

Evaluation of Degraded and Nonconforming Conditions for ASME III Div.1 and B31.1 Structures, Systems, and Components

A Structured-Correct-Complete Approach

George Antaki, PE, Fellow ASME
Chairman, ASME III Working Group Piping Design
Member, ASME XI Task Group Beyond-Design-Basis
Member, ASME O&M Subcommittee on Piping Systems
Becht Engineering Co.
5224 Woodside Executive Court
Aiken SC 29803

Comments submitted to the NEI-NRC public meeting of Feb. 15, 2019

1

2

Pr. Boundary: Degraded or Nonconforming

Wall Thinning

Corrosion - Erosion - Both

5

Wall Thinning

- 1. ASME XI CC N-513* (piping, moderate energy, pinhole leak) + RG 1.147
- 2. ASME XI CC N-597 (piping, high energy, without leak) + RG 1.147
- 3. ASME XI CC N-705 (vessel/tank, moderate energy, pinhole leak) + RG 1.147
- 4. ASME XI CC N-806 (buried pipe, high energy, without leak) not yet in RG 1.147
- 5. ASME III Ap. XIII (all components, was NB-3200 pre-2017) + 10CFR50.55(a)
- 6. ASME III Ap. XXVII (all components, was Ap. F* pre-2017) + 10CFR50.55(a)
- 7. ASME XI Ap. U (piping, vessel/tank, moderate energy, pinhole)
- * Acknowledged in current IMC-0326.

Pr. Boundary: Degraded or Nonconforming

Crack-Like Flaws

Weld flaw - Fatigue -Corrosion

7

Crack-Like

- 1. ASME XI IWA-3000* (pre-qualified flaws) + 10CFR50.55(a)
- 2. ASME XI Ap. A (analytical evaluation of flaws)
- 3. ASME XI Ap. C (analytical evaluation of flaws in piping)
- 4. ASME XI Ap. H (analytical evaluation of flaws in piping, using FAD method)
- 5. ASME XI Ap. L (operating plants fatigue assessment)
- 6. ASME XI Ap. O (flaws in reactor vessel head penetrations)
- * Acknowledged in current IMC-0326.

Pr. Boundary: Degraded or Nonconforming

Overload

Op. or Postulated Load > Design Structural damage

9

Overload

- Overload: An actual or postulated load that exceeds the design-basis of the SSC, or that was not analyzed at the design stage.
 - Examples:
 - Accidental over-pressure or accidental over-temperature
 - Flow-induced vibration in service
 - Locked snubber or physical interference
 - Seismic event exceeds OBE or SSE
 - Flood level exceeds design
 - etc
- Some overloads have been addressed through formal programs (seismic exceedance, flood exceedance, etc.)
- Other overloads are addressed ad-hoc (accidental over-pressure, over-temp.)
- ASME XI Task Group Beyond-Design-Basis has just started to look at overloads.

Conclusions

- 1. It is essential to take a **Structured-Correct-Complete approach** to operability criteria for ASME SSCs. Such an approach is proposed here.
- Methods and criteria already exist in the ASME Codes for the evaluation of several types of degraded and nonconforming conditions of pressure boundary components.
- 3. Other degraded and nonconforming conditions are addressed in an **ad-hoc manner**, as explained here. They need to be developed. ASME is taking first steps regarding overloads.
- 4. A similar structured-correct-complete approach exists for active components, and support structures (not addressed here.)

11