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Schedule
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Course Overview

Wednesday 1/16 Thursday 1/17 Friday 1/18 Tuesday 1/22 Wednesday 1/23

Module 1: Introduction
3: Characterizing 

Uncertainty
5: Basic Events

7: Learning from 

Operational Events
9: The PRA Frontier

9:00-9:45 L1-1: What is RIDM?
L3-1: Probabilistic 

modeling for NPP PRA

L5-1: Evidence and 

estimation
L7-1: Retrospective PRA

L9-1: Challenges for NPP 

PRA

9:45-10:00 Break Break Break Break Break

10:00-11:00
L1-2: RIDM in the nuclear 

industry

L3-2: Uncertainty and 

uncertainties

L5-2: Human Reliability 

Analysis (HRA)

L7-2: Notable events and 

lessons for PRA

L9-2: Improved PRA using 

existing technology

11:00-12:00
W1: Risk-informed 

thinking

W2: Characterizing 

uncertainties
W4: Bayesian estimation

W6: Retrospective 

Analysis

L9-3: The frontier: grand 

challenges and advanced 

methods

12:00-1:30 Lunch Lunch Lunch Lunch Lunch

Module 2: PRA Overview
4: Accident 

Sequence Modeling

6: Special Technical 

Topics

8: Applications and 

Challenges
10: Recap

1:30-2:15
L2-1: NPP PRA and RIDM: 

early history
L4-1: Initiating events L6-1: Dependent failures

L8-1: Risk-informed 

regulatory applications
L10-1: Summary and 

closing remarks
L8-2: PRA and RIDM 

infrastructure

2:15-2:30 Break Break Break Break

2:30-3:30
L2-2: NPP PRA models 

and results

L4-2: Modeling plant and 

system response

L6-2: Spatial hazards and 

dependencies

L8-3: Risk-informed fire 

protection

Discussion: course 

feedback

3:30-4:30
L2-3: PRA and RIDM: 

point-counterpoint

W3: Plant systems 

modeling 

L6-3: Other operational 

modes
L8-4: Risk communication Open Discussion

L6-4: Level 2/3 PRA: 

beyond core damage

4:30-4:45 Break Break Break Break

4:45-5:30
Open Discussion

W3: Plant systems 

modeling (cont.)

W5: External Hazards 

modeling Open Discussion

5:30-6:00 Open Discussion Open Discussion



Learning Objectives

• Range of evidence used in NPP PRA

• Sources of operational data

• Bayesian estimation

• Treatment of model predictions and expert 

judgment
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Resources

• J. Lane, “U.S. NRC Operational Experience Data Collection Program,” 
NEA Workshop on the Use of Operational Experience in PSA, 
Boulogne-Billancourt, France, April 26-27, 2018. (ADAMS 
ML18123A479)

• U.S. Nuclear Regulatory Commission, “Reliability and Availability Data 
System (RADS)” https://nrcoe.inl.gov/resultsdb/RADS/

• U.S. Nuclear Regulatory Commission, “Industry Average Parameter 
Estimates,” https://nrcoe.inl.gov/resultsdb/AvgPerf/

• N. Siu and D.L. Kelly, "Bayesian parameter estimation in probabilistic 
risk assessment," Reliability Engineering and System Safety, 62, 89-
116, 1998.

• C.L. Atwood, et al., “Handbook of Parameter Estimation for 
Probabilistic Risk Assessment,” NUREG/CR-6823, September 2003.

• R. J. Budnitz, et al., “Recommendations for Probabilistic Seismic 
Hazard Analysis: Guidance on Uncertainty and Use of Experts,” 
NUREG/CR-6372, 1997.
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https://nrcoe.inl.gov/resultsdb/RADS/
https://nrcoe.inl.gov/resultsdb/AvgPerf/


Other References

• “IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing 

Component, and Mechanical Equipment Reliability for Nuclear-Power Generating 

Stations,” IEEE Std 500-1984, Institute of Electrical and Electronics Engineers, New 

York, 1983.

