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1. INTRODUCTION – Rain is easy to measure, hard to analyze

The physical process is hard 
to represent:
• rain is generated on the 

microscale
• the decorrelation distance/time is 

short
• point values only represent a 

small area & snapshots only 
represent a short time

• a finite number of samples causes 
problems
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1. INTRODUCTION – Instrumentation strong points

Knowledge of precipitation is key to a wide range of users

Data sources have recognized strengths:
• microwave imagers good instantaneous results
• geo-IR good sampling
• satellite soundings some information in cold-surface conditions
• precipitation gauge near-zero bias
• model complete coverage and "physics"

Different data sources are best in different regions

All have bigger errors in
• mountains
• snowy/icy regions
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1. INTRODUCTION – But …

Instruments have characteristic errors:
• raingauge

wind losses splashing
evaporation side-wetting
interpolation

• radar
raindrop population changes
anomalous propagation
beam blockage by surface features
sidelobes

• satellite
physical retrieval errors
beam-filling errors
time-sampling

• numerical prediction models
computational approximations
initialization errors
errors in other parts of the 
computation

Sensor-specific strengths and limitations
infrared microwave

latency 15-60 min 3-4 hr
footprint 4-8 km 5-30+ km
interval 15-30 min 12-24 hr

(up to 3 hr) (~3 hr)
“physics” cloud top hydrometeors

weak strong

• additional PMW issues over land include
•   scattering channels only
•   issues with orographic precip
•   estimates not currently useful over snow and sea ice
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We want 3-hourly observations, globally
• sampling the diurnal cycle
• morphed microwave loses skill outside ±90 

min

The current international constellation includes:
• 5 polar-orbit passive microwave imagers

•   3 SSMIS, AMSR-2, GMI
• 6 polar-orbit passive microwave sounders

•   3 MHS, 2 ATMS, SAPHIR
• input precip estimates 

• GPROF (LEO PMW) & PRPS (SAPHIR)
• PERSIANN-CCS (GEO IR)
• 2BCMB (combined PMW-radar)
• GPCP SG (monthly satellite-gauge)

2. FROM DATA TO ESTIMATES – The constellation (1/2)
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The constellation is evolving
• legacy satellites are allowed to drift

• exact coverage is a complicated function 
of time

• duplicate orbits aren’t very useful for 
getting 3-hourly observations 

• launch manifests tend to show fewer satellites 
in the next decade

2. FROM DATA TO ESTIMATES – The constellation (2/2)
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2. FROM DATA TO ESTIMATES – Single-
satellite estimates

Nearly coincident views by 5 sensors
southeast of Sri Lanka

The offset times from 00Z are below the 
“sensor” name

The estimates are related, but differ due to
• time of observation
• resolution
• sensor/algorithm limitations

Combination schemes try to work with all of 
these data to create a uniformly gridded 
product
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2. FROM DATA TO ESTIMATES – There are numerous choices out in public

The International Precipitation Working Group (IPWG) web site
• http://www.isac.cnr.it/~ipwg/
• a concerted effort in the next biennium to beef up user-oriented information

• “fitness for use”
• http://www.isac.cnr.it/~ipwg/data.html

• tables listing publicly available, long-term, quasi-global precipitation data sets
• http://www.isac.cnr.it/~ipwg/data/datasets.html
• combinations with gauge data
• satellite-only combinations
• single-satellite
• gauge analysis

And I have a dog in this show …
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IMERG is a unified U.S. algorithm based on
• Kalman Filter CMORPH – NOAA/CPC
• PERSIANN CCS – U.C. Irvine
• TMPA – GSFC
• PPS (GSFC) processing environment

IMERG is a single integrated code system for near-real 
and post-real time
• multiple runs for different user requirements for 

latency and accuracy
• “Early” – 4 hr (flash flooding)
• “Late” – 14 hr (crop forecasting)
• “Final” – 3 months (research)

• time intervals are half-hourly and monthly (Final 
only)

• 0.1º global CED grid
• morphed precip, 60º N-S in V05, 90º N-S in V06
• IR covers 60º N-S

3. IMERG – Quick description (1/2)
Half-hourly data file (Early, Late, Final)

1 [multi-sat.] precipitationCal

2 [multi-sat.] precipitationUncal

3 [multi-sat. precip] randomError

4 [PMW] HQprecipitation
5 [PMW] HQprecipSource [identifier]

6 [PMW] HQobservationTime

7 IRprecipitation

8 IRkalmanFilterWeight
9 [phase] probabilityLiquidPrecipitation

10 precipitationQualityIndex

Monthly data file (Final)
1 [sat.-gauge] precipitation

2 [sat.-gauge precip] randomError

3 GaugeRelativeWeighting

4 probabilityLiquidPrecipitation [phase]

