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Outline

 Fast Reactor Reactivity Feedbacks
– Delayed Neutron Fraction
– Geometric Expansion Coefficients
– Doppler Coefficient
– Coolant Density/Void Coefficient

 Fuel Cycle Implications
– Breeder vs. Burner Configurations
– Conventional Advanced Fuel Recycle Options
– “Traveling Wave” Concepts
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Fast Spectrum Physics Distinctions

 Combination of increased fission/absorption and increased number of 
neutrons/fission yields more excess neutrons from Pu-239

– Enables “breeding” of fissile material
 In a fast spectrum, U-238 capture is more prominent

– Higher enrichment (TRU/HM) is required (neutron balance)
– Enhances internal conversion

 Reduced parasitic capture and improved neutron balance
– Allows the use of conventional stainless steel structures
– Slow loss of reactivity with burnup

• Less fission product capture and more internal conversion
 The lower absorption cross section of all materials leads to a much longer 

neutron diffusion length (10-20 cm, as compared to 2 cm in LWR)
– Neutron leakage is increased (>20% in typical designs, reactivity coefficient)
– Reflector effects are more important
– Heterogeneity effects are relatively unimportant
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Whole-Core Reactivity Coefficients for Different 
Size Fast Reactors

 Power coefficient is quite negative
– More negative at smaller size because of radial expansion coefficient
– Sodium density coefficient also more positive at larger size

 Physics underlying each coefficient will be explained

unit
250 MWt

ABTR
1000 MWt

ABR
3500 MWt
US-Europe

Effective delayed neutron fraction 0.0033 0.00334 0.0035

Prompt neutron lifetime Μs 0.33 0.38 0.32

Radial expansion coefficient ¢/◦C -0.43 -0.38 -0.21

Axial expansion coefficient ¢/◦C -0.05 -0.05 -0.07

Sodium density coefficient ¢/◦C 0.03 0.13 0.18

Doppler coefficient ¢/◦C -0.10 -0.13 -0.13

Sodium void worth $ 1.10 4.93 7.29* (4.98)

Sodium voided Doppler coefficient ¢/◦C -0.07 -0.09 -0.09
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Delayed Neutron Fraction
 Hummel and Okrent – Reactivity Coefficients in Large Fast Power Reactors, 

ANS, 1970 is a good reference for underlying physics
 Delayed neutron fraction dominated by key fission isotopes

– Low (0.2%) for Pu-239
– High (1.5%) for U-238
– Between 0.3-0.5% for higher plutonium isotopes
– Particularly low (<0.2%) for minor actinides

 Net result is 0.3-0.4% for conventional compositions
– Slightly lower burner designs (~0.2% for pure burner)

 Higher for U-235 enriched systems (LWRs)
– Delayed neutron fraction for U-235 is ~0.67%

 Delayed neutron fraction is an indicator of sensitivity
– At low values, response to small changes in the reactivity is magnified 

and power can change more quickly
– Feedback effects can be favorable or not depending on the transient
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Geometric Expansion Coefficients
Whole-core coefficients are computed by eigenvalue difference for a small 

change in each dimension
 Radial expansion – uniform expansion of grid plate by 1%

– Reduction of fuel/structure densities by 1%
– This allows more axial leakage in particular

 Axial expansion – uniform expansion of fuel by 1%
– Reduction of fuel density by 1%
– Allows more radial leakage
– Also, effectively inserts the control rods which remain stationary
– In some cases, fuel assumed bound to clad for axial expansion

 These feedbacks are very important for fast reactor transient behavior
– Tied to different material temperatures (load pads, grid plate, fuel)
– Thus, timing will be different
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Neutron Balances of Radial and Axial Expansions

 To first order, radial expansion is an axial leakage effect, and
 Axial expansion is a radial leakage effect!
 Because the height is the short dimension (more axial than radial leakage), 

the radial expansion coefficient is more negative
 Axial absorption effect can be magnified by effective control rod insertion

Base Case Radial Expansion Axial Expansion

balance balance ∆ρ (%) balance ∆ρ (%)

