205 992 5000 tel 205 992 7795 fax MAY 3 1 2019 Docket No.: 50-364 Southern Nuclear NL-19-0565 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001 > Joseph M. Farley Nuclear Plant - Unit 2 Cycle 27 Core Operating Limits Report ### Ladies and Gentlemen: In accordance with Technical Specification 5.6.5.d, Southern Nuclear Operating Company (SNC) submits the enclosed Core Operating Limits Report (COLR) for the Joseph M. Farley Nuclear Plant (FNP) - Unit 2 Cycle 27 Version 1. This letter contains no NRC commitments. If you have any questions, please contact Jamie Coleman at 205.992.6611. Respectfully submitted, Justin T. Wheat Licensing Manager JTW/was/scm Enclosure: Core Operating Limits Report for FNP Unit 2 Cycle 27 Version 1 Regional Administrator, Region II 1.2 D NRR Project Manager - Farley Nuclear Plant Senior Resident Inspector - Farley Nuclear Plant RTYPE: CFA04.054 # Joseph M. Farley Nuclear Plant - Unit 2 Cycle 27 Core Operating Limits Report # **Enclosure** Core Operating Limits Report for FNP Unit 2 Cycle 27 Version 1 # Joseph M. Farley Nuclear Plant Core Operating Limits Report Unit 2 - Cycle 27 Version 1 January 2019 ### 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for FNP UNIT 2 CYCLE 27 has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Requirement affected by this report is listed below: 13.1.1 SHUTDOWN MARGIN - MODES 1 and 2 (with $k_{eff} \ge 1$) The Technical Specifications affected by this report are listed below: - 2.1.1 Reactor Core Safety Limits for THERMAL POWER - 3.1.1 SHUTDOWN MARGIN MODES 2 (with $k_{eff} < 1$), 3, 4 and 5 - 3.1.3 Moderator Temperature Coefficient - 3.1.5 Shutdown Bank Insertion Limits - 3.1.6 Control Bank Insertion Limits - 3.2.1 Heat Flux Hot Channel Factor $F_O(Z)$ - 3.2.2 Nuclear Enthalpy Rise Hot Channnel Factor $F_{\Delta H}^{N}$ - 3.2.3 Axial Flux Difference - 3.3.1 Reactor Trip System Instrumentation Overtemperature ΔT (OTΔT) and Overpower ΔT (OPΔT) Setpoint Parameter Values for Table 3.3.1-1 - 3.4.1 RCS DNB Parameters for Pressurizer Pressure, RCS Average Temperature, and RCS Total Flow Rate - 3.9.1 Boron Concentration ### 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC-approved methodologies, including those specified in Technical Specification 5.6.5. - 2.1 SHUTDOWN MARGIN MODES 1 and 2 (with $k_{eff} \ge 1.0$) (Technical Requirement 13.1.1) - 2.1.1 The SHUTDOWN MARGIN shall be greater than or equal to 1.77 percent Δk/k. - 2.2 SHUTDOWN MARGIN MODES 2 (with k_{eff} < 1.0), 3, 4 and 5 (Specification 3.1.1) - 2.2.1 Modes 2 (k_{eff} < 1.0), 3 and 4 The SHUTDOWN MARGIN shall be greater than or equal to 1.77 percent $\Delta k/k$. - 2.2.2 Mode 5 The SHUTDOWN MARGIN shall