5 precipitationQualityIndex
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IMERG is adjusted to GPCP monthly climatology
zonally to achieve a bias profile that we consider 
reasonable
• Over Versions 04 to 06 the GPM core products 

have similar zonal profiles (by design)
• these profiles are systematically low in the 

extratropical oceans compared to
• GPCP monthly Satellite-Gauge product is a 

community standard climate product
• Behrangi Multi-satellite CloudSat, TRMM, 

Aqua (MCTA) product
• over land this provides a first cut at the adjustment 

to gauges that the final calibration in IMERG 
enforces

• similar bias concerns apply during TRMM era

3. IMERG – Quick description (2/2)
Half-hourly data file (Early, Late, Final)

1 [multi-sat.] precipitationCal

2 [multi-sat.] precipitationUncal

3 [multi-sat. precip] randomError

4 [PMW] HQprecipitation
5 [PMW] HQprecipSource [identifier]

6 [PMW] HQobservationTime

7 IRprecipitation

8 IRkalmanFilterWeight
9 [phase] probabilityLiquidPrecipitation

10 precipitationQualityIndex

Monthly data file (Final)
1 [sat.-gauge] precipitation

2 [sat.-gauge precip] randomError

3 GaugeRelativeWeighting

4 probabilityLiquidPrecipitation [phase]

5 precipitationQualityIndex
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3. IMERG – Key points in morphing (1/2)
Western 

Equatorial 
Pacific Ocean

Aug.-Oct. 2017

D.Bolvin (SSAI; GSFC)

Following the CMORPH approach
• for a given time offset from a microwave overpass
• compute the (smoothed) average correlation between

• morphed microwave overpasses and microwave 
overpasses at that time offset, and

• IR precip estimates and microwave overpasses at 
that time offset and IR at 1 and 2 half hours after 
that time offset

• for conical-scan (imager) and cross-track-scan 
(sounder) instruments separately

• by season and regional blocks
• the microwave correlations drop below the IR 

correlation within a few hours (2 hours in the Western 
Equatorial Pacific)
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Following the CMORPH approach
• for a given time offset from a microwave overpass
• compute the (smoothed) average correlation between

• morphed microwave overpasses and microwave 
overpasses at that time offset, and

• IR precip estimates and microwave overpasses at 
that time offset and IR at 1 and 2 half hours after 
that time offset

• for conical-scan (imager) and cross-track-scan 
(sounder) instruments separately

• by season and regional blocks
• the microwave correlations drop below the IR 

correlation within a few hours (2 hours in the Western 
Equatorial Pacific)

• at t=0 (no offset), imagers are better over oceans, 
sounders are better or competitive over land

L2 correlation at t=0  Aug.-Oct. 2017

Imager

Sounder

D.Bolvin (SSAI; GSFC)

3. IMERG – Key points in morphing (2/2)

12



Half-hourly QI (revised)

• approx. Kalman Filter correlation
• based on 

• times to 2 nearest PMWs (only 1 for 
Early)

• IR at time (when used)

• where r is correlation, and  the i’s are for 
forward propagation, backward 
propagation, and IR

• approximate r when a PMW overpass is 
used

• revised to 0.1º grid (0.25º in V05)
• thin strips due to inter-swath gaps
• blocks due to regional variations
• snow/ice masking will drop out microwave 

values

3. IMERG – Quality Index (1/2)

The goal is a simple “stoplight” index

• ranges of QI are considered to be:
• > 0.6 good
• 0.4–0.6 use with caution
• < 0.4 questionable

• is this a useful parameter?

Half-Hr Qual. Index  00UTC 2 July 2015 0.2 0.3 0.4 0.5  0.6 0.7 0.8
D.Bolvin (SSAI; GSFC)
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Early March 2019: began Version 06 IMERG Retrospective Processing
• the GPM era was launched first, Final Run first
• the TRMM era Final Run reprocessing is underway

• complete data will take about a month
• 4 km merged global IR data files continue to be delayed for January 1998-January 2000

• the run will build up the requisite 3 months of calibration data starting from February 2000
• the first month of data will be for June 2000
• the initial 29 months of data will be incorporated when feasible

• Early and Late Run Retrospective Processing uses Final intermediate files, so they come after Final
• Final is always ~3.5 months behind, so the Early and Late retrospective processing have to wait on 

Final Initial Processing to fill in the last 3 months before May 2019 (i.e., until mid-August)
• Early and Late Run Initial Processing will start ~1 May

underway

done

coming

4. SCHEDULE – Version 06 in the GPM era
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Multi-satellite issues
• improve error estimation

• field seems to be headed toward posting quantile values
• develop additional data sets based on observation-model combinations
• work toward a cloud system development component in the morphing system

General precipitation algorithmic issues
• introduce alternative/additional satellites at high latitudes (TOVS, AIRS, AVHRR, etc.)
• evaluate ancillary data sources and algorithm for Prob. of Liq. Precip. Phase
• work toward using PMW retrievals over snow/ice
• work toward improved wind-loss correction to gauge data

Version 07 release should be in about 2 years (late 2021?)

