Watershed level Risk Analysis with HEC-WAT

Will Lehman, Economist Hydrologic Engineering Center Institute for Water Resources

01 May 2019 Rockville, MD

US Army Corps of Engineers BUILDING STRONG® www.hec.usace.army.mil

What is **HEC-WAT**?

- Provides a plug-in architecture to allow other computational models to be computed in the program sequence
- Integrates HEC-HMS, HEC-ResSim, HEC-RAS and HEC-FIA models, eliminating manual data exchange.
- Supports systems and watershed-based studies.
- Supports risk and uncertainty evaluations.

What is **HEC-WAT**?

Provides a plug-in architecture to allow other computational models to be computed in the program

HEC-WAT INTEGRATES

Integrates HEC-HMS, HEC-ResSim, HEC-RAS and HEC-FIA models, eliminating manual data exchange.

Supports systems and watershed-based studies.

Supports risk and uncertainty evaluations.

What is **HEC-WAT**?

Provides a plug-in architecture to allow other computational models to be computed in the program

HEC-WAT INTEGRATES

Integrates HEC-HMS, HEC-ResSim, HEC-RAS and HEC-FIA models, eliminating manual data exchange.

Supports systems and watershed-based studies.

SupHEC-WATinFacilitates Evaluation

HEC-WAT INTEGRATES

Plug-in Architecture

- HEC-WAT Manages the computes through plug-ins
 Plug-ins interact with each other
 - through a centralized database

HEC-WAT Model Integration

- Models and tools that implement the Plugin Interface can contribute to the computational process
 - Hydrology HEC-HMS
 - Reservoirs HEC-ResSim
 - Hydraulics HEC-RAS
 - Economics HEC-FIA
- Communication is defined by the Plugin API and facilitated by HEC-WAT

Data is transferred through a common DSS file.

HEC- WAT Facilitates Evaluation

HEC-WAT Workflow

- Import existing models or develop models from within HEC-WAT
- Develop alternatives
- Organize & store data
- Edit models accessed via plug-ins to view Native model interfaces
- Run modeling software via plug-ins
- View and compare alternative results

HEC-WAT Interface

INSTITUTE FOR WATER RESOURCES

	1
The first own description according activity Tools Window Help	
A MonuteShart Texo A Minute Projet Conditions A Minute Projet Conditin A Minute Projet Conditin A Minut	
Study File:C:Users\g0hecprb/Desktop/CRT WA	
Unit System:English	
Created By:q0hecprb Starting Prugin Server for na Plugin ResSim opened ColumbiaRiverTreaty Plugin FIA opened ColumbiaRiverTreaty Opened Study ColumbiaRiverTreaty from directory C:\Users\q0hecprb\Desktop\CRT_WAT_Pre-FRA(1)\ColumbiaRiverTreaty Loading Alternatives Without Project Conditions Stream Alignment added to Schematic: Without Project Conditions Without Project Conditions Without Project Conditions	
Study Maps Files Schematic Messages	STRONG
Coordinates: -2885760 east, 10665972 north	I SIKUNG _®

Model Linking

¥ Model Linking Editor							
File Edit View							
🖬 🎒 🍻							
Simulation: Base_FRA							
Model To Link: 📉 ResSim-Baseline_F							
Default Model To Link:							
Delaur Model To Link.		1		1			
Location	Parameter	Input Fro	m Model	Location/Para	ameter		
Zero	Known Flow	DSS File	•	zero.dss://ZERO///6HOUR//			
Lake Mendocino Local	Known Flow	HMS-(MCA)Russi	an River FRA 👻	EF Russian 10 - Flow	•		
West Fork Headwater	Known Flow	HMS-(MCA)Russi	an River FRA 👻	WF Russian - Flow	•		
Lake Sonoma Headwater	Known Flow	HMS-(MCA)Russi	an River FRA 👻	Dry Cr25 - Flow	•		
Dry Creek Local	Known Flow	HMS-(MCA)Russi	an River FRA 👻	Dry Creek 10 - Flow	-		
Mark West Creek Local	Known Flow	HMS-(MCA)Russi	an River FRA 👻	Santa Rosa 10 - Flow	-		
Guernevill Local	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 👻	Russian 20 - Flow	•		
Calpella Local	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 👻	EF Russian 20 - Flow	•	-	
Hopland Local	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Russian 60 - Flow	•		
Healdsburg Local	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 👻	Russian 30 - Flow	•		
Ukiah_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 👻	Russian 70 - Flow	•		
Cloverdale Gage_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 👻	Russian 50 - Flow	•		
Big Silfur Trib_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Big Sulphur Cr - Flow	•		
Geyserville_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Russian 40 - Flow	•		
Lake Sonoma_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Dry Creek 20 - Flow	•		
Santa Rosa_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Santa Rosa Cr 10 - Flow	•	_	1
Green Valley_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Green Valley - Flow	▼		Input From
Austin Ck_Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Austin Cr 10 - Flow	•		
Ocean Loc	Known Flow	HMS-(MCA)Russi	an River FRA 🛛 🔻	Russian 10 - Flow	•	-	HMS-(MCA)Russian
			CA: AustiaCr CA	U A	Flow		HMS-(MCA)Russian
			SA: Austinici SA	Cr 94	Flow		HMS-(MCA)Russian
			SA: SantaRosaC	27 SA	Flow		HMS-(MCA)Russian
			DryCreek DryCre	ek RS 14 28 (Sonoma Outflow I)	Flow		ResSim-Baseline F
			Russian Covote	ToDC RS 99 93 (Lk Mendocino Out)	Flow		ResSim-Baseline F
			Russian Covote	ToDC RS 91 31	Flow		HMS-(MCA)Russian
			Russian Covote	ToDC RS 84.61	Flow		HMS-(MCA)Russian
			Russian Covote	ToDC RS 70.92 (Cloverdale)	Flow		HMS-(MCA)Russian
			Russian Coyote	ToDC RS 54.07	Flow		HMS-(MCA)Russian
	Clinka		Russian Coyote	ToDC RS 35.42	Flow		HMS-(MCA)Russian
			Russian DCtoOcean RS 21.16 Flow		Flow		HMS-(MCA)Russian
			Russian Coyote	ToDC RS 65.71	Flow		HMS-(MCA)Russian
	Russian DCtoO	Flow		HMS-(MCA)Russian			

