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Outline

* Introduction/Background
* Logic Tree Method for Probabilistic
Storm Surge Hazard Analysis
—Framework;
—Sensitivity results;
—Takeaways;

* Discussion




National Storm Surge Hazard Maps

Category 1 Category 2 Category 4

Category 3

This national depiction of storm surge flooding vulnerability helps
people living in hurricane-prone coastal areas along the U.S. East and
Gulf Coasts and Puerto Rico to evaluate their risk to the storm surge
hazard. These maps make it clear that storm surge is not just a
beachfront problem, with the risk of storm surge extending many miles
inland from the immediate coastline in some areas. If you discover via
these maps that you live in an area vulnerable to storm surge, find out
today if you live in a hurricane storm surge evacuation zone as
prescribed by your local emergency management agency. If you do live
in such an evacuation zone, decide today where you will go and how
you will get there, if and when you're instructed by your emergency
manager to evacuate. If you don’t live in one of those evacuation zones,
then perhaps you can identify someone you care about who does live in
an evacuation zone, and you could plan in advance to be their inland
evacuation destination - if you live In a structure that Is safe from the
wind and outside of flood-prone areas.

- Less than 3 feet above ground

\:| Greater than 3 feet above ground
|:| Greater than 6 feet above ground
- Greater than 9 feet above ground

m Leveed area

Consult local officials for flood risk
How this map was created:
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FEMA — Hurricane Sandy Impact

[ Green - Low Storm Impact
[ Yellow - Moderate Storm Impact
I Rea - High Storm Impact

[ Purple - Very High Storm Impact
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Storm Surge Hazard
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General Methodology / Example Analysis

* Deterministic analysis;

* Probabilistic analysis:

— Empirical simulation technique (e.g., TR
CHL-99-21, Scheffner, et al., 1999);

— Empirical track method (e.g., Vickery et al.,
2009);

— Synthetic track method (e.g., Lin et al.,
2010);

— Joint probability method (e.g., FEMA, 2008
& 2014 and USACE TR-15-5, 2015);

;} “Best Estimate”
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Figure 14. Return level plot for extreme storm surge
heights for New York City. The solid curve is the mean
return level. The dashed curves are the 95% confidence
limits. The open circles are the empirically estimated return
levels.

Source: New York City Hurricane Surge Risk Assessment, Lin et al., 2010
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Sources of Epistemic Uncertainty

* Uncertainty = Knowledge Uncertainty + Natural Variability

4 N\ )
Facts that can be known with Inherent variability in the
uncertainty, but are not physical world that cannot be
currently known by the known for certain.
observer. Cannot be reduced, however,
Obtaining more information can our estimation can be improved
reduce this type of uncertainty. ) \With more information. )

* Storm surge hazard analysis — epistemic uncertainty, e.g.,

uuuuu

* Limited historical record:; I‘. I“;C;‘S‘?““F 1

« Limitations in physical models; IH_‘
» Storm recurrence rate;

* Coincident astronomical tides;
» Meteorological parameters;

« Hydrodynamic modeling;

* Projected sea level rise scenarios; : | : // | |

NOAA et al. 2017 Relative Sea Level Change Scel s for : NEW YORK

® NOAA2017 Extreme
® NOAA2017 High
nt-Hi

0
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year

Sources: Corps Risk Analysis Gateway Training Module; Franklin and Landsea, 2013; NOAA 2017.
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Logic Tree Method

Storm Probability Masses
Computation

Kernel Function ~ Kernel Size Correlation Dp- Rmax Distribution Form
Central Pressure Deflclt
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Alternative models;
Alternative parameter
values;
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systematic treatment of Mean hazard +

confidence interval

uncertainty

Sources: Gonzalez, et al., 2017, 34 PFHA Workshop; Bensi and Kanney, 2015.



