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Outline

 Introduction.
 Quantification of uncertainty in probabilistic storm surge 

models.
 Gaussian process metamodeling (GPM): definition and 

error quantification.
 GPM Applications in probabilistic storm surge modeling:

► Reference set
► Monte Carlo simulation
► Meta-Gaussian distribution (multivariate Gaussian copula)

 Epistemic uncertainty/Logic tree approach.

2



BUILDING STRONG®

Introduction

 Study objectives:
► Identification of technically defensible data sources, models, and 

methods for the computation of storm surge.
► Assessment for carrying forward for evaluation of epistemic 

uncertainty.
► Epistemic uncertainty is quantified and propagated through logic 

tree approach (PSHA approach).

 Gaussian process metamodeling.
► Augmented storm suite for:

• Reference set
• Monte Carlo simulation
• Meta-Gaussian distribution (multivariate Gaussian copula)

► Error quantification.
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Quantification of Uncertainty in Probabilistic 
Storm Surge Models

 Characterize, quantify, and propagate both aleatory and 
epistemic uncertainties through the probabilistic 
framework of storm surge assessment.

4

Treatment of Uncertainty
Aleatory: differences between a numerical model 
and the natural phenomenon is prevalent (error 
term). 
Epistemic Uncertainty: Reduction of uncertainty in 
the selection and application of alternative data, 
methods, and models 
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Logic Tree Approach
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𝜆𝜆𝑟𝑟 �𝑥𝑥 >𝑟𝑟 = 𝜆𝜆�𝑃𝑃 𝑟𝑟 �𝑥𝑥 + 𝜀𝜀 > 𝑟𝑟| �𝑥𝑥, 𝜀𝜀 𝑓𝑓�𝑥𝑥 �𝑥𝑥 𝑓𝑓𝜀𝜀 𝜀𝜀 𝑑𝑑 �𝑥𝑥𝑑𝑑𝑑𝑑

≈ ∑𝑖𝑖𝑛𝑛 𝜆𝜆𝑖𝑖 𝑃𝑃 𝑟𝑟 �𝑥𝑥 + 𝜀𝜀 > 𝑟𝑟|�𝑥𝑥, 𝜀𝜀

where:
𝜆𝜆𝑟𝑟 �𝑥𝑥 >𝑟𝑟 = AEP of TC response r due to 
forcing vector �𝑥𝑥
�𝑥𝑥 = 𝑓𝑓 𝑥𝑥𝑜𝑜, 𝜃𝜃, ∆𝑝𝑝, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, 𝑉𝑉𝑡𝑡
λ = SRR (storms/yr/km)
𝜆̂𝜆i = probability mass (storms/yr) or λ 𝑝𝑝𝑖𝑖,   

with 𝑝𝑝𝑖𝑖=product of discrete probability and 
TC track spacing (km)
𝑃𝑃 𝑟𝑟 �𝑥𝑥 + 𝜀𝜀 > 𝑟𝑟|�𝑥𝑥, 𝜀𝜀 conditional 

probability that storm 𝑖𝑖 with parameters �𝑥𝑥𝑖𝑖
generates a response larger than r
𝜀𝜀 = unbiased error or aleatory uncertainty 

of r
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Metamodeling

6

 Mathematical approximation for the 
input/output (x/z) relationship of 
complex numerical models. 

 “State-of-practice” in coastal 
hydrodynamic modeling for coastal 
hazard studies: 
Computationally-intensive coupled 

ocean circulation models and spectral 
wave models over large domains

 Metamodel is designed (trained) 
using parameterized TC inputs and 
hydrodynamic model outputs.

( ) ( )θ,,,,ˆResponse max0 fVRpxfxf ∆==

ADCIRC

ADCIRC

STWAVE

Metamodel

Water Elevation

NACCS

Coastal
Texas

SACS

Synthetic Storm 445, NACCS
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Gaussian Process Metamodeling

 GPM formulation has 2 
parts:

► Global regression model
► Gaussian process or local 

correction

7

 GPM advantages:
► Computational efficient
► Handles complex models
► Uncertainty of predictions
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Gaussian Process Metamodeling

 Fundamental GPM formulation:
► Regression: de-trend data.
► GP: interpolates within the 

residuals of the regression. 

 The predictive mean combines 
both the regression and GP.

 Regression is not optimized 
irrespective of GP.

 Validation metrics.
► Example Types: average, per save 

point, per storm.
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ℎ 𝒙𝒙 = 𝒇𝒇𝑘𝑘 𝒙𝒙 𝑇𝑇𝛽𝛽𝑘𝑘 + 𝑧𝑧𝑘𝑘 𝒙𝒙

Global regression Gaussian process 
(GP)

Where:
𝛽𝛽𝑘𝑘: regression coefficient
𝒇𝒇𝑘𝑘: basis functions (regression models)
ℎ 𝒙𝒙 : output
𝑹𝑹
𝜃𝜃𝑘𝑘

: Gaussian correlation function

𝜃𝜃𝑘𝑘: vector of parameters for correlation

(1)

e.g. R2, Mean Absolute Error, 
Correlation Coefficient, RMS.

