SAFETY INJECTION AND REFUELING WATER TANK DESIGN PARMETERS

Nominal Volume 285,000 Gallons

Contained Liquid Boric Acid (1,720-2,500ppm)

Minimum During Operation 250,000 Gallons

Liquid Temperature 40°F-105°F

Diameter/Height 46 Feet/24 Feet

Material Aluminum

Design Temperature 125°F

Design Pressure Atmospheric

LOW PRESSURE SAFETY INJECTION PUMP DATA SUMMARY

Quantity 2

Type Single Stage, Horizontal, Centrifugal

Design Pressure 500 psig

Design Temperature 350°F

Design Flow Rate 3,000 gpm

Design Head 350 ft

Pumped Fluid 1% Boric Acid, Nominal

<15,000 ppm Boric Acid, Maximum (Design)

Temperature of Pumped Fluid 40° - 325°F

Shutoff Head 410 ft

Maximum Flow 4,500 gpm

Head at Maximum Flow 250 ft

Basic Material 316 SS (see Table 6-10)

Horsepower 400

Seals Mechanical

Acceleration Time 4 Seconds

Minimum Flow 163 gpm

NPSH Required at 3,000 gpm 11 ft

Maximum Normal Suction Pressure 270 psia

HIGH PRESSURE SAFETY INJECTION PUMP DATA SUMMARY

Quantity 2

Type Multistage, Horizontal, Centrifugal

Design Pressure 1,750 psig

Design Temperature 350°F

Design Flow Rate 300 gpm

Design Head 2,500 ft

Pumped Fluid 1% Boric Acid, Nominal

<15,000 ppm Boric Acid, Maximum (Design)

Temperature of Pumped Fluid 40° - 300°F

Shutoff Head 2,800 ft

Maximum Flow 680 gpm

Head at Maximum Flow 850 ft

Material Stainless Steel

Horsepower 400

Shaft Seal Mechanical

Acceleration Time 4 Seconds

Normal/Minimum Recirc Flow 30 gpm/25 gpm

NPSH Required at 600 gpm 17 ft

Maximum Suction Pressure 250 psig

SHUTDOWN COOLING HEAT EXCHANGER DATA SUMMARY

Quantity 2

Type Shell and Tube

Code ASME, Section III, Class C,

1965, TEMA, Class R

Tube Side

Fluid Primary Coolant, 1% Boric Acid, Nominal

<15,000 ppm Boric Acid, Maximum (Design)

Design Pressure 500 psig

Design Temperature 400°F

Pressure Loss, 1,500,000 lb/h 5 psi

Materials Austenitic Stainless Steel

Shell Side

Fluid Component Cooling Water

Design Pressure 150 psig

Design Temperature 200°F

Pressure Loss, 2,000,000 lb/h 10 psi

Materials Carbon Steel

Operating Parameters (27.5 Hours After Shutdown Assuming an Infinitely

Irradiated Core)

Tube Side

Flow 1,500,000 lb/h

Inlet Temperature 130°F

Outlet Temperature 111.7°F

SHUTDOWN COOLING HEAT EXCHANGER DATA SUMMARY

Shell Side

Flow 2,000,000 lb/h

Inlet Temperature 90°F

Outlet Temperature 103.5°F

Heat Transfer 27,500,000 Btu/h

SAFETY INJECTION TANK DESIGN PARAMETERS

Quantity 4

Type Vertical Right Cylinder

Design Pressure 250 psig

Design Temperature 200°F

Liquid Volume (min/max) 1040/1176 ft³/Tank

Combined Liquid Discharge 30,000 Gallons

Pressuring Cover Gas Nitrogen

Height 34 Feet 6 Inches

Outside Diameter 9 Feet 2 Inches

Material Carbon Steel With Type 304L

Stainless Steel Clad

Contained Liquid 1720 ppm Boric Acid, Nominal

15,000 ppm Boric Acid, Maximum (Design)

CONTAINMENT SPRAY SYSTEM COMPONENT DESCRIPTION

1. <u>Containment Spray Pumps</u>

Number of Units - 3

Type - Vertically Split, Horizontal Centrifugal With

Mechanical Seals and Backup Packed Gland

Material - 316 Stainless Steel

Code - Motor, NEMA; Pump, Standards of the Hydraulics

Institute, 11th Edition, 1965, ASA B31.1-1955;

