PRIMARY COOLANT FISSION AND CORROSION PRODUCT ACTIVITIES

<u>Isotope</u>	Design Activity (1% Failed Fuel) (Microcuries/ Cubic Centimeter)	Normal Activity (Microcuries/Cubic Centimeter)(a)	Design Inventory (Curies)	Normal Inventory (Curies)
H-3	2.80	0.21	860	65
Br-84	4.66 x 10 ⁻²	-	13.4	-
Kr-85(m)	1.50	0.030	432	8.6
Kr-85	2.34	3.52 x 10 ^{-⁴}	674	0.10
Kr-87	0.81	0.037	233	10.6
Kr-88	2.48	0.060	714	17.3
Rb-88	2.44	0.122	702	35.1
Rb-89	6.10 x 10 ⁻²	3.05 x 10 ^{-⁴}	0.18	9.0 x 10 ⁻⁴
Sr-89	5.33 x 10 ⁻³)	2.28 x 10 ⁻⁵ (b)	1.53)	7.0 x 10 ⁻³ (b)
Sr-90	1.50 x 10 ⁻⁴)		4.3 x 10 ⁻²)	
Y-90	5.77 x 10 ⁻⁴	-	0.17	-
Sr-91	3.70 x 10 ⁻³	8.01 x 10 ⁻⁵	1.06	0.023
Y-91(m)	0.24	1.76 x 10 ⁻³	68.4	0.50
Mo-99	2.26	3.70 x 10 ⁻⁵	649	0.010
Te-129	2.72 x 10 ⁻²	-	7.84	-
I-129	5.66 x 10 ⁻⁸	-	1.63 x 10 ⁻⁵	-
I-131	4.40	0.114	1,266	32.8
Te-132	0.36	3.22 x 10 ⁻⁵	102	9.1 x 10 ⁻³

Based on typical data from January 14, 1981; primary coolant at 17% of Technical Specifications limit for dose equivalent I-131. Total value consisting of summation of Sr-89 and Sr-90. (a)

⁽b)

PRIMARY COOLANT FISSION AND CORROSION PRODUCT ACTIVITIES

<u>Isotope</u>	Design Activity (1% Failed Fuel) (Microcuries/ Cubic Centimeter)	Normal Activity (Microcuries/Cubic Centimeter)(a)	Design Inventory (Curies)	Normal Inventory (Curies)
I-132	1.13	0.095	324	27.2
I-133	6.38	0.141	1,830	40.4
Xe-133	255	0.472	6.47×10^4	135.7
Cs-134	1.42	1.35 x 10 ⁻⁵	725	6.9 x 10 ⁻³
Te-134	2.63 x 10 ⁻²	-	7.55	-
I-134	0.64	0.134	184	38.5
I-135	2.78	0.142	801	40.9
Xe-135	6.75	0.090	1,943	25.9
Cs-136	0.15	1.90 x 10 ⁻⁵	43.4	5.5 x 10 ⁻³
Cs-137	10.6	2.32 x 10 ⁻⁵	3,064	6.7 x 10 ⁻³
Xe-138	0.36	(b)	103	(b)
Cs-138	0.69	0.059	198	16.9 [°]
Ba-140	6.78 x 10 ⁻³	5.09 x 10 ⁻⁴	1.95	0.15
La-140	6.52 x 10 ⁻³	6.97 x 10 ⁻⁴	1.88	0.20
Co-60	1.1 x 10 ⁻³	2.78 x 10 ⁻⁵	0.37	9.4 x 10 ⁻³
Fe-59	7.7 x 10 ⁻⁶	1.41 x 10 ⁻⁵	2.6 x 10 ⁻³	4.8 x 10 ⁻³
Co-58	7.9 x 10 ⁻³	4.28 x 10 ⁻⁴	2.67	0.14
Mn-56	2.3 x 10 ⁻²	1.55 x 10⁻⁴	7.77	0.052

Based on typical data from January 14, 1981; primary coolant at 17% of Technical Specifications limit for dose equivalent I-131. Data for nuclides with less than 15 minute half-lives is not documented. (a)

⁽b)

FSAR CHAPTER 11 - RADIOACTIVE WASTE MANAGEMENT AND RADIATION PROTECTION

PRIMARY COOLANT FISSION AND CORROSION PRODUCT ACTIVITIES

<u>Isotope</u>	Design Activity (1% Failed Fuel) (Microcuries/ Cubic Centimeter)	Normal Activity (Microcuries/Cubic Centimeter)(a)	Design Inventory (Curies)	Normal Inventory (Curies)	
Mn-54 Cr-51 Zr-95	2.0 x 10 ⁵ 2.4 x 10 ³ 1.9 x 10 ⁵	2.70 x 10 ⁻⁵ 5.35 x 10 ⁻⁴ 1.08 x 10 ⁻⁵	6.8 x 10 ⁻³ 0.81 6.4 x 10 ⁻³	9.2 x 10 ⁻³ 0.18 3.6 x 10 ⁻³	
Total	275.7	1.708	79,663	497	

⁽a) Based on typical data from January 14, 1981; primary coolant at 17% of Technical Specifications limit for dose equivalent I-131.

RADIOACTIVE WASTE QUANTITIES OF SIGNIFICANT ACTIVITY

Liquid Waste Sources Chemical and Volume	Quantity/Year- Gallons 69,500	Assumptions Start-up after refueling
Control System	900 37,200	Cold shutdown Day 1 Start-up from cold condition Day 1
	13,200 1,200	Hot shutdown(a) Day 50 Start-up from hot condition Day 50
	17,400 1,700	Hot shutdown(a) Day 140 Start-up from hot condition Day 140
	32,300 2,000	Hot shutdown (a) Day 230 Start-up from hot condition Day 230
	2,200 104,300	Cold shutdown Day 240 Start-up from cold condition Day 240
	68,900 2,300	Hot shutdown(a) Day 270 Start-up from hot condition Day 270
	17,500	cold shutdown to refuel
	216,000	Boron reduction for cycle shim bleed
Total	586,600	
Primary System Drain Tank	1,500	Primary coolant pump seal leakage at 1 gpd per pump for four pumps
	1,000	Safety injection check valve leakage
	64,900	Drain primary system for maintenance at Day 240
	13,800	Drain primary system for refueling
	21,300	Drain refueling shield
Total	102,500	

(a) Hot shutdown quantities are based on maintaining the shutdown margin during xenon buildup by boron dilution and on Plant start-up eight hours after shutdown during the xenon buildup peak.

