#### ENCLOSURE 2

#### M190035

#### GE2000 SAR Amendment Meeting Presentation

#### Non-Proprietary Information

#### **IMPORTANT NOTICE**

This is a non-proprietary version of Enclosure 1 to M190035, which has the proprietary information removed. Portions of the document that have been removed are indicated by an open and closed bracket as shown here [[ ]].



## NRC Meeting – Chapter 5 and 7 Technical Approach for the GE Model No. 2000 Safety Analysis Report Amendment to Support Accident Tolerant Fuel

March 11, 2019

Non-Proprietary Information

## Meeting Agenda

Non-Proprietary Discussion

- Introductions
- Purpose

**Proprietary Discussion** 

- Chapter 5 Technical Walkthrough for Amending the GE2000 Safety Analysis Report (SAR) to Support Post Irradiated Examination (PIE) of Accident Tolerant Fuel (ATF) Rods
- Application of Chapter 5 as it Relates to Proving Dose Rate and Thermal Limits are Met
  - Examples for Filling Out Chapter 7 Loading Tables (pre-shipment evaluation)
- Clarification of Chapter 3 Amendment.



#### Purpose

• Review the technical approach for amending the GE2000 SAR shielding evaluation and the process for calculating the total dose rate and thermal contribution to support the ATF program.





#### End of Public Session



## Chapter 5 Amendment Overview

- Amended to include a shielding analysis for irradiated fuel rods.
- No amendment to the dose rate and thermal limits currently imposed in Chapter 5.
  - Dose rates are limited to 90% of the <u>10 CFR 71.47</u> and <u>10 CFR 71.51</u> regulatory limits.
  - Decay heat thermal limit is 1500 W.
- The method to calculate the dose rate and thermal response for irradiated fuel rods is consistent with the method for Cobalt-60 rods and irradiated hardware in NEDO-33866 Rev. 3 [<u>ML18058A112</u>].
- Fuel rod cladding is treated as irradiated hardware (point source) as stated in NEDO-33866 Rev. 3 Section 5.4.4.3.



## Gamma Source Term to Dose Rate – Overview • [[

#### ]]

- $\circ$  Five (5) Normal Conditions of Transport (NCT) Locations
- Three (3) Hypothetical Accident Condition (HAC) Locations
- [[ ]]
- The MCNP6 calculated dose response is independent of gamma intensity.
- [[



#### Irradiated Fuel Rod Analysis Parameters

#### **Analysis Parameters for Irradiated Fuel Rods**

| Parameter                                                                  | Value     |
|----------------------------------------------------------------------------|-----------|
| Minimum Cooling Time (days) <sup>a</sup>                                   | 120       |
| Maximum Exposure/Burn-up (GWd/MTU) <sup>a,b</sup>                          | 72        |
| U-235 Enrichment Range (wt.%) <sup>b</sup>                                 | 1.5 - 6.0 |
| Specific Power (MWth) <sup>a</sup>                                         | 40        |
| BWR Moderator Density (g/cm³) <sup>a,b</sup>                               | 0.1       |
| Maximum Burnable Poison Concentration (wt.% Gadolinium-Oxide) <sup>a</sup> | ≤ 10      |

a) Most conservative value from NUREG/CR-6716 [ML010820352].

b) Maximum validation of ORIGEN-ARP 10x10 BWR cross-section library [ORNL/TM-2005/39, Version 6.1].



# Irradiated Fuel Rod ORIGEN-ARP Gamma Intensity



#### Gamma Source Term to Dose Rate - Example



[[

## Gamma Source Term to Dose Rate - Example

[[



## Gamma Source Term to Dose Rate – Roll-up (

]]

- Dose rate is calculated for each irradiated fuel rod in the shipment.
- Total shipment dose rate is confirmed using the irradiated fuel rod loading tables in Chapter 7.

