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Outline

= |ntroduction.

= Quantification of uncertainty in probabilistic storm surge
models.

» Gaussian process metamodeling (GPM): definition and
error quantification.

= GPM Applications in probabilistic storm surge modeling:

» Reference set
» Monte Carlo simulation
» Meta-Gaussian distribution (multivariate Gaussian copula)

= Epistemic uncertainty/Logic tree approach.

N
————
_ —m
® HYDRAULICS

v LABORATORY




Introduction

= Study objectives:
» ldentification of technically defensible data sources, models, and
methods for the computation of storm surge.
» Assessment for carrying forward for evaluation of epistemic
uncertainty.

» Epistemic uncertainty is quantified and propagated through logic
tree approach (PSHA approach).

» Gaussian process metamodeling.

» Augmented storm suite for:
» Reference set
* Monte Carlo simulation
* Meta-Gaussian distribution (multivariate Gaussian copula)

» Error quantification.

————
ﬁ
® HYDRAULICS

v LABORATORY




Quantification of Uncertainty in Probabilistic
Storm Surge Models

» Characterize, quantify, and propagate both aleatory and
epistemic uncertainties through the probabilistic
framework of storm surge assessment.

Hydrodynamic
Modeling
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Synthetic Storm Hazard Curve

set with computed » Intesration
probability mass €

Treatment of Uncertainty
Aleatory: differences between a numerical model
and the natural phenomenon is prevalent (error
term).
Epistemic Uncertainty: Reduction of uncertainty in
the selection and application of alternative data,
methods, and models

Function of location

%), *  Central pressure, Cp
’ * Translational speed, Ts
Storms/year/km *  Heading direction, Hd i
*  Radius of maximum winds, :
Rmax
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Logic Tree Approach

J PMI nteg ral Reference Hybrid/GPM

Ar(a?)>r = Aj Plr(x) + € > |, €] fr(X)f:(e)dxde Optimal Response
Sampling Surface

=~ Y I' A Plr(®) + e >r|x, €]
Stochastic Bayesian
Track Method Quadrature

where:
Arz)>r = AEP of TC response r due to

fgrcing vector X gt?rt)rﬁ‘ljsit?gg GCM_
% = f(x0,6,ApD, Rinax, Vi) Model Downscaling
A= SRR (storms/yr/km)

21- = probability mass (storms/yr) or A p;,

with p;=product of discrete probability and

Parametric

Non-
Parametric

TC track spacing (km) Parametric
P[r(X) + € > r|x, €] conditional MCLC
probability that storm i with parameters X; Monte Carlo Non-
generates a response larger than r Simulation Parametric
€ = unbiased error or aleatory uncertainty Integ/lr(a:tion
of r P
P
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Metamodeling

ADCIRC

» Mathematical approximation for the
input/output (x/z) relationship of
complex numerical models.

= “State-of-practice” in coastal
hydrodynamic modeling for coastal
hazard studies:

Computationally-intensive coupled Response = /(%)= £ (xp. Ap. Ry, V. 0)
ocean circulation models and spectral
wave models over large domains

» Metamodel is designed (trained)
using parameterized TC inputs and
hydrodynamic model outputs.

NACCS.

Watéf Elévation

Synthetic Storm 445, NACCS e
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Gaussian Process Metamodeling

= GPM formulation has 2 » GPM advantages:
parts: » Computational efficient
» Global regression model » Handles complex models
» Gaussian process or local » Uncertainty of predictions
correction
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Gaussian Process Metamodeling

= Fundamental GPM formulation: () = fr(x)7" Bk + z (%) (1)
» Regression: de-trend data. .
Global regression Gaussian process
» GP: interpolates within the (CF)
residuals of the regression. RGIME) = £ OB + 1o O Rus (H — i) @)
= The predictive mean combines
both the regression and GP. BeE = (FERGueF,)  FiRpjucH @3)
= Regression is not optimized G
I I = i ffici
|rreSpeCt|Ve Of GP ?k: ngsriisfir?crz]ti(;%es (r(iage;rrt,ssion models)
- g g h(x): output
= Valldatlon metrICS Rek :Zaﬁssian correlation function
> Examp|e TypeS: average, per save 0, vector of parameters for correlation

point, per storm.

