Operating experience of a Swiss BWR (KKL)

Jens Heldt Leibstadt NPP

Field Experience Leibstadt NPP

Contents

Introduction

Indications of EAC in Reactor Water

SCC of DMW

Concluding Remarks

Kernkraftwerk Leibstadt AG

Folie 2 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Introduction

Kernkraftwerk Leibstadt AG

Folie 3 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Leibstadt Nuclear Power Plant (KKL)

• BWR/6, 1275 MWe

EPU of 114% accomplished in 2003

- + LP turbine refurbishment in 2010
- + new turbine generator in 2012
- + new moisture separator reheater in 2017
- + new condenser in 2020
- Mark III containment
- Commercial operations: 1984
- Newest and largest NPP in Switzerland
- Located at the River Rhine on the border between Switzerland & Germany

Kernkraftwerk Leibstadt AG

Folie 4 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

EAC in Reactor Water

Kernkraftwerk Leibstadt AG

Folie 5 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

KKL EAC in Reactor Water Findings

Three different kinds of indications so far:

- Recirculation loop piping
- Core shroud (horizontal weld)
- Dissimilar Metal Weld (DMW) of feed water nozzle to safe end

Recirculation Loop Piping

• Made out of 316 NG

low carbon content < 0.02 % (from 0.007 to 0.018%)

- Most of all indications found at shop welds made by Hitachi
 acceptable according ASME Code Sect. XI
- Augmented inspections by UT
- All indications did not show growth since 2001 in accordance with the observations made for Japanese recirc. piping*

* = e.g. K.Kumagai et.al. Proceedings of ASME-PVP 2004: 2004 ASME/JSME Pressure Vessels and Piping Conference San Diego, California, July 25 – 29, 2004

Kernkraftwerk Leibstadt AG

Folie 7 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Core Shroud

- Made out of 304L / 308L
- OD of Weld SD-007: two small indications found by VT in 2012
 maximum length of 22 mm
- Reinspection after 2 und 5 years revealed no apparent change of both indications

Indications in Core Shroud

2012

2014

Kernkraftwerk Leibstadt AG

Folie 9 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Indications in Core Shroud

Kernkraftwerk Leibstadt AG

Folie 10 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

SCC of DMW

Folie 11 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Kernkraftwerk Leibstadt AG

DMW of Feed Water Nozzle to Safe End

- Ferritic nozzle and safe end
- DMW: Alloy 182 (Butter) / Alloy 82
- No Mechanical Stress Improvement (MSIP)
- ID-connected axial indication found in 2012
- Reevaluation of prior UT-inspection in 2004
 ~1.5 mm/year crack growth
- Full Structural WOL with Alloy 52

Kernkraftwerk Leibstadt AG

RPV Nozzle Dissimilar Metal Welds (DMW) Outage 2012: Indication overlaid at N5-nozzle

- Axial orientation
- Found in weld metal
- Length 22 mm (shorter at base?)
- Depth 26 mm (~ 93% wall thickness)
- Multifaceted and branched
- Emanating from edge of ID weld repair
- Clear ID connection
- Flaw is indicative of interdendritic stress corrosion cracking

Kernkraftwerk Leibstadt AG

Folie 13 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

After WOL Repair: Additional Laboratory Tests

Material Alloy 52 tested with the identical:

- Chemical composition
- Welding parameters

Test conducted:

- Elevated temperature tension tests in air
- Fracture toughness tests in air
- SCC tests under simulated BWR-conditions

Kernkraftwerk Leibstadt AG

Elevated Temperature Tension Tests

Parameter	Sp. #1	Sp. #2	Mean value
E [GPa]	171	167	169
YS _{0.2} [MPa]	260	262	261
UTS [MPa]	430	440	435
FS = (UTS+YS)/2 [MPa]	345	351	348
UE [%]	31	32.5	31.8
EF [%]	45.4	45.7	45.6
RA [%]	77.2	82.9	80.1