#### External Dose Rate Locations

| NCT     |         |         |         |     |         | HAC     |         |
|---------|---------|---------|---------|-----|---------|---------|---------|
| Тор     | Side    | Bottom  | 2 motor | Cab | Тор     | Side    | Bottom  |
| Surface | Surface | Surface | z-meter | Cab | 1-meter | 1-meter | 1-meter |

[[

۲



#### Hand Calculation of Neutron Dose Rate

- The process for determining the dose rate contribution from neutrons (mrem/hr per g U) is identical to that for gammas except that MCNP6 is not required.
- In the absence of shielding, the dose rate for a point and line source can be calculated by hand.



[[

### Hand Calculation of Neutron Dose Rate

- Ignoring the shielding materials is conservative; therefore, hand equations can be used to calculate the neutron point and line source intensities at the external locations.
- Use the ANSI/ANS-6.1.1-1977 neutron flux-to-dose rate conversion factors.

Point Source

$$\phi(r) = \frac{S}{4\pi r^2}$$

| Variable  | Description                                            | Unit                  |
|-----------|--------------------------------------------------------|-----------------------|
| $\phi(r)$ | Flux at radius <i>r</i> from the point source <i>S</i> | n/sec/cm <sup>2</sup> |
| S         | Source strength                                        | n/sec                 |
| r         | Radius (distance) from the point source S              | cm                    |

From Lamarsh and Baratta, *Introduction to Nuclear Engineering*, Third Edition.



#### Hand Calculation of Neutron Dose Rate

Line Source

$$\phi(P) = \frac{S'}{4\pi x} \left[ \tan^{-1} \frac{l_2}{x} + \tan^{-1} \frac{l_1}{x} \right]$$

 $l = l_2 + l_1$ 



| Variable        | Description                                                                                      | Unit                  |
|-----------------|--------------------------------------------------------------------------------------------------|-----------------------|
| $\phi(P)$       | Flux at point P                                                                                  | n/sec/cm <sup>2</sup> |
| S'              | Line source strength                                                                             | n/sec/cm              |
| ×               | Perpendicular distance from the point <i>P</i> to the line source                                | cm                    |
| $I_1$ and $I_2$ | The length of the line source on either side of the perpendicular distance <i>x</i> intersection | cm                    |

From Lamarsh and Baratta, *Introduction to Nuclear Engineering*, Third Edition.



#### Hand Calculation of Neutron Dose Rate

- For additional conservativism, a sub-critical multiplication factor is applied to the neutron source intensity.
- Assume a k-effective value of 0.95.

$$muliplication \ factor = \frac{1}{1 - k_{eff}} = \frac{1}{1 - 0.95} = 20$$

Example Comparison of MCNP6 and Hand Calculation of the Neutron Dose Rate [[

The hand calculated neutron dose rate bounds the MCNP6 model.



#### Chapter 7 Loading Tables – Implementation of Chapter 5 Analyses into the Required Pre-Shipment Evaluations



## Chapter 7 Irradiated Hardware Loading Table

- The loading tables shall be confirmed prior to any shipment of an approved content.
  - Required per Section 5.(b)(2)(i) in the Certificate of Compliance [<u>ML18102B446</u>].
- The process is described in NEDO-33866 Rev. 3 Section 7.5.1.
- Examples are provided in NEDO-33866 Rev. 3 Section 5.5.4.



Figure 7.5.1-1 Irradiated Hardware and Byproduct Loading Table





#### Chapter 7 Irradiated Hardware Loading Table – Hafnium (Hf) Poison Rod Example – Steps 1 – 4



| Tab | le | 5. | 5- | -27 |  |
|-----|----|----|----|-----|--|
|-----|----|----|----|-----|--|

| Radionuclide | % Activity | Total<br>Activity (Ci) |
|--------------|------------|------------------------|
| Hf-175       | 4.21%      | 10,650                 |
| Hf-181       | 90.09%     | 228,000                |
| Ta-182       | 5.70%      | 14,422                 |
| Total        | 100.00%    | 253,072                |

- 1. Enter the thermal limit of 1500 W for the shipment in Cell C3.
- 2. Starting in Cell A1 enter the first radionuclide into the loading table.
- 3. In Cell A2 enter the activity in curies of the respective radionuclide.
- 4. In Cell A3 enter the thermal power for each radionuclide in W.
  - a) The thermal power is calculated by multiplying the activity of the radionuclide in Cell A2 by the thermal power conversion factor from Table 5.5-24.



