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Background – Areal Reduction Factors (ARFs) 

• Current precipitation frequency 
products (e.g., NOAA Atlas 14) are 
mostly developed for point rainfall
– Not directly applicable for many nuclear 

power plant H&H applications

• Areal reduction factors (ARFs) are 
needed to convert these point 
estimates to watershed estimates for 
H&H modeling

• Use “geographically-fixed-area” ARF
– NOT “storm-centered” ARF

• ARFs in common use suffer from 
several key limitations:
– Limited / outdated data
– Small area sizes (up to 400 mi2)
– Do not vary with location, return period, or 

season

Source: Technical Paper No. 29; noaa.gov

Example ARF curves (from TP-29)
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Objectives of this Project 

• Understand and demonstrate how ARFs may vary when 
using different precipitation data products and ARF methods 
across different geographical locations, durations, areas, 
return periods, seasons, and etc.
– Task 1: Provide a summary of available precipitation products that can 

be used to develop ARFs.
– Task 2: Provide a critical review of available ARF methods with a view to 

addressing the deficiencies in the commonly used empirical methods. 
– Task 3: Demonstrate use of the most promising method/dataset 

combinations through selected test cases.

• Support Nuclear Regulatory Commission (NRC) on the 
development of future Probabilistic Flood Hazard 
Assessment (PFHA) guidance on ARFs used by NRC 
licensees
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Study Approach

• Factors affecting ARFs
– Area, duration, and return period
– Different ARF methods
– Precipitation products to use
– Geographical locations
– Seasonality

• Case study application
– Regional comparison

• 3 hydrologic regions (HUC02), 5 precipitation products, and 6 ARF methods
– National comparison

• 18 hydrologic regions (HUC02), 1 precipitation product, and 1 ARF method

• Evaluation through fitting statistics (e.g., NSE, RMSE, R2)
• Only consider “geographically-fixed-area” ARF



Visualizing Spatial and Temporal Rainfall

Image Source: 
Australian Rainfall 
and Runoff: A Guide 
to Flood Estimation
http://book.arr.org.au.s
3-website-ap-
southeast-
2.amazonaws.com/

Rgrid(d,g) Rarea(d)

http://book.arr.org.au.s3-website-ap-southeast-2.amazonaws.com/
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Precipitation Products

• These precipitation products exhibit long temporal coverage, broad spatial 
coverage, and sufficient temporal/spatial resolution.

• DSI3240 is only analyzed for Region 05 (Ohio).

Precipitation 
Products

Provider Dataset Type Coverage 
Start

Coverage 
End

Data Latency Spatial Coverage Temporal 
Resolution

Spatial 
Resolution

Gauge-only Datasets
Hourly Precipitation 
Data (DSI3240)

NOAA National 
Centers for 
Environmental 
Information (NCEI)

Gauge 
observation

1940 2013 Data since 2014 
have not been 
released (checked 
10/17/2017)

U.S. (including 
AK, HI, PR)

Hourly Gauge

Gauge-driven Products
Daymet version 3 
(Daymet)

Oak Ridge 
National 
Laboratory (ORNL)

Gridded from 
gauge observation

1980 2017 Annual update North America Daily 1 km * 1 km

Daily PRISM 
Dataset (PRISM)

Oregon State 
University

Gridded from 
gauge observation 
(and partially with 
radar)

1981 present Operational 
(updated 
automatically)

U.S. (48 states) Daily 1/24 deg * 
1/24 deg (~ 4 
km * 4 km)

Livneh CONUS 
Near-surface 
Meteorological Data 
(Livneh)

University of 
Colorado, Boulder

Gridded from 
gauge observation

1950 2013 No scheduled 
update (checked 
10/17/2017)

U.S. (48 states), 
Mexico, & Canada 
(south of 53N)

Daily 1/16 deg * 
1/16 deg (~ 6 
km * 6 km)

Radar-driven Products
NCEP National 
Stage IV Analyses 
(ST4)

NOAA National 
Centers for 
Environmental 
Prediction (NCEP)

Merged radar and 
gauges (with QC)

2002 present Operational 
(updated 
automatically)

U.S. (48 states), 
excluding 
California-Nevada 
& Northwest RFCs

Hourly 4 km * 4 km
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DSI3240 Assessment Approach

• Process 1950–2013 
hourly precipitation 
dataset
– 64 years of data

• Bilinear interpolation of 
non-missing hourly 
precipitation to 4-km 
PRISM grids
– Acceptable in the Ohio 

region given smoother 
topography. Topographic 
adjustment shall be needed 
in other regions.