Kernkraftwerk Leibstadt AG

Folie 15 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

After WOL Repair: Additional Laboratory Tests

Fracture Toughness Tests according to ASTM E1820-13

Sp	Туре	a ₀ [mm]	∆a [mm]	∆a _{∪LC} [mm]	J _Q [kJ/m²]
2b	0.5T C(T)	12.37	3.06	3.10*	1089**
2c	0.5T C(T)	13.20	1.30	1.30	1118
2d	0.5T C(T)	13.35	2.65	1.97	948
1a	1T C(T)	26.80	2.80	2.81	1420
1b	1T C(T)	26.80	4.10	3.53	914

High toughness confirmed

Kernkraftwerk Leibstadt AG

Folie 16 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

SCC Tests in a high-temperature water loop

Kernkraftwerk Leibstadt AG

Folie 17 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

SCC Tests in a high-temperature water loop

Kernkraftwerk Leibstadt AG

Folie 18 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

SSC Tests in a High-Temperature Water Loop

Kernkraftwerk Leibstadt AG

Folie 19 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

After WOL Repair: Analysis on SCC Susceptibility

Assessment of all RPV DMW's

- + Operational experience
- + OLNC / HWC mitigation
- + ID-repairs of DMW's
- + Operational loads at DMW's
 - \rightarrow supported by a fracture mechanics analysis

Provide qualification of a MSIP pilot application to the Swiss regulator

Kernkraftwerk Leibstadt AG

RPV Nozzle DMW

DMW: Alloy 182 (Butter) / Alloy 82

Materials				
	Nozzle	Safe End (SF)	SF to Safe End Extension (SFE)	
N2 Recirculation Outlet	SA-508 CL2	SA-336 CL F8	-	
N3 Recirculation Inlet	SA-508 CL2	SB-166	SA-336 CL F8	
N5 Feedwater	SA-508 CL2	SA-508 CL 1	-	
N6 Core Spray	SA-508 CL2	SB-166	SA-508 CL 1	
N7 RHR/LPCI	SA-508 CL2	SB-166	SA-508 CL 1	
N10 JP Instrument.	SA-508 CL2	SA-336 F8	-	
N11 CRD Return	SA-508 CL2	SA-336 F8	-	

Kernkraftwerk Leibstadt AG

Folie 21 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

BWRVIP-75-A

"Technical Basis for Revisions to Generic Letter 88-01 Inspection Schedules"

- Re-assessment of Inspection schedules required by Generic Letter 88-01
- BWRVIP-75-A issued in 2005 and accepted by USNRC

Category	Weld Description	Existing Inspection Frequency of GL 88-01	Proposed Inspection Frequency (Note 1, 2, 3(b))		Scope Expansion
			NWC	HWC/NMCA	
С	Non-Resistant Materials Stress Improved after 2 years of Operation	All within 2 cycles of SI, then all within 10 years, at least 50% within 1 st 6 years	25% every 10 years (Note 5)	10% every 10 years (Note 5)	Section 3.3.1
D	Non-Resistant Materials, No Stress Improvement	Every 2 refueling Cycles	100% every 6 years	100% every 10 years, at least 50% in 1 ^ª 6 years	Section 3.4.1
E	Cracked - Reinforced by Weld Overlay	Every 2 refueling Cycles	25% every 10 years, at least 12.5% in 1 st 6 years	10% every 10 years	Section 3.5.1.1

Assessment of Operational Experience

since 2005 to complete information found in BWRVIP-75-A

- Information was hard to compile:
 - different lists, private communications etc.
 - part of information missing (category C / D, inspection history)
- Input and assistance from EPRI (C. Wirtz) and additional input from utilities (provided by Sierra Technologies)

Assessment by KKL

- Crack initiation in Alloy 182 but also crack growth in Alloy 182
- No (significant) crack growth in base material (nozzle, SF and SFE)
- Very few indications with > 0.75 t since 2005

