ENCLOSURE 2

SHINE MEDICAL TECHNOLOGIES, INC.

MEETING SLIDES FOR THE JANUARY 29 AND 30, 2019 MEETING BETWEEN SHINE MEDICAL TECHNOLOGIES, INC. AND THE NRC

SHINE TECHNOLOGY OVERVIEW PUBLIC VERSION

SHINE Technology Overview

Eric Van Abel, Chief Technical Officer

Health. Illuminated.

Mission

Dedicated to being the world leader in the safe, clean, affordable production of medical tracers and cancer treatment elements.

Medical isotopes enable doctors to diagnose and treat illnesses, such <u>as heart disease and cancer</u>

* Other includes liver, respiratory, thyroid / parathyroid, renal, inflammation, tumor imaging, etc. SHINE Medical Technologies | 3

Located in Janesville, Wisconsin

Located in Janesville, Wisconsin

Future SHINE Production Facility

SHINE High Level Overview

Process Overview

- 1. Periodic solution preparation from LEU
- 2. Solution chemistry check and staging
- 3. Irradiation for 5.5 days
- 4. Extraction, purification, QC & packaging
- 5. Periodic cleanup and solution disposal

Building One

- Construction complete Q1 2018
- Full size accelerator demo currently in-progress
 - Radioactive material license by State of Wisconsin
- Future mockups and prototypes planned
- Future use for employee training and technology development

SHINE Medical Technologies | 8

Top Long-Lead Process Equipment Items

- Supercell
- Neutron Flux Detectors
- Safety I&C System (TRPS/ESFAS)
- Neutron Drivers (Accelerators)
- Thermal Cycle Absorption Process (TCAP) Equipment
- Radioactive Liquid Waste Immobilization System

Technological Approach

- Small systems: Hundreds of times less power than isotope production reactors being used
 - Low source term—helps ensure safety of public and workforce
 - Decay heat per system < 1 kW within 5 hours
 - Minimizes waste nuclide generation compared to reactors
- Low enriched uranium (LEU) reusable target
 - Reduces waste
 - Product compatible with current supply chain
 - Eliminates need for HEU
- Driven by low-energy electrostatic accelerator
 - Eliminates need for HEU
- Multiple units and trains provide operational scalability and flexibility

Safety Philosophy

- Low decay heat, low pressure, low temperature system
 - Minimal stored energy
- Independent units limit common cause failures
- Operator actions are not required for safe response to an accident
- In the event of an upset condition:
 - TSV reactivity protection system (TRPS) initiates trip of system
 - Two completely independent safety-related TSV dump valves open
 - Target solution gravity drains to the TSV dump tank (criticality safe at all uranium concentrations)
 - Hydrogen concentration is maintained below LFL by off-gas system blowers
- Following UPS battery run time, entire plant is passively safe
 - 90 days without cooling: Pool temperature rise is less than approximately 12°F
 - Nitrogen purge system for hydrogen control

Security-Related Information

Security-Related Information

Security-Related Information

Facility Layout - Elevation and Section Views

WEST BUILDING ELEVATION

SHINE Medical Technologies |15

Security-Related Information

Facility Layout - Elevation and Section Views

Security-Related Information

Major Process Equipment

- Subcritical Assembly and TSV Off-Gas System
- Neutron Driver
- Tritium Purification System
- Extraction and Purification Process
- Supercell
- Radioactive Waste Handling

Subcritical Assembly Overview

 Hybrid fusion-fission device 	
 Accelerator generates fusion neutrons from D-T reaction 	
 Subcritical assembly takes fusion neutrons, slows them down, and multiplies them through fission reactions 	
Process	
 Fast neutrons created in center of assembly (neutron spark plug) 	Proprietary Information
 Neutrons pass through [Proprietary Information] multiplier 	
 Multiplied neutrons pass into uranium solution in TSV, where they are absorbed by uranium and cause fission 	
 Transfer solution to the processing facility for isotope removal 	
	Subcritical Assembly with Accelerator Target Assembly

Low energy, inherently-safe system

- Key parameters:
 - Pressure: Below atmospheric
 - Target solution: Uranyl sulfate
 - Low temperature: < 212°F
 - Low fluid flow rates: Natural circulation of target solution
 - Reactivity: Subcritical