RADIOACTIVE WASTE QUANTITIES OF SIGNIFICANT ACTIVITY

<u>Liquid Waste Sources</u> Equipment Drain Tank	Quantity/Year- <u>Gallons</u> 11,400	Assumptions Coolant charging pump seal leakage at 31 gpd maximum leakage
	7,000	Spent fuel pool overflow
	3,900	Spent resin tank overflow from resin flushing - 260 ft³/year of resin replacement at 2 ft³/ft³ resin
	1,900	Demineralizers drain from resin charging - 260 ft³/year of resin
Total	24,200	replacement at 1 ft³/ft³ resin
Radiochemistry Lab Drain Tank	11,000	12 samples per day at 2.5 gallons per sample
Total Liquid Waste of Significant		
Activity	724,300	
Gaseous Waste Sources	Quantity/Year- ft³	Assumptions
Gaseous Waste Sources Degas of Primary System		Assumptions Degas to 5 cm³/kg prior to 3 cold shutdowns including gas in volume control tank
	ft³	Degas to 5 cm ³ /kg prior to 3 cold shutdowns including gas in volume
Degas of Primary System Off-Gas Liquid Waste From Shutdowns and	ft ³	Degas to 5 cm³/kg prior to 3 cold shutdowns including gas in volume control tank See start-up and shutdown schedule
Off-Gas Liquid Waste From Shutdowns and Start-Ups Off-Gas for Chemical	ft³	Degas to 5 cm³/kg prior to 3 cold shutdowns including gas in volume control tank See start-up and shutdown schedule above Boron dilution generates 216,000 gallons liquid waste with 35 cm³/kg

1. CLEAN WASTE RECEIVER TANKS (T-64A, B, C, D)

Number 4

Material Type 304 Stainless Steel
Capacity (Each) 50,000 gal (7,000 ft³)
Design Pressure 5 psig (Vapor Space)

Design Temperature 103°F Code API 620

2. PRIMARY SYSTEM DRAIN TANK (T-74)

Number 1

Material Type 304 Stainless Steel

Capacity 900 gal
Design Pressure 50 psig
Design Temperature 250°F

Code ASME B&PV Code, Section III,

Class C

3. EQUIPMENT DRAIN TANK (T-80)

Number

Material Type 304 Stainless Steel

Capacity 550 gal
Design Pressure 50 psig
Design Temperature 150°F

Code ASME B&PV Code, Section VIII

4. SPENT RESIN STORAGE TANK (T-69)

Number 1

Material Type 304 Stainless Steel

Capacity 3,000 gal (400 ft³)

Design Pressure 125 psig Design Temperature 200°F

Code ASME B&PV Code, Section III,

Class C

5. CONTROLLED CHEM LAB DRAIN TANK (T-76)

Number 1 Divided Into 2 Compartments Material Type 304 Stainless Steel

Capacity 900 gal (Total)

Design Pressure 50 psig Design Temperature 150°F

Code ASME B&PV Code, Section VII

6. TREATED WASTE MONITOR TANKS (T-66A, B)

Number 2

Material Carbon Steel

Internal Coating Baked Phenolic, 6-8 Mils

Capacity 5,500 gal
Design Pressure 10 psig
Design Temperature 150°F

Code ASME B&PV Code, Section VIII

7. DIRTY WASTE DRAIN TANK (T-60)

Number 1 Divided Into 2 Compartments

Material Carbon Steel
Capacity 3,800 gal
Design Pressure 10 psig
Design Temperature 150°F

Code ASME B&PV Code, Section VIII

Requirements

8. FILTERED WATER MONITORING TANKS (T-63)

Number 1 With 2 Compartments

Material Carbon Steel

Internal Coating Baked Phenolic, 6-8 Mils

Capacity 5,500 gal
Design Pressure 10 psig
Design Temperature 150°F

Code ASME B&PV Code, Section VIII

9. WASTE GAS SURGE TANK (T-67)

Number 1

Material Carbon Steel Capacity 550 gal (80 ft³)

Design Pressure 20 psig Design Temperature 150°F

Code ASME B&PV Code, Section III,

Class C

WASTE GAS DECAY TANKS (T-68A, B, C)

Number 3

Material Carbon Steel
Capacity 800 gal (100 ft³)

Design Pressure 120 psig Design Temperature 550°F

Code ASME B&PV Code, Section III,

Class C

11. LAUNDRY DRAIN TANK (T-70)

Number 1 Divided Into 2 Compartments

Material Carbon Steel
Capacity 1,000 gal (Total)

Design Pressure 15 psig Design Temperature 150°F

Code ASME P&PV Code, Section VIII

12. VACUUM DEGASIFIER

a. Tank (T-57)

Number 1

Performance Handle Solution With 0-50 Std cm³ H₂

(kg of Liquid Waste. Reduced H₂ Concentration to 1/40 of Influent

Concentration)

Design Flow 0-160 gpm

Design Pressure 75 psig & 30" Hg

Design Temperature 200°F

Material Stainless steel

Code ASME B&PV Code, Section III,

Class C

b. Vacuum Pumps (C-51A, B)

Number 2

Capacity 28 scfm @ 28" Hg

Type Rotary, Water-Sealed, Water-Lubricated

with Closed Cooling Loop

Motor 3 hp

Material Stainless steel

RADWASTE DEMINERALIZER

a. Demineralizer Tanks (T-55A, B, C)

Number 3

Material of Tank Stainless Steel

Flow Rate (Each) 48 gpm (Rated), 100 gpm (Max)

Unit Flow Rate (at Ratings) 5.0 gpm/ft² Resin Volume (Each) 32 ft³

Resin Type Equivalent Capacity Mixture of Nuclear

Grade Cation and Anion

Design Pressure 125 psig Design Temperature 160°F

Code ASME B&PV Code, Section III, Class C and

ASME B&PV Code, Section VIII, Para UW-

2 (a)

b. Clean Resin Transfer Tank (T-61)

Number 1

Material PVC Lined Carbon Steel

Capacity 32 ft³
Design Pressure 125 psig
Design Temperature 125°F

Code ASME B&PV Code, Section VIII

14. CLEAN WASTE FILTERS (F-57A, B, C)

Type Cartridge Type With Replaceable Elements

Number 3

Material, Container
Material, Filter Media
Filter Media Rating
Flow Rate
Design Pressure
Design Temperature

Stainless Steel
Polypropolene
150 Micron
100 gpm
125 psig
160°F

Code ASME B&PV Code, Section III, Class C and

ASME B&PV Code, Section VIII, Para UW-

2 (a)

15. EQUIPMENT DRAIN FILTER (F-56)

Number Cartridge Type with Replaceable Elements

Material, Container
Material, Filter Media
Filter Media Rating
Design Pressure
Design Temperature

Stainless Steel
Polypropolene
25 Microns
125 psig
212°F

Code ASME B&PV Code, Section III, Class C and

ASME B&PV Code, Section VIII, Para UW-

2 (a)

16. DIRTY WASTE FILTER (F-53)

Type Cartridge Type With Replaceable Elements

Number 1

Material, Container
Material, Filter Media
Filter Media Rating
Flow Rate
Design Pressure
Design Temperature

Stainless Steel
Polypropolene
200 Microns
75 gpm
100 psig
160°F

Code ASME B&PV Code, Section III, Class C and

ASME B&PV Code, Section VIII, Para UW-

2 (a)

17. LAUNDRY DRAIN FILTER (F-55)

Type Cartridge Type With Replaceable Elements

Number 1

Material, Container
Material, Filter Media
Filter Media Rating
Flow Rate
Design Pressure
Design Temperature

Stainless Steel
Polypropolene
25 Microns
20 gpm
100 psig
160°F

Code ASME B&PV Code, Section III, Class C and

ASME B&PV Code, Section VIII, Para UW-

2 (a)

