


International Workshop on Age-Related Degradation of Reactor Vessels and Internals 23-24 May 2019, NRC, USA

#### Current Status of Aging Management on Reactor Vessels in Korea (focusing on surveillance test)

<u>Tae-Kwang Song</u>, Yong-Beum Kim KINS

#### **Table of Contents**





#### **Overview of NPPs in Korea (1)**

- Status of Nuclear Power Plants in Korea
  - As of May 2019






#### **Overview of NPPs in Korea (2)**

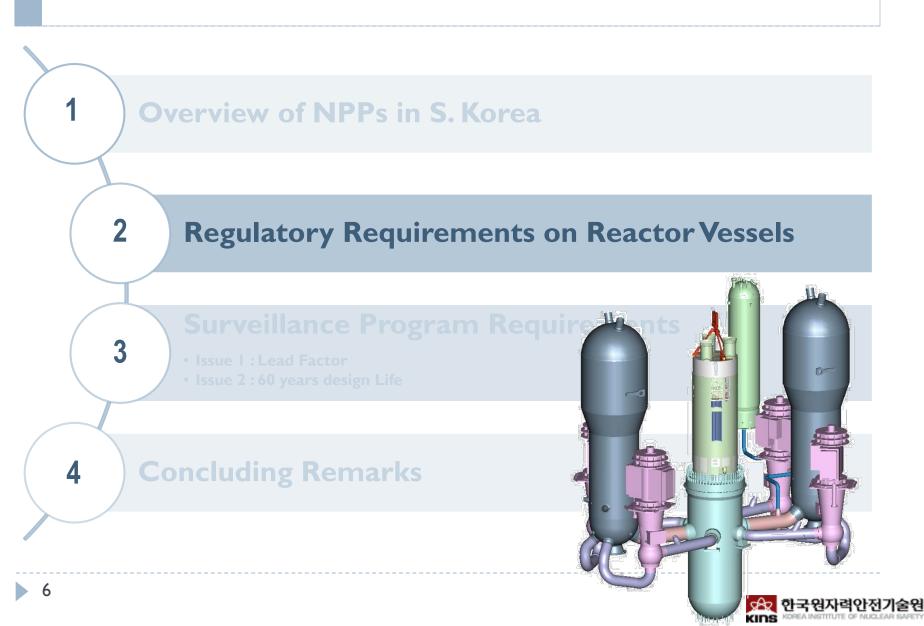
#### Current Status of Operating NPPs

| Site          | Unit | MW   | Reactor Type | Commercial Operation |
|---------------|------|------|--------------|----------------------|
| Kori          | 2    | 650  | Westinghouse | July 1983            |
|               | 3    | 950  | Westinghouse | Sep. 1985            |
|               | 4    | 950  | Westinghouse | April 1986           |
| Shin-Kori     |      | 1000 | OPR-1000     | April 2011           |
|               | 2    | 1000 | OPR-1000     | July 2012            |
|               | 3    | 1400 | APR-1400     | Dec. 2016            |
| Wolsong       |      | 679  | PHWR         | April 1983           |
|               | 2    | 700  | PHWR         | July 1997            |
|               | 3    | 700  | PHWR         | July 1998            |
|               | 4    | 700  | PHWR         | Oct. 1999            |
| Shin-Wol song |      | 1000 | OPR-1000     | July 2012            |
|               | 2    | 1000 | OPR-1000     | July 2015            |
| Hanbit        | l    | 950  | Westinghouse | Aug. 1986            |
|               | 2    | 950  | Westinghouse | June 1987            |
|               | 3    | 1000 | OPR-1000     | Mar. 1995            |
|               | 4    | 1000 | OPR-1000     | Jan. 1996            |
|               | 5    | 1000 | OPR-1000     | May 2002             |
|               | 6    | 1000 | OPR-1000     | Dec. 2002            |
| Hanul         | I    | 950  | Framatome    | Sep. 1988            |
|               | 2    | 950  | Framatome    | Sep. 1989            |
|               | 3    | 1000 | OPR-1000     | Aug 1998             |
|               | 4    | 1000 | OPR-1000     | Dec 1999             |
|               | 5    | 1000 | OPR-1000     | July 2004            |
|               | 6    | 1000 | OPR-1000     | April 2005           |