Subcritical Assembly – Design Summary

TSV Offgas System (TOGS)

The TOGS sweeps gas through the TSV headspace
 Operates during irradiation to remove and recombine hydrogen and oxygen
 Sweep gas passed over catalytic recombiner beds to form water vapor
 Water vapor generated by the TSV and the recombiner beds is condensed and returned to the TSV

TSV Offgas System (TOGS)

Neutron Driver

 Neutron driver is hydrogen particle accelerator 	
 Supplied by Phoenix 	
 300 kV constant voltage (static) 	
 Accelerates hydrogen isotopes to a gas target chamber 	
 Deuterium-deuterium reaction produces ~1% output 	
 Deuterium-tritium reaction produces ~100% output 	Proprietary Information
 Neutron source to drive the subcritical chain reactions 	
 Operation is not safety function 	
 Turning off accelerator is a safety function 	
 Safety-related breakers isolate power feed to accelerator high voltage power supply 	

Tritium Purification System (TPS) Overview

- Function: Continuously supply purified tritium (target gas) and deuterium (source gas) to neutron drivers
- Uses Thermal Cycling Absorption Process (TCAP) technology
 - IP Licensed from Savannah River National Laboratory
- Key features
 - Semi-continuous operational mode (batched gas chromatography)
 - 1 TPS serves up to 8 drivers
 - Tritium maintained sub-atmospheric outside of glovebox

Security-Related Information

Major TPS Equipment and Functions

 TPS process equipment and main glovebox Remove impurities 0 Separate tritium and deuterium . Confine tritium Process equipment normally contains tritium Glovebox confines in the event of a release ATIS skids and gloveboxes Proprietary Information Distribute gases via headers 0 Interface with neutron drivers and regulate 0 flow to a neutron driver Confine tritium . Stripper system & air hood Remove residual tritium that enters . glovebox atmosphere

Proprietary Information – Withheld from Public Disclosure Under 10 CFR § 2.390(a)(4) Security-Related Information – Withheld Under 10 CFR § 2.390

TPS Flow Diagram (Production Facility)

Proprietary Information Security-Related Information

Overview of Mo-99 Separation Process

Target solution transferred from IU cell to hot cells via vacuum lift system
Mo-99 separated from target solution by extraction column
[Proprietary Information]
[Proprietary Information]
[Proprietary Information]
Mo-99 solution evaporated and transferred to purification process

Mo-99 Extraction Equipment

Overview of Mo-99 Purification Process

- Purification via the Low Enriched Uranium (LEU) Modified Cintichem Process
 - Developed by Argonne National Laboratory for the Department of Energy
- Cintichem is a long-established process
 - Used at the Cintichem facility in Tuxedo, NY until 1989
- Process perform by manipulators in hot cell
 - Precipitation and filtration of contaminants
 - Complexation of molybdenum
 - Adsorption and filtration of contaminants on charcoal columns

Proprietary Information – Withheld from Public Disclosure Under 10 CFR § 2.390(a)(4)

Supercell

Supercell Design

Waste Treatment

- Waste Stream Overview
 - Three types of radioactive waste:
 - As generated solid radioactive waste, including spent adsorption columns
 - Solidified radioactive waste
 - Gaseous wastes
- Liquid waste is collected in tanks with and without critically-safe geometry, depending on liquid waste stream
 - Size and configuration of liquid waste tanks provide for operational flexibility and reduction in waste source term
 - Liquid waste streams are analyzed and blended to allow for solidification in cement and acceptance at a licensed burial facility
 - Waste streams are solidified in a sealed solidification skid maintained at a slight negative pressure compared to the surrounding Radioisotope Production Facility

Proprietary Information – Withheld from Public Disclosure Under 10 CFR § 2.390(a)(4)

Radioactive Liquid Waste Storage System

Radioactive Liquid Waste Immobilization System

- Receives liquid wastes from the plant and solidifies them in a cement-based mixture
- Drums are cured and transported to on-site staging building, prior to offsite shipment
- Waste system is skid-mounted and assembled

Proprietary Information

Proprietary Information – Withheld from Public Disclosure Under 10 CFR § 2.390(a)(4)

Gaseous Waste Treatment

Proprietary Information