18. PRIMARY SYSTEM DRAIN TANKS PUMPS (T-71A, B)

Type Horizontal Centrifugal With Mechanical

Seals

Number 2

Capacity (Each) 75 gpm Head 80 ft TDH

Material Type 316 Stainless Steel

Motor 5 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

19. DEGASIFIER PUMPS (P-68A, B)

Type Horizontal Centrifugal With Mechanical

Seals

Number 2

Capacity (Each) 160 gpm Head 190 ft TDH

Material Type 316 Stainless Steel

Motor 20 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

20. EQUIPMENT DRAIN TANK PUMPS (P-75A, B)

Type Horizontal Centrifugal With Mechanical

Seals

Number 2

Capacity (Each) 100 gpm Head 266 ft TDH

Material Type 316 Stainless Steel

Motor 25 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

21. CONTROLLED CHEM LAB DRAIN PUMPS (P-61A, B)

Type Horizontal Centrifugal With Mechanical

Seals

Number 2

Capacity (Each) 10 gpm Head 158 ft TDH

Material Type 316 Stainless Steel

Motor 7.5 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

22. RECEIVER TANK (CWRT) PUMPS (P-69A, B)

Type Horizontal Centrifugal With Mechanical

Seals

Number 2

Capacity (Each) 100 gpm Head 200 ft TDH

Material Type 316 Stainless Steel

Motor 15 hp, 3 Phase, 60 Hertz, 460 Volt

23. RECEIVER TANK (CWRT) CIRCULATING PUMP (P-70)

Type Horizontal Centrifugal With Mechanical

Seals

Number 1

Capacity (Each) 250 gpm Head 121 ft TDH

Material Type 316 Stainless Steel

Motor 15 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

24. TREATED WASTE MONITOR PUMPS (P-58A, B)

Type Horizontal Centrifugal With Mechanical

Seals

Number 2

Capacity (Each) 150 gpm Head 140 ft TDH

Material Type 316 Stainless Steel

Motor 15 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

25. SAFETY INJECTION ROOM SUMP PUMPS (P-72A, B AND P-73A, B)

Type Vertical Centrifugal

Number 4 (2 Sets With 2 Pumps per Set)

Capacity (Each) 25 gpm Head 35 ft TDH Material Stainless Steel

Motor 1 hp, 3 Phase, 60 Hertz, 460 Volt

Codes Motor NEMA,

26. DIRTY WASTE DRAIN TANK PUMPS (P-60A, B)

Type Horizontal Centrifugal With Mechanical

Seals

Number 2

Capacity (Each) 75 gpm Head 160 ft TDH

Material Type 316 Stainless Steel

Motor 10 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

FILTERED WASTE MONITOR PUMP (P-63)

Type Horizontal Centrifugal With Mechanical

Seals

Number 1

Capacity (Each) 75 gpm Head 150 ft TDH

Material Type 316 Stainless Steel

Motor 10 hp, 3 Phase, 60 Hertz, 460 Volt Codes Motor NEMA; Pump, Standards of

Hydraulic Institute

28. WASTE GAS COMPRESSORS (C-50A, B)

a. Compressor

Number 2

Type Single Head, Single Stage Diaphragm Type Capacity (Each) 2.35 scfm at 14.7 psia Suction, 0.44 scfm at

7.5 psia Suction

Discharge Pressure 100 psig at Maximum Delivery

Material Stainless Steel

Motor 2 hp. 3 Phase, 60 Hertz, 460 Volt, TEFC

b. Aftercoolers

Number 2

Type Shell and Tube With Moisture Separator

and Drain Trap

Material Tube Side (Gas) Stainless Steel, Shell Side

(Water) Carbon Steel

29. WASTE GAS COMPRESSOR (C-54)

a. Compressor

Number 1

Type Diaphragm Type

Capacity (Each) 5 scfm Avg Between Suction Pressures of

100 psig

7.5 and 15.0 psia

Discharge Pressure

Material

Motor 7.5

b. Aftercoolers

Number 1

30. PIPING, FITTING AND VALVES

a. <u>Liquid Systems</u>

Material Stainless Steel

Design Pressure Floor Drains - Atmosphere, Process -

50 psig

Joints, 2" and Larger Butt Weld 1-1/2" and Smaller 2,000 lb SW

Valves, 2" and Larger Stainless Steel, Butt Weld Ends, 150 lb 1-1/2" and Smaller Stainless Steel, 2,000 lb SW Ends, 150 lb Stainless Steel, Flangeless, 150 lb

Plug Vales
Stainless Steel, Flangeless, 150 lb
Stainless steel, FF Flanged, 150 lb
Code
ASA B31.1, Code for Pressure Piping,

Including Applicable Nuclear Code Cases,

ASA B16.5

Radiography All Butt Weld in Nuclear Service Systems

Rated for Higher Than 50 psig and 212°F Are Radiographed 100. All Butt Welds in Nuclear Systems Rated for Less Than 50 psig and 212°F Are Radiographed 10%

b. Gaseous Systems

Material Carbon Steel
Design Pressure 100 psig
Joints, 2" and Larger Butt Weld
1-1/2" and Smaller 3,000 lb SW

Valves, 2" and Larger Carbon Steel, 150 lb BW

1-1/2" and Smaller

Carbon Steel, 600 lb, 3,000 lb SW

Butterfly

Carbon Steel, 150 lb, FF Flanged

Ductile Iron, 150 lb, FF Flanged

Code ASA B31.1, Code for Pressure Piping,

Including Applicable Nuclear Code Cases,

ASA B16.5

Radiography All Welds Are 100% Radiographed

1. CLEAN WASTE HOLDUP TANK (T-85)

Number 1

Material of Tank SA240 Type 304 SS

Capacity 5,000 gal
Design Pressure Atm
Design Temperature 212°F

Code API-620, 1970

Exam ASME B&PV Code, Section III, 1971

2. CLEAN WASTE TRANSFER PUMP (P-94)

Type Gould 3196

Number 1

Capacity 80 gpm Head 85 ft

Material Stainless Steel

Motor 5 hp

Code ASME B&PV Code, Section III, Class 3, 1971

CLEAN AND DIRTY WASTE EVAPORATORS (M-59A, B)

a. Evaporator Vessel

Number 2

Material 316 SS
Capacity 1,600 gal
Design Pressure 15 psig
Design Temperature 200°F

Code ASME B&PV Code, Section III, Class 3, 1971

b. Recirculation Pump

Type Gould 3196 - 3 x 4-13

Number 4

Capacity 200 gpm Head 30 ft Material 316 SS

Motor 5 hp, 3 Phase, 60 Hertz, 460 Volt

Code ASME B&PV Code, Section III, Class 3, 1971

c. <u>Distillate Pump</u>

Type Gould 3196 - 1 x 1-1/2-6

Number 4

Capacity 25 gpm Head 130 ft Material 316 SS Motor 5 hp

Code ASME B&PV Code, Section III, Class 3, 1971

d. Concentrate Pump

Type Gould 3196 - 1 x 1-1/2-6

Number 4

Capacity 25 gpm Head 100 ft Material 316 SS Motor 3 hp

Code ASME B&PV Code, Section III, Class 3, 1971

e. Vacuum Pump

Type Nash Number 4

Capacity 48 cfm @ 20" vacuum

Head 2 psig
Material 316 SS
Motor 3 hp
Code N/A

4. CLEAN WASTE DISTILLATE TANK (T-86)

Number 1

Material SA240 Type 304 SS

Capacity 5,000 gal
Design Pressure Atm
Design Temperature 212°F

Code API-650, 1970

Exam ASME B&PV Code, Section III, 1971

5. CLEAN WASTE DISTILLATE PUMP (P-97A, B)

Type Gould 3196

Number 2

Capacity 80 gpm Head 85 ft Material 316 SS

Motor 5 hp - Pacemaker

Code ASME B&PV Code, Section III, Class 3, 1971

6. CLEAN (MISCELLANEOUS) WASTE CONCENTRATE TANKS (T-94, T-95)

Number 2

Material SA240 Type 304 SS

Capacity 1,500 gal
Design Pressure Atm
Design Temperature 212°F

Code API-650, 1970

Exam ASME B&PV Code, Section III, 1971

7. MISCELLANEOUS WASTE FILTER (F-59)

Type Cartridge Type With Replaceable Elements

Number 1

Material, Container 304 SS

Material, Filter Media Epoxy Impregnated Cellulose

Filter Media Rating 150 Micron*
Flow Rate 30 gpm
Design Pressure 50 psig
Design Temperature 212°F

Code ASME B&PV Code, Section III, Class 3, 1971

8. CLEAN (MISCELLANEOUS) WASTE CONCENTRATE PUMPS (P-95A, B)

Type Gould 3196, 1 x 2-8

Number 2

Capacity 30 gpm Head 75 ft Material 316 SS

Motor 3 hp - Pacemaker

Code ASME B&PV Code, Section III, Class 3, 1971

^{*}May be in service with element removed.