#### **Overview of NPPs in Korea (3)**



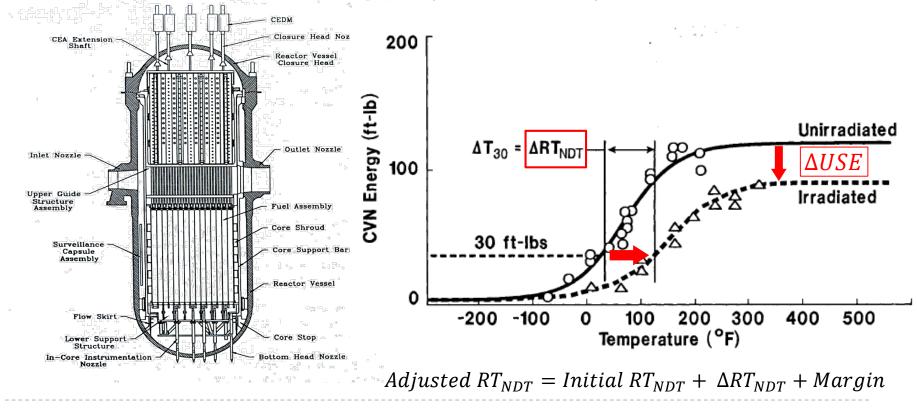

\* Former name is Younggwang

- \*\* Former name is Uljin
- \*\*\* The term of 'Shin-, 新' means 'new'

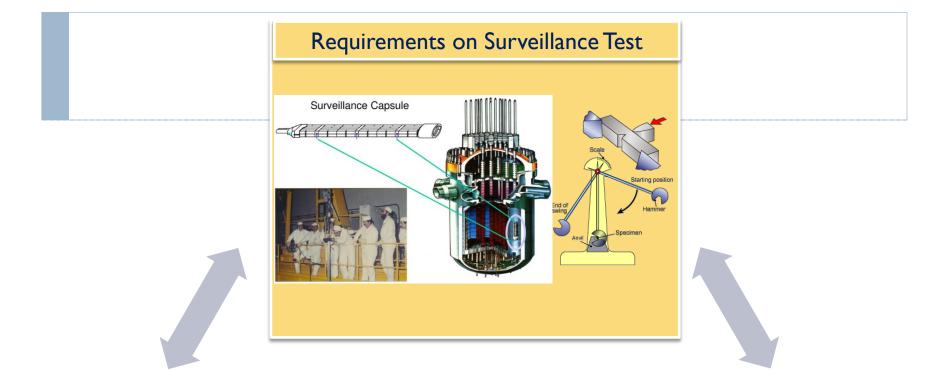
\_\*\*\*\* KSNP(Korea Standard Nuclear Plant) has been developed based on CE type reactor

