of the facility

Facility now completed

)



Shakedown Tests

2D Wave natural frequency
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Shakedown TEsts

6” depth, 4” 0.49 Hz forcing (34 mode)







Shakedown TEsts

12” depth, 4” 0.155 Hz forcing (15t mode)







Instrumentation

Pressure probes (end wall center, z=4 and 10”)
Accelerometer

Forcing data

NI DAQ (2 kHz acquisition)
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First test case:

6” depth, 4” 0.11 Hz forcing (15t mode)
Pressure measurement at end wall
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First test case:

6” depth, 4” 0.11 Hz forcing (15t mode)
Pressure measurement at end wall
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Check panels vibrations

Pressure signal shows high frequency during impact.
Could be bubble oscillations, but need to rule out acrylic vibrations

Impact sample 5 radial mounting of transducer; forcing 4in 0.13 Hz z=10"
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Pressure oscillation not linked to panel vibration
Likely due to bubbles (not modeled in Neutrino)



P (Pa)

First test case:

6” depth, 4” 0.11 Hz forcing (15t mode)
Assessment of repeatability

Run h {mm) | f{Hz) A(mm) | Comments
1 152.4 0.11 101.6 | Reference run
2 1524 0.11 101.6 | Identical to Run 1
3 152 4 0.11 | 102.108 | Change of the forcing amplitude by 1%
4 153 .4 0.11 101.6 | Change of the water depth by 1 mm
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First test case:
6” depth, 4” 0.11 Hz forcing (15t mode)
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Sloshing Tanks

e Simulation has been performed by
Emerald Ryan in Idaho State
University

e Simulation Tank width is less than
the real facility (0.2m compared to
2.4m)

 Particle size is 0.0125m and the
results are acceptable.

* Simulation takes around 10 hours
for 30 cycles, and the output
frequency is 50Hz







Sloshing Tank

* SPH predicted pressure
force are compared against
the measurements

e Hard to visualize the quality
of SPH predictions,
especially when the

ressure fluctuations are
arge

* |t's suggested that
sophisticated validation
metrics should be used for
better characterizing the
credibility of SPH methods
in predicting the sloshing
tank phenomenon
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Sloshing

* Root mean square error

N

S (@~ OO’

=1

(Lp)m =

e Absolute Error
(L) = 1 3 NP~ DD

* Confidence Interval
Pi,m = N((ﬁi)miﬂm)

* Simulation errors are bounded after 20 cycles

* Absolute distance metrics serve the purpose
quite well

* The EXP data band covers the SIM data band,
observed phenomena (turbulence, void) are
not captured by NEUTRINO simulation
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Sloshing Tank

Probability distributions for both
simulation PDF (P;) and
measurement distributions PDF (D;)

Fit the distribution to Kernel Density
Estimation (multi-variant
distributions)

N d —
PDF(Pi)_Nhlhz dZﬂ’“ h; )
]

i=1 j=1

K-L Divergence and Helllnger metrics
for measuring the “similarity” of two
distributions

Dk, (P,D) = Z P(i) log( E ;) + D(i) log <%)

Ranges with less similarity are found

Hellinger Metrics
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Sloshing Tank

e NEUTRINO has better

predictions for impulse than

pressure

* P-| curve suggests the limiting

surface of SSC structures

* Incorporate model adequacy

results into the P-I curve

Damage Level NEUTRINO EXP
No 44/60 57/60
Light 16/60 2/60
Moderate 0/60 0/60
Severe 0/60 1/60

M. Abedini, etc.,

- f'\r’c

Impulse predictions
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“Pressure-Impulse (P-1) Diagrams for Reinforced Concrete (RC) Structures: A Review”, 2018



First test case:

Two ways of comparing experiment and simulations:

1. Exact temporal evolution of pressure
Useful for single event (tsunami)
Cannot be applied past ~10 cycles (random and chaotic flow)

a)
b)
2. Statistical approach (phase averaged pressure)

a) Provide better estimation of the accuracy of simulation
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Can be used for Bayesian analysis
Computationally more expensive
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surface angle (degree)

INSTRUMENTATION development

* Laser-based slope measurement for initial flow conditions

> 1 mm over tank length

-—> 10 um over tank length

Lase, Screen
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INSTRUMENTATION development

* High Speed stereo-imaging
Wave impact, bubble formation, detailed profilometry




Scaling analysis

 Scaling with water depth

P
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_ 2
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Future tests

* Many types of structures can be mounted to the tank:
* Dike, barriers, building models
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