e.g. R?, Mean Absolute Error, e
* Correlation Coefficient, RMS. 77 COASTAL &
. HYDRAULICS
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GPM Training — NACCS

* The GPM used in this study was trained using the 1050
synthetic TCs developed as part of the NACCS (Nadal-
Caraballo et al. 2015).

= Trained on WL peaks (time series training also possible).
= Validation of landfalling TCs.

Coastal NACCS Mean .
Correlation
Reference Save Absolute . .
. . Coefficient
Location Point Error
Virginia
. . 0.064
Beach, VA 6488 0.988 0.071 0.994
Chesapeake [y 0.974 0.072 0.988 0.082
Bay, MD
me Battery, I R 0.066 0.994 0.090
Newport, RI 1082 0.985 0.077 0.993 0.068 /_c_
Boston, MA 1884 0.982 0.069 0.992 0.057 COASTAL &
A HYDRAULICS
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GPM Training — NACCS

= Validation of
bypassing TCs.

Coastal Mean

Reference Absolute Corre.la.tlon
. Coefficient
Location Error
Virginia
97 .091 . .
e 6488 0.970 0.09 0.986 0.089
Chesapeake JuybVy 0.963 0.075 0.983 0.060
Bay, MD
The Battery, IS Yer ! 0.086 0.988 0.100
Newport, RI 1082 0.952 0.111 0.979 0.121 e,
Boston, MA 1884 0.946 0.093 0.977 0.070 COASTAL &
] HYDRAULICS
BUILDING STRONG, o EREE T

10




GPM Applications: Reference Set

= Developed a reference set that considers all parameter

combinations.

» The reference set was developed for five coastal
reference locations located within the NACCS project

Region Number of tracks Number of Ap, R,,,., and | Number of 1o StormSim JPA - NACCS RefSet Save Point 7672
V; unique combinations tropical 11 £ [we 98% CL
cyclones 10 | |—-—84% CL
Bypassing o 9T Mean —
495 6,930 %E; 3, ==16%CL| e S
n 15 585 8,775 36
| 3 | 12 675 8,100 iy
Landfalling 2 4
|1 40 495 19,800 o
“ 25 585 14,625 15
24 675 16,200 0 : : ' ' : ‘
Total 74,430 T 10" 10?7 10° 10* 10° 10°
Annual Exceedance Probability, AEP
D —
e
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GPM Applications: Monte Carlo Simulation

= Monte Carlo Life-Cycle.

» Univariate distributions of TC parameters were
sampled for a 1,000,000-yr period, which
resulted in 211,997 TCs. o CPw(NACCS Seve et Ters
» No probability masses required. i ::22%3
» TC’s sampled based on their likelihood of
occurrence and parameters joint probability.

« Storm surge hazard curve from empirical
distribution (Weibull plotting position). 1
» Mean hazard curve and confidence levels
calculated through bootstrap resampling using
replicated storm surge values with added

Water Level (m)

O-_2NWhOION®O

10" 10?7 10 10* 10° 10°
Annual Exceedance Probability, AEP

discretized uncertainty.
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GPM Applications: Meta-Gaussian Distribution

Joint Probability: TC Parameter Dependence
Typical approaches in previous studies:
= Assumed independence.

P(XO»AP» R s Vf,6’):P(xo)-P(Ap)-P(RmaX)-P(Vf)-P(H)

= Correlation tree (1:1 dependence).