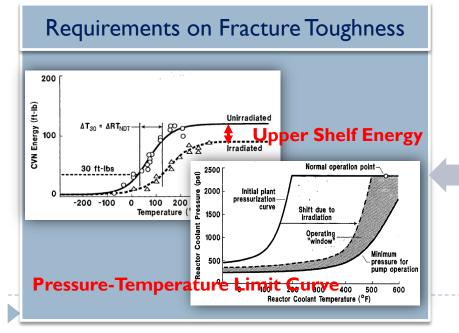


#### Contents

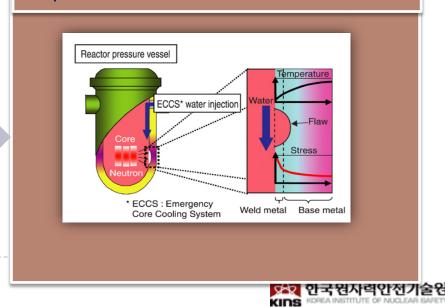



# **Irradiation Embrittlement**

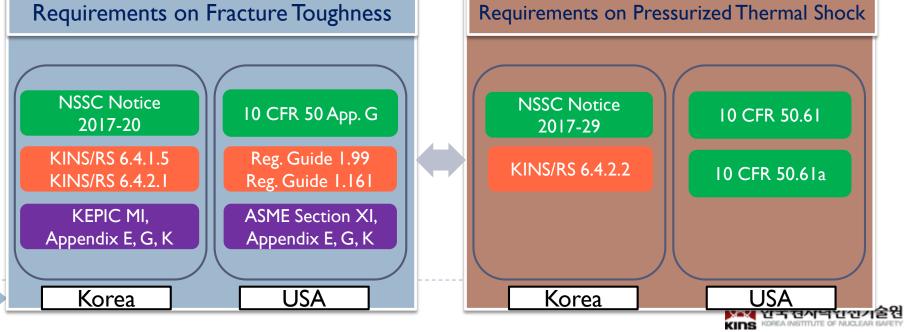

Irradiation Embrittlement

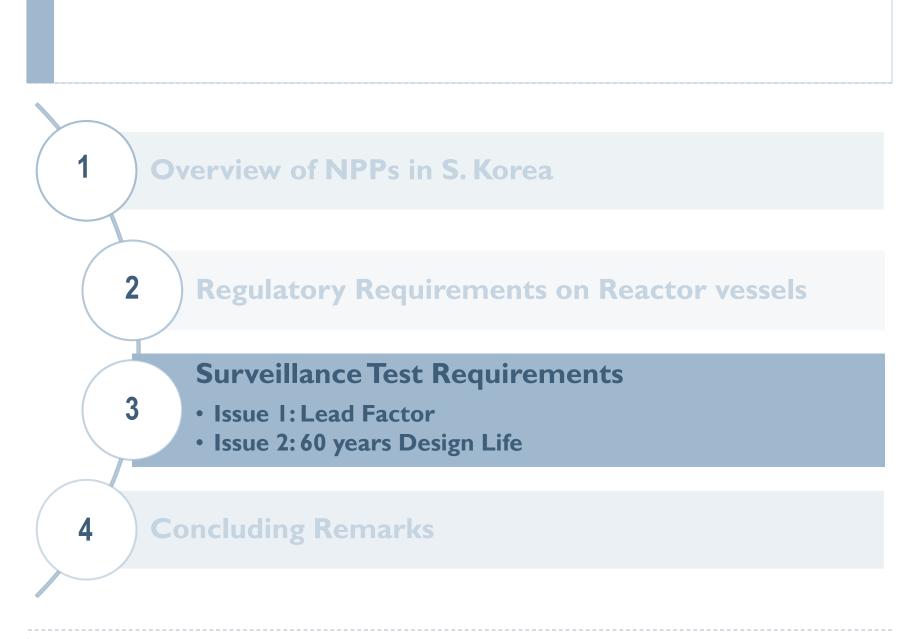

7

If fast neutron fluence(E≥1.0MeV) exceeds 10<sup>17</sup> n/cm<sup>2</sup>, irradiation embrittlement is introduced in typical low alloy ferritic RPV material






#### Requirements on Pressurized Thermal Shock











### **Surveillance Test Requirements**

- Surveillance Test
  - to monitor changes in the fracture toughness properties of ferritic materials in the reactor vessel beltline region which result from exposure of these materials to neutron irradiation and the thermal environment
- NSSC Notice 2017-20 and 10 CFR 50, App. H
  - require to perform surveillance program
  - based on ASTM E185-82
- ASTM E185-82 provide surveillance program including
  - surveillance materials
  - type of specimens
  - number of specimens
  - location of capsules
  - number of capsules