ASA B16.5-1961

	<u>Injection</u>	Recirculation
Design Capacity (Each)	1,340 gpm	1,800 gpm
Design Head	450 ft	405 ft
Design NPSH Required	13.2 ft	17.8 ft
Temperature Transient	40° - 300°F in 5 Seconds	
Motor	250 hp, 3 Ph, 60 Hz, 2,300 V	
Pumps Acceleration Time	4 Seconds at 70% Voltage	
Pumped Fluid	1% Boric Acid, Nominal 15,000 ppm Boric Acid, Maximum (Design)	

2. <u>Shutdown Cooling Heat Exchangers</u>

Number of Units - 2

Capacity (Each) - 83.5 x 10⁶ Btu/h Based on 4,000 gpm of Cooling Water at

114°F Inlet Temperature and 1,420 gpm of Spray Water at

283°F Inlet Temperature

CONTAINMENT SPRAY SYSTEM COMPONENT DESCRIPTION

3. Piping, Fittings and Valves

A. Suction Material - Type 304 Stainless Steel

Pipe Sizes Wall Thickness

2" and Smaller Sch 40S 2-1/2" Through 12" Sch 10S

14" Through 20" 0.250" Nominal Wall 24" 0.375" Nominal Wall

Design Pressure - 60 psig

Design Temperature – 300°F

Construction 2-1/2" and Larger - Butt-Welded Except at Flanged

Equipment

2" and Smaller - Socket Welded Except at Screwed

Equipment

Valves 2" and Larger - Stainless Steel, Butt-Welded, 150 lb

1-1/2" and Smaller - Stainless Steel, Socket Welded,

150 lb

Testing - 100% Radiography of Welded Joints

Code - ASA B31.1-1955 and Code Cases N2

and N10

B. Discharge Material - Type 304 Stainless Steel

Pipe Sizes Wall Thickness

8" and Smaller Sch 40S

10" Through 14" 0.250" Nominal Wall

Design Pressure - 500 psig

Design Temperature – 350°F

Valves 2" and Larger - Stainless Steel, Butt-Welded,

300 lb

1-1/2" and Smaller - Stainless Steel, Socket Welded,

600 lb

Testing - 100% Radiography of Welded Joints

Code - ASA B31.1-1955 and Code Cases N2

and N10

CONTAINMENT SPRAY SYSTEM COMPONENT DESCRIPTION

4. Spray Nozzles

Type - Sprayco, Model 1713A

Material - 304 Stainless Steel

Number - 77 Nozzles on A Spray Header

- 83 Nozzles on B Spray Header

Maximum Spray Droplet Size - 1800 microns at 16 psid (Mass Mean

Diameter)

- Refer to FSAR Figure 6-7

CONTAINMENT AIR COOLER COMPONENT DESCRIPTION

Coils (VHX-1, VHX-2 and VHX-3 Safety Related & VHX-4 Non-Safety)

Coils per Cooler Unit 4

Rows of Tubes per Coil 12

Face Area of Each Coil 20.54 ft²

Total Coil Face Area per Cooler Unit 82.16 ft²

Tubes per Row 36

Tube Description 5/8" OD Copper x 0.049" Wall

Tube Design Pressure 150 psig

Fin Description 3/8" High x .012 Thick

Copper Plate with 9.4 Fins per Inch

(Mechanical Bond)

Normal Pressure Drop Across Coil

(Air Side)

1.54 in. wg

Maximum Pressure Drop Across Coil

(Air Side, Accident Condition)

1.68 in. wg

Normal Pressure Drop Through Coil

(Water Side)

16 ft H₂o

Maximum Pressure Drop Through Coil

(Water Side, Accident Condition)

12.7 ft H₂o

Fans (V1, V2, V3 and V4)

Fan Speed 1,750 r/min

Number of Fans per Cooler Unit 2

Fan Capacity (Each)

"A" 75 HP (accident) 30,000 ft 3 /min at 4.5" H $_2$ O "B" 30 HP (normal) 30,000 ft 3 /min at 4.0" H $_2$ O

Total Airflow Through Cooler(Normal) 60,000 ft³/min

Total Airflow Through Cooler(Accident) 30,000 ft³/min (VHX-1, 2 and 3)