Plxp,Ap, R, V. 0)= P(x,)
P(Ap| x, P(6]%,)
P(R \A ) o s
=) w|42) P, 10) TconsTar s
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GPM Applications: Meta-Gaussian Distribution

Previous approaches for TC parameter dependence:

Study Ap R ax 0 V;
LAITX P(AP| X)) | P(Ryal &p)| P(81X) | P(V:16)
Mississippi f( Xy ) f(Ap) Ap slices Ap Sslices
FEMA R2 f( X, ) f( Ap ) f( X, ) f( Ap )
SFL f( xy) f(Ap) f( xy) independent
SWFL f( Xy ) f(Ap) f( Xy ) independent
WFL f( Xy ) f(Ap) f( xy) independent
Big Bend f( xy) f(Ap) f( xy) independent

e ]

N
e

_ —m
COASTAL &

HYDRAULICS

@ BUILDING STRONGg

14

LABORATORY




Meta-Gaussian Distribution (MGD)

= MGD refers to a set of marginal (univariate) probability
distributions with a multivariate Gaussian copula as

dependence structure.

= Sklar’'s theorem (1959):

» Any joint (multivariate) distribution, H, can be deconstructed into
marginal distributions, F, ..., F,, and a copula, C.

H(Xl, ...,Xn) o C(Fl(xl)» ---:Fn(xn))

Fl(xl): ---»Fn(xn) —2 Ap' Rmax' Vf' 6

————
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Meta-Gaussian Distribution (MGD)

= Copula — dependence function that “links” a set of
marginal distributions to form a joint distribution.
» Must be expressed in terms of

u, = uniform margins defined on [0,1]
CQug, ey n) = H (FTA0x0), - Fr () )

= Gaussian Copula — “elliptical” copula.

CE™5S(w) = Pp(D (), ..., P71 (uy))

®, = CDF of a multivariate standard normal distribution, V' (0,1)

N
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Meta-Gaussian Distribution (MGD)

= Limitations of Gaussian Copula
» “A recipe for disaster”
« Tail dependence is O, regardless

of the correlation matrix Gaussian Copula

\/1_ » Correlation matrix, R
: - P

)\l_}\u_z’ll‘r’goq)<x\/1_+p>_0 1 p12 " Pra
. . . prq1 1 "t P2d

» Correlation p (X, Y) is static and g || : L

symmetrical along [0,1] range I

« Slices (e.g., Ap)

» Pearson’s p — measures linear
correlation; affected by outliers
« Spearman’s p (rank correlation coefficient)

« _Kendall's e
_ —m
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Meta-Gaussian Distribution (MGD)

(Mississippi Example)
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Meta-Gaussian Distribution (MGD)

(Mississippi Example)

= MGD StormSim.GPM | Mississippi, SP 346

» Marginal distributions
are defined for each
JPM parameter.

» A unique copula can
be fitted per Ap “slice”
to maintain parameter
dependencies for
different TC intensity
ranges.

» The correlation | | | | | |
between Apand R, 1 107 102 102 10% 105 10

can be updated. Annual Exceedance Frequency, AEF (1/yr)

N
e
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&—FEMA 2007 (158)
StormSim.JPA (282)
StormSim.GPM (1.5M)
StormSim.GPM (1.5M; ebtrk)

— — —

O~ NWPAArOOITONOOOO-=2DMN

Still Water Level, SWL (m, NAVD88)
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Epistemic Uncertainty in SRR Models

= Models for Calculating SRR.

» Uniform kernel function (UKF) or

capture zone.

» Gaussian kernel function (GKF).

» Epanechnikov kernel function
(EKF).

» Incorporated +/- 1 standard
deviation (SD).