• Analyze ARF using the 
existing PRISM setup

*Dots illustrate NCEI hourly rainfall stations which have 30+ years of record

Ohio River Basin (Hydrologic Region 05)
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General Assessment Procedures

• Annual maximum series (AMS) searching
– Data

• PRISM (1981–2017), Daymet (1980–2017), ST4 (2002–2017), Livneh (1950–2013), 
DSI3240 (1950–2013)

– Duration
• All: 1-day, 2-day, 3-day
• Additionally for ST4 & DSI3240: 1-hr, 2-hr, 3-hr, 6-hr, 12-hr, 18-hr

– Season
• All season, Warm season (May–Oct), Cool season (Jan–Apr, Nov–Dec)

– Grid AMS (Pgrid): annually at each grid
– Areal AMS (Parea): annually at each HUC08, HUC06, HUC04, HUCac

• Sample ARF at each areal units (HUCs)
– Average AMS

• (Temporal average of Parea) / (Temporal and spatial average of Pgrid)
– T-year estimate

• Fitting AMS by GEV, and getting T-year estimates (e.g., Parea,10yr)
• Parea,Tyr / (Spatial average of Pg11,Tyr)

• Regional fitting by different ARF models
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Sample ARF Calculation
• RArea(d)

– Daily rainfall at each Area

– 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑑𝑑) =
∑𝑔𝑔∈𝐻𝐻 𝑅𝑅(𝑑𝑑,𝑔𝑔)

𝑁𝑁𝐻𝐻
– H, the set of all g within an Area
– 𝑁𝑁𝐻𝐻, number of grid points in an Area

• PArea (y)
– Annual max. rainfall at each Area
– 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦) = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑∈𝑦𝑦
𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑑𝑑)

• Rgrid(d,g)
– Daily rainfall at each grid
– d, a day
– g, a grid location within an Area

• Pgrid(y,g)
– Annual max. rainfall at each grid
– 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑦𝑦,𝑔𝑔) = max

𝑑𝑑∈𝑦𝑦
𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑,𝑔𝑔)

– y, a year
– 𝑁𝑁𝑦𝑦, total number of years

• Sample ARF of average AMS

– 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦) =
∑𝑔𝑔∈𝐻𝐻 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑦𝑦,𝑔𝑔)

𝑁𝑁𝐻𝐻

– 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑𝑦𝑦=1
𝑁𝑁𝑦𝑦 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦)

𝑁𝑁𝑦𝑦

– 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎 =
∑𝑦𝑦=1
𝑁𝑁𝑦𝑦 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻(𝑦𝑦)

𝑁𝑁𝑦𝑦

– 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑎𝑎𝑎𝑎𝑎𝑎𝑎

• Sample ARF of T-year estimates
– 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑦𝑦,𝑔𝑔 ,𝑇𝑇𝑇𝑇𝑇𝑇)

– 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑇𝑇𝑇𝑇𝑇𝑇,𝑎𝑎𝑎𝑎𝑎𝑎 =
∑𝑔𝑔∈𝐻𝐻 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑇𝑇𝑇𝑇𝑇𝑇(𝑔𝑔)

𝑁𝑁𝐻𝐻

– 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑦𝑦 ,𝑇𝑇𝑇𝑇𝑇𝑇)

– 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑇𝑇𝑇𝑇𝑇𝑇

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑇𝑇𝑇𝑇𝑇𝑇,𝑎𝑎𝑎𝑎𝑎𝑎
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Watershed-based AMS Searching Approach

• Increase AMS samples to 
cover a wider range of 
watershed sizes

• Define additional spatial unit 
HUCac based on watershed 
connectivity

– For each HUC08, using its 
connectivity with other HUC08s to 
identify the entire upstream 
contributing watershed as HUCac

– Use HUCac to search AMS 

• Use HUC08, HUC06, HUC04, 
and HUCac AMS to fit 
different ARF models

– 120 HUC08: 290 – 840 km2

– 21 HUC06: 4,400 – 54,000 km2

– 7 HUC04: 15,000 – 85,000 km2

– 46 HUCac: 4,600 – 420,000 km2
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Selected ARF Models