𝛽𝛽𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑭𝑭𝑘𝑘𝑇𝑇𝑹𝑹𝜃𝜃𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀
−1 𝑭𝑭𝑘𝑘

−1
𝑭𝑭𝑘𝑘𝑇𝑇𝑹𝑹𝜃𝜃𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀

−1 𝑯𝑯

�ℎ 𝒙𝒙|𝑀𝑀𝑘𝑘 = 𝒇𝒇𝑘𝑘 𝒙𝒙 𝑇𝑇𝛽𝛽𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 + 𝒓𝒓𝜃𝜃𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 𝒙𝒙 𝑇𝑇𝑹𝑹𝜃𝜃𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀
−1 𝑯𝑯 − 𝑭𝑭𝑘𝑘𝛽𝛽𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 (2)

(3)
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GPM Training – NACCS

Coastal
Reference 
Location

NACCS 
Save 
Point

R2
Mean 

Absolute 
Error

Correlation 
Coefficient RMS

Virginia 
Beach, VA 6488 0.988 0.071 0.994 0.064

Chesapeake 
Bay, MD 5951 0.974 0.072 0.988 0.082

The Battery, 
NY 7672 0.989 0.066 0.994 0.090

Newport, RI 1082 0.985 0.077 0.993 0.068
Boston, MA 1884 0.982 0.069 0.992 0.057

9

 The GPM used in this study was trained using the 1050 
synthetic TCs developed as part of the NACCS (Nadal-
Caraballo et al. 2015).

 Trained on WL peaks (time series training also possible).
 Validation of landfalling TCs.  
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GPM Training – NACCS

Coastal 
Reference 
Location

NACCS 
Save 
Point

R2
Mean 

Absolute 
Error

Correlation 
Coefficient RMS

Virginia 
Beach, VA 6488 0.970 0.091 0.986 0.089

Chesapeake 
Bay, MD 5951 0.963 0.075 0.983 0.060

The Battery, 
NY 7672 0.974 0.086 0.988 0.100

Newport, RI 1082 0.952 0.111 0.979 0.121
Boston, MA 1884 0.946 0.093 0.977 0.070

10

 Validation of 
bypassing TCs.  
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GPM Applications: Reference Set

 Developed a reference set that considers all parameter 
combinations. 

 The reference set was developed for five coastal 
reference locations located within the NACCS project 
area.
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Region Number of tracks Number of Δp, Rmax and 
Vt unique combinations

Number of 
tropical 

cyclones
Bypassing

1 14 495 6,930
2 15 585 8,775
3 12 675 8,100

Landfalling
1 40 495 19,800
2 25 585 14,625
3 24 675 16,200

Total 74,430
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GPM Applications: Monte Carlo Simulation

 Monte Carlo Life-Cycle.
► Univariate distributions of TC parameters were 

sampled for a 1,000,000-yr period, which 
resulted in 211,997 TCs.

► No probability masses required.
• TC’s sampled based on their likelihood of 

occurrence and parameters joint probability.
• Storm surge hazard curve from empirical 

distribution (Weibull plotting position).
► Mean hazard curve and confidence levels 

calculated through bootstrap resampling using 
replicated storm surge values with added 
discretized uncertainty.

12
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GPM Applications: Meta-Gaussian Distribution 

Joint Probability: TC Parameter Dependence
Typical approaches in previous studies:
 Assumed independence.

 Correlation tree (1:1 dependence).

13

( ) ( ) ( ) ( ) ( ) ( )θθ PVPRPpPxPVRpxP ff ⋅⋅⋅∆⋅=∆ max0max0 ,,,,

( )0xP

( )0| xpP ∆

( )pRP ∆|max

( )0| xP θ

( )θ|fVP

( )=∆ θ,,,, max0 fVRpxP
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GPM Applications: Meta-Gaussian Distribution 

Previous approaches for TC parameter dependence:

14

Study ∆p Rmax 𝜃𝜃 Vf

LA/TX P( ∆p | x0 ) P( Rmax | ∆p ) P( 𝜃𝜃 | x0 ) P( Vf | 𝜃𝜃 )
Mississippi f( x0 ) f( ∆p ) ∆p slices ∆p slices
FEMA R2 f( x0 ) f( ∆p ) f( x0 ) f( ∆p )
SFL f( x0 ) f( ∆p ) f( x0 ) independent
SWFL f( x0 ) f( ∆p ) f( x0 ) independent
WFL f( x0 ) f( ∆p ) f( x0 ) independent
Big Bend f( x0 ) f( ∆p ) f( x0 ) independent
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Meta-Gaussian Distribution (MGD)

 MGD refers to a set of marginal (univariate) probability 
distributions with a multivariate Gaussian copula as 
dependence structure.

 Sklar’s theorem (1959):

► Any joint (multivariate) distribution, 𝐻𝐻, can be deconstructed into 
marginal distributions, 𝐹𝐹1, … , 𝐹𝐹𝑛𝑛, and a copula, 𝐶𝐶.