be greater than or equal to 1.0 percent $\Delta k/k$. - 2.3 <u>Moderator Temperature Coefficient</u> (Specification 3.1.3) - 2.3.1 The Moderator Temperature Coefficient (MTC) limits are: The BOL/ARO-MTC shall be less than or equal to $+0.7 \times 10^{-4} \Delta k/k/^{\circ}F$ for power levels up to 70 percent RTP with a linear ramp to $0 \Delta k/k/^{\circ}F$ at 100 percent RTP. The EOL/ARO/RTP-MTC shall be less negative than -4.3 x 10^{-4} $\Delta k/k/^{\circ}F$. 2.3.2 The MTC Surveillance limits are: The 300 ppm/ARO/RTP-MTC should be less negative than or equal to $-3.65 \times 10^{-4} \Delta k/k$ °F. The revised predicted near-EOL 300 ppm MTC shall be calculated using Figure 5 and the following algorithm: Revised Predicted MTC = Predicted MTC* + AFD Correction** + Predictive Correction*** where. - * Predicted MTC is calculated from Figure 5 at the burnup corresponding to the measurement of 300 ppm at RTP conditions, - ** AFD Correction is the more negative value of: {0 pcm/°F or (ΔAFD * AFD Sensitivity)} where: ΔAFD is the measured AFD minus the predicted AFD from an incore flux map taken at or near the burnup corresponding to 300 ppm, AFD Sensitivity = $0.07 \text{ pcm/}^{\circ}\text{F} / \Delta \text{AFD}$ ***Predictive Correction is -3 pcm/°F. The 100 ppm/ARO/RTP-MTC should be less negative than -4.0 x $10^{-4} \Delta k/k/^{\circ}F$. where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER - 2.4 Shutdown Bank Insertion Limits (Specification 3.1.5) - 2.4.1 The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps. Page 3 of 15 - 2.5 <u>Control Bank Insertion Limits</u> (Specification 3.1.6) - 2.5.1 The control rod banks shall be limited in physical insertion as shown in Figure 1. - 2.6 <u>Heat Flux Hot Channel Factor</u> $F_Q(Z)$ (Specification 3.2.1) 2.6.1 $$F_{Q}(Z) \leq \frac{F_{Q}^{RTP}}{P} * K(Z)$$ for $P > 0.5$ $$F_{Q}(Z) \leq \frac{F_{Q}^{RTP}}{0.5} * K(Z)$$ for $P \leq 0.5$ where: $$P = \frac{THERMAL\ POWER}{RATED\ THERMAL\ POWER}$$ 2.6.2 $$F_Q^{RTP} = 2.50$$ 2.6.3 K(Z) is provided in Figure 2. 2.6.4 $$F_{Q}(Z) \leq \frac{F_{Q}^{RTP} * K(Z)}{P * W(Z)}$$ for $P > 0.5$ $F_{Q}(Z) \leq \frac{F_{Q}^{RTP} * K(Z)}{0.5 * W(Z)}$ for $P \leq 0.5$ - 2.6.5 Full Power W(Z) values are provided in Table 4. Part Power (48% RTP) W(Z) values are provided in Table 5. - 2.6.6 The $F_{\mathcal{O}}(Z)$ penalty factors are provided in Table 1. 