withdrawal schedule



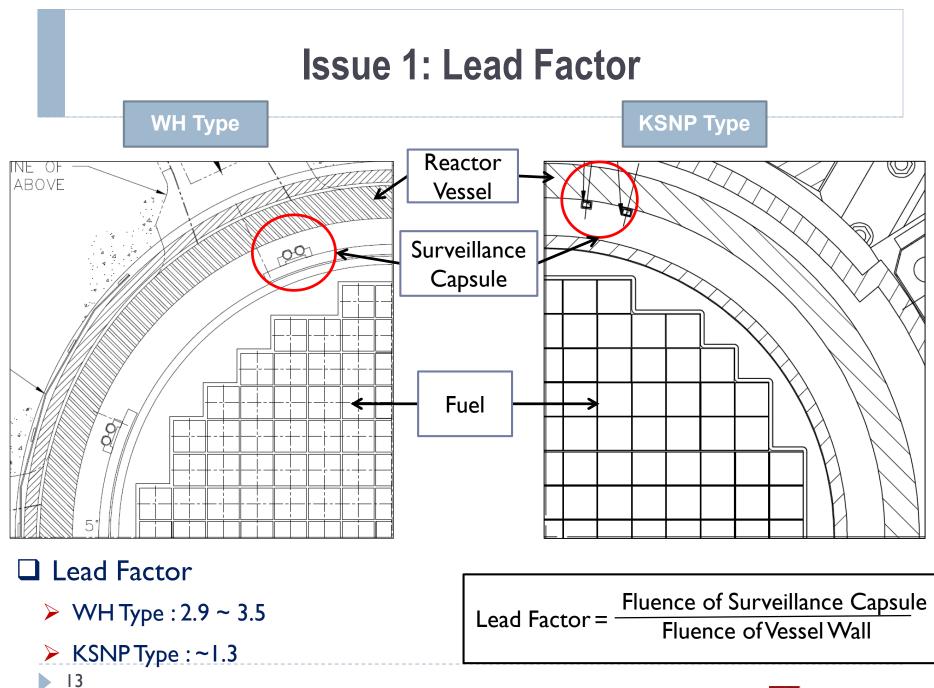
# Withdrawal Schedule in ASTM E185-82

|                     |                | Predicted Transition Temperature Shift at Vessel Inside Surface |                                                                   |                  |  |
|---------------------|----------------|-----------------------------------------------------------------|-------------------------------------------------------------------|------------------|--|
|                     |                | i ≤ 56°C (≤100 °F)                                              | ≤ 56°C (≤100 °F)       >56 °C(≤100 °F)         ≤ 111 °C (≤200 °F) |                  |  |
| Minimum Numbe       | er of Capsules | 3                                                               | 4                                                                 | 5                |  |
|                     | First          | 6 <sup>A</sup>                                                  | 3^                                                                | 1.5 <sup>A</sup> |  |
|                     | Second         | 15 <sup>B</sup>                                                 | 6 <sup>c</sup>                                                    | 3 <sup>D</sup>   |  |
| Withdrawal Sequence | Third          | EOLE                                                            | 15 <sup>B</sup>                                                   | 6 <sup>c</sup>   |  |
|                     | Fourth         | -                                                               | EOL <sup>E</sup>                                                  | 15 <sup>B</sup>  |  |
|                     | Fifth          |                                                                 |                                                                   | EOLE             |  |

<sup>A</sup> Or at the time when the accumulated neutron fluence of the capsule exceeds  $5X10^{22}$  n/m<sup>2</sup> ( $5X10^{18}$  n/cm<sup>2</sup>), or at the time when the highest predicted  $\Delta RT_{NDT}$  of all encapsuled materials is approximately  $28^{\circ}C(50^{\circ}F)$ , whichever comes first.

<sup>B</sup> Or at the time when the accumulated neutron fluence of the capsule corresponds to the approximately EOL fluence at the reactor vessel inner wall location, whichever comes first.

<sup>c</sup> Or at the time when the accumulated neutron fluence of the capsule corresponds to the approximately EOL fluence at the reactor vessel ¼ T location, whichever comes first.


<sup>D</sup> Or at the time when the accumulated neutron fluence of the capsule corresponds to a value midway between that of the first and third capsules.

<sup>E</sup> Not less than once or greater than twice the peak EOL vessel fluence. This may be modified on the basis of previous tests. This capsule may be held without testing following withdrawal.