• Center for Chemical Process Safety, Guidelines for Process Equipment Reliability 

Data with Data Tables, American Institute of Chemical Engineers, New York, 1989.

• G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis, Addison-

Wesley, Reading, MA, 1973.

• D. Kahneman, P. Slovic, and A. Tversky (eds.), Judgment Under Uncertainty: 

Heuristics and Biases, Cambridge University Press, Cambridge, MA, 1982.

• M. Granger Morgan, “Use (and abuse) of expert elicitation in support of decision 

making for public policy,” National Academy of Sciences Proceedings (NASP), 111, 

No. 20, 7176-7184, May 20, 2014.

• J. Xing and S. Morrow, “White Paper: Practical Insights and Lessons Learned on 

Implementing Expert Elicitation,” U.S. Nuclear Regulatory Commission, October 13, 

2016. (ADAMS ML16287A734)
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Basic event probabilities reflect state of 

knowledge

• P = Probability

• X = Proposition of concern (e.g., SI pump failure rate < 10-3 per 

demand)

• C = Conditions of assessment (e.g., key assumptions)

• H = State of knowledge (dependent on assessor)
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P{X|C,H}

Introduction



State of Knowledge (About X)

• Affected by evidence; common forms:

– Data (operational, tests, simulator exercises, experiments)

– Generic estimates

– Model predictions

– Expert judgment

• Changes in H lead to changes in the probability 

distributions for model parameters 

• Bayes’ Theorem is the formal tool for updating
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𝜋0 𝜃 𝐻0 → 𝜋1 𝜃 𝐻1
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On “Data”

• “Data” (plural of “datum”)

– Facts, information, statistics, or the like, either historical 

or derived by calculation or experimentation

– Any facts assumed to be a matter of direct observation

• PRA community uses both views:

– System analyst: input parameters for PRA model

• NPP-specific

• Generic (e.g., IEEE Std-500, CCPS)

– Data analyst: empirical observations used to estimate 

input parameters
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Operational Data

• See Lane (2018): history of NRC 
operational experience data collection 
and current programs.

• Key sources

– Licensee Event Reports
• See https://lersearch.inl.gov

• >54,000 records (1980-)

• Rich source, but level of detail and scope 
can vary

– INPO Consolidated Events Database 
(ICES) – proprietary 

• Required (MSPI program) + voluntary 
reporting

• Includes some demand and runtime data
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Data

https://lersearch.inl.gov/


NRC Data Summaries

• Multiple links at http://nrcoe.inl.gov/resultsdb/

• Industry average estimates, trends, and summary data for 

PRA model parameters: 

https://nrcoe.inl.gov/resultsdb/AvgPerf/

– Initiating events 

– Component reliabilities

• Common cause failures: 

https://nrcoe.inl.gov/resultsdb/ParamEstSpar/
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Event reports often require interpretation
• Plant-specific terminology

• Severity – truly a “failure”?

Data

http://nrcoe.inl.gov/resultsdb/
https://nrcoe.inl.gov/resultsdb/AvgPerf/
https://nrcoe.inl.gov/resultsdb/ParamEstSpar/
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Operating Experience Data

Data

J. Lane, “U.S. NRC Operational Experience Data Collection Program,” NEA Workshop on the Use of Operational Experience in PSA, Boulogne-Billancourt, France, 

April 26-27, 2018. (ADAMS ML18123A479)



Bayesian Estimation – Principles

• Bayes’ Theorem: an expression of conditional probability

• Prior distribution quantifies belief before new evidence E

• Likelihood function quantifies probability of seeing E, given q

• Posterior distribution quantifies belief given E

• k = normalization constant = ׬𝑎𝑙𝑙 𝜃
𝐿 𝐸 𝜃 𝜋0 𝜃 𝑑𝜃
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𝜋1 𝜃 𝐸 =
1

𝑘
𝐿 𝐸 𝜃 𝜋0 𝜃

posterior

distribution

prior

distribution

likelihood

function

Bayesian Estimation



Likelihood Functions – Examples

• General: 𝐿 𝐸 𝜃 = 𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝐸 𝜃

• Poisson process (frequency = l)