2.7 Nuclear Enthalpy Rise Hot Channel Factor - $F_{\Delta H}^{N}$ (Specification 3.2.2) 2.7.1 $$F_{\Delta H}^{N} \leq F_{\Delta H}^{RTP} * (1 + PF_{\Delta H} * (1 - P))$$ where: $P = \frac{THERMAL\ POWER}{RATED\ THERMAL\ POWER}$ $$2.7.2 F_{\Lambda H}^{RTP} = 1.70$$ $$2.7.3 \quad PF_{\Lambda H} = 0.3$$ - 2.8 <u>Axial Flux Difference</u> (Specification 3.2.3) - 2.8.1 The Axial Flux Difference (AFD) acceptable operation limits are provided in Figure 3. - 2.9 <u>Boron Concentration</u> (Specification 3.9.1) - 2.9.1 The boron concentration shall be greater than or equal to 2000 ppm. ¹ - 2.10 Reactor Core Safety Limits for THERMAL POWER (Specification 2.1.1) - 2.10.1 In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 4. - 2.11 Reactor Trip System Instrumentation Overtemperature ΔT (ΟΤΔΤ) and Overpower ΔT (ΟΡΔΤ) Setpoint Parameter Values for Table 3.3.1-1 (Specification 3.3.1) - 2.11.1 The Reactor Trip System Instrumentation Overtemperature ΔT (OTΔT) and Overpower ΔT (OPΔT) setpoint parameter values for TS Table 3.3.1-1 are listed in COLR Tables 2 and 3. - 2.12 RCS DNB Parameters for Pressurizer Pressure, RCS Average Temperature, and RCS Total Flow Rate (Specification 3.4.1) - 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below: - a. Pressurizer pressure ≥ 2209 psig; - b. RCS average temperature ≤ 580.3°F; and - c. The minimum RCS total flow rate shall be \geq 273,900 GPM when using the precision heat balance method and \geq 274,800 GPM when using the elbow tap method. This concentration bounds the condition of $k_{\rm eff} \le 0.95$ (all rods in less the most reactive rod) and subcriticality (all rods out) over the entire cycle. This concentration includes additional boron to address uncertainties and B^{10} depletion. Table 1 $F_Q(Z)$ Penalty Factor | Cycle Burnup | F _Q (Z) Penalty | |--------------|----------------------------| | (MWD/MTU) | Factor | | 150 | 1.0220 | | 354 | 1.0297 | | 559 | 1.0346 | | 763 | 1.0366 | | 968 | 1.0357 | | 1172 | 1.0321 | | 1377 | 1.0268 | | 1581 | 1.0209 | | 1785 | 1.0200 | | 10780 | 1.0200 | | 10985 | 1.0203 | | 11189 | 1.0212 | | 11394 | 1.0222 | | 11598 | 1.0233 | | 11803 | 1.0245 | | 12007 | 1.0258 | | 12212 | 1.0266 | | 12416 | 1.0265 | | 12620 | 1.0240 | | 12825 | 1.0213 | | 13029 | 1.0200 | ### Notes: - 1. The Penalty Factor, to be applied to $F_Q(Z)$ in accordance with SR 3.2.1.2, is the maximum factor by which $F_Q(Z)$ is expected to increase over a 39 EFPD interval (surveillance interval of 31 EFPD plus the maximum allowable extension not to exceed 25% of the surveillance interval per SR 3.0.2) starting from the burnup at which the $F_Q(Z)$ was determined. - 2. Linear interpolation is adequate for intermediate cycle burnups. - 3. For all cycle burnups outside the range of the table, a penalty factor of 1.0200 shall be used. Table 2 $\label{eq:ReactorTripSystem} \textbf{Reactor Trip System Instrumentation - Overtemperature} \ \Delta T \ (OT \Delta T)$ Setpoint Parameter Values P' = 2235 