12

EFPY, Effective Full Power Year







# Withdrawal Schedule of WH Type Reactor

#### Assumption

- 40 years design life

- predicted transition shift at vessel inside surface < 56°C

| Sequence | Schedule | Remarks                                                                                 |
|----------|----------|-----------------------------------------------------------------------------------------|
| First    | < 6 EFPY | - Earlier one of [6EFPY, the time when the accumulated neutron fluence of the           |
|          | •        | capsule exceeds 5X10 <sup>22</sup> n/m <sup>2</sup> ]                                   |
|          |          | - 15 EFPY or at the time when the accumulated neutron fluence of the capsule            |
|          |          | corresponds to the approximately EOL fluence at the reactor vessel inner wall           |
| Second   | 9 EFPY   | location, whichever comes first Possible to obtain                                      |
|          |          | - Earlier one of [15EFPY, <u>9.4 EFPY]</u> EOL(40 years) data                           |
|          |          | = 32 EFPY/ 3.4 (lead factor)                                                            |
|          |          | - Not less than once or greater than twice the peak EOL vessel fluence                  |
|          |          | - Between [1.0 EOL, 2.0 EOL]                                                            |
| Third    | 14 EFPY  | - If third surveillance is performed at <u>14 EFPY</u> , 48 EFPY data would be obtained |
|          |          | = 48 EFPY / 3.4 (lead factor)                                                           |
|          |          | CO(60 years) data                                                                       |
| 14       |          | CO : Continued Operation (extended life to 60 yrs)                                      |

# Withdrawal Schedule of KSNP Type Reactor

- Assumption
- 40 years design life
- predicted transition shift at vessel inside surface < 56°C

| Sequence | Schedule | Remarks                                                                                                                                                                                                                                                                                                                    |
|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First    | < 6 EFPY | <ul> <li>Earlier one of [6EFPY, the time when the accumulated neutron fluence of the<br/>capsule exceeds 5X10<sup>22</sup> n/m<sup>2</sup> ]</li> </ul>                                                                                                                                                                    |
| Second   | 15 EFPY  | <ul> <li>- 15 EFPY or <u>at the time when the accumulated neutron fluence of the capsule corresponds to the approximately EOL fluence at the reactor vessel inner wall location, whichever comes first</u></li> <li>- Earlier one of [15EFPY, 24.6 EFPY]</li> <li>= 32 EFPY/ 1.3 (lead factor)</li> </ul>                  |
| Third    | 32 EFPY  | <ul> <li>Not less than once or greater than twice the peak EOL vessel fluence</li> <li>Between [1.0 EOL, 2.0 EOL]</li> <li>If third surveillance is performed at <u>32 EFPY</u>, 42 EFPY data would be obtained</li> <li>= 42 EFPY / 1.3 (lead factor)</li> <li>Impossible to obtain</li> <li>CO(60 years) data</li> </ul> |
|          |          | CO(60 years) data<br>CO : Continued Operation (extended life to 60 yrs)                                                                                                                                                                                                                                                    |

# **Obtaining EOL(40 years) Data**

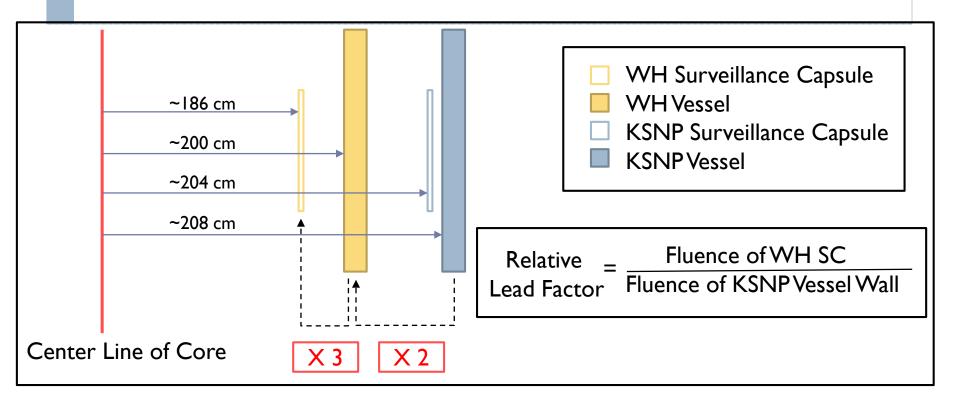
 Adjusted withdrawal schedule was submitted for Operation License Review

