

Technical Specification 6.6.5

NMP1L 3275 April 26, 2019

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-001

> Nine Mile Point Nuclear Station, Unit 1 Renewed Facility Operating License No. DPR-63 NRC Docket No. 50-220

Subject:

Nine Mile Point, Unit 1, Core Operating Limits Report

Enclosed is a copy of the Core Operating Limits Report, Revision 4, for Nine Mile Point Unit 1 (NMP1), Cycle 24. This report is being submitted pursuant to NMP1 Technical Specification 6.6.5.d.

Should you have any questions regarding the information in this submittal, please contact me at (315) 349-5219.

Sincerely,

Dennis M. Moore

Regulatory Assurance Manager, Nine Mile Point Nuclear Station

Exelon Generation Company, LLC

DMM/KJK

cc:

Enclosure: Core Operating Limits Report, Revision 4, for Nine Mile Point Unit 1, Cycle 24

NRC Regional Administrator, Region I

NRC Project Manager

NRC Senior Resident Inspector

NRR

Enclosure

Core Operating Limits Report, Revision 4

For

Nine Mile Point Unit 1, Cycle 24

CORE OPERATING LIMITS REPORT

FOR

NINE MILE POINT NUCLEAR STATION

UNIT 1 RELOAD 25 CYCLE 24

Prepared By:	F. Qureshi NF Cycle Manager	Date: 3/6/2019
Reviewed By: _	M. Doerzbacher Independent Reviewer	Date: 3/6/19
Reviewed By: 5	J. Darweesh Reactor Engineering Reviewer	Date: 3/7/19
Reviewed By:	David S Knepper 2019. D. S. Knepper Engineering Safety Analysis Reviewer	0Bab <u>10:45:29-0</u> 6'00'
Approved By:	A. Johnson T. Stathes, Acting Senior Manager – NF Cycle Management	Date: 3/7/2019
Station Qualified Review By:	d kni Man Kelsey E. Kelsey	Date: 3/11/2019

Table of Contents

<u>Section</u>	<u>Title</u>	<u>Page</u>
1.0	Terms and Definitions	5
2.0	General Information	6
3.0	MAPLHGR Limits	7
4.0	MCPR Limits	8
5.0	LHGR Limits	10
6.0	Limiting Power / Flow Line	11
7.0	Modes of Operation	12
8.0	Methodology	13
9.0	References	14

Record of COLR Nine Mile Point 1 Cycle 24 Revisions

Revision

Description

Rev. Number - 4

New Issuance for Cycle 24

List of Tables

		Page
Table 3-1	MAPLHGR Versus Average Planar Exposure – GNF2	7
Table 3-2	MAPLHGR Multiplier for Four and Three Recirculation Loop Operation	7
Table 4-1	Operating Limit Minimum Critical Power Ratio (OLMCPR)	8
Table 4-2	MCPR Adder for Three Recirculation Loop Operation	9
Table 4-3	Power Dependent MCPR Limits and Multipliers, MCPR _P and K _P	9
Table 4-4	Flow Dependent Operating Limit MCPR Multiplier, K _F	9
Table 5-1	Linear Heat Generation Rate Limits – UO ₂ Rods	10
Table 5-2	Linear Heat Generation Rate Limits – Gadolinia Rods	10
Table 5-3	Power Dependent LHGR Multiplier LHGRFAC _P for PROOS	10
Table 7-1	Modes of Operation	12
	<u>List of Figures</u>	
Figure 6-1	Limiting Power/Flow Line	11

Core Operating Limits Report for Nine Mile Point 1 Cycle 24

1.0 **Terms and Definitions**

APRM Average Power Range Monitor

APRM, Rod Block Monitor, and Technical Specification Improvement **ARTS**

Program

Extended Load Line Limit Analysis ELLLA

EOOS Equipment Out of Service

End of Rated. The cycle exposure at which reactor power is equal to rated **EOR**

> thermal power with recirculation system flow equal to 100%, all control rods fully withdrawn, all feedwater heating in service and equilibrium Xenon.

FWP Combination 1 Feedwater Pump Combination 1 as defined in Reference 9 Attachment 13

Section 4.0 - TDFWP in service AND one MDFWP in service. This bounds TDFWP in service OR one MDFWP in service OR two MDFWPs in service.

FWP Combination 2 Feedwater Pump Combination 2 as defined in Reference 9 Attachment 13

Section 4.0 - TDFWP in service AND two MDFWPs in service.