15

𝐻𝐻 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝐶𝐶 𝐹𝐹1 𝑥𝑥1 , … , 𝐹𝐹𝑛𝑛 𝑥𝑥𝑛𝑛

𝐹𝐹1 𝑥𝑥1 , … , 𝐹𝐹𝑛𝑛 𝑥𝑥𝑛𝑛 → Δ𝑝𝑝, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, 𝑉𝑉𝑓𝑓, 𝜃𝜃
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Meta-Gaussian Distribution (MGD)

 Copula – dependence function that “links” a set of 
marginal distributions to form a joint distribution.

► Must be expressed in terms of 

𝑢𝑢𝑛𝑛 = uniform margins defined on [0,1]

 Gaussian Copula – “elliptical” copula.

Φ𝑅𝑅 = CDF of a multivariate standard normal distribution, 𝒩𝒩(0,1)

16

𝐶𝐶 𝑢𝑢1, … , 𝑢𝑢𝑛𝑛 = 𝐻𝐻 𝐹𝐹1−1 𝑥𝑥1 , … , 𝐹𝐹𝑑𝑑−1 𝑥𝑥𝑑𝑑

𝐶𝐶𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑢𝑢 = Φ𝑅𝑅 Φ−1 𝑢𝑢1 , … ,Φ−1 𝑢𝑢𝑑𝑑
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Meta-Gaussian Distribution (MGD)

 Limitations of Gaussian Copula
► “A recipe for disaster”

• Tail dependence is 0, regardless 
of the correlation matrix 

► Correlation 𝜌𝜌 (X, Y) is static and 
symmetrical along [0,1] range

• Slices (e.g., ∆p)

► Pearson’s 𝜌𝜌 – measures linear 
correlation; affected by outliers

• Spearman’s 𝜌𝜌 (rank correlation coefficient)
• Kendall’s 𝜏𝜏

17

λ𝑙𝑙 = λ𝑢𝑢 = 2 lim
𝑥𝑥→∞

Φ 𝑥𝑥
1 − 𝜌𝜌
1 + 𝜌𝜌

= 0

Gaussian Copula
► Correlation matrix, 𝑅𝑅

𝑅𝑅 =

1 𝜌𝜌1,2
𝜌𝜌2,1 1

⋯ 𝜌𝜌1,𝑑𝑑
⋯ 𝜌𝜌2,𝑑𝑑

⋮ ⋮
𝜌𝜌𝑑𝑑,1 𝜌𝜌𝑑𝑑,2

⋱ ⋮
⋯ 1
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Meta-Gaussian Distribution (MGD)
(Mississippi Example)

18

Correlation 
Plots

High Intensity TCsAll TCs

Medium Intensity TCs Low Intensity TCs
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Meta-Gaussian Distribution (MGD)
(Mississippi Example)

19

 MGD
► Marginal distributions 

are defined for each 
JPM parameter.

► A unique copula can 
be fitted per ∆p “slice” 
to maintain parameter 
dependencies for 
different TC intensity 
ranges.

► The correlation 
between ∆p and Rmax
can be updated.
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Epistemic Uncertainty in SRR Models

 Models for Calculating SRR.
► Uniform kernel function (UKF) or        

capture zone.
► Gaussian kernel function (GKF).
► Epanechnikov kernel function 

(EKF).
 Incorporated +/- 1 standard 

deviation (SD).
► SRR uncertainty contribution (Δp ≥ 

28 hPa): 
• Sampling uncertainty – 65% 
• Selected period of record – 19%
• Gaussian kernel size – 15%
• Observational data – 1%

20
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Defining Joint Probability of Storm Parameters

 Effect of selection of Δp distribution on hazard curve. 

21

LTWD & DTWD 
curve considers the 
discretization of 
TCs into high and 
low intensity.

The effect is to 
lower the hazard 
curve.

Choice of Δp 
distribution showed 
limited impact
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Computation probability masses/integration

 MGD vs BQ.
 Hazard curve integration 

method did not have an 
effect. 

 Elements of integration 
process that affect curve:

► Characterization method:
• Constant
• Proportional
• Constrained [min(20%, 0.61m)]

► Discretization of normal 
distribution (lesser extent).

22
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Spatially Varying Modeling Error 
(Mississippi  Example)

 Modeling error: has a direct effect on hazard curve 
shape and confidence limits.

► Global uncertainty: 1.42 ft.
► Spatially varying uncertainty:

23

1.42 ft
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Quantification and Propagation of Epistemic 
Uncertainty

 Evaluated alternate data, models, and methods (logic 
tree branches).

24
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Quantification of Epistemic Uncertainty

 Family of hazard 
curves representing 
alternate data, 
model and methods. 

 Number of curves: 
1,261. 

 About 5 ft spread at 
100 years.

25

The Battery, NY
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Quantification of Epistemic Uncertainty

 Demonstration: all 
curves assigned 
same weight.

 Logic tree branches 
have been trimmed.

 Mean hazard curve 
with confidence 
limits.

26

The Battery, NY
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Quantification of Epistemic Uncertainty

27

Newport, RI Boston, MA Chesapeake 
Bay, MD
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Reports

28
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