|          |         |         |         |         | Withdr  | awal Sc | hedule ( | EFPY)   |         |         |         |         |  |
|----------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|--|
| Sequence |         | Hai     | nbit    |         |         | На      | nul      |         | Shin    | -Kori   | Shin-W  | /olsong |  |
|          | 3       | 4       | 5       | 6       | 3       | 4       | 5        | 6       | 1       | 2       | 1       | 2       |  |
| First    | 6.20    | 6.02    | 6.49    | 6.54    | 6.61    | 6.57    | 6.93     | 7.16    | 6 *     | 6 *     | 6 *     | 6 *     |  |
| Second   | 14.60   | 14.88   | 15*     | 15*     | 15.7    | 15*     | 15*      | 15*     | 15*     | 15*     | 15*     | 15*     |  |
| Third    | 26*     | 26*     | 26*     | 26*     | 23*     | 23*     | 23*      | 23*     | 26*     | 26*     | 26*     | 26*     |  |
| 4th~6th  | Standby  | Standby | Standby | Standby | Standby | Standby |  |

Source: FSAR of each plant. As of April 2018

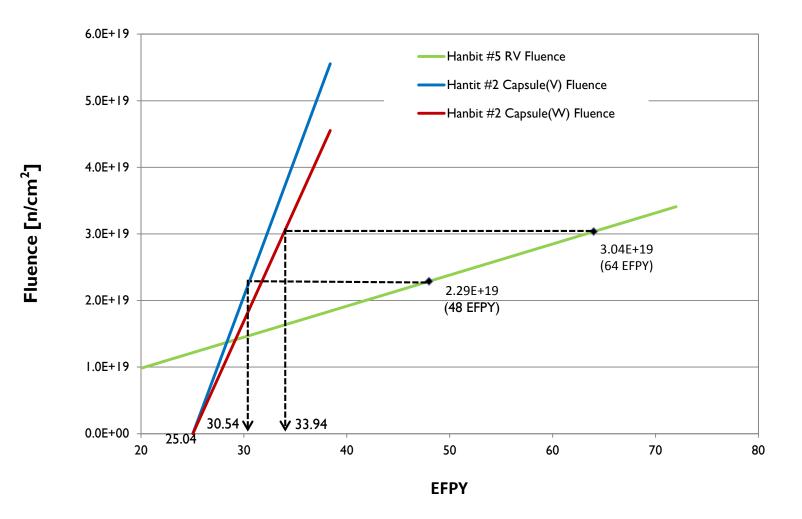
\*: planned schedule (not performed)




# **Obtaining CO(60 years) Data (1)**

- Accelerated Surveillance Test using WH reactors
  - New surveillance capsules were fabricated using archive materials of KSNP reactors, then inserted into WH reactors during 2014~2016

| KSNP Reactors | WH Reactors | Remarks                                                       |
|---------------|-------------|---------------------------------------------------------------|
| Hanbit 3      | Hanbit 1    |                                                               |
| Hanbit 4      |             |                                                               |
| Hanbit 5      | Hanbit 2    |                                                               |
| Hanbit 6      |             | two additional surveillance capsules per<br>each KSNP reactor |
| Hanul 3       | Kori 3      | (one for 60 years, another for 80 years)                      |
| Hanul 4       | KUI 3       |                                                               |
| Hanul 5       | Kori 4      |                                                               |
| Hanul 6       | 1.0114      |                                                               |




# **Obtaining CO(60 years) Data (2)**



|    | Plant    | Locatio       | on      | Flux     | Relative Lead Factor* |
|----|----------|---------------|---------|----------|-----------------------|
|    | Hanbit 2 | Surveillance  | V(107°) | 1.32E+11 | 8.73                  |
|    |          | Capsule       | W(110°) | 1.08E+11 | 7.19                  |
|    |          | RV Inner      | wall    | 3.59E+10 | -                     |
| 31 | Hanbit 5 | RV inner wall |         | 1.50E+10 | -                     |
|    |          |               |         |          | KINS KOREA INSTIT     |

### **Obtaining CO(60 years) Data (3)**





# **Issue 2: 60 years Design Life**

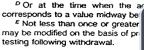
- Current withdrawal schedule
  - Based on 40 years design life
    - ASTM E185-82 7.6.2 "The withdrawal schedule is in terms of effective full-power years of the vessel with a design life of 32 EFPY"
  - Difficult to apply directly to 60 years design life reactors
  - Design life of APR 1400 reactor is 60 years



- Design Life, Operating License Period, Continued Operation
  - Operating license period varies from country to country
    - > (Korea) operating license period is determined by the design life of reactors
    - ▶ (USA) In AEA sec.103, "license shall be issued for a specified period, •••, but not exceeding 40 years
  - Design Life, LR(License Renewal), SLR(Subsequent License Renewal)...