-ResSim Links

Input From Model	Location/Parameter	
HMS-(MCA)Russian River FRA	▼ WF Russian - Flow	
HMS-(MCA)Russian River FRA	Russian 30 - Flow	
HMS-(MCA)Russian River FRA	✓ Austin Cr - Flow	
HMS-(MCA)Russian River FRA	▼Green Valley - Flow	
HMS-(MCA)Russian River FRA	▼ Santa Rosa 10 - Flow	
ResSim-Baseline_F	Lake Sonoma_OUT - Flow	
ResSim-Baseline_F	Lake Mendocino_OUT - Flow	
HMS-(MCA)Russian River FRA	Russian 60 - Flow	
HMS-(MCA)Russian River FRA	▼ Russian 50 - Flow	
HMS-(MCA)Russian River FRA	Russian 40 - Flow	
HMS-(MCA)Russian River FRA	Russian 30 - Flow	
HMS-(MCA)Russian River FRA	Russian 20 - Flow	
HMS-(MCA)Russian River FRA	Russian 10 - Flow	
HMS-(MCA)Russian River FRA	▼ Big Sulphur Cr - Flow	
HMS-(MCA)Russian River FRA	Russian 20 - Flow	
HMS-(MCA)Russian River FRA	✓ Dry Creek 10 - Flow	
	Ĭ	

BUILDING STRONG_®

Flow

Flow

DryCreek DryCreek RS 13.73

Russian CoyoteToDC RS 99.17

Deterministic Compute

Single Flood Event

- Example: 8 January 1986 to 13 January 1986
- Simplest type of compute
- Eliminates manual handoffs between models

Period of Record

- Example: 1 October 1943 to 30 September 2014
- Slightly more complex compute

Hydrologic Modeling (HEC-HMS)

Reservoir Analysis (HEC-ResSim)

River Hydraulics (HEC-RAS)

Consequence Analysis (HEC-FIA)

FRA Simulations

- FRA simulations uses a Monte Carlo style compute to support risk analyses.
- Individual applications sample model parameters from a range of values to capture uncertainty.
- Natural variability and knowledge uncertainty sampled separately.
- Maintains consistency between alternatives by allowing use of same initial seeds.

Simulation	Editor			X			
N							
Name:	Without Proje	ct Conditions-TimeWindow]			
	FD 1	1	()]			
Simulation	FRA Output						
Number of Y	ears in Realiz	zation:		500			
Max. Numbe	er of Realizatio	ins:		10			
Realization	Seed:			0			
Event Seed:				0			
Program		Alternative	Initial Seed	User Seed			
Program		Alternative	Initial Seed	User Seed			
Hydrologic S	Sampling	HS - St. Paul Levee 30y	1.036942895E9	(
Fragility Cur	ve	FC - St. Paul Levee	2.119158176E9	(
TimeWindo	wModifier	ForRAS	7.58670404E8	(
RAS		Fail Middle	3.3063242E8				
FIA		ALT_Grids	3.30282058E8				
Performanc	e Metrics	PM_St. Paul	6.55864267E8	(
				OK Cancel			

How do we capture a distribution of uncertainty in EAD?