Water Level (m, above MSL)
OO =~ N W P 01 O N O ©

» SRR uncertainty contribution (Ap 2

28 hPa):
« Sampling uncertainty — 65%
» Selected period of record — 19%
» Gaussian kernel size — 15%
» Observational data — 1%

e ]

‘StormSim JPA - BQ StormSim - Save Point 7672

-
o

UKF;All
EKF;AIll
GKFAll
GKF +SD;All

GKF -SD;All
Reference

T 10" 102 10% 10* 10° 10°
Annual Exceedance Probability, AEP

1}o.5,
w(d;) = h_a{

0,

)\:%:le(di)

if

otherwise

2
di| 1 1(d;\* 1 3[ (di)] i |
<1 AP S By Y=z ) L
hy w(d;) mhdexp 2<hd) w(d;) h, 4 hg hq
0, otherwise

UKF GKF EKE

<1

COASTAL &
HYDRAULICS
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Defining Joint Probability of Storm Parameters

= Effect of selection of Ap distribution on hazard curve.

StormSim JPA - NACCS Save Point 7672

LTWD & DTWD

12 :
Al Cp LTWD & DTWD curve considers the
" | ——Cp Normal : : :
ol o Lognormal discretization of
H Cp Weibull I I
o & orn TCs_lnto h_|gh and
, Cp Gumbel low intensity.
__ 8} JPM Reference
é L
s [ The effect is to
3 6r lower the hazard
& 57 curve.
=,
3t Choice of Ap
ol distribution showed
.l limited impact
I N
O...H‘. . Livin v 0 | | A Livan s o 0 1 e -
1 107" 107 107 107 107 10°® " COASTAL &
0 Annual Exceedance Probability, AEP HYDRAULICS
LABORATORY
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Computation probability masses/integration

= MGD vs BQ.

= Hazard curve integration
method did not have an
effect.

= Elements of integration
process that affect curve:

» Characterization method:
Constant
Proportional
Constrained [min(20%, 0.61m)]
» Discretization of normal
distribution (lesser extent).

StormSim JPA - NACCS Save Point 7672

— MVGC; HI-LI; FEMA2012
- |——MVGC; HI-LI; StormSim
—BQ; HI-LI; FEMA2012

[ BQ; HI-LI; StormSim __——
Reference

—_—

Water Level (m, above MSL)
O =~ N W s~ O OO N 0 ©O O

e

T 10" 102 10% 10* 10° 10°
Annual Exceedance Probability, AEP

ve Point 76
— The Battery,
" NY Constant Uncertainty = 0.61 m
=8 £ B
€ == Amual & babilty, AEP Annual Exceedance Probabilty, AEP
g ; / Uncertainty = min(20%, 0.61m) . Proportional Uncertainty = 20%
3 P
——
m | ASTA
I w107 Vus" u): N m“ - m“ C o T L &
| HYDRAULICS
LABORATORY
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Spatially Varying Modeling Error

(Mississippi Example)

*» Modeling error: has a direct effect on hazard curve
shape and confidence limits.
» Global uncertainty: 1.42 ft.
» Spatially varying uncertainty:

18— e ——

1.42 ft

’ " | | . | | | | L] e
-89.8 -89.6 -89.4 -89.2 -89 -88.8 -88.6 -88.4 -88.2 -88 -87.8 ~
! | /£
ke[l
° HYDRAULICS
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Quantification and Propagation of Epistemic
Uncertainty

» Evaluated alternate data, models, and methods (logic
tree branches).

Hazard Curve
Integration

Data Partition
(Intensity)

Probability Mass

Hurdat
(

*  Vickery statistical model
)

(Rmax

F
+  GPD(Cp)
+  Gumbel (Cp, Ts, EBTRK Rmax

max)

, max)

+  Lognormal (Ts, Vickery Rmax)
max)

L
e ————
_————
o HYDRAULICS

|I1!~I!EJID| BUILDING STRONG,, LABORATORY

24




Quantification of Epistemic Uncertainty

= Family of hazard
curves representing
alternate data,

model and methods.

= Number of curves:
1,261.