psig $T' \le 577.2$ °F $K_3 = 0.000825/psi$ $K_1 = 1.17$ $K_2 = 0.017/{^{\circ}F}$ $\tau_1 \ge 30 \text{ sec}$ $\tau_2 \leq 4 \text{ sec}$ $\tau_4 = 0 \text{ sec}$ $\tau_5 \le 6 \text{ sec}$ $\tau_6 \le 6 \text{ sec}$ $f_1(\Delta I) =$ $-2.48 \{23 + (q_t - q_b)\}$ when $(q_t - q_b) \le -23\%$ RTP 0% of RTP when -23% RTP < $(q_t - q_b) \le 15\%$ RTP $2.05 \{(q_t - q_b) - 15\}$ when $(q_t - q_b) > 15\%$ RTP ### Table 3 ## Reactor Trip System Instrumentation - Overpower ΔT (OP ΔT) Setpoint Parameter Values $T'' \le 577.2$ °F $K_4 = 1.10$ $K_5 = 0.02/$ °F for increasing T_{avg} $K_6 = 0.00109/^{\circ}F$ when T > T'' $K_5 = 0/{^{\circ}F}$ for decreasing T_{avg} $K_6 = 0/{}^{\circ}F$ when $T \le T''$ $\tau_3 \ge 10 \text{ sec}$ $\tau_4 = 0 \text{ sec}$ $\tau_5 \le 6 \text{ sec}$ $\tau_6 \le 6 \text{ sec}$ $f_2(\Delta I) = 0\%$ RTP for all ΔI Table 4 RAOC W(Z) | | Axial | Elevation | 150 | 4000 | 6000 | 10000 | 14000 | 18000 | |---------------|----------|--------------|------------------|---------|------------------|---------|---------|---------| | | Point | (feet) | MWD/MTU | MWD/MTU | MWD/MTU | MWD/MTU | MWD/MTU | MWD/MTU | | * | 1 | 12.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | * | 2 | 11.80 | 1,0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | | * | 3 | 11.60 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | * | 4 | 11.40 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | * | 5 | 11.20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | | | 6 | 11.00 | 1.1638 | 1.1694 | 1.2048 | 1.2140 | 1.2294 | 1.1996 | | | 7 | 10.80 | 1.1676 | 1.1713 | 1.2064 | 1.2139 | 1.2286 | 1.1933 | | | 8 | 10.60 | 1.1667 | 1.1668 | 1.2015 | 1.2109 | 1.2234 | 1.1807 | | | 9 | 10.40 | 1.1667 | 1.1650 | 1.1991 | 1.2112 | 1.2180 | 1.1736 | | | 10 | 10.20 | 1.1652 | 1.1619 | 1.1956 | 1.2144 | 1.2126 | 1.1672 | | | 11 | 10.00 | 1.1619 | 1.1572 | 1.1905 | 1.2117 | 1.2071 | 1.1650 | | | 12 | 9.80 | 1.1581 | 1.1518 | 1.1847 | 1.2165 | 1.2011 | 1.1674 | | | 13 | 9.60 | 1.1537 | 1.1458 | 1.1866 | 1.2191 | 1.1948 | 1.1758 | | \rightarrow | 14 | 9.40 | 1.1487 | 1.1475 | 1.1808 | 1.2195 | 1.1963 | 1.1826 | | | 15 | 9.20 | 1.1507 | 1.1497 | 1.1817 | 1.2189 | 1.2086 | 1.1885 | | | 16 | 9.00 | 1.1627 | 1.1583 | 1.1799 | 1.2238 | 1.2176 | 1.2014 | | - | 17 | 8.80 | 1.1696 | 1.1622 | 1.1749 | 1.2305 | 1.2216 | 1.2255 | | - | 18
19 | 8.60
8.40 | 1.1774 | 1.1674 | 1.1774