Fission source 100.00 100.00 100.00

(n,2n) source 0.18 0.18 0.18

Absorption 68.89 68.93 -0.04 68.93 -0.05

Leakage 31.54 32.16 -0.63 31.61 -0.07

Radial 17.49 17.72 -0.23 17.59 -0.10

Axial 14.05 14.45 -0.40 14.02 0.03

Sum -0.67 -0.12
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Doppler Coefficient
 Doppler coefficient arises primarily from U-238 resonance broadening

– Enhanced by high U-238 content
• Reduced Doppler for high enrichment burner concepts

– Self-shielding effect more pronounced at low energies (keV range)
• Doppler enhanced by spectral softening
• Voided Doppler is smaller from spectral shift

 Temperature dependence in fast spectrum is different than LWR
– Doppler range from 1/T1/2 for large to 1/T3/2 for small resonances
– For typical FR, an approximate 1/T dependence observed

 There is also a structural Doppler reactivity effect (~1/3 fuel Doppler)
– However, tied to temperature of steel, not fuel (different timing)

 Doppler feedback is not helpful in all transients
– For example, when trying to cool the fuel to shutdown condition (e.g., 

ULOF), it is a positive feedback 
– Conversely prompt negative feedback in UTOP transient
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Reactivity Swing for Power Reduction

360oC Inlet

892oC BP

Oxide Fuel

(Doppler Coeff. = - 0.005)

Metallic Fuel

(Doppler Coeff. = - 0.003)

~1.5 $

~0.3 $



Coolant Density Coefficient

Coolant density coefficient computed by first-order perturbation theory to 
evaluate small density (temperature variation) impacts

 Spectral effect
– Reduced moderation as sodium density decreases
– In fast regime, this is a positive reactivity effect

• From Pu-239 excess neutrons and threshold fission effects
 Leakage effect

– Sodium density decrease allows more neutron leakage
– This is a negative reactivity effect in the peripheral regions

 Capture effect
– Sodium density decrease results in less sodium capture
– This is a relatively minor effect

Void worth is evaluated using exact perturbation theory to account for shift 
in flux distribution and change in cross sections for voided condition

 In general, 10% more positive than the first-order density worth
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Spectral Variation of Neutron Cross Sections: Pu-239

 Fission and capture cross section >100X higher in thermal range
 Sharp decrease in capture cross section at high energy
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Sodium Void Worth by Components ($)

 Flowing sodium completely voided in ALL active and above-core regions
 Void worth tends to increase with core size
 However, difficult to conceive transient situations that reach boiling

– Low pressure system
– >300oC margin to boiling
– Other feedbacks are negative to get to voiding!

 Extensive report on void worth reduction – Khalil and Hill, NSE, 109 (1995) 

Capture Spectral Leakage Total

1000 MWt ABR
(startup metal core)

BOC 0.5 9.1 -5.2 4.4

EOC 0.5 9.9 -5.5 4.9

250 MWt ABTR
(startup metal core)

BOC 0.4 6.4 -5.8 1.0

EOC 0.4 6.6 -5.8 1.1
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Outline

 Fast Reactor Reactivity Feedbacks
– Delayed Neutron Fraction
– Geometric Expansion Coefficients
– Doppler Coefficient
– Coolant Density/Void Coefficient

 Fuel Cycle Implications
– Breeder vs. Burner Configurations
– Conventional Advanced Fuel Recycle Options
– “Traveling Wave” Concepts
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Conventional 1000 MWt SuperPRISM (Metal Core)

 Internal and external blankets allocated
– Result in conversion ratio of ~1

 Only 12 control rod locations with very low burnup reactivity losses
 Blanket, two row reflector, and boron carbide for radial shielding
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Driver (138)

Internal blanket (49)

Radial blanket (48)

Reflector (126)

Shield (72)

GEM(6)

S Secondary Control (3)

P Primary control (9)

Total (451)
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Burner 1000 MWt Preliminary ABR Burner Design