 K_{F} Off-rated flow dependent OLMCPR multiplier

 K_P Off-rated power dependent OLMCPR multiplier

LHGR Linear Heat Generation Rate

Off-rated LHGR flow dependent thermal limit multiplier LHGRFAC_F

Off-rated LHGR power dependent thermal limit multiplier LHGRFAC_P

Off-rated flow dependent MAPLHGR multiplier MAPFAC_F

MAPFAC_P Off-rated power dependent MAPLHGR multiplier

MAPLHGR Maximum Average Planar Linear Heat Generation Rate

MCPR Minimum Critical Power Ratio

MCPR_P Off-rated power dependent OLMCPR

Motor Driven Feedwater Pump **MDFWP**

OLMCPR Operating Limit Minimum Critical Power Ratio

PROOS Pressure Regulator Out of Service

RTP Rated Thermal Power

Safety Limit Minimum Critical Power Ratio SLMCPR

TDFWP Turbine Driven Feedwater Pump

2.0 General Information

This report provides the following cycle-specific parameter limits for Nine Mile Point Nuclear Station Unit 1 Cycle 24:

- Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)
- MAPLHGR four and three recirculation loop operation multipliers
- Operating Limit Minimum Critical Power Ratio (OLMCPR)
- Three recirculation loop operation MCPR adjustment
- MCPR thermal limit adjustments and multipliers (MCPR_P, K_P, K_F)
- Linear Heat Generation Rate (LHGR)
- LHGR thermal limit multipliers (LHGRFAC_P)
- Limiting Power / Flow Line

This report is prepared in accordance with Technical Specification 6.6.5 of Reference 1 Appendix A. Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values. Nine Mile Point Unit 1 is a non-ARTS plant that utilizes ELLLA operating domain.

The data presented in this report is valid for all licensed operating domains on the operating map, including:

- Extended Load Line Limit down to the minimum licensed core flow (i.e., 85.0% of rated) during full power operation,
- Rated core flow of 67.5 Mlb/hr,
- Each mode supports operation with up to 10°F reduction in feedwater temperature.

Further information on the cycle-specific analyses for Nine Mile Point Unit 1 Cycle 24 and the associated operating domains discussed above is available in Reference 2.

Note that GNF and Nine Mile Point Unit 1 have different cycle numbering schemes. Cycle 24 is referred to as Cycle 26 in all GNF documentation.

3.0 MAPLHGR Limits

3.1 Technical Specification

3.1.7.a, 3.1.7.e, 6.6.5.a.1

3.2 Description

The MAPLHGR limits for each bundle type as a function of average planar exposure is given in Table 3-1. For reduced loop operation, a fuel type dependent multiplier is used, which is shown in Table 3-2. For operation with either four or three recirculation loops in service, multiply the values shown in Table 3-1 by the GNF2 value in Table 3-2. The MAPLHGR limits in Table 3-1 provide adequate protection for off-rated conditions, therefore, MAPFAC_P and MAPFAC_F are equal to 1.0 for all power and flow conditions (Reference 10 – Section 2). LHGRFAC_P and LHGRFAC_F are addressed in Section 5.0.

Table 3-1
MAPLHGR Versus Average Planar Exposure – GNF2¹:
(Reference 2 – Section 16.3)

Average Planar Exposure (GWD/ST)	MAPLHGR Limit ¹ (kW/ft)		
0.00	9.85		
13.61	9.85		
16.33	9.50		
25.40	9.50		
29.94	9.00		
41.10	9.00		
57.15	6.96		

Table 3-2
MAPLHGR Multiplier for Four and Three Recirculation Loop Operation
(Reference 2 -- Section 16.3)

Fuel Type	Four and Three Loop Operation Multiplier
GNF2	1.00

¹ These MAPLHGRs are lattice independent.

4.0 MCPR Limits

4.1 Technical Specification

3.1.7.c, 3.1.7.e, 6.6.5.a.2, 6.6.5.a.3

4.2 Description

The OLMCPR is determined for a given power and flow condition by evaluating the power dependent MCPR and the flow dependent MCPR and selecting the greater of the two. Tables 4-1 and 4-2 originate in Reference 2 and are valid for all Cycle 24 operating domains. Nine Mile Point Unit 1 Cycle 24 has a mid-cycle MCPR breakpoint, as defined in Table 4-1. Note that PROOS has no effect on the base OLMCPRs in Table 4-1; however there are PROOS K_P multipliers in Table 4-3.

For three loop recirculation, the adder presented in Table 4-2 must be applied to all limits in Table 4-1 and MCPR_P in Table 4-3.

The power dependent MCPR limits are presented in Table 4-3 and are valid for all GNF2 bundles. Below 45% rated thermal power, the MCPR $_{\rm P}$ limits in Table 4-3 are applied directly; at or above 45% power, the $K_{\rm P}$ multiplier is applied to the OLMCPR from Table 4-1. The appropriate MCPR $_{\rm P}$ or $K_{\rm P}$ value may be determined by linear interpolation for statepoints not explicitly listed.

