

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

November 9, 2018

MEMORANDUM TO:	Samuel S. Lee, Chief Licensing Branch 1 Division of Licensing, Siting and Environmental Analysis Office of New Reactors	
FROM:	Omid Tabatabai, Senior Project Manager Licensing Branch 1 Division of Licensing, Siting and Environmental Analysis Office of New Reactors	/RA/
SUBJECT:	U.S. NUCLEAR REGULATORY COMMISSION ST AUDIT REPORT FOR CONTAINMENT AND VEN SYSTEMS (DOCKET NO. 52-048)	

In March 2017, the U.S. Nuclear Regulatory Commission (NRC) staff began a regulatory audit of certain documents of the NuScale Power, LLC (NuScale) design certification application (DCA) pertaining to the Containment and Ventilation Systems. The NRC staff issued its initial audit plan on March 29, 2017, and an addenda to the audit plan on June 28, 2018 (Agencywide Documents Access and Management System Accession Nos. ML17087A077 and ML18177A087). The intent of this audit, in part, was to gain a more detailed understanding of the NuScale design in technical areas associated with containment and ventilation systems and to identify information that will require docketing to support the basis of the regulatory decision.

This interim audit summary report documents the NRC staff's audit activities and progress from April 3, 2017 through August 31, 2018. The NRC staff conducted the audit in accordance with the Office of New Reactors (NRO) Office Instruction NRO-REG-108, "Regulatory Audits."

Docket No. 52-048

Enclosure:

- 1. NRC Staff Interim Audit Report for Containment and Ventilation Systems
- cc: NuScale DC ListServ

CONTACT: Omid Tabatabai, NRO/DNRL 301-415-6616

SUBJECT: U.S. NUCLEAR REGULATORY COMMISSION STAFF INTERIM AUDIT REPORT FOR CONTAINMENT AND VENTILATION SYSTEMS (DOCKET NO. 52-048) DATED NOVEMBER 9, 2018

DISTRIBUTION: PUBLIC LB1 R/F SLee, NRO DJackson, NRO GCranston, NRO MMoore, NRO OTabatabai, NRO RKaras, NRO RTaylor, NRO HWagage, NRO CAshley, NRO AGrady, NRO SHaider, NRO AHathaway, RES RHernandez, NRO PLien, RES SLu, NRO JSchmidt, NRO CThurston, NRO BTravis, NRO NuScale DC Listserv RidsOgcMailCenter RidsNroDnrlLB1 RidsOpaMailCenter RidsAcrsAcnwMailCenter

ADAMS Accession No.: ML18291B228		*via email*	NRO-002	
OFFICE	NRO/DLSE/LB1: PM	NRO/DLSE/LB1: LA*	NRO/DSRA	VSCVB: BC*
NAME	OTabatabai	MMoore*	DJackson (HWagage for)
DATE	10/19/2018	10/22/2018	11/8/2018	

OFFICIAL RECORD COPY

U.S. NUCLEAR REGULATORY COMMISSION

REGULATORY AUDIT OF CONTAINMENT AND VENTILATION SYSTEMS

AS PART OF THE NUSCALE POWER, LLC DESIGN CONTROL DOCUMENT REVIEW

INTERIM AUDIT SUMMARY REPORT FOR

APRIL 3, 2017 THROUGH AUGUST 31, 2018

NRC Audit Team:

- Hanry Wagage, NRO, Audit Lead
- Clinton Ashley, NRO
- Anne-Marie Grady, NRO
- Syed Haider, NRO
- Alfred Hathaway, RES
- Raul Hernandez, NRO
- Peter Lien, RES
- Shanlai Lu, NRO
- Jeffrey Schmidt, NRO
- Carl Thurston, NRO
- Boyce Travis, NRO
- Rebecca Karas, NRO, Branch Chief (Reactor Systems Branch)
- Diane Jackson, NRO, Branch Chief (Containment Branch)
- Mohsen Khatib-Rahbar, ERI (NRC Contractor)
- Alfred Krall, ERI (NRC Contractor)
- Zhe Yuan, ERI (NRC Contractor)
- Omid Tabatabai, NRO, Senior Project Manager