9. POLISHING (MISCELLANEOUS WASTE) DEMINERALIZERS (T-88, T-89A, B)

Number 3

Material of Tank 304 SS

Flow Rate 50 gpm (Rated), 100 gpm (Max)

Unit Flow Rate (At Max) 10 gpm/ft² Resin Volume 32 ft³

Resin Type Equivalent Capacity Mixture of Nuclear Grade

Cation and Anion

10. MISCELLANEOUS WASTE HOLDUP TANKS (T-92A, B, C)

Number 3

Material SA240 Type 304 SS

Capacity 20,000 gal
Design Pressure Atm
Design Temperature 212°F

Code API-620, 1970

Exam ASME B&PV Code, Section III, 1971

11. MISCELLANEOUS WASTE TRANSFER PUMPS (P-92A, B)

Type Gould 3196, 2 x 3-13

Number 2
Capacity 80 gpm
Head 120 ft
Material 316 SS

Motor 10 hp - Pacemaker

Code ASME B&PV Code, Section III, Class 3, 1971

12. MISCELLANEOUS WASTE DISTILLATE TANK (T-87)

Number 1

Material SA240 Type 304 SS

Capacity 8,000 gal
Design Pressure Atm
Design Temperature 212°F

Code API-650, 1970

Exam ASME B&PV Code, Section III, 1971

13. MISCELLANEOUS WASTE DISTILLATE PUMPS (P-89A, B)

Type Gould 3196, 1-1/2 x 3-6

Number 2

Material 316 SS Capacity 80 gpm Head 110 ft

Motor 7-1/2 hp - Pacemaker

Code ASME B&PV Code, Section III, Class 3, 1971

14. RADWASTE SPENT RESIN STORAGE TANK (T-100)

Number 1

Material 304 SS
Capacity 200 ft³
Design Pressure 125 psig
Design Temperature 200°F

Code ASME B&PV Code, Section III, Class 3, 1971

15. WASTE GAS DECAY TANKS (T-101A, B, C)

Number 3

Material Carbon Steel

Capacity 225 ft³
Design Pressure 120 psig
Design Temperature 550°F

Code ASME B&PV Code, Section III, Class 3, 1971

16. PIPING, FITTINGS AND VALVES

a. <u>Liquid Radwaste System (Process)</u>

Material Stainless Steel

Design Pressure 125 psig and 150 psig

Fittings

2-1/2" and Larger 150 lb Thickness To Match Pipe Butt Weld Ends

2-1/2" and Smaller 3,000 lb Socket Weld

Valves

2-1/2" and Larger 150 lb Butt Weld Ends 2" and Smaller 150 lb Socket Weld Ends

Joints

2-1/2" and Larger Butt Weld Ends 2" and Smaller Socket Weld Ends

Code ASME B&PV Code, Section III, Nuclear Power

Plant Components, Nuclear Class 3, 1971, per

AEC Safety Guide 26, March 27, 1972

b. <u>Atmospheric Radwaste Drainage Piping</u>

Material Stainless Steel Design Pressure Atmospheric

Fittings

8" and Smaller Butt Weld Ends

Joints

8" and Smaller Butt Weld

Code ANSI B31.1.0 - 1967 Power Piping

c. Gaseous Radwaste System (Process)

Material Carbon Steel
Design Pressure 150 psig

Fittings

2-1/2" and Larger 150 lb Thickness To Match Pipe Butt Weld Ends

2" and Smaller 3.000 lb Socket Weld Ends

Valves

2-1/2" and Larger2" and Smaller150 lb Butt Weld Ends600 lb Socket Weld Ends

Joints

2-1/2" and Larger Butt Weld Ends 2" and Smaller Socket Weld

Code ASME B&PV Code, Section III, Nuclear Power

Plant Components, Nuclear Class 3, 1971, per

AEC Safety Guide 26, March 23, 1972

EQUIPMENT RATINGS AND CONSTRUCTION CODES - ADDITIONAL EQUIPMENT INSTALLED 1971-1973

17. PRIMARY SYSTEM MAKEUP STORAGE TANK (T-90)

Number

Material Carbon Steel
Capacity 200,000 gal
Design Pressure Atmospheric
Code API-650, 1970

18. UTILITY WATER STORAGE TANK (T-91)

Number 1

Material Carbon Steel
Capacity 75,000 gal
Design Pressure Atmospheric
Code API-650, 1970

PRIMARY SYSTEM DRAIN TANK

Letdown and Regenerative HX Drain Shutdown Cooling Header Relief SI Tanks Leakage PCS Loop Drains Quench Tank Drains Flange Leak Detector Drain Controlled Bleed-Off Relief PCS Pump Seal Leakage

EQUIPMENT DRAIN TANK

Spent Resin Storage Tanks Primary Coolant Sample Drain Clean Resin Transfer Tank Radwaste Demineralizer Drains Fuel Pool Overflow Fuel Pool HX Drains Fuel Pool Demineralizer Drains Fuel Pool Filter Drains Blowdown Drain Tank **HPI Header Relief** SIRW Tank Overflow Drain SIRW Tank HX Drain SI Tank Sample Flush Waste Gas Surge Tank Drain Chemical Addition Tank Drain Charging Pump Relief and Drains VCT Drain **Purification Filters Drain**

DIRTY WASTE DRAIN TANK

Radwaste Addition Area Sample Sink Drains

Clean Resin Transfer Tank Drains

Pump Leak-Offs

Auxiliary Building Floor Drains

Decontamination Pit Drains

Cask Washdown Area Drains

Controlled Chemical Laboratory Drain Tank Drains

Component Cooling Surge Tank Drain

Boric Acid Batching Tank Drain

Boric Acid Filter Drains

Treated Waste Monitor Tanks

VCT Relief

Vacuum Degasifier Relief

Turbine Building Sump Pump Discharge

Containment Sump Drains

Shutdown Cooling HX Drains

Spent Resin Storage Tank (T-100)