The flow adjusted OLMCPR is determined by multiplying the applicable rated condition OLMCPR provided by Table 4-1 (and as affected by Table 4-2) by the applicable K_F multiplier given in Table 4-4. The appropriate K_F value may be determined by linear interpolation.

Table 4-1
Operating Limit Minimum Critical Power Ratio (OLMCPR)
(GNF2, Four/Five Recirculation Loop Operation)
(Reference 2 – Section 11)

	1				
Foodyyster Burns	SCRAM Time	Cycle Exposure			
Feedwater Pump Combination ^{2,3}	Option ⁴	< EOR - 2221	≥ EOR - 2221		
	Option	_MWd/ST	MWd/ST		
EMD Combination 1	В	1.47	1.53		
FWP Combination 1	Α	1.57	1.63		
EMD Combination 2	В	1.51	1.57		
FWP Combination 2	Α	1.61	1.67		

² OLMCPR values are independent of pressure regulator in-service or out-of service conditions.

³ The OLMCPR values are based on safety limit minimum critical power ratio (SLMCPR) values of 1.09 for four/five loop operation and 1.12 for reduced loop operation (Reference 2).

⁴ For tau $(\tau) = 0$, use SCRAM Time Option B limits. For $(\tau) = 1$, use SCRAM Time Option A limits. When tau does not equal 0 or 1, use linear interpolation in accordance with site procedure to calculate OLMCPR.

Table 4-2 MCPR Adder for Three Recirculation Loop Operation (GNF2) (Reference 2 – Footnote 8)

Three Recirculation	
Loop Operation	0.03
Adder	

Table 4-3 Power Dependent MCPR Limits and Multipliers, MCPR_P and K_P (GNF2) (Reference 2 – Appendix D)

EOOS	Core	Core Thermal Power (% of Rated)							
	Flow	0	25	< 45	≥ 45	65	≤ 85	> 85	100
Combination	(% of rated)	, 900.00.00			Operating Limit MCPR Multiplier, Kp				
FWP	≤ 60	3.29	3.29	2.31	1 240	1.216	1.133	1.133	1.000
Combination 1	> 60	3.37	3.37	2.78	1.349	1.216	1.133	1.133	1.000
FWP	≤ 60	3.29	3.29	2.31	1.349	1.216	1.133	1.133	1.000
Combination 2	> 60	3.37	3.37	2.78	1.349	1.210	1.133	1.133	1.000
PROOS⁵	≤ 60	3.29	3.29	2.31	1.553 1.336	1.336 1.198	1.133	1.000	
FROOS	> 60	3.37	3.37	2.78	1.333	1.336	1.190	1.133	1.000

Table 4-4
Flow Dependent Operating Limit MCPR Multiplier, K_F
(GNF2)
(Reference 2 – Appendix D)

Flow (% rated)	MCPR Multiplier, K _F ⁶			
0.0	1.500			
≤45.0	1.500			
>45.0	1.132			
75.0	1.000			
102.5	1.000			

⁵ Limits apply to PROOS coincident with FWP Combination 1 or 2.

⁶ Values are applicable up to a Maximum Runout Flow of 102.5% of rated. Values apply to operation in either FWP Combination 1 or 2 with or without Pressure Regulator in-service.

5.0 LHGR Limits

5.1 Technical Specification

3.1.7.b, 6.6.5.a.4

5.2 Description

The Linear Heat Generation Rate for all fuel bundles shall not exceed the LHGR limits presented in Tables 5-1 and 5-2. Linear interpolation should be used for points not listed in Appendix B of Reference 4. Power adjusted LHGR limits are required for operation with PROOS at greater than or equal to 45% RTP. Below 45% RTP, no additional limits are required. These power dependent LHGR multipliers (LHGRFAC_P) are provided in Table 5-3 for Option B and Option A scram times and are applicable to GNF2 (Reference 2). The power adjusted LHGR is determined by multiplying the applicable LHGR limit by the LHGR multiplier, LHGRFAC_P. The LHGRFAC_P curves are independent of recirculation loop operability. The appropriate LHGRFAC_P values may be determined by linear interpolation. Flow dependent LHGR multipliers (LHGRFAC_F) are not required (Reference 2).