1.1887 | 1.2370 | 1.2241 | 1.2452 | | | 20 | 8.40 | 1.1974 | 1.17/2 | 1.1887 | 1.2556 | 1.2330 | 1.2633 | | - | 21 | 8.00 | 1.2045 | 1.1920 | 1.2021 | 1,2611 | 1.2583 | 1.2987 | | | 22 | 7.80 | 1.2094 | 1.1963 | 1.2058 | 1.2643 | 1.2664 | 1,3118 | | | 23 | 7.60 | 1.2113 | 1.1979 | 1.2069 | 1.2645 | 1.2718 | 1,3118 | | | 24 | 7.40 | 1.2116 | 1.1981 | 1,2066 | 1.2632 | 1.2754 | 1.3290 | | | 25 | 7.20 | 1.2093 | 1.1956 | 1.2034 | 1.2578 | 1.2747 | 1,3312 | | | 26 | 7.00 | 1.2054 | 1,1913 | 1.1994 | 1.2509 | 1.2715 | 1.3296 | | | 27 | 6,80 | 1.2000 | 1.1857 | 1.1945 | 1.2433 | 1.2678 | 1.3260 | | | 28 | 6.60 | 1.1927 | 1.1785 | 1.1879 | 1.2338 | 1.2621 | 1.3198 | | | 29 | 6.40 | 1.1843 | 1.1702 | 1.1800 | 1.2226 | 1.2543 | 1,3109 | | | 30 | 6.20 | 1.1752 | 1.1610 | 1.1712 | 1.2098 | 1.2445 | 1.2993 | | | 31 | 6.00 | 1.1650 | 1.1508 | 1.1614 | 1.1960 | 1.2333 | 1.2860 | | | 32 | 5.80 | 1.1538 | 1.1400 | 1.1509 | 1.1812 | 1.2208 | 1.2713 | | | 33 | 5.60 | 1.1431 | 1.1284 | 1.1395 | 1.1654 | 1.2072 | 1.2542 | | | 34 | 5.40 | 1.1350 | 1.1215 | 1.1261 | 1.1520 | 1.2005 | 1.2341 | | | 35 | 5.20 | 1.1288 | 1.1298 | 1.1205 | 1.1498 | 1.2014 | 1,2315 | | | 36 | 5.00 | 1.1319 | 1.1377 | 1.1267 | 1.1492 | 1.2005 | 1.2282 | | | 37 | 4.80 | 1.1397 | 1.1459 | 1.1312 | 1.1490 | 1.1986 | 1.2260 | | | 38 | 4,60 | 1.1466 | 1.1535 | 1.1356 | 1.1477 | 1.1951 | 1.2215 | | | 39 | 4.40 | 1.1531 | 1.1605 | 1.1394 | 1.1455 | 1.1901 | 1,2153 | | | 40 | 4.20 | 1.1588 | 1.1666 | 1.1426 | 1.1426 | 1.1839 | 1.2074 | | | 41 | 4.00 | 1.1631 | 1.1720 | 1.1451 | 1.1414 | 1.1766 | 1.1982 | | | 42 | 3.80 | 1.1697
1.1782 | 1.1764 | 1.1480 | 1.1405 | 1.1672 | 1.1859 | | \dashv | 43 | 3.40 | 1.1852 | 1.1824 | 1.1510 | 1.1346 | 1.1352 | 1.1713 | | - | 45 | 3.20 | 1.1908 | 1.1873 | 1.1542 | 1.1346 | 1.1475 | 1,1333 | | - | 46 | 3.00 | 1.1985 | 1.1940 | 1.1627 | 1.1292 | 1.1416 | 1.1440 | | \dashv | 47 | 2.80 | 1.2062 | 1.2147 | 1.1825 | 1.1365 | 1.1509 | 1.1430 | | _ | 48 | 2.60 | 1.2291 | 1.2434 | 1.2046 | 1.1487 | 1.1653 | 1.1715 | | - | 49 | 2.40 | 1.2575 | 1,2722 | 1.2266 | 1.1605 | 1.1790 | 1,1871 | | | 50 | 2.20 | 1.2855 | 1.3016 | 1.2490 | 1.1726 | 1.1929 | 1.2029 | | | 51 | 2,00 | 1.3138 | 1.3309 | 1.2711 | 1.1840 | 1.2055 | 1.2171 | | | 52 | 1.80 | 1.3418 | 1.3598 | 1.2929 | 1.1951 | 1.2176 | 1.2306 | | | 53 | 1.60 | 1.3684 | 1.3874 | 1.3138 | 1.2064 | 1.2299 | 1.2446 | | | 54 | 1.40 | 1.3938 | 1.4136 | 1.3337 | 1.2175 | 1.2422 | 1.2588 | | | 55 | 1.20 | 1.4177 | 1.4381 | 1.3525 | 1.2283 | 1.2542 | 1,2729 | | | 56 | 1.00 | 1.4397 | 1.4603 | 1.3697 | 1.2387 | 1.2660 | 1.2870 | | A | 57 | 0.80 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | | * | 58 | 0.60 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 0000.1 | 1.0000 | | * | 59 | 0.40 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | * | 60 | 0.20 | 1.0000 | 1,0000 | 1.0000 | 0000.1 | 1.0000 | 0000.1 | | A | 61 | 0.00 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ^{*} Top and bottom 5 