EATF Status – Chromium Coated Cladding

Jerald Holm, Kiran Nimishakavi, Jacki Stevens

Rockville MD, February 27, 2019
AGENDA

• Introduction and background
• Failure Modes & Effects Analysis and Design Review Summary
• Test program
• Models
• Topical Report outline
• Next steps
Introduction and Background
EATF Solution
Cr-Coated Cladding / Chromia-doped Pellets

Base M5 Cladding
• No change to M5 properties or dimensions

Cr-coating
• 10-20 µm
• Does not change base M5
• Improved oxidation resistance
• Improved wear resistance
• Reduced LOCA rupture

Chromia-doped UO₂ pellets
• BWR licensing approved
• Improved fission gas retention
• Improved fragmentation behavior
• Improved PCI performance
Overview of Plan

- Base Topical Reports for Advanced Methods
 - ANP-10323P, Revision 1, “GALILEO Fuel Rod Thermal-Mechanical Methodology for Pressurized Water Reactors”
 - ANP-10339P, “ARITA - ARCADIA/RELAP-Integrated Transient Analysis Methodology”
 - Topical report for implementation of GALILEO in W&CE LOCA methodologies (SBLOCA and RLBLOCA)
- Extension to Advanced Products (Cr-Cr EATF Solution)
 - Chromia-doped pellet topical report supplement (ANP-10340P) report to extend material properties to PWR methodologies
 - BAW-10227 supplement to incorporate chromium-coated cladding (addressing base methods)
Advanced Products - EATF
Cr-Coated Cladding Topical Report

Purpose
- Implement Chromium coated cladding properties into PWR codes and methods
- Supplement to BAW-10227P, Revision 2

Scope Detail
- Chromium coated M5 cladding
 - Define new properties / models for Cr-coated cladding
 - Disposition M5 properties where applicable
- Implementation of Cr-coated cladding in
 - GALILEO
 - LOCA Methodologies
 - ARITA / AREA Methodologies
- Address failure mechanisms and surveillance plans
- Appropriate sample problems for Cr-coated cladding addressed
Background

- BAW-10227PA, Revision 0 approved February 2000
- BAW-10227PA, Revision 1 approved June 2003
 - Extended burnup to 62 GWd/mtU
- BAW-10227, Supplement 1P “Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel”
 - Extend the range of applicability of models and correlations
 - Submitted May 2017
- BAW-10227, Revision 2 “Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel”
 - Update of M5 properties
- BAW-10227, Supplement 2P “Incorporation of Chromium Coated Cladding Properties
Recent Results
Beginning of Proprietary Information
Recent Results - Corrosion
Recent Results - Beyond Eutectic Temperature
Failure Modes & Effects Analysis and Design Review
FMEA

- Objective: Identify all possible risks of failures in a design
 - Conducted on October 16th, 2018 per US Fuel administrative procedure
- Risk Priority Number (RPN) rankings were determined for each Failure Mode based on Severity, Occurrence and Detection
 - Final RPN could range from 1 to 1000
 - 1 is very low risk and 1000 is high risk
- Team identified
- FMEA exercise yielded RPNs ranging from

Design Review

- Objective: Review the technical status of Cr-coated cladding and ensure all the requirements and constraints are completely identified
 - Conducted on November 13th, 2018 per US Fuel administrative procedure

- Bounding Assumptions
 - Coating and Manufacturing processes will produce cladding which meets the design requirements

- []

- Industrialization aspects, contractual needs, etc. are out of scope of this design review

- Board made []

<table>
<thead>
<tr>
<th>Cross-functional team:</th>
<th>Materials, Neutronics, Severe Accident, Regulatory Affairs, Physical Vapor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermal-Mechanics, Thermal-Hydraulics, Mechanical Design, RCS Chemistry, Deposition Expert</td>
</tr>
<tr>
<td></td>
<td>Fuel Reliability, LOCA/non-LOCA, Radiological, RIA</td>
</tr>
<tr>
<td></td>
<td>(External)</td>
</tr>
<tr>
<td>Source</td>
<td>Potential Failure Mode</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>

FMEA and Design Review - Key Findings (1/9)
Coating Technique to Improve Adherence

EATF Status – Chromium Coated Cladding, February 27, 2019
Coating Microstructure and Cr/Zr Interface
Testing – Coating Adherence
<table>
<thead>
<tr>
<th>Potential Failure Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Follow-Up Action
FMEA and Design Review - Key Findings (3/9)

Potential Failure Mode
FMEA and Design Review - Key Findings (3/9)

Follow-up Action
FMEA and Design Review - Key Findings (4/9)

Potential Failure Mode
FMEA and Design Review - Key Findings (4/9)

Follow-up Action
FMEA and Design Review - Key Findings (5/9)

<table>
<thead>
<tr>
<th>Potential Failure Mode</th>
<th>Follow-up Action</th>
</tr>
</thead>
</table>

EATF Status – Chromium Coated Cladding, February 27, 2019
FMEA and Design Review - Key Findings (6/9)

<table>
<thead>
<tr>
<th>Potential Failure Mode</th>
<th>Follow-up Action</th>
</tr>
</thead>
</table>

EATF Status – Chromium Coated Cladding, February 27, 2019
FMEA and Design Review - Key Findings (7/9)

<table>
<thead>
<tr>
<th>Potential Failure Mode</th>
<th>Follow-up Action</th>
</tr>
</thead>
</table>

