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Extended operations of the existing commercial power
generation reactor fleet is in the U.S. national interest

* Our LWRs are a national asset
o ~100 GWe of low-carbon generation
o Low-cost, reliable generation

o Energy diversity

o Nearly $1T replacement cost

* Even with first 20-year extension, nearly all plants
will reach the end of their 60-year license between
2030 and 2055
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License Renewals Granted for Operating Nuclear Power Reactors
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Prosecting Feople and the Ensironment

Note: The NRC has issued a total of 94 license renewals: four of these units have (IS SRR RScH £218

permanently shut down. Data are as of March 2019.
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The mission of the Light Water Reactor Sustainability Program (LWRS) is to develop the scientific
basis, and science-based methodologies and tools, for the safe economical long-term operation of the
nation's high-performing fleet of commercial nuclear energy facilities

*Objectives
o Provide science and technology-based solutions to industry to overcome
the current labor-intensive business model and associated practices
o Manage the aging of systems, structures, and components so nuclear
power plants can continue to operate safely and cost effectively

* Pathways
o Materials Research
o Plant Moderation
o Risk-informed Systems Analysis

Nine Mile Point (courtesy Exelon)

The LWRS program is the primary U.S. DOE program for light
water reactor research, development and demonstration
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* Objectives
o Develop the scientific basis for understanding and predicting long-term Experimental
environmental degradation behavior of materials in nuclear power plants Testing

* Approach: guided by the “5M”
o Measurements of degradation
o Mechanisms of degradation
o Modeling and simulation
o Monitoring
o Mitigation strategies

* Research benefits Harvested

o Understanding which components are susceptible to certain forms of Materials
degradation, and their predictive behavior, will permit more focused component
inspections, component replacements, and more detailed regulatory guideline

o The R&D products will be used by utilities, industry groups, and regulators

Modeling

* Partners
o EPRI, Westinghouse, PWROG, CRIEPI, Rolls Royce, Exelon, U.S. NRC
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Reactor Pressure Vessel (RPV)

* ATR-2: UCSB, Odette

o Expand database (microstructure / mechanical properties) on effects of fluence,
flux, temperature over a large range of alloy compositions

* Modeling of Cu and MnNiSi precipitates: U. Wisconsin, Morgan
o Predict the Cu and MnNiSi formation for a wide range of compositions, neutron
fluxes, and temperatures

o Provide information on the formation mechanism of Cu-core-MnNiSi-appendage

microstructure
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Disordered Mn-Ni-Si layer.
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Formation of an ordered
Mn-Ni-Si nucleus.

Later stage: solute atoms
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o Develop the testing technology for determining Master
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Curve fracture toughness for RPV steels

1T-adjusted K, (MPam'?)
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Reactor Pressure Vessel (RPV)

o Develop a simulation tool to predict the progression of
aging mechanisms and their effects on integrity of
multiple critical nuclear power plant components (RPVs,
concrete structures, etc.)

2D Planar

1D Axisymmetric

D

Results of 1D axisymmetric, 2D planar, and 3D Grizzly
models of the global response of an RPV at a point in
time during a PTS event
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* Advanced replacement alloys: ORNL/Tan, U. Michigan/Was, EPRI
ARRM program, KAPL, GE, PNNL, INL

o Down-select and develop advanced radiation resistant materials (ARRM) for core
internal support components and fasteners as replacement materials in current LWRs
and new materials in future reactors

Phase-3
(FY26-FY28):
Recommend

1-2 alloys based
on all test results corrosion | (oo lon utron
including high neutron fatigue irradiation iatior
doses

Low Hardness
temperature & Tensile

cracking

ommmmmemme 0

Candidate Alloys
Low Strength
316L (standard)
* 310
e 800 IASCC
* Grade 92 (NF616)
e HT9 Fracture toughness
e (C22 Radiation-induced hardening
e 625 IASCC
* 690

enZr=225Nb Accident tolerance concerns
« Tialloys Fracture toughness

High Strength

X-750 (standard)

e 439 Fracture toughness / processing
¢ 625 plus /AscC

*.625-DA~ IASCC and stability

* 725

e 718 (heat A)
o 1AWNYT Fracture toughness / fabr.