Nested Monte Carlo: HEC-WAT/FRA

- A. Sample instances of natural variabilities as flood events, with enough events to capture the distribution of damage
- B. Sample instances of knowledge uncertainties in model parameters to get their impact on the damage distribution

1 outer loop B = a realization

inner loop A varies natural variabilities, computes EAD

outer loop B varies knowledge

uncertainty, computes EAD distribution

Reservoir Analysis Channel Hydraulics Levee Behavior Spreading Model

sample uncertain model parameters

Peak Flow (cfs)

CDF

Exceedance Probability

Inundation Mapping Structure Inventory Damage to Structures

frequency curve

(uncertainty)

G®

sample of mean damage (EAD) from <u>all realizations</u> (spans knowledge uncertainty) provides distribution of EAD

50,000

3,000,000 3,250,000 3,500,000 3,750,000 4,250,000 4,750,000 4,750,000 5,250,000 5,750,000 5,750,000 5,750,000 5,000,000 5,000,000

Average Damage (EAD) \$

000'00

50,000

50,000

000'00

0

50,000

750,000 000,000 250,000 500,000

10 5

28

G

sample of mean damage (EAD) from <u>all realizations</u> (spans knowledge uncertainty) provides distribution of EAD

Average Damage (EAD) \$

G

Uncertainty in a frequency curve estimated from 30 years of data

Uncertainty in a frequency curve estimated from 60 years of data

American River Insurance Study

- For stability a 2D channel was linked to a 2D overbank area through a 2D SA connection.
- Two connections were set to breach
- Model development took approximately 8 hours

X Output Va	ariable Viewer							-	_		×
File Edit Viev	N										
Variable: 📙	S Because -	PEAK FL	OW MAX	Flow				~ K	1	of 1 🕨	H
Realization:	Realization	1									\sim
Lifecycle:	Lifecycle 1										\sim
k			Be	cause -	PEAK FI	LOW MA	х				
2	00,000-										
	50,000-										-
	00,000-										-
	50,000							•••	••••		
	0	i 5	10	15 3	20 2	25 3	i 30 3	i 35 4	i 10 -	i 45	-1 50
					Event						
	lifecycle 1										

🦞 Output Variable Viewer	– 🗆 X
File Edit View	
Variable: Hs Because - PEAK FL	
Realization: Realization 1	Y Output Variable Viewer − □ × File Edit View
Lifecycle: Lifecycle 1	
	Variable: HS Because - PEAK FLOW MAX Flow
	Realization: Realization 1
200.000-	Lifecycle: Lifecycle 2
200,000	Because - PEAK FLOW MAX
150,000	
/ (cts)	200,000
· · · · · · · · · · · · · · · · · · ·	
	150,000
50,000	
0	ê 100,000-
5	50,000
lifecycle 1	
	Event
	lifecycle 2

Y Output Variable Viewer		– 🗆 ×		
File Edit View				
Variable: Because - PEAK F	FLOW MAX Flow			
Realization: Realization 1				
Lifecycle: Lifecycle 1	File Edit View			
	Variable: Because - PEAK FLOV	V 🐺 Output Variable Viewer		– 🗆 X
	Realization: Realization 1	File Edit View		
200,000	Lifecycle: Lifecycle 2	Variable: Because - PEA	K FLOW MAX Flow	✓ H 4 1 of 1 D H
	k	Realization: Realization 1		~
150,000-		Lifecycle: Lifecycle 3		~
(S) 8 100 000-	200,000		Because - PEAK FLOW N	IAX
<u> </u>	150,000	Q		
50,000		200,000		
	100,000	150.000-		
5		() () () () () () () () () () () () () (
Eferuela d	50,000	은 100,000-		
	0			
	5 10	50,000		
	lifecycle 2			
		5	10 15 20 25 Event	30 35 40 45 50
		▲ lifecycle 3	Lion	
		1 1		

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

X Output Variable Viewer		– 🗆 X		
File Edit View				
Vertekter Um				
Variable: Because - PEAK FL	OW MAX Flow		- T X	
Realization: Realization 1				
Lifecycle: Lifecycle 1	File Edit View			
	Variable: 📙 Because - PEAK FLOV	🦞 Output Variable Viewer	– – ×	
	Realization: Realization 1	File Edit View		
200.000	Lifecycle: Lifecycle 2	Variable: He Because - PEA		
		Poplization: Poplization 1	Y Output Variable Viewer	– 🗆 X
150.000		Kealization. Kealization 1	File Edit View	
(A)		Lifecycle: Lifecycle 3		
8 100 000-	200,000	k		
Ē			Realization: Realization 2	×
50.000	150,000- ා බ	200,000	Lifecycle: Lifecycle 19	~
			Because - PEAK FLOW MAX	
0	a 100,000-	150,000	450,000	
5		cts)	400,000	
	50,000-	<u>≜</u> 100,000	350,000	
lifecycle 1	•••••	ш.	300,000	
	5 10	50,000	<u>ම</u> 250,000 -	
		▲ ▲	200,000	
	lifecycle 2	0-	I 150,000	
		5	100,000	
			50,000	
		lifecycle 3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			5 10 15 20 25 30	35 40 45 50
			Event	
			Iffecycle 19	
INSTITUTE FOR			BUILL	NING STRUNG _®
		53		

HEC-RAS output by event

BUILDING STRONG_®

BUILDING STRONG_®

BUILDING STRONG_®

59

Conclusion

- HEC-WAT/FRA is a planning and evaluation tool that conducts risk assessments in a systems context.
- It includes systems approaches, event sampling, alternative analyses, structural and non-structural analyses, Life Loss, agricultural damage analyses.
- Is being used nationwide for dam and levee evaluations and assessments, and planning and design studies.

QUESTIONS?

www.hec.usace.army.mil

US Army Corps of Engineers BUILDING STRONG_®