Most important: encoded qualified UT-inspection method

Water Chemistry

Low concentration of chloride and sulfate

Kernkraftwerk Leibstadt AG

Folie 24 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Assessment of OLNC / HWC Mitigation according to BWRVIP-219

Not mitigated:

- N5: Feed Water
- N6: Core Spray (HPCS / LPCS)
- N7: RHR / LPCI
- N11: CRD-Return

Mitigated:

- N2: Recirc Out
- N3: Recirc Inlet
- N10: Jet Pump Instrumentation

KKL-RDB, Ausschnitt aus Zeichnung Z06536

Kernkraftwerk Leibstadt AG

Folie 25 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Assessment of ID-Repairs

All N5 nozzle to safe end DMW have ID-repairs

Two other ID-repairs found:

- N2 SF
- N7 SFE (shop weld)

Kernkraftwerk Leibstadt AG Folie | |

Operational Stresses

E.g.: hoop stresses σ_h (axial crack growth)

Nozzle	DMW	Outer Dia [mm]	Thickness [mm]	σ _h [MPa]
N2	SF	600	46	57
N3	SF	358	31	49
N5	SF	374	28	58
N6	SF	342	33	45
	SFE	335	23	65
N7	SF	354	30	51
	SFE	335	23	65
N10	SF	140	21	27
N11	SF	136	21	25

Qualitative Assessment

Important Factors:

Operational experience Water chemistry ID-repairs Operational stresses Qualified UT-technique BWRVIP-75A inspection frequencies good practice at KKL impact on initiation and growth of SCC for SFE > SF («wall thickness») very important

Approach:

BWRVIP-75A as a «base line» Shorter UT-intervalls for welds:

(a) with ID-repair

(b) SFE (if not mitigated by HWC)

Kernkraftwerk Leibstadt AG

Folie 28 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Fracture Mechanics Analysis

Calculation of «residual live time»

- Welding Residual Stresses (FE-Analysis*) and operational stresses
- Crack growth by SCC (>> Fatigue CGR)
- Circumferential and axial crack growth

axial cracks: «natural flaw growth»; crack growth in Alloy 182/82 circumferential cracks: crack growth in SS and in Alloy 182/82

- Crack growth rates according to BWRVIP-59-A / BWRVIP-114-A
- Acceptable flaw dimensions according ASME Sect. XI, Appendix C
- Initial crack depth: 10% of wall thickness
- * As described in:

D. Sommerville et al., Simplified Dissimilar Metal Weld Through-Wall Weld Residual Stress Models for Single V Groove Welds in Cylindrical Components, Paper No. PVP2014-28828ASME, 2014 Pressure Vessels and Piping Conference

Kernkraftwerk Leibstadt AG

Shortened UT-Inspections Intervals

DMW	Inspection [y]	Remarks
N2 Recirc.Outlet SF	10 / 5	Mitigated by HWC
		5 years interval because of ID-repair at one weld
N5 Feedwater	3	Not mitigated by HWC
SF		ID repairs
N6 Core Spray SFE	4	Not mitigated by HWC
N7 RHR/LPCI SFE	4	Not mitigated by HWC
	3	3 years for one weld with ID-repair

Kernkraftwerk Leibstadt AG

Folie 30 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Concluding Remarks

Kernkraftwerk Leibstadt AG Folie 31 | 23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019

Concluding remarks

Important for the assessment of SCC EAC / SCC

- Understanding of the mechanisms / phenomena
- Disposition lines for crack growth
- Operational Experience
- Fabrication History
- NDE capability

Kernkraftwerk Leibstadt AG

Thank you very much for your attention

Jens Heldt Leibstadt NPP

Kernkraftwerk Leibstadt AG

Folie

23.05.2019 | International Workshop on Age-Related Degradation of Reactor Vessels and Internals; NRC Headquarters, Rockville, May 2019