Primary System Makeup and Utility Water Tanks Overflow

Laundry Drain Tank Drains

Auxiliary Building Sump Pumps

FSAR CHAPTER 11 - RADIOACTIVE WASTE MANAGEMENT AND RADIATION PROTECTION

LIQUID RADWASTE

		-	Clean Liquid Wa	Dirty Liquid Waste Activities (μCi/cm³)*					
<u>Isotope</u>	<u>Half-Life</u>	As Received in Receiver	After 30 <u>Days' Decay</u>	After Processing Through Two Demineralizers	After Processing Through Evaporator	After Processiong Through Polishing <u>Demineralizer</u>	As Received in Drain Tank	After Processing Through Evaporator	After Processing Through <u>Demineralizers</u>
Fission Pr Br-84 Rb-88 Rb-89 SR-89 Sr-90 Y-90 Sr-91 Y-91 Mo-99 Te-129 I-132 I-132 I-133 Cs-134 Te-134 I-135 Cs-136 Cs-137 Cs-138 Ba-140 La-140	oducts 32m 18m 15m 54d 28y 64h 9.7h 58d 67h 33d 1.7 x 10 ⁷ y 8.0d 77h 2.3h 21h 2.3y 44m 52m 6.7h 13d 30y 32m 12.8d 40.2h	1.25 x 10 ⁻² 6.61 x 10 ⁻¹ 1.66 x 10 ⁻² 1.44 x 10 ⁻³ 4.00 x 10 ⁻⁵ 1.55 x 10 ⁻⁴ 1.00 x 10 ⁻³ 6.50 x 10 ⁻² 6.12 x 10 ⁻¹ 7.36 x 10 ⁻³ 1.52 x 10 ⁻⁸ 1.18 9.75 x 10 ⁻² 3.05 x 10 ⁻¹ 1.73 3.84 x 10 ⁻¹ 7.12 x 10 ⁻³ 1.73 x 10 ⁻¹ 7.53 x 10 ⁻¹ 4.06 x 10 ⁻² 2.87 1.87 x 10 ⁻³ 1.27 x 10 ⁻³	(a) (a) (a) 9.80 x 10 ⁻⁴ 4.00 x 10 ⁻⁵ 6.51 x 10 ⁻⁸ (a) 4.53 x 10 ⁻² 3.67 x 10 ⁻⁴ 3.93 x 10 ⁻³ 1.52 x 10 ⁻⁸ 8.87 x 10 ⁻² 1.46 x 10 ⁻⁴ (a) (a) (a) 3.78 x 10 ⁻¹ (a) (a) (a) 8.20 x 10 ⁻³ 2.87 (a) 3.65 x 10 ⁻⁴ (a)	(a) (a) (a) 9.80 x 10 ⁻⁶ 4.00 x 10 ⁻⁷ (a) (a) 4.53 x 10 ⁻⁶ 3.93 x 10 ⁻⁵ (a) 8.87 x 10 ⁻⁶ 3.93 x 10 ⁻⁶ (a) (a) 7.70 x 10 ⁻³ (a) (a) (a) 8.20 x 10 ⁻⁵ 2.87 x 10 ⁻⁶ (a) 3.65 x 10 ⁻⁶ (a)	(a) (a) (a) (a) (a) (a) (a) (a) 4.53 x 10 ⁻⁸ (a) (a) (a) 8.87 x 10 ⁻⁷ (a) (a) (a) 3.78 x 10 ⁻⁷ (a) (a) (a) 2.87 x 10 ⁻⁶ (a)	(a)	4.66 x 10 ⁻⁴ 2.44 x 10 ⁻² 6.10 x 10 ⁻⁴ 5.33 x 10 ⁻⁵ 1.50 x 10 ⁻⁶ 5.77 x 10 ⁻⁶ 3.70 x 10 ⁻⁵ 2.40 x 10 ⁻³ 2.26 x 10 ⁻² 2.72 x 10 ⁻⁴ (a) 4.40 x 10 ⁻² 3.60 x 10 ⁻³ 1.13 x 10 ⁻² 6.38 x 10 ⁻² 1.42 x 10 ⁻² 2.63 x 10 ⁻⁴ 6.40 x 10 ⁻³ 2.78 x 10 ⁻³ 1.06 x 10 ⁻³ 1.06 x 10 ⁻³ 6.90 x 10 ⁻³ 6.78 x 10 ⁻⁵ 6.52 x 10 ⁻⁵	4.66 x 10 ⁻⁸ 2.44 x 10 ⁻⁶ 6.10 x 10 ⁻⁸ (a) (a) (a) (a) 2.40 x 10 ⁻⁷ 2.26 x 10 ⁻⁸ 2.72 x 10 ⁻⁸ (a) 4.40 x 10 ⁻⁵ 3.60 x 10 ⁻⁵ 1.13 x 10 ⁻⁵ 6.38 x 10 ⁻⁶ 2.63 x 10 ⁻⁸ 6.40 x 10 ⁻⁵ 2.78 x 10 ⁻⁶ 1.50 x 10 ⁻⁷ 1.06 x 10 ⁻⁷ (a) (a)	(a) 2.44 x 10 ⁻⁸ (a) (a) (a) (a) (a) (a) (a) 2.26 x 10 ⁻⁸ (a) (a) 4.40 x 10 ⁻⁷ (a) 1.13 x 10 ⁻⁷ 6.38 x 10 ⁻⁷ 1.42 x 10 ⁻⁸ (a) 6.40 x 10 ⁻⁷ 2.78 x 10 ⁻⁸ (a) 1.06 x 10 ⁻⁷ (a) (a) (a) (a) (a)
Corrosion Cr-51 Mn-54 Mn-56 Co-58 Fe-59 Co-60 Zr-95	Products 27d 300d 2.58h 71d 45d 5.2y 65d	6.50×10^{-4} 5.22×10^{-6} 6.00×10^{-3} 2.07×10^{-3} 2.02×10^{-6} 2.98×10^{-4} 4.96×10^{-6}	3.02 x 10 ⁻⁴ 4.87 x 10 ⁻⁶ (a) 1.55 x 10 ⁻³ 1.27 x 10 ⁻⁶ 2.95 x 10 ⁻⁴ 3.61 x 10 ⁻⁶	3.02 x 10 ⁻⁶ 4.87 x 10 ⁻⁸ (a) 1.55 x 10 ⁻⁵ 1.27 x 10 ⁻⁸ 2.95 x 10 ⁻⁶ 3.61 x 10 ⁻⁸	(a) (a) (a) (a) (a) (a) (a)	(a) (a) (a) (a) (a) (a)	2.4 x 10 ⁻⁵ 2.0 x 10 ⁻⁷ 2.3 x 10 ⁻⁴ 7.9 x 10 ⁻⁵ 7.7 x 10 ⁻⁸ 1.1 x 10 ⁻⁵ 1.9 x 10 ⁻⁷	(a) (a) 2.3 x 10 ⁻⁸ (a) (a) (a) (a)	(a) (a) (a) (a) (a) (a) (a)

⁽a) Less Than 10⁻⁸

LIQUID RADWASTE

Assumptions:

Factor of 10 reductionin each demineralizer for all isotopes except tritium.

10³ reduction for iodine in evaporator.

10⁴ reduction for all other isotopes except tritium. 19% of clean waste is direct from primary system.

81% of clean waste is from Chemical and Volume JControl System and passes through one ion exchanger prior to entering clean waste receiver tanks.

No holdup period assumed in Miscellaneous Waste Holdup Tank.

1% defective fuel.

Dirty waste activity is 1% of primary coolant activity.

*The above information pertaining to isotopic activities are based on decontamination factors (DF) which were provided as part of the initial safety analysis or added as changes to the systems were made. Operating experience has demonstrated that the reactor coolant activity levels are much lower than the activity levels assumed in the radwaste system design. The ODCM provides information pertaining to the monitoring of waste streams and ensures the resultant offsite doses are in compliance with current regulatory requirements. The above information is considered historical.