– Evidence: n events in time t

– Likelihood function: 𝐿 𝑛, 𝑡 l =
l𝑡

𝑛

𝑛!
𝑒−l𝑡

– Evidence: occurrence times {t1, … , tn}

– Likelihood function: 𝐿 𝑡1, ⋯ , 𝑡𝑛 l = ς𝑖=1
𝑛 l𝑒−l𝑡𝑖

• Bernoulli process (probability = f)

– Evidence: n events in m trials

– Likelihood function: 𝐿 𝑛, 𝑚 f =
𝑚
𝑛

f𝑛 1 − f 𝑚−𝑛
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Likelihood Functions – Another Example

• Expert judgment

– Evidence = estimate ෠l for failure frequency l

– A possible likelihood function: lognormal

– B = bias

– s = measure of confidence in expert
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𝐿 ෠l l =
1

2𝜋𝜎l
𝑒−

1
2

𝑙𝑛l− ෡l+𝐵

𝜎

2

s = 0, B = 0 => 𝐿 ෠l l is delta function about ෠l => perfect expert

s = ∞ => 𝐿 ෠l l is flat => completely non-expert

Likelihood Function = model of the evidence-generating process

Bayesian Estimation



Prior Distributions

• General: characterizes state of knowledge 

regarding uncertain parameter(s)

• Informative

– Preferred in principle

– Takes effort to develop

• Non-informative

– Objective

– Low effort

– Conservative but can be “good enough” 

15

Bayesian Estimation



Informative Prior Distribution 

Construction Methods

• Direct quantification
– Percentiles

– Parametric form + select characteristics (e.g., moments, percentiles)

• Hierarchical Bayes (notably “two-stage Bayes”)
– Model plant-to-plant (population) variability 

– Use population variability result as prior for plant of interest

• “Reverse engineering:” make judgments about generated samples 
(vs. model parameters)

• Be cognizant of biases from common heuristics (Lecture 2-3)
– Representativeness

– Availability

– Anchoring and adjustment
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Non-Informative Prior Distributions

• Based upon mathematical definitions of relative ignorance (relative 
to data) – not generally flat/uniform

• Examples (“Jeffrey’s Rule priors”)

– Bernoulli process: 𝜋0 f ∝
1

f 1−f

– Poisson process: 𝜋0 l ∝
1

l

• Other “non-informative” distributions: maximum entropy, 
constrained non-informative

• See Siu and Kelly (1998) and Atwood et al. (NUREG/CR-6823) for 
further discussion of forms used in NPP PRAs

• Computational caution: non-informative prior distributions are often 
unbounded at one or both extremes; need to be careful if using 
numerical integration
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Knowledge Check

If l is distributed according to a Jeffrey’s prior, 

what is the mean value for l?
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Conjugate Likelihood-Prior Pairs 

• Result in analytical solution of Bayes’ Theorem => often 

used for computational convenience

• Can be informative or non-informative

• Examples:*

– Binomial likelihood and beta prior => beta posterior

• Assume n failures in m trials, and a beta prior with parameters a and b

• Posterior distribution is beta with parameters a’ = a + n and b’ = b + m

– Poisson likelihood and gamma prior => gamma posterior

• Assume n failures in time t and a gamma prior with parameters a and b

• Posterior distribution is gamma with parameters a’ = n + a and b’ = t + b

19

Bayesian Estimation

*See Probability Math background slides for more information on the 

beta and gamma distributions



Sample Results
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Comments

• When data are plentiful (“strong”), posterior is relatively 

insensitive to reasonable priors

• When data are weak, prior is important => important to 

construct carefully

– Overly broad (undervaluing state of knowledge) => overly 

conservative results

– Overly narrow (too confident in state of knowledge) => 

insensitive to data when obtained

– Need to be wary of biases from heuristics
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Model Predictions