= About 5 ft spread at
100 years.

e et}

Water Level (m, above MSL)

O =~ N W s~ 01 OWN 00 O O

—

StormSim JPA - WL Hazard Curve Family
Save Point 7672

102 10° 10* 10° 10°
Annual Exceedance Probability, AEP

_~l
P

The Battery, NY COASTAL &

HYDRAULICS

0 BUILDING STRONGg
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Quantification of Epistemic Uncertainty

= Demonstration: all
curves assigned
same weight.

= Logic tree branches
have been trimmed.

= Mean hazard curve
with confidence
limits.

e et}

Water Level (m, above MSL)

—

StormSim JPA - WL Hazard Curve Family
Save Point 7672

O
9 |——95% CL
85- ——84% CL
——Mean
7t |—16% CL
6 5% CL
5¢
4
3
2
1}
1

107 102 10° 10* 10° 10°
Annual Exceedance Probability, AEP

N
P

The Battery, NY COASTAL &
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@ BUILDING STRONGg

LABORATORY

26




Quantification of Epistemic Uncertainty

StormSim JPA - WL Hazard Curve Family StormSim JPA - WL Hazard Curve Family StormSim JPA - WL Hazard Curve Family
Save Point 1082 . Save Point 1884 . Save Point 5951

Water Level (m, above MSL)
O NWHAION®OO

Water Level (m, above MSL)
O NWDhOON®OO
Water Level (m, above MSL)
O NWDhOON®OO

1T 10" 102 10° 10* 10° 10°®

1T 10" 10?2 10° 10* 10° 10°® 1T 10" 10?2 10° 10* 10° 10°®
Annual Exceedance Probability, AEP Annual Exceedance Probability. AEP Annual Exceedance Probability. AEP
StormSim JPA - WL Hazard Curve Family StormSim JPA - WL Hazard Curve Family StormSim JPA - WL Hazard Curve Family
1 Save Point 1082 10+ Save Point 1884 10+ Save Point 5951

95% CL 95% CL 95% CL

[ |—84%CL | |—84%CL | |—84%CL

——Mean ——Mean ——Mean

f|—16%cCL F|—16%CL F|—16%CL

5% CL 5% CL 5% CL

Water Level (m, above MSL)
O =~ N WUl N ®® OO

Water Level (m, above MSL)
O =~ N W H o1 ON 0 © O

Water Level (m, above MSL)
O =~ N W H o1 ON 0 © O

1 10" 102 10° 10* 10° 10° 1 10" 102 10% 10* 10%° 10° 1 10" 102 10% 10* 10%° 10°

Annual Exceedance Probability, AEP Annual Exceedance Probability, AEP Annual Exceedance Probability, AEP
Newport, RI Boston, MA Chesapeake —
m Bay, MD 7/
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Reports

“ERDC

ERDC/CHL SR-19-1

Quantification of Uncertainty in Probabilistic
Sto s: Literature Review

» Gonzalez V.M., N.C. Nadal-Caraballo, J.A. Melby, and
M.A. Cialone. 2019. Quantification of Uncertainty in
Probabilistic Storm Surge Models: Literature Review.
ERDC/CHL SR-19-1.

Coastal and Hydraulics Laboratory

= Nadal-Caraballo, N.C., V.M. Gonzalez, and Chouinard,
L. 2019. Quantification of Uncertainties in Probabilistic
Storm Surge Models: Storm Recurrence Rate Models
for Tropical Cyclones, ERDC-CHL TR-19-4. Vicksburg,
MS: U.S. Army Engineer Research and Development

ERDC/CHL TR-19-4

s
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Contact Information

U.S. Army Engineer R&D Center
Coastal and Hydraulics Laboratory

Norberto C. Nadal-Caraballo, Ph.D.

Phone: (601) 634-2008
Email: Norberto.C.Nadal-Caraballo@usace.army.mil

U.S. Nuclear Regulatory Commission
Joseph F. Kanney, Ph.D.

Phone: (301) 980-8039
Email; Joseph.Kanney@nrc.gov
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