• Empirical Methods
– M1: Leclerc & Schaake (1972) – fitted 

formula of US Weather Bureau TP-29
– M2: Koutsoyiannis and Xanthopoulos

(1999) – fitted UK-NERC ARF 
relationship (NERC, 1975)

– M3: Hydrological Atlas of Switzerland 
Model (Grebner et al., 1998) 

– M4: Australian Rainfall & Runoff (ARR) 
Guideline (Nathan and Weinmann, 2016)

• Dynamic Scaling Model
– M5: De Michele et al. (2001)

• Extreme Value Theory
– M6: Overeem et al. (2010)

𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴,𝐷𝐷) = 1 + 𝑤𝑤
𝐴𝐴𝑧𝑧

𝐷𝐷

𝑏𝑏 −𝑣𝑣/𝑏𝑏

𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴,𝐷𝐷,𝐴𝐴𝐴𝐴𝐴𝐴
= 1 − 𝑎𝑎 𝐴𝐴𝑏𝑏 − 𝑐𝑐 log10 𝐷𝐷 𝐷𝐷−𝑑𝑑

+ 𝑒𝑒𝐴𝐴𝑓𝑓𝐷𝐷𝑔𝑔 0.3 + log10 𝐴𝐴𝐴𝐴𝐴𝐴
+ ℎ10𝑖𝑖𝑖𝑖𝑖𝑖 0.3 + log10 𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴,𝐷𝐷,𝐴𝐴𝐴𝐴𝐴𝐴 = ⁄𝑃𝑃 𝐴𝐴,𝐷𝐷,𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃 𝐴𝐴∗,𝐷𝐷,𝐴𝐴𝐴𝐴𝐴𝐴
𝑃𝑃 𝐴𝐴,𝐷𝐷,𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐺𝐺𝐺𝐺𝐺𝐺−1 1 − 𝐴𝐴𝐴𝐴𝐴𝐴|𝜇𝜇, 𝛾𝛾, 𝜅𝜅
𝜇𝜇 𝐴𝐴,𝐷𝐷 = 𝑎𝑎𝐷𝐷𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 ln𝐷𝐷 𝐴𝐴𝑒𝑒
𝛾𝛾 𝐴𝐴,𝐷𝐷 = 𝑓𝑓 ln𝐴𝐴 + 𝑔𝑔 ln𝐷𝐷 + ℎ
𝜅𝜅 𝐴𝐴 = 𝑖𝑖 ln𝐴𝐴 + 𝑗𝑗

𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 =
𝑎𝑎0

𝐴𝐴 + 𝑎𝑎2 𝑎𝑎1
+ 𝑎𝑎3𝑒𝑒−𝑎𝑎4𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴,𝐷𝐷 = 1 −
𝑎𝑎𝐴𝐴 𝑏𝑏−𝑐𝑐 ln 𝐴𝐴

𝐷𝐷𝑑𝑑

𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴,𝐷𝐷 = 1 − 𝑒𝑒𝑎𝑎𝐷𝐷𝑏𝑏 + 𝑒𝑒 𝑎𝑎𝐷𝐷𝑏𝑏−𝑐𝑐𝑐𝑐
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M5: De Michele Dynamic Scaling Model

• De Michele et al. (2001) and (2011)
– Uses the concepts of dynamic scaling and statistical self-affinity to find a 

general expression for the mean annual maxima precipitation as a 
function of the rainfall duration and area

• 𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨,𝑫𝑫) = 𝟏𝟏 + 𝒘𝒘 𝑨𝑨𝒛𝒛

𝑫𝑫

𝒃𝒃 −𝒗𝒗/𝒃𝒃

– A, area (km2)
– D, duration (hr)
– Four parameters: v, b, w, z

• ORNL Fitting
– Minimize the root mean square error (RMSE) between ARF samples and 

ARF model using Matlab fminsearch function (Nelder-Mead simplex 
algorithm; Lagarias et al., 1998)

– Performance evaluated by Nash–Sutcliffe efficiency (NSE)
– (4 fitted parameters) * (# of frequency levels)
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Preliminary Results
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M5: De Michele 
Dynamic Scaling 
Model

• Data: PRISM (all seasons)
• Duration: 1-day, 2-day, 3-day
• Frequency level: AMS, 10-year, 

100-year
• ARF Fitting: M5

100-year10-year~ 2-year
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Region 05
Overall M1–M6
Comparison