#### Chapter 7 Irradiated Hardware Loading Table – Hf Poison Rod Example - Steps 1 – 4



#### Chapter 7 Irradiated Hardware Loading Table – Hf Poison Rod Example – Steps 5 – 7



- In Cells A4 through A11, enter the dose rate contribution for the respective 5. radionuclide for the appropriate dose rate location.
  - The dose rate is calculated by multiplying the activity of the radionuclide by the dose rate a) conversion factor for the respective dose rate location.
  - NCT and HAC dose rates are provided in Table 5.4-2 and Table 5.4-3, respectively. b)
- Repeat Steps 2 through 5 for each radionuclide in the shipment. 6.
- In Cell B3 sum the total thermal contribution from all radionuclides in Column 3. 7.





#### Chapter 7 Irradiated Hardware Loading Table – Hf Poison Rod Example - Steps 5 – 7

**Dose Rate Conversion Factors** 



|              |          | Decay  | NCT (mrem/hr) HAC (mrem  |          |          | rem/hr)          |          |                  |          |          |
|--------------|----------|--------|--------------------------|----------|----------|------------------|----------|------------------|----------|----------|
| Radionuclide | Activity | Heat   | DR <sub>surf</sub> DB DB |          |          |                  |          | DR <sub>1m</sub> |          |          |
|              | (CI)     | (W)    | Тор                      | Side     | Bottom   | DR <sub>2m</sub> | DRcab    | Тор              | Side     | Bottom   |
| Hf-175       | 10,650   | 25.1   | 1.75E-09                 | 2.04E-11 | 3.74E-12 | 1.24E-13         | 2.01E-14 | 1.78E-08         | 5.13E-12 | 8.25E-12 |
| Hf-181       | 228,000  | 986.8  | 4.49E-06                 | 4.82E-06 | 7.81E-07 | 6.27E-08         | 1.08E-08 | 3.40E-05         | 1.57E-06 | 1.16E-06 |
| Ta-182       | 14,422   | 129.6  | 1.94E+00                 | 4.72E+01 | 2.88E+00 | 5.90E-01         | 1.01E-01 | 2.85E+00         | 8.85E+00 | 1.70E+00 |
| Total        | -        | 1141.5 | 1.94                     | 47.20    | 2.88     | 0.59             | 0.10     | 2.85             | 8.85     | 1.70     |



| HITACHI |
|---------|
|---------|

#### Chapter 7 Irradiated Hardware Loading Table – Hf Poison Rod Example – Steps 8 – 11



8. Cells B4 – B11 sum the dose rate contribution from all radionuclides in the column.

- 9. Cell D3 D11, if the respective value in Row B is less than or equal to the value in Row C (dose rate limit), then enter "Yes."
- 10. If all cells in Row D say "Yes," then the irradiated contents meet all thermal and dose rate criteria.
- 11. Enter the name of the person filling out the Irradiated Hardware and Byproduct Table in Cell E1.



## Chapter 7 Irradiated Fuel Rods Loading Table

- The loading tables shall be confirmed prior to any shipment of a specified content.
- Similar process as described in NEDO-33866 Rev. 0 Section 7.5.1 for irradiated fuel [<u>ML16126A499</u>].
- Key differences between irradiated fuel rod loading table and irradiated hardware:
  - Confirming uranium mass.
  - The thermal and dose rate responses are based on a given exposure and enrichment.
- Accounting for irradiated fuel rod cladding uses the exact same method as irradiated hardware in NEDO-33866 Rev. 3 Section 7.5.1.
  - Incorporated in a combined content table as described in NEDO-33866 Rev. 0 Section 7.5.4.
- Examples will be provided in the Amendment to NEDO-33866 Rev. 3.