#### **Issue 2: 60 years Design Life**


Revision of Withdrawal Schedule in ASTM E185

- Based on combination of <u>Reactor Year</u> and <u>Fluence</u> (E185-82)
- Based on Fluence (since E185-02)

|                                                                       |                   | E185                                               | 5-82                                    |
|-----------------------------------------------------------------------|-------------------|----------------------------------------------------|-----------------------------------------|
| TABLE 1 Minimum Re<br>Capsules and Their Withd<br>Effective Full-Powe | Irawal Sched      | Number of Sur<br>ule (Schedule i<br>ne Reactor Ves | n Terms of                              |
|                                                                       | Predicted Trans   | ition Temperature<br>Inside Surface                | Shift at-Vesse                          |
|                                                                       | ≤56°C<br>(≤100°F) | >56°C<br>(>100°F)<br>≤111°C<br>(≤200°F)            | >111°C<br>(>200°F)                      |
| Minimum Number of Capsules<br>Withdrawal Sequence:                    | 3                 | 4                                                  | 5                                       |
| First                                                                 | 6^                | 34                                                 | 1.54                                    |
| Second                                                                | 15 <sup>B</sup>   | 65                                                 | 30                                      |
| Third                                                                 | EOL <sup>#</sup>  | 158                                                | 60                                      |
|                                                                       |                   |                                                    | · • • • • • • • • • • • • • • • • • • • |
| Fourth<br>Fifth                                                       |                   | EOLE                                               | 15 <sup>#</sup>                         |

<sup>A</sup> Or at the time when the accumulated neutron fluence of the capsule exceeds  $5 \times 10^{22} \text{ n/m}^2(5 \times 10^{16} \text{ n/cm}^2)$ , or at the time when the highest predicted  $\Delta \text{RT}_{\text{NOT}}$  of all encapsulated materials is approximately 28°C (50°F), whichever comes first. <sup>B</sup> Or at the time when the accumulated neutron fluence of the capsule corresponds to the approximate EOL fluence at the reactor vessel inner walt location, whichever comes first.

<sup>C</sup> Or at the time when the accumulated neutron fluence of the capsule corresponds to the approximate EOL fluence at the reactor vessel 1/4 T location, whichever comes first.



21

| in the reactor vesser 94 1 10 | 1                     |
|-------------------------------|-----------------------|
| - End Of Life &               | apsul<br>Thi<br>ithou |
|                               |                       |

| E185-02         | _E 1 Suggested With                                                                                 | drawal Schedule                                       |
|-----------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Sequence        | Target Fluence                                                                                      | Priority                                              |
| First           | $5 \times 10^{18} \text{ n/cm}^2 (5 \times 10^{22} \text{ n/m}^2)$<br>for PWRs; $E > 1 \text{ MeV}$ | 2 (Required if ∆RT <sub>NDT</sub> > 56°C<br>[100°F])  |
| Second          | EOL 1/4-T                                                                                           | 1 (Required for all materials)                        |
| Third           | EOL ID                                                                                              | 1 (Required for all materials)                        |
| Fourth          | (EOL 1/4-T - 1st Capsule)/2                                                                         | 3 (Required if ∆RT <sub>NDT</sub> > 111°C<br>[200°F]) |
| Subsequent      | Supplemental Evaluations                                                                            | Not Required                                          |
| E185-16         | DEE 1 Recommended Wit                                                                               | thdrawal Schedule                                     |
| Sequenc         | e Target Fluence                                                                                    | Notes                                                 |
| First<br>Second | 1/4 MDF<br>1/6 MDF                                                                                  | Testing Required<br>Testing Required                  |
| Third<br>Fourth | - End of License                                                                                    | Testing Required<br>Testing Required                  |
| tandby          | Fluence                                                                                             | Testing Not Required                                  |
|                 | - Maximum Design<br>Fluence                                                                         | · 한국원자력안전기술<br>KINS KOREA INSTITUTE OF NUCLEAR BAR    |