• Data: PRISM (all seasons)
• Duration: 1-day
• Frequency level: AMS, 10-year, 

100-year
• ARF Fitting: M1–M6

100-year10-year~ 2-year
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Duration
NSE

M1 M2 M3 M4 M5 M6
Average AMS (approximately 2-year)

1-day 0.72 0.93 0.94 0.93 0.94 0.84
2-day 0.76 0.93 0.93 0.93 0.93 0.78
3-day 0.75 0.92 0.93 0.92 0.93 0.69

10-year
1-day 0.70 0.91 0.91 0.91 0.91 0.82
2-day 0.69 0.89 0.90 0.89 0.89 0.68
3-day 0.73 0.90 0.91 0.91 0.91 0.61

100-year
1-day 0.48 0.66 0.67 0.66 0.66 0.60
2-day 0.44 0.67 0.67 0.67 0.67 0.38
3-day 0.60 0.78 0.79 0.79 0.78 0.45

Region 05
Overall M1–M6
Comparison

• Data: PRISM (all seasons)
• Duration: 1-day, 2-day, 3-day
• Frequency level: AMS, 10-year, 

100-year
• ARF Fitting: M1–M6

*Red cell highlights NSE < 0.5
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Region 05
Data Source
Comparison

• Data: All (all seasons)
• Duration: 1-day
• Frequency level: AMS, 10-year, 

100-year
• ARF Fitting: M5

100-year10-year~ 2-year
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Duration
NSE

PRISM
(1981–2017)

Daymet
(1980–2017)

ST4
(2002–2017)

Livneh
(1950–2013)

DSI3240
(1950–2013)

Average AMS (approximately 2-year)
1-day 0.94 0.95 0.92 0.92 0.95
2-day 0.93 0.95 0.92 0.93 0.93
3-day 0.92 0.94 0.92 0.93 0.93

10-year
1-day 0.91 0.93 0.89 0.91 0.93
2-day 0.89 0.92 0.88 0.92 0.92
3-day 0.91 0.93 0.87 0.91 0.91

100-year
1-day 0.68 0.74 0.35 0.80 0.85
2-day 0.70 0.74 0.39 0.77 0.80
3-day 0.80 0.82 0.36 0.82 0.80

Region 05
Data Source
Comparison

• Data: All (all seasons)
• Duration: 1-day, 2-day, 3-day
• Frequency level: AMS, 10-year, 

100-year
• ARF Fitting: M5

*Red cell highlights NSE < 0.5
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Region 05 
Seasonal 
Variability

• Data: PRISM (all, warm, cool)
• Duration: 1-day
• Frequency level: AMS, 10-year, 

100-year
• ARF Fitting: M5

100-year10-year~ 2-year
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National Comparison (I)
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National Comparison (II)
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National Comparison (III)
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Preliminary Observations (I)

• General
– Shorter duration, lower ARF
– Larger area, lower ARF
– Higher return period, lower ARF
– Cool season ARF > All season ARF > Warm season ARF

• Regarding ARF methods
– Different ARF methods matter
– M2 (K&X), M3 (Switzerland), M4 (ARR), and M5 (De Michele) provide 

better fitting.
– While M3 (Switzerland) can fit well, it does not include duration as a 

variable and hence can be more sensitive to sample size and data 
quality.

– M4 (ARR) is more difficult to fit (8 parameters), but it includes frequency 
levels in the model and can be overall more robust.

– M5 (De Michele) can fit well and has a good underlying theory.
– While M6 (GEV) has a good underlying theory, it’s more challenging for 

the ARF application. Further ad hoc adjustment is needed.
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Preliminary Observations (II)

• Regarding data sources
– Smaller ARF differences are found, but the differences are not negligible.
– Data length plays an important role, especially for higher return level 

ARFs.
– Difficult to fit one set of parameters for both longer and shorter durations.
– While gauge data is harder to process, it leads to the best ARF model 

fitting in Region 05.

• Regarding inter-regional differences
– ARFs are lower in the central US, higher in eastern & western US
– Texas-Gulf (R12) & Souris-Red-Rainy (R09) are generally the lowest.

• Overall
– The proposed HUCac watershed AMS searching approach work across 

different regions.
– High return level ARF remains a major challenge, mostly due to relatively 

short data record length.
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Questions?
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