Ongoing Researches in Age-Related Degradation of Reactor Materials in Korea

<Int. Workshop on age-related degradation of reactor vessels and internals >

23~24, May 2019, USNRC Rockville, MD, USA

*Bong-Sang Lee

Korea Atomic Energy Research Institute

CONTENTS

- Surveillance Tests of High Copper Weld; Linde 80, WF-233
- Irradiation Experiments of RPV steels by using Research Reactor, HANARO
- Examination Plan of RPV Internal of Kori-1 after 40yr operation
 - ✓ Flaw Indications in the Baffle Former Bolts at the Lowest Position
- Plan of Material Harvesting Projects for the Retired Kori-1 Components
- Radiation Damage in CANDU Fuel Channel Components
- SCC (Stress Corrosion Cracking) & Corrosion Related Projects
- Advanced Technology Development for Diagnosis and NDE

Surveillance Test Data of a High Copper Linde 80 Weld

- Kori-1: 590MWe PWR, W/H 2-loop (1977~2017, 40 yr operation)
- Beltline circumferential weld: 0.23% Cu, Linde 80, WF-233
- The six surveillance capsules were all tested.
- **Now USE (<50 ft-lb) & High** ΔRT_{NDT} (RT_{PTS} >300°F)
- J-R tests by using modified 1X-WOL specimens
- M/C (T_o) tests by using reconstituted precracked Charpy specimens

KAER

Transition temperature shifts by neutron irradiation

Scatter was smaller in T_o values than Charpy.

J-R curves from modified 1X-WOL specimens at 550°F

2 Irradiation Test Data of RPV steels using HANARO

Instrumented capsule for material irradiation test

- ◆ CT hole flux: 0.7~1.5x10¹⁴ n/cm² · sec
- ◆ OR hole flux: 0.6~1.7x10¹³ n/cm² · sec

A capsule accommodates about 40 Cv specimens.

6

2

Summary of RPV Steels Irradiation Tests at HANARO

Capsule	Period	Fluence : x10 ¹⁹ n/cm ² (>1MeV)	lrr. Temp.: ℃	Materials	Irr. Hole	Remark	
98M-02K	99.7.9~7.11	1.1~2.3	271~297	SA508 Gr.3	СТ		
99M-01K	00.6.14~6.17	1.3~2.9	272~305	SA508 Gr.3	IR2		
99M-02H	00.5.31~6.3	1.4~2.9	281~309	SA508 Gr.3	IR2	RPV steel for OPR1000	
00M-02K	01.5.2~5.6	1.2~3.3	282~309	SA508 Gr.3	IR2	_	
02M-02K	03.8.15~8.21	3.0~6.4	271~297	SA508 Gr.3	СТ		
08M-01K	08.10.8~10.15	3.9~8.3	255~317	SA508 Gr.4N	СТ	Model Alloy	
08M-02K	09.4.7~4.28, 4.30~5.3	1.3~4.4	269~310	SA508 Gr.4N	OR5		
11M-25K	12.2.24~3.7	7.3~15.3	265~320	SA508 Gr.4N	CT	Model Alloy	
13M-02K	13.5.27~6.24, 7.1~7.28	2.4~8.9	275~301	SA508 Gr.3	OR5	RPV steel for OPR1000 (High fluence effects)	
16M-01K*	18.5.25~6.24, 7.9~7.30	1.9~7.1x10 ¹⁹	290	SA508 Gr.3	OR4	RPV steel for APR1400	
17M-01K*	18.11.20~11.28	4.6~9.1x10 ¹⁹	194~249	SA533 B1	СТ	RPV steel for WH RPV in Korea	

Specimens : Charpy, PCVN, Tensile, CT, mini-PCVN, Small Punch, etc.

Irradiation Embrittlement Trend of Korean Forgings

♦ SA508 Gr.3 steels & Gr.4N model alloys

- ⇒ Overall irradiation embrittlement trend of SA508 Gr.4N model alloys was similar to that of SA508 Gr.3 steels Similar result was reported previously (*G. Wire et al., ASTM STP 1447, 2004)
- \Rightarrow Ni content in SA508 Gr.4N is higher, but P & Mn contents are low

2 Embrittlement Prediction of Surveillance Data

- Measured shifts are bigger than the model predictions
- HANARO research reactor data are comparable to plant data.