# **Proposed Withdrawal Schedule in Korea**

|                     |                 | Predicted Transition Temperature Shift at Vessel Inside Surface |                                   |                               |  |
|---------------------|-----------------|-----------------------------------------------------------------|-----------------------------------|-------------------------------|--|
|                     |                 | ≤ 56°C (≤100 °F)                                                | >56 ℃(≤100 ℉)<br>≤ 111 ℃ (≤200 ℉) | > 111℃ (>200 ℉)               |  |
| Minimum Numb        | per of Capsules | 4 <del>3</del>                                                  | 4                                 | 5                             |  |
| Withdrawal Sequence | First           | <mark>A 6</mark> A                                              | A 3 <sup>A</sup>                  | A 1.5 <sup>A</sup>            |  |
|                     | Second          | <mark>С 15<sup>в</sup></mark>                                   | C 6 <sup>c</sup>                  | D 3 <sup>p</sup>              |  |
|                     | Third           | B EOL <sup>E</sup>                                              | B 15 <sup>8</sup>                 | C 6 <sup>c</sup>              |  |
|                     | Fourth          | E -                                                             | E EOL <sup>E</sup>                | <mark>В 15<sup>в</sup></mark> |  |
|                     | Fifth           | -                                                               | -                                 | E EOL <sup>E</sup>            |  |

A Or at the time when the accumulated neutron fluence of the capsule exceeds  $5X10^{22}$  n/m<sup>2</sup> ( $5X10^{18}$  n/cm<sup>2</sup>), or at the time when the highest predicted  $\Delta RT_{NDT}$  of all encapsuled materials is approximately  $28^{\circ}C(50^{\circ}F)$ , whichever comes first.

B Or at the time when the accumulated neutron fluence of the capsule corresponds to the approximately EOL fluence at the reactor vessel inner wall location, whichever comes first.

C Or at the time when the accumulated neutron fluence of the capsule corresponds to the approximately EOL fluence at the reactor vessel 1/4 T location, whichever comes first.

D Or at the time when the accumulated neutron fluence of the capsule corresponds to a value midway between that of the first and third capsules.

E Not less than once or greater than twice the peak EOL vessel fluence. This may be modified on the basis of previous tests. This capsule may be held without testing following withdrawal.



### **Proposed Withdrawal Schedules in Korea**

#### Application to APR-1400 model

#### □ Assume

- Lead Factor : 1.4(APR-1400)

- Calculation of Fluence at <sup>1</sup>/<sub>4</sub> T location: RG-1.99 method  $f = f_{surf}(e^{-0.24x})$ 

| Sequence | Schedule | Remarks                                                                                                                                                                                                                                                                          |           |
|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| First    | < 6 EFPY | - At the time when the accumulated neutron fluence of the capsule exceeds $5X10^{22}$ n/m <sup>2</sup> ]                                                                                                                                                                         |           |
| Second   | 17 EFPY  | - At the time when the accumulated neutron fluence of the capsule corresponds to the approximately EOL fluence at the reactor vessel ½ T location<br>$= 48 \times \frac{1}{\cong 2} \times \frac{1}{1.4}$ $f = f_{surf}(e^{-0.24x}) \rightarrow f @ \frac{1}{4}T = ~0.5f_{surf}$ |           |
| Third    | 34 EFPY  | - At the time when the accumulated neutron fluence of the capsule corresponds to the approximately EOL fluence at the reactor vessel inner wall location $= 48 \times \frac{1}{1.4}$ (design life/lead factor)                                                                   |           |
| 4th~6th  | Standby  |                                                                                                                                                                                                                                                                                  | <b>놀원</b> |

# **Concluding Remarks**

- Surveillance test requirement in Korea is presented
  - current surveillance test is based on ASTM E185-82
- Low value of Lead Factor issue was resolved by
  - adjusting withdrawal schedule of KSNP type reactor (40 yrs data)
  - using WH reactor for acceleration surveillance test (60 yrs data)
- Revised withdrawal schedule is proposed to cover all the plant regardless of design life (in processing)

