

Organizational Factors in PRA: Twisting Knobs and Beyond

S. Peters,¹ S. Morrow,¹ S. Dennis,¹ J. Lane,¹ Z. Ma,² and N. Siu¹

¹U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research

²Idaho National Laboratory Department of Risk Assessment and Management

ANS International Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2019) Charleston, SC; April 28 – May 3, 2019

Outline

- Background
- Observations
- Challenges
- Concluding Remarks

Background

- SECY-19-0060: increased use of risk information => desirable to reduce completeness uncertainties
- Organizational factors long-recognized as a gap ("completeness uncertainty")
 - Operational experience
 - NRC program (1990s)
 - Continuing R&D
 - Recent calls for attention
- Problem seems amenable to technical solution; cost/benefit (in RIDM environment) unknown
- NRC/RES considering whether to pursue (as part of HRA)

Observations

- In principle, many impacts can be modeled with changes to PRA basic events ("twisting knobs")
 - Human and hardware (including CCF)
 - Qualitative and quantitative
- Discussion of influences has transitioned from "organizational factors" to "safety culture" framework
- Effect (positive or negative) of changes in factors/traits can be complex
- Plant-to-plant variability in estimates suggests avenues of investigation
 - Potential overall effect on PRA model parameters
 - Possible correlations across parameters

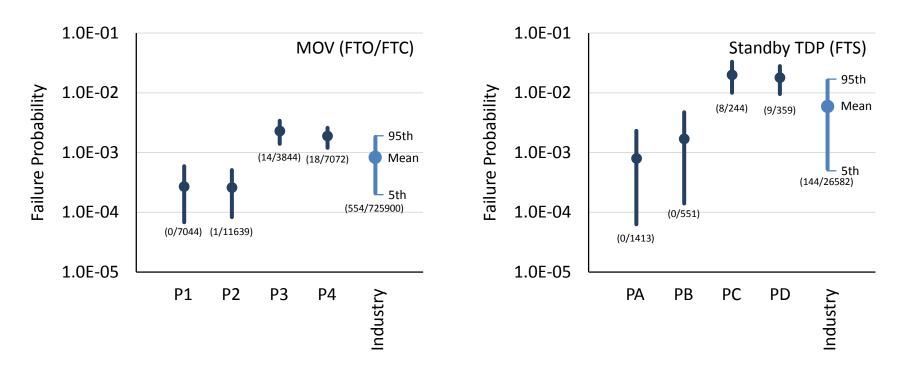
Transition to Safety Culture Framework

Organizational Factors (1999)

- Culture
 - Organizational culture
 - Ownership
 - Safety culture
 - Time urgency
- Communications
 - External
 - Interdepartmental
 - Intradepartmental
- Decisionmaking
 - Centralization
 - Goal setting
 - Organizational learning
 - Problem identification
 - Resource allocation
- Administrative Knowledge
 - Coordination of work
 - Formalization
 - Organizational knowledge
 - Roles/responsibilities
- Human Resource Administration
 - Performance evaluation
 - Personnel selection
 - Technical knowledge
- 5 Training

Safety Culture Traits (2014)

- Leadership
- Safety values and actions
- Problem identification and resolution
- Personal accountability
- Work processes
- Continuous learning
- Environment for raising concerns
- Effective safety communication
- Respectful work environment
- Questioning attitude
- Decisionmaking



Complex Effect of Changes - Examples

- Positive safety culture traits can have uncertain public risk impacts
 - Turkey Point (1992): worker safety => stay indoors
 - Point Beach (2000): worker safety => rx trip
 - Blayais (1999): Y2K caution => non-standard shutdown
- Training
 - Scenario-specific practice vs. general practices (e.g., use of diverse and redundant indicators when monitoring)
 - "Worst case" vs. more likely/less severe
- Multivariate effects (confluence of factors)
- Potentially wide scope of effects

Plant-to-Plant Variability

Notes:

- 1) Differences can be due to voluntary reporting practices as well as performance.
- 2) Prior distributions are generic.

Some Challenges

- Intended use and scope
- Interdisciplinary communication
 - Frameworks and terminology
 - Working methods
 - What's important
- Modeling
 - Multiple organizational science issues (see paper)
 - PRA end use perspective
 - Focus on "what's important" credible? useful?
 - Identifying, characterizing, and quantifying dependencies
 - "New" scenarios?
- Data

"New" Scenarios?

- Accounting for organizational factors/safety culture traits: go beyond adjustment factors?
 - Level of causality explanation (intended use)?
 - Fundamentally different accident progressions?
- Possible aids
 - Top-down "search" (in addition to emergent results of system models)
 - Operational experience
 - TMI-2
 - Chernobyl 4
 - Fukushima Dai-ichi

Data

• Example: 2010 INPO safety culture survey

- 63 sites, 2876 respondents (48% response rate), different occupational groups
- 9 factors, reasonable alignment with NRC Safety Culture traits
- Comparison with NRC performance metrics**
 - Moderate correlation with some 2010 metrics
 - Moderate correlation with some broad-based metrics for 2011
- Limitations and challenges
 - Correlation not cause/effect
 - Single study corroboration and longitudinal study would be useful
 - Need to connect with PRA basic events

Performance Metric	Corr. (2011)
Unplanned Scrams	-0.27*
Elevated Oversight in Action Matrix	-0.30*
Human Performance Cross-Cutting Area	-0.12
Problem Identification and Resolution Cross- Cutting Area	-0.27*

*Statistically significant (p < 0.05)

S.L. Morrow, G.K. Koves, and V.E. Barnes, "Exploring the relationship between safety culture and safety performance in U.S. nuclear power operations," *Safety Science*, **69, 37-47(2014).

Closing Remarks

- PRA treatment of organizational factors/safety culture traits: a long-standing grand challenge
- Links to basic events can be hypothesized; theoretical and empirical basis needed
- Interdisciplinary challenges are important
- Multiple viewpoints and approaches may be useful