 Two enrichment zones to reduce radial power peaking
 No blankets allocated for conversion ratio < 1
 Additional (20) control rod locations for burnup reactivity losses
 Similar radial shield configuration
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Outer core (102)

Reflector (114)

Shield (66)

P Primary control (15)

S Secondary control (4)

Inner core (78)

Total (379)
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Neutron Balance

 Conversion ratio defined as ratio of TRU production/TRU destruction
– Slightly different than traditional breeding ratio with fissile focus

PWR
SFR

CR=1.0 CR=0.5

U-235 or TRU enrichment, % 4.2 13.9 33.3

Source
fission 100.0% 99.8% 99.9%

(n,2n) 0.2% 0.1%

Loss

leakage 3.5% 22.9% 28.7%

radial 3.0% 12.3% 16.6%

axial 0.4% 10.6% 12.1%

absorption 96.5% 77.1% 71.3%

fuel 76.7% 71.8% 62.2%

(U-238 capture)

coolant

(27.2%)

3.4%

(31.6%)

0.1%

(17.1%)

0.1%

structure 0.6% 3.7% 3.7%

fission product 6.8% 1.5% 2.4%

control 9.0% 0.0% 2.9%
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Energy Production 
Reactor

Recycle Reactor

Recycle Used 
Uranium

Extend Uranium 
Resources

Recycle Fuel
Fabrication

 A wide variety of actinide management 
strategies possible

– Waste management
– Resource extension

 Favorable features for small reactor 
applications

– Compact (high power density)
– Extended burnup and cycle length
– Inherent safety

 Favorable features for plutonium 
management

– High loading and throughput possible
 With key technology development, also 

intended for electricity, heat production, or 
other energy product missions

Actinide Management in Fast Reactors
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Fast Reactors are Flexible for Actinide Management

 Can be configured as modest 
breeders (CR≥1) to moderate 
burners (CR≥0.5) with 
conventional technology

 Low conversion ratio designs 
(CR<0.5) have been investigated 
for transmutation applications

– High enrichment fuels are required 
(~50% TRU/HM for CR=0.25)

– Non-uranium fuel would be needed to achieve CR=0
 Safety performance will change at low uranium content (e.g., reactivity 

losses, reduced Doppler coefficient) 
– Detailed safety analysis conducted for CR=0.25 SFR system
– Inherent safety behavior is not compromised

 Compact low conversion ratio design COE is similar to reference system
– High leakage configuration increases cost by 20%
– Fuel cost and capacity factor differences are important

Low Enrichment Fuel High Enrichment Fuel Control Ultimate Shutdown

Shield Gas Expansion ModuleReflector



Transmutation Approach for Improved Waste 
Management

 Long-term heat, radiotoxicity, and dose are all dominated by the Pu-241 
to Am-241 to Np-237 decay chain

 Destruction of the transuranics (TRU) is targeted to eliminate the 
problematic isotopes

 Some form of separations is necessary to extract transuranic elements 
for consumption elsewhere

 The transuranic (TRU) inventory is reduced by fission
– Commonly referred to as ‘actinide burning’
– Transmutation by neutron irradiation
– Additional fission products are produced

 In the interim, the TRU inventory is contained in the fuel cycle
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Impact of Energy Spectrum 
on Fuel Cycle (Transmutation) Performance

 Fissile isotopes are likely to fission in both thermal/fast spectrum
– Fission fraction is higher in fast spectrum

 Significant (up to 50%) fission of fertile isotopes in fast spectrum
Net result is more excess neutrons and less higher actinide generation in FR
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Fuel Cycle Implications of Reactor Physics
The reactor spectral differences lead to fuel cycle strategies:
 Thermal reactors typically configured for once-through (open) fuel cycle

– They can operate on low enriched uranium (LEU)
– They require an external fissile feed (neutron balance)
– Higher actinides must be managed to allow recycle

• Separation of higher elements – still a disposal issue
• Extended cooling time for curium decay

 Fast reactors are typically intended for modified open or full recycle with 
uranium conversion and resource extension
– Higher actinide generation is suppressed
– Neutron balance is favorable for recycled TRU