#### Chapter 7 Irradiated Fuel Rod Loading Table – NEDO-33866 Rev. 0 Example – Steps 1 – 3



- 1. Enter the thermal limit of 1500 W for the shipment in Cell C6.
- 2. Enter the fuel rod segment number in Cell A1.
- 3. Enter the active fuel height in Cell A2 (must be greater than 7.75 inches).



#### Chapter 7 Irradiated Fuel Rod Loading Table – NEDO-33866 Rev. 0 Example – Steps 4 – 7



- 4. Enter the initial fuel rod U-235 enrichment range in Cell A3.
- 5. Enter the fuel rod exposure range in Cell A4.
- 6. Enter the initial mass of uranium (g) in Cell A5.
- 7. Enter the thermal power in Cell A6.
  - A. Multiply the uranium mass in Cell A5 by the corresponding thermal power value.
  - B. Thermal power conversion factors will be provided in summary tables for a given U-235 enrichment and exposure.





#### Chapter 7 Irradiated Fuel Rod Loading Table – NEDO-33866 Rev. 0 Example – Steps 8 – 9



- 8. In Cells A7 through A14 enter the dose rate contribution.
  - A. Multiply the uranium mass in Cell A5 by the corresponding external dose rate.
  - B. External dose rate conversion factors are provided in summary tables for a given U-235 enrichment and exposure.
- 9. Repeat Steps 2 through 8 for all irradiated fuel rods within the shipment.



#### Chapter 7 Irradiated Fuel Rod Loading Table – NEDO-33866 Rev. 0 Example – Steps 10 – 15

NEDO-33866 Rev. 0 Figure 7.5.1-1



10. Enter the minimum active fuel height in Cell B2.

- 11.Sum the total uranium mass in Cell B5.
- 12.Sum the total thermal power in Cell B6.
- 13. For Cells B7 B14, sum the dose rate contributions.
- 14. Row D, confirm that the criteria established in Row C is not exceeded by the shipment values listed in Row B.
- 15. Enter the name of the person filling out the Irradiated Fuel Rod Table in Cell E1



#### Clarification Information from February 5, 2019 Meeting with the NRC [<u>ML19025A013</u>]



#### Chapter 3 Amendment

- Amended for completeness.
- The term "irradiated fuel rod" will be added to NEDO-33866 Rev. 3 Section 3.1.2.
  - "The derivations of the decay heats for the different contents of the Model 2000 Transport Package are presented in Chapter 5. The decay heat for irradiated hardware and by-product, and cobalt-60 isotope rod, and irradiated fuel rod contents is determined using watt-per-Curie conversion factors listed in Section 5.5.4 and the radionuclide inventory of the contents."
- No amendment to the thermal limit.
- No amendment to the thermal analysis.



## Justification for Not Crediting Fuel Rod Cladding

- Conservatively treated as a point source for shielding.
- The optimal Hydrogen-to-Uranium (H/U) criticality studies using fuel columns bound credible NCT and HAC.
  - $\circ~$  The GE2000 is only flooded during loading and unloading operations.
  - The containment analysis in NEDO-33866 Rev. 3 Chapter 4 demonstrates that water ingress is not possible during accident conditions (maintains Type-B helium leak rate).
- [[

- Optimal pitch and pellet diameter criticality evaluations conservatively assess fuel relocation.
- No credit for fuel depletion or absorbers.



#### Summary

- Shielding evaluation for irradiated fuel rods provides for a wide range of application flexibility.
  - $\circ$   $\,$  Reduces the total number of MCNP6 shielding calculations.
- Current assumptions for not crediting fuel cladding are adequately justified.
- Chapter 3 Amendment is for completeness purposes only.