oHi=Cr,”AI"'ODS Examined under FCRD
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* Welding repair: ORNL (Feng et al.) & EPRI (Frederick et al.)

o Develop advanced welding technologies to weld highly irradiated materials while avoiding helium induced cracking

Manipulator

Laser _f
welding N

Access 1
—
door

Friction stir -
welding

Viewing _| _
window | I E=""°

Sample
pass-through

Friction stir welding of irradiated 304L
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eZion RPV: ORNL, Rosseel & Sokolov

o Evaluate radiation damage models and compare results to surveillance and test reactor experiments
o Evaluate attenuation and through wall variations in properties and composition of the base metal and the belt-line

RR\V/ section

Zion RPV, plate C2 / weld CF blocks Cu wt%
e Plate C2-Cu e Weld-Cu

0 0.2 0.4 0.6 0.8 1
WF-70, Belt-line Weld Relative Through-Thickness Depth

.
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* Baffle former bolts : ORNL, Chen

o Provide critical information for evaluating end of life microstructure and properties as a benchmark of international
models developed for predicting radiation-induced swelling, segregation, precipitation

A gy (b) (c) (d)

22 2 :
Bolt # Fluence (10°~ n/cm*, E>1 MeV)/Estimated dpa

Head Mid-shank Mid-thread
4412 2.78/41 2.27/34 1.46/22
4416* 1.91/29 1.56/23 1.00/15
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*|ASCC: ORNL, Gussev

o Investigate strain localization
mechanisms and internal
stress evolution in irradiated
austenitic steels via in-situ
testing to understand their

contribution to IASCC EBSD show strong strain localization near grain =~ %" . _ T
boundaries [JNM, 517, 2019] HR-EBSD for measuring stress/strain localization

Subarea, scanned with
125 nm step.
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*SCC in stainless steel: UCLA, Sant

o Assess and quantify the effects of stain and grain
orientation on the corrosion rates of stainless steel
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*SCC in Ni alloys: PNNL, Bruemmer & Zhai

o Study SCC initiation mechanisms of Ni-based alloys

PNNL 360°C Test Results for Cold Worked Alloy 600 & 690
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* Environmentally assisted fatigue: ANL, Natesan &  ®Cast stainless steel aging: PNNL, Byun

Mohanty

o Combine testing and modeling for LTO life estimation of primary-
pressure-boundary reactor components with dissimilar weld nozzles

ms; =10 gpm

o Study thermal degradation of mechanical properties of
casting austenitic stainless steels

O CF3(12.4%) © CF3M(15.7%) 7.1
© CF8(4.7%) © CFBM(5.6%)
200 | m304L 1
©CF3(221, 11.8%) & CF8(543, 25.1%) +1.41
© CF8M(K23, 11.4%) © CFB(ELB, 33%) o +12.
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NEI
-SLR Support
Japan v Norway -Halden
-Concrete ) #." BMPC (KAPL Reactor Project
_RPV , . — -Adv. All .
ati PNNL @ MD Ginna IASCC
-Irradiation Effects . . -Concrete
IASCC -Nijpase alloys “Baifle Bolt IRC
-Cable Aging INL & pase alloys ™
-Cable Rejuvenation @ -IASCC " pncrete Ad d All
-NDE Cable -Modeling / GRIZZLY : DA —I v;n;; oys
_Cast SS T -Cable modeling Areva -lrrad. Eftects
@ EPRI - SR‘ CSMT -Leaf Spring
k “Ni-base alloys -PWSCC Finland - FORTUM

UCSB * _ ppy L o : ] PRI -Concrete

-RPV -Adv. Alloy o -Concrete

UCLA NASCC l -NDE Concrete Czech Tech. U.

-Concrete ‘Favmne I g . -Welding -Concrete

—Corrosion_|rra_ Fffe : UNT @ -Adv. Alloy

-Cast SS - -Concrete -Cable

-PWSCC
TAMU
-Concrete -Welding
-Adv. Alloy

-Zion

'L,
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Sustaining National Nuclear Assets
http://lwrs.inl.gov

Materials Research Pathway Contact:

Thomas Rosseel, Pathway Lead, 865-574-5380, rosseeltm@ornl.gov
Xiang (Frank) Chen, Pathway Deputy Lead, 865-574-5058, chenx2@ornl.gov
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