I. AUDIT LOCATION AND DATES

The U.S. Nuclear Regulatory Commission (NRC) staff conducted the audit from NRC Headquarters in Rockville, Maryland, through NuScale's electronic reading room (eRR) and also at (1) the NuScale Office at 11333 Woodglen Drive, Suite 205, Rockville, Maryland 20852 and (2) NuScale Integral System Test (NIST-1) facility located at Oregon State University in Corvallis, Oregon. This interim audit summary report is for the period of April 3, 2017, through August 31, 2018.

II. Background and Audit Basis

In a letter dated December 31, 2016, NuScale submitted to the U.S. Nuclear Regulatory Commission (NRC) Revision 0 of the NuScale Standard Plant Design Certification Application (DCA) (Agencywide Documents Access and Management System (ADAMS) Accession No. ML17013A229). The NRC staff initiated this DCA review on March 27, 2017. NuScale submitted Revision 1 of DCA to the NRC on March 15, 2018 (ADAMS Accession No. ML18086A090). Application documents for the NuScale design are available at the NRC Website at <u>https://www.nrc.gov/reactors/new-reactors/design-cert/nuscale/documents.html</u>. The intent of this audit, in part, was to gain a more detailed understanding of the NuScale design in technical areas associated with containment and ventilation systems and identify information that will require docketing to support the basis of the regulatory decision. The NRC staff issued an audit plan on March 29, 2017, and an addenda on June 28, 2017 (ADAMS Accession Nos. ML17087A077 and ML18177A087, respectively). The addenda narrowed the audit scope by limiting it to three specific areas: containment pressure analysis, containment integrated leakage rate testing (ILRT), and containment Isolation. This interim audit summary report has been prepared in accordance with NRO-REG-108, "Regulatory Audits," Revision 0, April 2, 2009 (ADAMS Accession No. ML081910260).

III. DOCUMENTS AUDITED

The NRC staff performed an audit of documents, as necessary, shown in the attachment.

IV. <u>Audit Activities and Summary of Findings</u>

The audit activities included the following review areas:

- containment peak pressure analysis;
- containment heat removal;
- methodology of mass and energy release from the reactor coolant system;
- ASME qualification of the containment vessel;
- containment leak rate testing, including NuScale exemption request no. 7, "10 CFR 52, App. A, GDC 52 Containment Leakage Rate Testing";
- combustible gas control, including NuScale exemption request no. 2, "10 CFR 50.44 Combustible Gas Control";
- equipment survivability;
- containment isolation, including NuScale exemption request no. 9, "10 CFR 50, Appendix A, GDC 55, 56, and 57 Containment Isolation";
- containment flooding and drain;
- pipe break hazard analysis;
- NIST-1 test observation;
- range of reactor recirculation valve opening;
- containment stratification; and
- containment nodalization.

The NRC staff had numerous (more than 100) interactions with NuScale, including teleconferences, test observations, and face-to-face meetings. The audit enhanced the NRC staff's review of the NuScale DCA by providing an opportunity to review non-docketed

supporting design information that was not submitted with the DCA. Specifically, the audit documents that were made available to the NRC staff for review have enabled the staff to efficiently obtain the information that they need in order to continue their review and prepare their safety evaluation report. Furthermore, the audit allowed the NRC staff to limit issuing requests for additional information (RAIs), as needed, to:

- Gain a better understanding of the detailed calculations, analyses and/or bases underlying the formal application and confirm the staff's understanding of the NuScale application.
- Identify additional information, necessary for the applicant to supplement its application, assisting the staff to reach a regulatory decision.
- Establish an understanding in an area where the staff has identified potential concerns, and in turn allow the staff to issue clear RAIs enabling the applicant to provide quality and timely responses.
- Enhance the staff's understanding of the NuScale design in support of making a regulatory decision.