Logic Tree Example

for Probabilistic Storm Surge Analysis




PFHA Method
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dependence

Univariate
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Example Alternatives

Treatment of

errors

—  Constant

- Proportional

— Combined
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Example Joint Probability Logic Tree

Storm
Surge Storm Rate Antecedent Data Co- Probability Sea level Error/
Landfall Modeling Water Level Source variability model change Uncertainty
R
Results ® M (D) V) P) © (E)
(S)

BB
Tracks

Upper
E - B
Site- HT/LT
arametric
model HT/MSL/LT
Lower Independent
Landfalling} Bound < param ngh

storms Dependent

Upper Synthetic
Bound Tracks
I HT/LT
Regiona
<
Lower
Bound

Best Tracks
HT/MSL/LT
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Tropical Cyclone Storm Surge Elevation (

Sensitivity Analysis — Storm Recurrence Rate

‘Model Grid A

== Upper Bound

Best Estimate
Lower Bound

A=A, +-40%

1073 104

Annual Exceedance Probability

Tropical Cyclone Storm Surge Elevation (m)
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‘Model Grid B~

== Upper Bound
Best Estimate
Lower Bound

1073 10

Annual Exceedance Probability
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Sensitivity Analysis — Probability Distributions
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Source: Fig. 11 of Vickery and Wadhera, 2008. Page | 12
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Sensitivity Analysis — Parameter Co-variability

With no co-variability

Tropical Cyclone Storm Surge Elevation (m)
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Example: heading vs. wind intensity
(Gulf of Mexico)
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Effects of Different Input

Tropical Cyclone Storm Surge (m)

Tested:
« Parameter co-variability;
2 :
« Parametric vs non-
parametric;
! « Storm surge modeling
results;
0
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Annual Exceedance Probability
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Example Hazard Curves with Error/Uncertainty

e Pl >0~ Y API() £ > 1)
’ = i=l
5
o= /al-z+(bl--n)2
4 where

a; = Ve +&° b; = F(&3,&,)

I = branch number

&, = uncertainty representing tide
coincident with storm surge

&, = uncertainty in numerical surge
modeling

&5 = uncertainty due to sampling
(intensity variability)

Tropical Cyclone Storm Surge Elevation (m)

3 b L &, = correction factor (project specific)
i 0-
Annual Exceedance Probability
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Branch Weight

Zw;=1.0

0.04

0.02

0.02

0.01

0 ‘H“ ‘”” ”” ‘””

1 5 5 131721252933374145459525761656973 77813858993

Branch Number

Branch Weight

0.04

0.03

0.02

0.01

GEOTECHNICAL  ENVIRONMENTAL

ECOLOGICAL

GONSTRUCTION
WATER MANAGEMENT

Example Branch Weights

Z2w;=1.0
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Branch Number
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Effect of Weights on Mean Hazard Curves

Tropical Cyclone Storm Surge (m)
Tropical Cyclone Storm Surge (m)

2 2
1 1
0 o
1.E-02 2.E-03 2E-04 1E-02 2.E-03 2 E-04
Annual Exceedance Probability Annual Exceedance Probability
TC mean (b)) ———84%CL(b) —---95%CL (b) ———TCmean (a) ——84%CL(a) ----95%CL(a)
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Effect of Sea Level Change Scenarios

Prob Mass of SLR
Scenarios
NOAA et al. 2017 Relative Sea Level Change Scenarios for : NEW YORK
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® NCAA2017 Exreme
o NCART High RCP4.5
3 o NGAAZOTT IntHigh
o NCAAZ)1T Iniemediate ! ngh mRCP2.6
o NCARTT IntLow
25 o NCAR2017 Low 1
% » NCAA0TVLM i
° o | - UsKCELw |nt|-|igh
E —LSCE | ' |
£ —- LSACE High .
915
v Int
: |
05 IntLow
|
0 .
2000 2010 2020 2030 2040 2080 2060 270 2080 2090 2100
y Low
“r I
0 0.5

Table 4. Probability of exceeding GMSL (median value) scenarios in 2100 based upon Kopp et al. (2014).

GMSL rise Scenario RCP2.6 RCP4.5 RCP8.5
Low (0.3 m) 94% 98% 100%
Intermediate-Low (0.5 m) 49% 73% 96%
Intermediate (1.0 m) 2% 3% 17%
Intermediate-High (1.5 m) 0.4% 0.5% 1.3%
High (2.0 m) 0.1% 0.1% 0.3%
Extreme (2.5 m) 0.05% 0.05% 0.1%
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Note: SLC adjusted by linear superposition. Assumed RCP4.5

Page | 18

Sources: NOAA, 2017. USACE, 2017.
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Takeaways

 Comprehensive and systematic approach for epistemic
uncertainty assessment;

* Flexibility for sensitivity evaluation;
* Transparency for risk assessment and communication;

* Diverse applications for complex multi-component system;

+Policy and preference
based

Risk Communication

sInteractive exchange of information, opinions
and preferences concerning risks

USACE Risk Analysis Gateway

an)
Page | 19
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