MAXIMUM CALCULATED TRITIUM RELEASE DUE TO EVAPORATION FROM REFUELING CAVITY AND SPENT FUEL POOL

Yr of <u>Oper</u>	Conc in Contain Bldg (Ci/cm³)	Release From Contain Bldg (Ci/Yr)	Conc in Spent Fuel Bldg (Ci/cm ³)	Release From Spent Fuel Bldg (Ci/Yr)	Total Release (Ci/Yr)
5	1.1 x 10 ⁻¹³	18	8.5 x 10 ⁻¹⁴	13	31
10	2.1 x 10 ⁻¹³	35	2.2 x 10 ⁻¹³	33	68
15	3.0 x 10 ⁻¹³	50	3.6 x 10 ⁻¹³	53	103
20	3.8 x 10 ⁻¹³	63	4.9 x 10 ⁻¹³	72	135
25	4.5 x 10 ⁻¹³	75	6.1 x 10 ⁻¹³	90	165
30	5.1 x 10 ⁻¹³	85	7.1 x 10 ⁻¹³	105	190
35	5.6 x 10 ⁻¹³	93	8.0 x 10 ⁻¹³	118	211
40	6.0 x 10 ⁻¹³	100	8.6 x 10 ⁻¹³	127	227

FSAR CHAPTER 11 - RADIOACTIVE WASTE MANAGEMENT AND RADIATION PROTECTION

LADTAP INPUT DATA AND RESULTS MAXIMUM INDIVIDUAL DOSE CALCULATIONS

			Usage Rates (kg/yr or h/yr)				
Exposure Pathway	Dilution Factor	Transit Time (h)	<u>Adult</u>	<u>Teen</u>	<u>Child</u>	<u>Infant</u>	
Fish Ingestion	15	12	21.0	16.0	6.9	0.0	
Water Ingestion	1,000	24	730.0	510.0	510.0	510.0	
Shoreline Use	1	0	12.0	67.0	14.0	0.0	
Swimming	1	0	12.0	67.0	14.0	0.0	
Boating	15	0	52.0	52.0	29.0	0.0	

Dose Results (mrem/yr)(a)

		Adults		Teenager				
Exposure Pathway	T Body	<u>Liver</u>	<u>Skin</u>	T Body	Liver	<u>Skin</u>		
Fish Ingestion	5.25(-1)(b)	6.96(-1)	-	2.97(-1)	6.91(-1)	-		
Water Ingestion	5.66(-4)	6.13(-4)	-	3.10(-4)	4.06(-4)	-		
Shoreline Use	7.96(-3)	7.96(-3)	9.3(-3)	4.45(-2)	4.45(-2)	5.19(-2)		
Swimming	8.24(-5)	8.24(-5)	- ` ´	4.6 (-4)	4.6 (-4)	- ` `		
Boating	<u>1.19(-5)</u>	<u>1.19(-5)</u>		<u>1.19(-5)</u>	<u>1.19(-5)</u>			
Totals	5.34(-1)	7.04(-1)	9.3(-3)	3.43(-1)	7.36(-1)	5.19(-2)		

⁽a) Doses to other individuals and organs are smaller than those presented.

⁽b) $5.25(-1) = 5.25 \times 10^{-1}$

FSAR CHAPTER 11 - RADIOACTIVE WASTE MANAGEMENT AND RADIATION PROTECTION

ACTIVITY IN COOLANT AND GASEOUS WASTE

<u>Isotope</u>	<u>Half-Life</u>	<u>Activity</u> μCi/cm³ <u>Coolant</u>	Activity in S μCi/cm As Received	Surge Tank o ³ H ₂ 60-Day Hold	<u>10 CFR 20</u> μCi/cm³		of 10 CFR 20 Boundary 60-Day Hold
Kr-85(m)	4.4h	1.50	42.9	(a)	1 x 10 ⁻⁷	.0065	(a)
Kr-85	10.4y	2.34	66.9	65.6	3 x 10 ⁻⁷	.0034	.0034
Kr-87	78m	0.81	23.1	(a)	2 x 10 ⁻⁸	.017	(a)
Kr-88	2.8h	2.48	70.9	(a)	(b)	(b)	(b)
Xe-133	5.27d	225	6,430	2.48	3 x 10 ⁻⁷	0.32	.00012
Xe-135	9.2h	6.75	193	(a)	1 x 10 ⁻⁷	.029	(a)
Xe-138	17m	0.36	10.3	(a)	(b)	(b)	(b)

⁽a)Less than 10⁻⁸

⁽b)Unlisted in 10 CFR 20

Air water content, g/m³

8.0

SPECIAL LOCATION GASPAR INPUT DATA

Number	Distance (Miles)	Direction	<u>Description</u>	Normal X/Q(s/m³)	Depleted X/Q(s/m³)	Deposition D/Q(1/m²)
1	0.63	S	Residence	5.56(-6)	4.66(-6)	3.08(-8)
2	0.88	ENE	Garden	2.06(-6)	1.67(-6)	2.31(-8)
3	1.00	ESE	Meat Animal	2.13(-6)	1.69(-6)	1.49(-8)
4	2.50	NE	Goat Milk	2.60(-7)	1.85(-7)	8.14(-10)
5	2.75	ENE	Milk Cow	1.81(-7)	1.26(-7)	1.59(-9)
	Paramete	er			Valu- Appropriate	
Fraction		egetables gro	wn locally		1.0	
Fraction	of year cows	s, cattle, goats	on pasture		0.5	
Fraction	of vegetable	intake grown	in garden		0.76	
Fraction	of feed from	pasture while	on pasture		1.0	

FSAR CHAPTER 11 - RADIOACTIVE WASTE MANAGEMENT AND RADIATION PROTECTION

DOSE RESULTS FOR SPECIAL LOCATIONS MAXIMUM INDIVIDUAL DOSES BY AGE GROUP AND ORGAN mrem/yr(a)

			Adults			<u>Teenagers</u>			Children			<u>Infants</u>	
Location(a)	<u>Description</u>	T Body	Skin	<u>Thyroid</u>	T Body	Skin	<u>Thyroid</u>	T Body	Skin	<u>Thyroid</u>	T Body	Skin	<u>Thyroid</u>
1	Plume	1.13(-1)	3.38(-1)	1.13(-1)	1.13(-1)	3.38(-1)	1.13(-1)	1.13(-1)	3.38(-1)	1.13(-1)	1.13(-1)	3.38(-1)	1.13(-1)
	Ground	1.43(-1)	1.68(-2)	1.43(-2)	1.43(-2)	1.68(-2)	1.43(-2)	1.43(-2)	1.60(-2)	1.43(-2)	1.43(-2)	1.68(-2)	1.43(-2)
	Inhalation	9.25(-2)	9.20(-2)	3.40(-1)	5.13(-2)	5.09(-2)	2.58(-1)	5.22(-2)	5.16(-2)	3.25(-1)	5.57(-2)	5.49(-2)	5.23(-1)
2	Garden	2.05(-1)	1.99(-1)	1.71(0)	2.43(-1)	2.37(-1)	1.43(0)	5.02(-1)	4.95(-1)	2.30(0)	-	-	-
3	Meat	5.09(-2)	5.06(-2)	1.10(-1)	3.52(-2)	3.50(-2)	7.62(-2)	6.16(-2)	6.14(-2)	1.24(-2)	-	-	-
4	Goat Milk	1.45(-2)	1.36(-2)	2.58(-1)	1.84(-2)	1.72(-2)	3.84(-1)	3.66(-2)	3.46(-2)	7.60(-1)	6.84(-2)	6.49(-2)	1.81(0)
5	Cow Milk	6.79(-3)	6.33(-3)	1.84(-1)	9.47(-3)	8.77(-3)	2.76(-1)	2.03(-2)	1.90(-2)	5.48(-1)	3.89(-2)	3.74(-2)	1.31(0)