CONTAINMENT AIR COOLER COMPONENT DESCRIPTION

Motor Design Totally Enclosed Air Overcooled

Insulation NEMA Class H for Fans Rated for

the Post-DBA Condition

NEMA Class B for Fans Rated for

Normal Duty

Rating 75 hp for Fans Rated for the

Post-DBA Condition

30 hp for Fans Rated for Normal

Duty

Filters (VF-1, VF-2, VF-3, VF-4)

Capacity $60,000 \text{ ft}^3/\text{min at } 0.33\text{ H}_2\text{O}$

Differential Pressure Drop (Clean) 0.33" H₂O

Size of Each Filter Module 19.25" x 19.25" x 1.75" Thick

Number of Filter Modules per Cooler

Unit 32

Efficiency 65%

Type Stainless Steel Mesh, Framed

CONTAINMENT AIR COOLERS PERFORMANCE DATA FOR NORMAL OPERATION

VHX-1, VHX-2, and VHX-3 Coolers in Operation

Total Heat Removal Capacity 5.94 x 10⁶ Btu/h

Total Airflow 180,000 ft³/min

Total Motor hp (6 Fans) 315 bhp (nameplate)

Total Cooling Water Flow (Modulated) 1500-6000 gpm

Air Temperature, Inlet/Outlet 115°F/83.5°F

Water Temperature, Inlet 81.5°F

Each Cooler, Capacity 1.98 x 10⁶ Btu/h

Airflow, Each Cooler 60,000 ft³/min

(2 Fan Operation)

Cooling Water Flow, Each 500 gpm to 2000 gpm

NOTE: The values above are for three coolers at assumed conditions only. Initial conditions for accident analyses are contained in Chapter 14.

VHX-4 Cooler in Operation

Total Heat Removal Capacity 1.98 x 10⁶ Btu/h

Total Airflow 60,000 ft³/min

Total Motor hp (2 Fans) 105 bhp (Nameplate)

Total Cooling Water Flow up to 2000 gpm (Nominal)

Air Temperature, Inlet/Outlet 115°F/84°F (Design)

Water Temperature, Inlet 81.5°F (Design)

NOTE: Although VHX-4's temperature control valve is failed closed, the cooler can be used for cooling during normal operation by opening its high-capacity outlet valve.

CONTAINMENT AIR COOLERS PERFORMANCE DATA FOR POST-DBA CONDITIONS

3 Coolers Operating

Total Heat Removal Capacity

at 283°F, 55 psig 261.6 x 10⁶ Btu/h

Total Airflow (Cooler Design) 90,000 ft³/min

Total Fan hp (3 Fans) 225 bhp (Nameplate)

Total Cooling Water Flow (3 Coolers)

Set per RO-216

Air Temperature, Inlet/Outlet 283°F/276°F

Reg. Water Temperature, Inlet/Outlet Based on Flow from

RO-216

Each Cooler (VHX 1, 2, 3)

Capacity at 283°F, 55 psig 87.2 x 10⁶ Btu/hr

Airflow (Cooler Design) 30,000 ft³/min

Coil Differential Pressure Drop (Air Side) 1.45" H₂O

Fan Differential Pressure 6.15" H₂O TP

Water Flow Set per RO-216

Water Side Differential Pressure Drop 5.5 psi

Total Fan hp (1 Fan) 75 bhp (Nameplate)

ECCS COMPONENT SYSTEMS

Piping - Stainless Steel-304

Valves - Stainless Steel or other equivalent corrosion resistant material Gaskets - Asbestos or Grafoil Grade GT^{TMB} (eg, Flexitallic or Flexicarb) with

300 Series SS

Component	<u>LP Pump</u>	HP Pump	Spray Pump
Casing	ASTM A351 SS, Mod CF8A	ASTM A351 SS, Mod CF8	SS, CF8M
Impeller	ASTM A217 SS, CF8	ASME SA 351, Grade CA15 SS	SS, CF8M
Casing Wear Ring	ASTM A479, Gr S21800	17-4 PH	SS, CF8M
Shaft	A479, 316 SS	AISI 416	316 SS
Shaft Sleeve	ASTM A479, 316 SS	-	316 SS
Gland Seal	-	-	316 SS
Pumping Ring	P-67A - Internal to Seal Cartridge P-67B - 18-8 SS on Shaft Sleeve	-	18-8 SS
Seal Cartridge	316 SS	316 SS	316 SS
Face Seal Rotating Element	Carbon	316 SS with Tungsten Carbide	Carbon
Face Seal Stationary Element	P-67A - Silicon Carbide P-67B - Tungsten Carbide	Carbon	Tungsten Carbide
Throttle Bushing	P-67A - Bronze P-67B - Carbon	-	Carbon
Backup Ring	-	Viton	-
Valves and Piping	304 SS	304 SS	304 SS
Gaskets	Asbestos or Grafoil Grade GT ^{TMB} (eg, Flexitallic Flexicarb) with 300 Series SS	Asbestos or Grafoil Grade GT ^{TMB} (eg, Flexitallic Flexicarb) with 300 Series SS	Flexitallic with 300 Series SS