axial points excluded per Technical Specification B3.2.1. Table 5 Part Power (48%) RAOC W(Z) | | Axial Point | Elevation (feet) | 150 MWD/MTU | |---|-------------|------------------|-------------| | A | 1 | 12.00 | 1.0000 | | * | 2 | 11.80 | 1.0000 | | * | 3 | 11.60 | 1.0000 | | * | 4 | 11.40 | 1.0000_ | | * | 5 | 11.20 | 1.0000 | | | 6 | 11.00 | 1.2728 | | | 7 | 10.80 | 1.2681 | | | 8 | 10.60 | 1.2550 | | | 9 | 10.40 | 1.2415 | | | 10 | 10.20 | 1.2245 | | | 11 | 10.00 | 1.2039 | | | 12 | 9.80 | 1.1794 | | | 13 | 9.60 | 1.1544 | | | 14 | 9.40 | 1.1302 | | | 15 | 9.20 | 1.1154 | | | 16 | 9.00 | 1.1117 | | - | 17 | 8.80 | 1.1072 | | - | 18 | 8.60 | 1.1061 | | | 19 | 8.40 | 1.1085 | | - | 20 | 8.20 | 1.1118 | | | 21 | 8.00
7.80 | 1.1137 | | | 23 | 7.60 | | | | 24 | 7.40 | 1.1137 | | | 25 | 7.20 | 1.1113 | | | 26 | 7.00 | 1.1091 | | | 27 | 6.80 | 1.1045 | | | 28 | 6,60 | 1.1004 | | | 29 | 6.40 | 1.0941 | | | 30 | 6.20 | 1.0828 | | | 31 | 6.00 | 1.0761 | | | 32 | 5.80 | 1.0721 | | | 33 | 5,60 | 1.0719 | | | 34 | 5.40 | 1.0632 | | 1 | 35 | 5.20 | 1.0611 | | | 36 | 5.00 | 1.0699 | | | 37 | 4.80 | 1.0831 | | | 38 | 4.60 | 1.0955 | | | 39 | 4.40 | 1.1074 | | | 40 | 4.20 | 1.1188 | | | 41 | 4.00 | 1.1287 | | | 42 | 3.80 | 1.1421 | | | 43 | 3.60 | 1.1576 | | | 44 | 3.40 | 1.1716 | | | 45 | 3.20 | 1.1844 | | | 46 | 3.00 | 1.1991 | | - | 47 | 2.80 | 1.2139 | | - | 48 | | 1.2436 | | | | 2.60 | | | | 49 | 2.40 | 1.2792 | | | 50 | 2.20 | 1.3148 | | | 51 | 2.00 | 1.3518 | | | 52 | 1.80 | 1.3883 | | | 53 | 1.60 | 1.4238 | | | 54 | 1.40 | 1.4588 | | | 55 | 1.20 | 1.4934 | | | 56 | 1.00 | 1.5247 | | × | 57 | 0.80 | 1.0000 | | * | 58 | 0,60 | 1.0000 | | * | 59 | 0.40 | 1.0000 | | * | 60 | 0.20 | 1.0000 | | * | 61 | 0.00 | 1.0000 | ^{*} Top and bottom 5 axial points excluded per Technical Specification B3.2.1. Figure 1 Rod Bank Insertion Limits versus Rated Thermal Power Fully Withdrawn – 225 to 231 steps, inclusive Fully Withdrawn shall be the condition where control rods are at a position within the interval \geq 225 and \leq 231 steps withdrawn. Note: The Rod Bank Insertion Limits are based on the control bank withdrawal sequence A, B, C, D and a control bank tip-to-tip distance of 128 steps. $\label{eq:Figure 2} Figure \ 2$ K(Z) – Normalized $F_Q(Z)$ as a Function of Core Height Figure 3 Axial Flux Difference Limits as a Function of Rated Thermal Power for RAOC Figure 4 Reactor Core Safety Limits Figure 5 PREDICTED HFP 300 PPM MTC VS CYCLE BURNUP | Cycle Burnup | Moderator Temperature | |--------------|-----------------------| | (MWD/MTU) | Coefficient (pcm/°F) | | 16000 | -23.80 | | 17000 | -24.04 | | 18000 | -24.28 | | 19000 | -24.49 | | 20000 | -24.71 |