4. SCHEDULE – Development work for V07
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The product 
structure remains 
the same
• Early, Late, Final
• 0.1ºx0.1º half-

hourly (and
monthly in Final)

New source for 
morphing vectors
Higher-latitude 
coverage
Extension back to 
2000 (and 
eventually 1998)
Improved Quality 
Index

J. Tan (USRA; GSFC)

4. SCHEDULE – Version 06 summary
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Global Flood Monitor
Adler (U.Md.)

00 UTC 9 Jan 00 UTC 10 Jan 00 UTC 11 Jan

00 UTC 12 Jan 12 UTC 12 Jan 00 UTC 13 Jan

Brisbane

Individual events happen quickly; heavy 
localized rain events captured by satellite data
Flood models estimate flood evolution
• Brisbane area floods peak on 11 Jan. then 

subside
• To the west another flood area develops 

from the same rain system
• high water levels move downstream into 

relatively unpopulated areas

12 UTC 11 Jan

5. APPLICATION – Estimated flood evolution for 9-13 January 2011, Australia

Relative Routed Runoff (mm)
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Rainfall Data:
• TMPA
• 0.25º, 3-hourly 

resolution

Surface Data:
• topographic variables
• land cover
• soil type and texture
• drainage density

Circles enclose small 
areas of estimated 
landslide locations

5. APPLICATION – Global landslide occurrence algorithm

D. Kirschbaum (GSFC) 18



Fu et al. (2010) examined long-term behavior of ”extreme” precip in Australian gauge data
• computed 7 measures of “extreme”
• all measures roughly tracked together
• all measures of “extreme” showed strong multi-time-scale variability

• a strong interdecadal component is present over the entire record
• provides a strong cautionary statement about reliability of fitting to a few decades of data

Adler et al. (2010) show only modest trends in global mean precip over 1979-2014
• but regional trends are substantially larger
• the global change seems to mostly manifest as wetter/drier in wet/dry areas

Adler, R.F., G. Gu, M. Sapiano, J.-J. Wang, G.J. Huffman, 2017:  Global Precipitation: Means, Variations 
and Trends during the Satellite Era (1979-2014).  Surv. Geophys., 21 pp.  doi:10.1007/s10712-017-9416-4

Fu, G., N.R. Viney, S.P. Charles, J. Liu, 2010:  Long-Term Temporal Variation of Extreme Rainfall Events in 
Australia: 1910-2006.  J. Hydrometeor., 11, 950-965.  doi:10.1175/2010JHM1204.1

5. APPLICATION – Extreme precipitation
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Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) dataset
• predecessor to IMERG
• 15 years, 50ºN-S
Approach builds on a previous avg. recurrence study
• domain partitioned into ~28,000 non-overlapping clusters using recursive k-means clustering
• peak-over-threshold classification as extreme if gridbox day value exceeds a (regional, seasonally 

varying) 99% threshold
• only the maximum day’s value is retained in a run of over-threshold days
• analysis is a generalized extreme value (GEV) fitted with maximum likelihood estimation (MLE)

Demirdjian, L., Y. Zhou, G.J. Huffman, 2018:  Statistical Modeling of Extreme Precipitation with TRMM 
Data.  J. Appl. Meteor. Climatol., 57, 15-30.  doi:10.1175/JAMC-D-17-0023.1

5. APPLICATION – Estimate Average Recurrence Interval for precipitation (1/2)
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Compare Event PP to 
• GEV of annual maximum 

data for 65 years of CPC 
gauge

• previous GEV using 
annual maximum data for 
14 years of TMPA

Satellite schemes match each 
other for short interval
• and generally resemble 

CPC
• systematically high to the 

north

Event PP is closer to CPC at 
25 years

CPC 2 year return levels CPC 25 year return levels

Annual GEV 2 year return levels Annual GEV 25 year return levels

Event PP 2 year return levels Event PP 25 year return levels

50 100 150 50 100 150 200
(mm) (mm)

5. APPLICATION – Estimate 
Average Recurrence 
Interval for precipitation 
(2/2)
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Satellites provide the only practical global source of precipitation
• several “state of the art” combination algorithms, including IMERG

• quasi-Langrangian interpolation between passive microwave overpasses to populate a fine time grid
• but algorithms are still mostly tuned to means, not extremes

Satellite datasets are being used to estimate extremes
• flooding
• landslides
• return period precipitation values

Precipitation extremes exhibit strong interdecadal fluctuations, but the influence of global change is still 
under study

george.j.huffman@nasa.gov
pmm.nasa.gov

6. CONCLUDING REMARKS
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Monthly QI (unchanged from V05)
• Equivalent Gauge (Huffman et al. 1997) in gauges / 2.5ºx2.5º

• where r is precip rate, e is random error, and H and S are source-specific error constants
• invert random error equation
• largely tames the non-linearity in random error due to rain amount
• some residual issues at high values
• doesn’t account for bias
• QIm ≥ 4 is “good”
• 2 ≤ QIm < 4 is “use with caution”
• QIm < 2 is “questionable”

Month Qual. Index  July 2015 0 4 8 12  16 20+
D.Bolvin (SSAI; GSFC)

3. IMERG – Quality Index (2/2)
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