ECCS COMPONENT SYSTEMS

SHUTDOWN HEAT EXCHANGERS

<u>Component</u> <u>Material</u>

Head Gasket 304 SS Jacket Asbestos

Tubes ASME SA 249, Grade TP-304

Tube Sheet Cladding 304 SS

Channel Cover 304 SS

Channel Partition ASME SA 240, Type 304 SS

Deleted

ISI MAJOR COMPONENTS AND/OR SYSTEMS LIST

ASME CLASS 1

Components

Reactor Pressure Vessel, N-50

Reactor Pressure Vessel Closure Head, N-50

Steam Generators - Primary Side, E-50A and E-50B

Pressurizer, T-72

Regenerative Heat Exchangers, E-56A and E-56B

<u>Piping</u>

Primary Coolant System

Engineering Safeguards System

Chemical and Volume Control System

Pumps

Primary Coolant Pumps, P-50A, B, C, D

Valves

ASME CLASS 2

Components

Safety Injection and Refueling Water Tank, T-58

Safety Injection Tanks, T-82A, B, C, D

Steam Generators - Secondary Side, E-50A, B

Regenerative Heat Exchangers, E-56A, B

Shutdown Cooling Heat Exchangers, E-60A, B

ISI MAJOR COMPONENTS AND/OR SYSTEMS LIST

<u>Piping</u>

Main Steam System

Feedwater System

Engineered Safeguards System

Chemical and Volume Control System

Component Cooling System

Pumps

Containment Spray Pumps, P-54A, B, C

High-Pressure Safety Injection Pumps, P-66A, B

Low-Pressure Safety Injection Pumps, P-67A, B

SIRW Recirculation Pump, P-74

ASME CLASS 3

Components

Letdown Heat Exchanger, E-58

Condensate Storage Tank, T-2

Component Cooling Surge Tank, T-3

Spent Fuel Pool Heat Exchangers, E-53A, B

Component Cooling Heat Exchangers, E-54A, B

Shutdown Cooling Heat Exchangers, E-60A, B

Engineered Safeguards Room Coolers, VHX-27A, B

Control Room Air Conditioning Units, VC-10, VC-11

Containment Air Coolers, VHX-1, 2, 3, 4

Condensate Storage Tank Heat Exchanger, E-27

ISI MAJOR COMPONENTS AND/OR SYSTEMS LIST

<u>Piping</u>

Main Steam System

Feedwater System

Chemical and Volume Control System

Service Water System

Component Cooling System

Spent Fuel Pool System

Condensate System

Diesel Jacket Water Cooling System

<u>Pumps</u>

Service Water Pumps, P-7A, B, C

Auxiliary Feedwater Pumps, P-8A, B, C

Fuel Pool Cooling Pumps, P-51A, B

Component Cooling Pumps, P-52A, B, C

Diesel Generator Cooling Pumps P-211A, B

INSERVICE PUMP TEST PROGRAM SUMMARY

<u>PUMP</u>	ASME SAFETY CLASS	P&ID	TEST PROCEDURES
P-7A, B, and C - Service Water	3	M-213	QO-14/RO-144
P-8A - AFW (Constant Speed)	3	M-207	QO-21/RO-145
P-8B - AFW (Variable Speed)	3	M-205	QO-21/RO-145
P-8C - AFW (Constant Speed)	3	M-205	QO-21/RO-145
P-52A, B, and C - Component Cooling	3	M-209	QO-15/RO-146
P-54A, B, and C - Containment Spray	2	M-204	QO-16/RO-98
P-67A and B - LPSI & Shutdown Cooling	2	M-204	QO-20/RO-98
P-66A and B - HPSI	2	M-204	QO-19/RO-147

NOTE: See Site Engineering Program SEP-PLP-IST-102, "Inservice Testing of Selected Safety-Related Pumps," for more detail on the pump test program.