Table 5-1
Linear Heat Generation Rate Limits – UO₂ Rods
(Reference 4 and 11)

Fuel Type	LHGR			
GNF2	See Table B-3 of Reference 4			

Table 5-2
Linear Heat Generation Rate Limits – Gadolinia Rods
(Reference 4 and 11)

Fuel Type	LHGR			
GNF2	See Table B-4 of Reference 4			

Table 5-3 Power Dependent LHGR Multiplier LHGRFAC for PROOS (GNF2)

(Reference 2 – Appendix D)

Scram Time Option	Core Thermal Power (% of rated)					
Octain time Option	0	<45	≥45	65	85	100
Option A (i.e. $\tau > 0$)	1.000	1.000	0.518	0.518	0.636	1.000
Option B	1.000	1.000	0.737	0.867	0.987	1.000

6.0 Limiting Power/Flow Line

- 6.1 Technical Specification
 - 3.1.7.d, 3.1.7.e, 6.6.5.a.5
- 6.2 Description

The Nine Mile Point Unit 1 limiting power/flow relationship is shown in Figure 6-1.

Figure 6-1

Limiting Power/Flow Line (References 5 and 8) 120 (85.0, <u>100</u>.0) (<u>1</u>00.0, 100.0) 100 Core Thermal Power (% of Rated) 80 60 Power = 0.55*W + 5340 20 0 0 20 40 80 100 60 120 Core Flow = W (% of Rated)

Page 11 of 14

7.0 Modes of Operation

The allowable modes of operation are found in Table 7-1. Operation up to 67.5 Mlb/hr core flow is licensed for this cycle (Reference 2). The minimum coastdown thermal power level is 40% per T.S. 3.1.7.h (Reference 1).

- All EOOS options allow for operation in either Option A or Option B.
- Each mode supports operation with up to 10°F reduction in feedwater temperature.
- Each mode may be coincident with coastdown operation.

Table 7-1 Modes of Operation (Reference 2)

Options	Allowed Operating Region
Four/Five-loop Operation, FWP Combination 1	Yes
Four/Five-loop Operation, FWP Combination 2	Yes
PROOS, Four/Five-loop Operation, FWP Combination 1	Yes
PROOS, Four/Five-loop Operation, FWP Combination 2	Yes
Three-loop Operation, FWP Combination 1	Yes ⁷
Three-loop Operation, FWP Combination 2	Yes ⁷
PROOS, Three-loop Operation, FWP Combination 1	Yes ⁷
PROOS, Three-loop Operation, FWP Combination 2	Yes ⁷

⁷ Per Ref. 1 Appendix A – TS 3.1.7.e, during three-loop operation power is restricted to 90% of rated.

Page 12 of 14

8.0 Methodology

8.1 Technical Specification

6.6.5.b.1

8.2 Description

The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following document:

1. "General Electric Standard Application for Reactor Fuel," Global Nuclear Fuel Document No. NEDE-24011-P-A-27, August 2018 and U.S. Supplement NEDE-24011-P-A-27-US, August 2018.

9.0 References

- 1. "Nine Mile Point Nuclear Station, Unit 1 Renewed Facility Operating License", Docket No. 50-220, License No. DPR-63.
- 2. "Supplemental Reload Licensing Report for Nine Mile Point Unit 1 Reload 25 Cycle 26", Global Nuclear Fuel Document No. 004N5805, Revision 0, January 2019.
- 3. "Engineering Report for Nine Mile Point Nuclear Station Unit 1 Reload 19", Global Nuclear Fuels Document No. 0000-0053-5247-ER Rev. 0, February 2007.8
- 4. "GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GESTAR II)," Global Nuclear Fuel Document No. NEDC-33270P, Revision 9, December 2017.
- "Limiting Relationship Between Core Power and Core Flow Rate (TAC 63532)," NRC Letter, Nine Mile Point 1 Technical Specification Amendment 92 to Facility Operating License No. DPR-63, March 24, 1987.
- 6. "Final Resolved OPL-3 Parameters for Nine Mile Point Unit 1 Cycle 24 (25)", Exelon Document No. ES1800026 Rev. 0, September 2018.
- 7. "Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors," General Electric Document ID NEDO-24154 and NEDE-24154P, Volumes I, II, and III, August 1986.
- 8. "Nine Mile Point 1 Cycle 24 Limiting Load Line Analysis," Global Nuclear Fuel Letter, Document No. 002N5662-R0, March 18, 2015. 9
- 9. "Feedwater System Booster Pump to Reactor", N1-OP-16 Rev. 06600, Nine Mile Point Nuclear Station Unit 1 Operating Procedure
- 10. "Nine Mile Point Nuclear Station Unit 1 TRACG-LOCA Loss-of-Coolant Accident Analysis for GNF2 Fuel", GEH Nuclear Energy Doc No. 002N3714 Rev. 0, March 2017.
- 11. "Fuel Bundle Information Report for Nine Mile Point Unit 1 Reload 25 Cycle 26", Global Nuclear Fuel Document No. 004N5806, Revision 0, January 2019.

⁹ Cycle 24 Referenced in this document refers to GNF C24 which is equivalent to the site C22.

⁸ The information referenced from this report (see COLR Section 4.2 footnote 4) is cycle independent.