EATF Status – Chromium Coated Cladding, February 27, 2019
FMEA and Design Review - Key Findings (8/9)

<table>
<thead>
<tr>
<th>Potential Failure Mode</th>
<th>Follow-up Action</th>
</tr>
</thead>
</table>

EATF Status – Chromium Coated Cladding, February 27, 2019
FMEA and Design Review - Key Findings (9/9)

<table>
<thead>
<tr>
<th>Potential Failure Mode</th>
<th>Follow-up Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EATF Status – Chromium Coated Cladding, February 27, 2019
FMEA and Design Review - Summary

- Review boards identified the need for additional test data to update/verify the applicability of current performance models.
- Test Program has been revised and reprioritized based on recommendation from FMEA and Design Review Boards.
- No new phenomenon or failure mode was identified for the Cr-coated cladding.
- All recommendations shall be addressed in a timely manner and monitored to completion.
IN-PILE TESTING
Cr-clad Irradiation Program

- ATR - 2018
 Cr-Cr₂O₃ Fuel pins

- HALDEN - 2017
 Cr-UO₂ Fuel pins

- ANO - 2019
 Full-length LTRs

- ORNL - 2019
 Unfueled Cr-clad samples

- Vogtle - 2019
 Full-length LTRs

- Calvert Cliffs - 2021
 Cr-Cr₂O₃ Full Assembly (LTAs)

- OSIRIS - 2015
 Unfueled Cr-clad samples

- Gösgen - 2016 & 2019
 Cr-clad samples - (2016)
 Full Length LTRs (2019)

EATF Status – Chromium Coated Cladding, February 27, 2019 | 36
Cr-Coated Clad Irradiation Program
Cr-Coated Clad Irradiation Program
OSIRIS and Halden Irradiation
Cr-Coated Clad Irradiation Program
Visual Inspection of Cr-Coated Segments
IMAGO Irradiation - Schedule
Cr-Coated Clad Irradiation Program
ATR and TREAT - Irradiation and Testing
ATR Irradiation - Schedule
Cr-Coated Clad Irradiation Program
HFIR Irradiation Schedule
Cr-Coated Clad Irradiation Program
Testing Program – Summary (1/3)
Testing Program – Summary (2/3)
Models
Models Summary (1/3)

<table>
<thead>
<tr>
<th>Models</th>
<th>Model changes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>framatome</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Models Summary (2/3)

<table>
<thead>
<tr>
<th>Models</th>
<th>Model changes</th>
<th>Comments</th>
</tr>
</thead>
</table>

EATF Status – Chromium Coated Cladding, February 27, 2019
Models Summary (3/3)

<table>
<thead>
<tr>
<th>Models</th>
<th>Model changes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>framatome</td>
<td>EATF Status – Chromium Coated Cladding, February 27, 2019</td>
<td>55</td>
</tr>
</tbody>
</table>
Topical Report Outline
Topical Report Outline

- Each section of BAW-10227 R2 will be evaluated:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0 Abstract</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0 Introduction</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0 Summary</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0 Applicable Regulatory Guidance</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0 Material Definition</td>
</tr>
<tr>
<td>6.0</td>
<td>7.0 Irradiation Experience</td>
</tr>
<tr>
<td>7.0</td>
<td>8.0 Physical Properties</td>
</tr>
<tr>
<td>8.0</td>
<td>9.0 Mechanical Behavior</td>
</tr>
<tr>
<td>9.0</td>
<td>10.0 Oxidation and Hydrogen Pick up During Normal Operation</td>
</tr>
<tr>
<td>10.0</td>
<td>11.0 Growth</td>
</tr>
<tr>
<td>11.0</td>
<td>12.0 LOCA-specific Material Performance</td>
</tr>
<tr>
<td>12.0</td>
<td>14.0 Surveillance</td>
</tr>
<tr>
<td>13.0</td>
<td>15.0 Update Process</td>
</tr>
<tr>
<td>14.0</td>
<td>16.0 References</td>
</tr>
</tbody>
</table>

- Added sections for Cr-Coated M5:

 - 5.0 Additional Failure Modes
 - 13.0 Codes and Methods Update
 - 14.1 Planned Test Irradiations
Acronyms

- ATF – Accident Tolerant Fuel
- ATR – Advanced Test Reactor
- BU – Burnup
- BWR – Boiling Water Reactor
- CE – Combustion Engineering
- CEA – The French Alternative Energies and Atomic Energy Commission
- EATF – Enhanced Accident Tolerant Fuel
- EOL – End of Life
- FMEA – Failure Modes and Effects Analysis
- HT – High Temperature
- LOCA – Loss of Coolant Accident

- LTA – Lead Test Assembly
- LTR – Lead Test Rod
- NRC – U.S. Nuclear Regulatory Commission
- PCI – Pellet Cladding Interaction
- PIE – Post Irradiation Examination
- PQD – Post Quench Ductility
- PVD – Physical Vapor Deposition
- PWR – pressurized Water Reactor
- RAI – Request for Additional Information
- RPN – Risk Priority Number
- TBD – To Be Determined
- W – Westinghouse
Trademarks

AREA, ARITA, GALILEO and M5 are trademarks or registered trademarks of Framatome or its affiliates, in the USA or other countries.
Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless Framatome has provided its prior and written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided. Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations.
framatome