• Common aleatory model: stress vs. strength

– Time-reliability

– Fire-induced damage

– Seismically-induced damage

• Uncertainties in parameters can be quantified and propagated 

through models; uncertainties in model outputs can also be 

quantified (Lecture 3-2)
22

𝑃 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃 𝑇𝑖𝑚𝑒𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 < 𝑇𝑖𝑚𝑒𝑛𝑒𝑒𝑑𝑒𝑑|𝜃𝑇𝑅

𝑃 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑑𝑎𝑚𝑎𝑔𝑒 < 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑓𝑖𝑟𝑒|𝜃𝑓𝑖𝑟𝑒

𝑃 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑃 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑠𝑒𝑖𝑠𝑚𝑖𝑐 < 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐸𝑄|𝜃𝑠𝑒𝑖𝑠𝑚𝑖𝑐
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Mechanistic Modeling - Comments

• Results and even models used in NPP PRAs

– Component behavior (e.g., reactor coolant pump seals)

– Success criteria

– Internal and external hazards

• “Physics of Failure” models proposed for various issues (e.g., 

aging, CCF)

• Appealing approach to better account for current, relevant state of 

knowledge (“what we know”)

• Need to account for parameter and model uncertainties

• Increases vulnerability to completeness uncertainty
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Fire Model Uncertainty Example
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Fire Model Uncertainty – Results 
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Cautionary Examples

• Multi-unit trip due to loss of communication

• Capacitor failure from operation at below-

design voltage (non-nuclear)

• Increased accident consequences of a stronger 

pressure vessel (non-nuclear)

• Reactivity accident from rocking

26

Evidence from Models



Expert Judgment

• Fundamental component of PRA

– Modeling

– Data selection and analysis

– Direct elicitation (qualitative and quantitative)

• Justification: decision support
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P{X|C,H}what “we” believe

conditions of

probability

statement

what “we” know

proposition/event

of concern

For RIDM, “we” = informed technical community

(not just analyst/analysis team)

Evidence from Experts



Direct Elicitation

• Aim

– Take advantage of human ability to consider/integrate complex information

– Engage a wide variety of expert viewpoints

• Key PRA applications

– Problem formulation, planning of experiments and analyses (Phenomena 

Identification Ranking Tables)

– Scenario development (logic trees)

– Estimation of model parameters

• Key guidance documents

– Processes designed to address known sources of biases

– NUREG/CR-6825 and subsequent documents (Senior Seismic Hazard 

Analysis Committee: “SSHAC”)

28

Evidence from Experts



SSHAC Overview

• Designed with recognition of potential 

individual and social biases, e.g.,

– Underestimation of uncertainties from 

heuristics (availability, anchoring and 

adjustment, representativeness, etc.)

– Social influences on individual judgment 

(e.g., group dynamics, organizational 

influences)

• Emphasizes characterizing full 

community point of view (center, body, 

and range); documentation (and 

ownership) of bases for judgments

• Different “levels” for different needs
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Level Characteristics

1 TI only (literature review, 

personal experience)

2 TI interacts with proponents and 

resource experts

3 TI brings together proponents 

and resource experts

4 TFI organizes expert panel to 

develop estimates

Evidence from Experts

TI = Technical Integrator

TFI = Technical Facilitator/Integrator



Level 4 SSHAC
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General Process

1) Preparation

2) Piloting/Training

3) Interactions (Workshops)
a) Evaluate evidence

b) Develop, defend, and 

revise judgments

c) Integrate judgments

4) Participatory Peer 

Review

Adapted from: R. J. Budnitz, et al., “Recommendations for 

Probabilistic Seismic Hazard Analysis: Guidance on 

Uncertainty and Use of Experts,” NUREG/CR-6372, 1997

Evidence from Experts



Direct Elicitation – Cautions 

• Experts

– Key experts might not be available during project

– Difficult to get undivided attention for extended periods of time

– Different perspectives/frameworks => considerable effort to 

develop common understanding of problem

– Inclination to provide the “right answer” based on individual 

point of view

– Subject to usual human biases

• Results can be viewed as “the final solution”
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A serious, important activity, but not the “Easy Button”

Evidence from Experts