• No external fissile material is required
• Can enhance U-238 conversion for traditional breeding
• Can limit U-238 conversion for burning
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Fast Spectrum Breed and Burn Principles
 Enriched U-235 (or Pu-239) starter core would be 

surrounded by a blanket of fertile fuel

 Enriched fuel would produce neutrons that generate 
power and convert fertile fuel to fissionable fuel

 Irradiated fertile fuel would replace enriched fuel 
after original U-235 (or Pu-239) is burned and new Pu-
239 is formed

 Use of “Standard Breeders” exploit this physics in 
conjunction with reprocessing

 Complete U-238 conversion and fission, with the 
uranium utilization limited only by losses

 Breed and Burn concepts promote conversion, but 
minimize reprocessing (modified open)

 Once fertile zone dominates, once-through 
uranium utilization at the fuel burnup limit

Travelling Wave Concept
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“Traveling Wave” Concept
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History of Concept

 Concepts employ a fast neutron 
spectrum and run on depleted uranium

– DU is converted to Pu during reactor 
operation

– Fissile material (enriched-U or Pu) is 
required only in the first core, to 
initiate the conversion

 Traveling wave reactor a particular 
variant 

– Fission wave propagates from fissile 
“starter” through the adjacent DU 
zone  

Kinf vs. burnup in a fast spectrum



CANDLE

 Fissioning zone propagates from 
starter thru DU region

 In principle, reactor operation can 
be extended in proportion to 
height of the DU region

Fissile Mass
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Uranium Utilization
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PWR-50GWd/t PWR-100GWd/t VHTR Fast Burner
Burnup, % 5 10 10.5 22.3
Enrichment, % 4.2 8.5 14.0 12.5
Utilization, % 0.6 0.6 0.4 0.8

LWR LWR-Fast Burner Fast
UOX MOX LWR-UOX Fast Burner Converter

Power sharing, % 90 10 57 43 100
Burnup, % 5 10 5 9 -
Enrichment, % 4.2 - 4.2 12.5 -
Utilization, % 0.7 1.4 ~99

Once-through systems

Recycling Systems

Is it possible to improve U utilization significantly … 
• without recycle?
• with limited recycle?



Physics Performance of Breed & Burn Concepts
Conventional 

SFR CANDLE CBZ MB3

Fissile enrichment of starter, % 15 10.3 12.2 6.2

Excess reactivity (max / min), %Δk 2/0.5 3.2 / 0.8 3.9 / 0.5 3.1 / 0.6

Ave. power density (BOC/EOC), W/cc
‒ Fissile (starter) region
‒ Fertile (DU) region

350
50 - 100

197 /  0.6
0.2 / 27.2

171 /   48
2.8/ 63.3

177 / ------
5.5 / 96.1

Power peaking factor
‒ Fissile region
‒ Fertile region

1.5
4

2.45
30.1

1.49
6.84

1.84
4.61

Avg. discharge burnup (GWd/t)
‒ Fissile fuel
‒ Fertile fuel

100
30

362
248

316
198

----
277 

Peak fast fluence, x1023 neutrons/cm2
‒ Fissile fuel
‒ Fertile fuel

3.5
2.0

40.3
41.9

22.1
21.6

23.4
21.7
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 For postulated B&B concepts, fuel burnup to 20-30%
 However, much higher neutron damage must be tolerated



Summary and Conclusions
 Fast reactor physics are quite different from thermal reactor behavior

– Better neutron balance (flexible actinide management)
– Higher enrichment required to compensate U-238 capture
– Neutron leakage is increased

 Reactivity coefficients were discussed
– Expansion coefficients prominent because of high leakage
– Negative power coefficient
– Positive sodium density (and void coefficient)
– Overall favorable inherent performance (for complete set of feedbacks) 

has been demonstrated
 Typical fast reactor configurations and fuel cycles were identified

– Range from conventional blanketed breeder, to moderate burner with 
no blankets, to low conversion ratio (high enrichment) options

– Fuel recycle strategies for waste management and resource extension
– Innovative “breed and burn” once-through concepts
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Questions?
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