TECHNICAL SPECIFICATION 3.6.3, "CONTAINMENT ISOLATION VALVES," APPLICABILITY

Penetration Number	Equipment ID	Penetration Number	Equipment ID
MZ-1A	CV-1805 CV-1806 MV-VA506	MZ-18	MZ-18 MZ-18A
MZ-IB	MV-VA100 MV-VA101 MV-VA507	MZ-21	SV-2415A SV-2415B MV-WG531B
MZ-1C	CV-1807 CV-1808 MV-VA508	MZ-21A	SV-2413A SV-2413B MV-WG531A
MZ-10	MV-CA122 MV-CA142 MV-CA728	MZ-25	CV-1064 CV-1065 MV-CRW512
MZ-11	CV-0939 CK-CD401 MV-CD536	MZ-26	CV-1358 CK-N2/400 MV-N2/581
MZ-14	CK-CC910 CV-0910 MV-CC507	MZ-27	MO-P1 MV-VA604 MZ-27-1
MZ-15	CV-0911 CV-0940 MV-CC508	MZ-33	MV-ES3234 MV-ES3234A MV-ES3348A
	WW-00500	MZ-36	CV-2009
MZ-17	MV-VA1802B MV-VA1802C MV-VA1804B MV-VA1804C	MZ-37	CV-1001 CK-CRW403 MV-CRW503
	MV-VA1812A MV-VA1812C MV-VA1814A MV-VA1814B	MZ-40	CV-1910 CV-1911 MV-PC1170A
MZ-17A	MV-VA1814F MV-VA1814G		

SEP-APJ-PLP-101, "Mechanical Containment Penetrations Basis Program Section," identifies bases for all penetrations. See FSAR Figure 6-5 (P&ID M-232), "Containment Penetrations", for piping diagrams.

TECHNICAL SPECIFICATION 3.6.3, "CONTAINMENT ISOLATION VALVES," APPLICABILITY

Penetration Number	Equipment ID	Penetration Number	Equipment ID
MZ-40A	SV-2414A SV-2414B MV-WG530B	MZ-49	CV-1036 CV-1038 MV-CRW513
MZ-40B	SV-2412A SV-2412B MV-WG530A	MZ-52	CV-1103 CV-1104 MV-DRW500
MZ-41	CV-1004 CK-CRW407 MV-CRW506	MZ-52A	MV-DRW618C MV-DRW618D MV-DRW618E MV-DRW618F
MZ-42	CV-0155 CK-PC155B MV-PC1126	147.500	MV-DRW618G MV-DRW618H
MZ-44	CV-2083 CV-2099 MV-CVC2083	MZ-52B	MV-DRW619C MV-DRW619D MV-DRW619E MV-DRW619F MV-DRW619G
MZ-46	CV-1101 CV-1102 MV-WG511	MZ-56	MV-DRW619H MV-VA606B
MZ-47	CV-1002 CV-1007	MZ-64	MV-VA606C MV-SFP120
MZ-48	MV-CRW502 MV-VA1801B		MV-SFP121 MV-SFP514
	MV-VA1801C MV-VA1803B MV-VA1803C	MZ-65	CK-CA400 MV-CA612
	MV-VA1805A MV-VA1805C MV-VA1815A MV-VA1815B	MZ-66	MV-VA-L-6 MV-VA601 MV-VA602 MV-VA603

SEP-APJ-PLP-101, "Mechanical Containment Penetrations Basis Program Section," identifies bases for all penetrations. See FSAR Figure 6-5 (P&ID M-232), "Containment Penetrations", for piping diagrams.

TECHNICAL SPECIFICATION 3.6.3, "CONTAINMENT ISOLATION VALVES," APPLICABILITY

Deschafter	F. '(ID
Penetration Number	Equipment ID
Nullibel	
MZ-67	CV-1037
1112 01	CK-CRW408
	MV-CRW515
MZ-68	CV-1813
	CV-1814
	MV-VA505
MZ-69	CV-1044
1012-03	CV-1044 CV-1045
	MV-CRW518
MZ-72	MV-SFP117
	MV-SFP118
	MV-SFP515