⁽a) See Table 11-12 for location data

FSAR CHAPTER 11 - RADIOACTIVE WASTE MANAGEMENT AND RADIATION PROTECTION

Process Radiation Monitoring Systems	Detection Equipment/ Sampling Equipment	Readout Equipment	Sensitivity	Alarm and Control
Service Water, RE0833	Scintillation detector/detector well in service water line to discharge structure.	Digital indicator 10-10 ⁷ CPM.	5 x 10 ⁻⁶ μCi/cm ³ of Cs-137 equivalent.	Alarm on high radiation, circuit failure.
Steam Generator Blowdown, RE0707	Scintillation detector/external to blowdown tank, drain to P98A/B suction.	Digital rate meter 10-10 ⁷ CPM.	5 x 10 ⁻⁶ μCi/cm ³ of Cs-137 equivalent.	Alarm on high radiation signal; isolates blowdown tank.
Radwaste Liquid Discharge, RE1049	Scintillation detector on radwaste liquid line to discharge structure.	Digital rate meter 10-10 ⁷ CPM.	5 x 10 ⁻⁶ μCi/cm ³ of Cs-137 equivalent.	Alarm on high radiation, cirtuit failure. Isolates radwaste release.
Component Cooling Water, RE0915	Scintillation detector/piping, valves, and detector housing. CC pump dP for flow.	Digital indicator 10-10 ⁷ CPM.	5 x 10 ⁻⁵ μCi/cm ³ of Cs-137 equivalent.	Alarm on high radiation, circuit failure; isolates component cooling water surge tank vent.
Circ Water Discharge, RE1323	Scintillation detector/piping, valves, sample pump and detector housing; circulating from mixing basin prior to discharge.	Digital indicator 10-10 ⁷ CPM.	4 x 10 ⁻⁶ μCi/cm ³ of Cs-137 equivalent.	Alarm on high radiation, circuit failure.
Off-Gas Monitoring, RE0631	Scintillation detector/piping, valves and detector housing; main condenser steam jet air ejector noncondensibles to stack.	Digital rate meter analyzer 10-10 ⁷ CPM.	1 x 10 ⁻⁵ μCi/cm ³ of Xe-133 equivalent.	Alarm on high radiation and circuit failure.

Process Radiation Monitoring Systems	Detection Equipment/ Sampling Equipment	Readout Equipment	Sensitivity	Alarm and Control
Radwaste Area Ventilation, RE1809	Geiger-Mueller tube/piping, valves, sample pump and detector housing; air monitoring prior to discharge to stack.	Linear rate meter 0-10 ⁶ CPM.	4 x 10 ⁻⁵ μCi/cm ³ of Xe-133 equivalent.	Alarm on high radiation and circuit failure; isolates radwaste vent system.
Engineered Safeguards Pump Rooms Vent, RE1810, 1811	Geiger-Mueller tube; piping, valves, sample pump and detector housing; to stack, 2 systems, East and West rooms.	Digital rate meter 10-10 ⁷ CPM.	1 x 10 ⁻⁴ μCi/cm ³ of Xe-133 equivalent.	Alarm on high radiation and circuit failure; isolates pump room vent supply and exhausts.
Waste Gas Radiation, RE1113	Geiger-Mueller tube/piping, valves and detector housing; from the waste gas surge tank and waste gas decay tanks to stack.	Digital rate meter 10-10 ⁷ CPM.	1 x 10 ⁻⁴ μCi/cm ³ of Xe-133 equivalent.	Alarm on high radiation and circuit failure; isolation waste gas surge tank and decay tanks.
Containment Building Gas Monitoring System, RE1817	Geiger-Mueller tube/piping solenoid valves and detector housing; from 5 sample locations on (4) cooler fan discharges.	Linear rate meter 10-10 ⁷ CPM.	1 x 10 ⁻⁴ μCi/cm ³ of Xe-133 equivalent.	Alarm on high radiation and circuit failure.
Failed Fuel, RE0202	Scintillation detector/detector housing in letdown line.	Linear rate meter, 0-10 ⁶ CPM, local.	N/A	Alarm on high radiation, circuit failure.

Process Radiation Monitoring Systems	Detection Equipment/ Sampling Equipment	Readout Equipment	Sensitivity	Alarm and Control
Steam Generator Blowdown Vent, RE2320	Scintillation detector/in well on blowdown vent line.	Digital rate meter, 10-10 ⁷ CPM.	2 x 10 ⁻⁵ μCi/cm ³ of Cs-137 equivalent.	Alarm on high radiation, circuit failure.
Turbine Building Sump, RE5211	Scintillation detector/piping, valves, and detector housing, sump pump discharge to drain.	Digital rate meter, 10-10 ⁷ CPM.	5 x 10 ⁻⁶ μCi/cm ³ of Cs-137 equivalent.	Alarm on high radiation, circuit failure.
Radwaste Addition Vent, RE5711	Beta scintillation/dP across roughing filter used for flow.	Digital rate meter, 10-10 ⁷ CPM.	5 x 10 ⁻⁶ μCi/cm ³ of Xe-133 equivalent.	Alarm on high radiation circuit failure; high radiation isolates radwaste addition vent.
Fuel Building Addition Vent, RE5712	Beta scintillation/dP across roughing filter used for flow.	Digital rate meter, 10-10 ⁷ CPM.	5 x 10 ⁻⁶ μCi/cm ³ of Xe-133 equivalent.	Alarm on high radiation circuit failure; high radiation isolates fuel building vent.
RGEMS 2327	Scintillation detectors for beta, gamma, ionization chamber/piping, valves, filters, sample collection bottle; discharge to stack inlet.	Log count rate meter, recorded; stack flow, recorded; sample flow recorded; 10-10 ⁶ CPM beta (log), 10-10 ⁷ CPM (log), gamma 1-10 ⁷ mr/h (ion chamber) or 4 x 10 ⁶ Ci/s digital.	1 x 10 ⁻⁶ μCi/cm ³ of Xe-133 equivalent.	Alarm, set recorder speed, isolate samples on alert level. Alarm transfer flow to upper range on high radiation.

Process Radiation Monitoring Systems	Detection Equipment/ Sampling Equipment	Readout Equipment	Sensitivity	Alarm and Control
RGEMS RE2325, RE2326	Scintillation detectors for beta, gamma, ionization chamber/piping, valves, filters, sample collection bottle; discharge to stack inlet.	Digital rate meter RIA-2325: 10-10 ⁶ CPM RIA-2326: 10-10 ⁷ CPM	3.9 x 10 ⁻⁷ μCi/cm ³ of Xe-133 equivalent.	Alarm, set recorder speed, isolate samples on alert level. Alarm transfer flow to upper range on high radiation.
Main Steam, RE2323, 2324	Geiger-Mueller tube/in lead collimator adjacent to main steam lines.	Digital rate meter 10-10 ⁷ CPM.	5 x 10 ⁻² μCi/cm ³ of dose equivalent I-131	Alarm on high radiation.