(even though the flux range is about three orders higher, $\sim 10^{14}$ n/cm².sec)

한국원자력연구원

3 Examination Plan of RPV Internal of Kori-1 after 40 yr

- Defect indications on 8 baffle-former-bolts at Kori-1 RV internal (May 2015)
 - Defect signals were found at a lower dose level position.
- Kori-1 was permanently shutdown in 2017 after 40 yr operation.
- The bolts of defect signals will be removed for destructive analysis.
 - To identify the actual defect morphology of the signal indications
 - For better understanding on degradation(IASCC) mechanism of BFB materials
 - For better modelling of IASCC parameters, such as dose and stress, etc.
 - To improve the aging management of RV internals
- Will be extended to the materials harvesting project for the retired Kori-1 components for evaluation of irradiation effect and materials degradation on the actual components(RPV, Internals, Nozzles, SG)

3 Defect Indications on BFBs in Kori-1*

- Kori-1: W/H 2 loop PWR(WH-60), commercial start from April 1978
- Baffle Former Bolts 728 ea, Baffle Plate Edge Bolt 176 ea
- Bolt material : Cold worked 316 stainless steel
- NDE signal at 8 bolts : UDL(Unknown Defect Location) May 2015
- Location: Head shank of the bolt (Lowest former A)

Baffle Former Assembly of Kori-1

*Source: KINS/RR-1355

8 Positions of BFBs with defect indications

Destructive Analysis Plan

- To confirm the defect signals on Kori-1 BFBs
 - Chemical analysis, Metallographic examinations, Micro hardness
 - TEM microstructure, Radiation induced segregation
 - Map of defect morphologies (Comparison UT signals with metallography)
- Benchmark Zorita projects
- Collaboration with other countries
- EPRI is very much interested in the IASCC mechanism on this matter.
 - While there are some studies on the removed BFBs with UT indications, cases from the lower fluence position are rare to date.
 - Data on these bolts would fill a significant gap in our understanding of the quantitative effects of radiation dose and stress on the irradiation assisted stress corrosion cracking of baffle bolts
 - It would be also interesting to obtain a barrel weld material and to assess potential differences in behavior (fracture toughness) as a function of local dose.

4 Plan of National Project on the Kori-1 Harvested Materials

- Project title: 'Technology development for IASCC on reactor internals' under the program of 'Nuclear core technology development'
- Sep. 2019 through Aug. 2024, hopefully (Stage-I)
- Participation: KAERI, KHNP-CRI and other companies
- Deliverables
 - Specimen machining technology for highly radioactive materials
 - Test facility demonstration for IASCC experiments
 - Identification and characterization of the defect signals on Kori-1 BFBs
- Stage-II will include the other topics (after 2022)
 - Embrittlement of RPV thick wall & actual welds
 - SG tube integrity & SCC resistance of Alloy 690
 - Demonstration of the NDT capability : SG tube, Pipe Welds

13

4 Facility Set Up for IASCC Experiments

- Lead-shielded hot cells are going to be constructed for IASCC tests.
- Design of the building and the hot cell facilities are going on.
- International cooperation on high dose materials testing experiences is necessary.

5 Radiation Damage in CANDU Fuel Channel Components

4 CANDU units of the 30 yr original design life

CANDU 6 Pressurized heavy water reactor

	WS-1	WS-2	WS-3	WS-4			
Commercial operation	1983. 4.	1997. 7.	1998. 7.	1999. 10.			
Capacity (MW)	678		700				
Total Capacity	2,778MW (7.5% of total nuclear power generation)						

- Life time is controlled by Irradiation of Pressure Tube
 - Axial/Diametral Growth
 - ST (by using Removed PT) & Prediction Model
 - He Embrittlement of Spacer

6 SCC (Stress Corrosion Cracking) & Corrosion Related Projects

- PWSCC CGR model for Alloy 690 Nozzles & Tubes
- Mechanistic Studies on Crack Initiation of Alloy 690
- IASCC Studies of Proton Irradiated Stainless Steels
- FAC (flow accelerated corrosion) tests with a large test loop
- Mitigation of sludge & crud by mechanistic understanding & water chemistry

(*) ISG-TIP6 (Steam generator Tube Integrity Program) meeting at ANL this week.

16

Advanced Technology for Diagnosis and NDE

- Advanced ECT probe for diagnosis of steam generator U-bend
 - Evaluation of the effects of sludge & foreign object noise
- Non-linear UT techniques for cracks in pipe welds
- Long range guided wave technique for buried pipe inspection

250

0.00

- PEC (Pulsed Eddy Current) with Hall sensor array for diagnosis of pipe under insulation
- Basic Studies on

Non-Destructive Characterization of Irradiation Embrittlement of RPV steels

- Magnetic Barkhausen Noise
- Maybe a possible tool
- Needs samples of a series of actual neutron exposure

SUMMARY

- Irradiation embrittlement data from surveillance tests and research reactor tests were summarized for Korean RPV steels.
- Some baffle-former-bolts of defect signals will be removed from Kori-1 internal and investigated in detail soon.
- Materials harvesting projects for the retired Kori-1 components are being prepared under the national nuclear safety research programs.
- Other important researches are also going on;
 - Radiation Damage in CANDU Fuel Channel Components
 - SCC (Stress Corrosion Cracking) & Corrosion Related Projects
 - Advanced Technology for Diagnosis and NDE