AREA RADIATION DETECTORS

Instrument(a), (b)	<u>Range</u>
Containment 590' Elev NW Side (b) Containment 590' Elev NE Side (b) Containment 590' Elev NE Side (b) Containment 590' Elev SE Side (b) East Engineering Safeguards Room Radwaste Service Corridor Radwaste Control Area (C-40 Panel) 2.4 kV Switchgear Room (1C) Control Lab Corridor Access Control Station Outside Cont Personnel Air Lock 607' Elev Containment Purge Unit Room-North Radwaste Demineralizer Room Roof Control Room/Turbine Bldg Corridor Control Room Entrance Turbine Floor East Side Health Physics Offices Spent Fuel Pool-South Air Room 590' Elev Inside of Cont Personnel Air Lock Containment 649' Elev Rx Cavity	10 ⁻² -10 ⁴ Rem/hr 10 ⁻² -10 ⁴ Rem/hr 10 ⁻² -10 ⁴ Rem/hr 10 ⁻² -10 ⁴ Rem/hr 0.1-10 ⁷ mrem/hr 0.1-10 ⁷ mrem/hr 1.0-10 ⁷ mrem/hr
Containment 649' Elev Rx Cavity Containment Hi range-left channel	1.0-10 ⁷ mRem/hr 1-10 ⁷ Rem/hr
Containment Hi range-left channel Containment Hi range-left channel Decontamination Room Evaporator "A" Evaporator "B" Evaporator Control Panel C-105	1-10 Rem/hr 1-10 ⁷ Rem/hr 0.1-10 ⁷ mrem/hr 0.1-10 ⁷ mrem/hr 0.1-10 ⁷ mrem/hr
Waste Gas Decay Tank T-101, A, B & C	0.1-10 ⁷ mrem/hr

- (a) Sensitivity for all instruments except containment detectors has energy dependence of $\pm 20\%$ of the actual radiation intensity over a photon energy spectrum of 100 keV to 2.5 MeV
- (b) Sensitivity for containment detector instruments has an energy dependence of $\pm 15\%$ of actual radiation intensity over a photon energy spectrum of 100 keV to 2.5 MeV.
- (c) Sensitivity for the radwaste monitor is $\pm 30\%$ of the actual intensity over a photon energy spectrum from 80 keV to 1.33 MeV.

AREA RADIATION DETECTORS

Environmental Lab Entrance	0.1-10 ⁷ mrem/hr
Radwaste Packaging Area-East	0.1-10 ⁷ mrem/hr
Radwaste Packaging Area-West	0.1-10 ⁷ mrem/hr
Radwaste Demineralizer 649' Elev	0.1-10 ⁷ mrem/hr
Steam Dumps Area	0.1-10 ⁷ mrem/hr
Radwaste Monitors (c) Local Readout	
East Processing Building	1.0-10 ⁵ mRem/hr
East Storage Building	1.0-10 ⁵ mRem/hr
South Storage Building	1.0-10 ⁵ mRem/hr
(Not Used for Radwaste Storage at this time)	

- (a) Sensitivity for all instruments except containment detectors has energy dependence of $\pm 20\%$ of the actual radiation intensity over a photon energy spectrum of 100 keV to 2.5 MeV
- (b) Sensitivity for containment detector instruments has an energy dependence of $\pm 15\%$ of actual radiation intensity over a photon energy spectrum of 100 keV to 2.5 MeV.
- (c) Sensitivity for the radwaste monitor is $\pm 30\%$ of the actual intensity over a photon energy spectrum from 80 keV to 1.33 MeV.

<u>Primary Coolant Fission and Corrosion Product Activities</u> <u>for AST Dose Analyses</u>

Nuclide	Activity [*]	Nuclide	Activity*
	(μCi/g)		(μCi/g)
Co-58	7.0E-03	Np-239	-
Co-60	8.0E-04	Pu-238	-
Cr-51	4.7E-03	Pu-239	-
Fe-55	1.8E-03	Pu-240	-
Fe-59	4.5E-04	Pu-241	-
Mn-54	2.4E-03	Am-241	-
Kr-85	5.3E-01	Cm-242	-
Kr-85m	1.2E+00	Cm-244	-
Kr-87	7.5E-01	I-130	1.1E-01
Kr-88	2.2E+00	Kr-83m	3.2E-01
Rb-86	1.5E-02	Xe-138	4.7E-01
Sr-89	5.4E-03	Xe-131m	4.5E-01
Sr-90	4.9E-04	Xe-133m	1.7E+00
Sr-91	1.5E-03	Xe-135m	4.8E-01
Sr-92	5.9E-04	Cs-138	7.0E-01
Y-90	6.4E-04	Cs-134m	4.6E-02
Y-91	1.8E-02	Rb-88	2.3E+00
Y-92	7.2E-04	Rb-89	5.8E-02
Y-93	4.4E-04	Sb-124	1.1E-03
Zr-95	1.2E-03	Sb-125	9.2E-03
Zr-97	4.9E-04	Sb-126	6.2E-04
Nb-95	1.2E-03	Te-131	1.5E-02
Mo-99	4.2E+00	Te-133	6.1E-03
Tc-99m	3.2E+00	Te-134	2.1E-02
Ru-103	1.2E-03	Te-125m	2.0E-03
Ru-105	1.4E-04	Te-133m	1.2E-02
Ru-106	5.3E-04	Ba-141	9.1E-05
Rh-105	5.5E-04	Ba-137m	2.5E+01
Sb-127	4.3E-02	Pd-109	-
Sb-129	2.4E-02	Rh-106	5.3E-04
Te-127	4.6E-02	Rh-103m	1.2E-03
Te-127m	7.2E-03	Tc-101	1.5E-02
Te-129	3.8E-02	Eu-154	-
Te-129m	2.2E-02	Eu-155	-
Te-131m	3.7E-02	Eu-156	-
Te-132	4.8E-01	La-143	1.1E-05
I-131	5.2E+00	Nb-97	8.1E-05
I-132	1.2E+00	Nb-95m	8.5E-06

<u>Primary Coolant Fission and Corrosion Product Activities</u> <u>for AST Dose Analyses</u>

Nuclide	Activity [*]	Nuclide	Activity [*]
	(μCi/g)		(μCi/g)
I-133	5.4E+00	Pm-147	1.2E-04
I-134	4.7E-01	Pm-148	1.7E-04
I-135	2.3E+00	Pm-149	3.0E-04
Xe-133	7.0E+01	Pm-151	8.3E-05
Xe-135	7.4E+00	Pm-148m	2.6E-05
Cs-134	4.9E+01	Pr-144	9.3E-04
Cs-136	4.3E+00	Pr-144m	1.6E-05
Cs-137	2.6E+01	Sm-153	-
Ba-139	4.3E-04	Y-94	1.4E-05
Ba-140	7.1E-03	Y-95	8.6E-06
La-140	3.4E-03	Y-91m	8.9E-04
La-141	2.4E-04	Br-82	2.5E-02
La-142	6.8E-05	Br-83	6.6E-02
Ce-141	1.1E-03	Br-84	2.7E-02
Ce-143	6.3E-04	Am-242	-
Ce-144	9.3E-04	Np-238	-
Pr-143	1.0E-03	Pu-243	-
Nd-147	4.3E-04		

^{*}Activities based on 1% failed fuel. Listed activities are adjusted to Technical Specification limits for performance of AST dose calculations.