As stated in the June 28, 2018, addenda to the audit plan, the staff's supplemental containment audit involved three stages. Stage 1 included the staff visiting the NuScale's NIST-1 testing facility in Corvallis, Oregon, and observing the HP-49 test. The HP-49 test was to show that NRELAP5 code was capable of appropriately modeling the containment thermal hydraulic phenomena that would result from an inadvertent RRV-opening event as the limiting liquidspace discharge event. NuScale has identified this as the limiting peak containment pressure design basis event in the design certification application. Stage 2 was to audit the raw HP-49 test data, which the staff conducted on August 7 and 8, 2018, at NuScale's office in Rockville, Maryland. The main objective of Stage 2 was to verify the decay heat and peak containment pressure measurements at the NIST-1 test facility, and gather the initial conditions from the data set to be used in the staff's confirmatory NRELAP5 and TRACE calculations of the NIST-1 HP-49 test. The staff found that Stage 1 and Stage 2 audits met all stated objectives. Stage 3 is to audit NuScale's HP-49 post-test assessment report. NuScale provided this report on its eRR for audit in mid-September and the staff is currently auditing it. The staff will provide more details about the audit activities related to Stages 1 through 3 in a final audit summary report after completing the containment audit.

As part of the evaluation of NuScale's Exemption Request #7 on ILRT, staff issued RAI 9474 asking NuScale to show (through analysis, testing, or combination) that the maximum containment allowable leak rate is met and that containment leak tight integrity is restored after each refueling outage. Staff is currently evaluating NuScale's RAI response, including a revised analysis provided in EC-A013-1691, Revision 2, on the eRR. The staff is also reviewing this analysis for the containment ASME III design, and ASME inspection of flange bolts 2-inch diameter and smaller.

The June 28, 2017, addenda to the audit plan included containment isolation because of a staff's expectation that the audit may be needed to support reviewing NuScale's response to RAI 8836, Question 3.6.2-2, which was expected later on August 30, 2018. This RAI response was delayed until December 2018. However, the staff does not foresee now any plan for using the present audit to support reviewing the RAI-8836 response.

V. <u>CONCLUSION</u>

This audit is currently in progress and the NRC staff will issue a final audit summary report after completing the audit.

Attachment: Documents Audited by the Staff

No.	File	Document Name	Rev. #
1	00002090_1_RPV and CNV Flange Geometry Stud.pdf	RPV and CNV Flange Geometry	1
2	32-9257575-000 NuScale Reactor Core Chemical Deposition Analysis.pdf	NuScale Reactor Core Chemical Deposition Analysis	
3	51-9257323-000 AIS for NuScale GSI- 191 Evaluation.pdf	AIS for NuScale GSI-191 Evaluation	
4	DD-F010-4444_R0_Bioshield_Re- Design_to_Support_Environmental_Qu alification_Profile.pdf	Bioshield Re-Design To Support Environmental Qualification Profile	0
5	DI-0303-51058_R0.pdf	NIST-1 Data Processing for Code Assessment Purposes	0
6	EC_0000_3853_R1_Calcs_to_Support _NIST- 1_Distortion_Analysis_and_Modeling_ of_Containment_and_Pool_Heat_Tran sfer	Calculations to Support NIST-1 Distortion Analysis and Modeling of Containment and Pool Heat Transfer	1
7	EC_A013_00003036_01_CNV_Ultimat e_Pressure_Integrity_Analysis.pdf	CNV Ultimate Pressure Integrity Analysis	1
8	EC_A013_3377_R0_CNV_Primary_Str ess_Analysis.pdf	Primary Stress Analysis of the Containment Vessel	0
9	EC_B020_2877_R1 ECCS Combustible Gas Analysis.pdf	ECCS Combustible Gas Analysis	1
10	EC_B020_4365_R0, Containment Gas Composition Calculation.pdf	Containment Gas Composition Calculation	0
11	EC_F010_5233_00_CNV_Support_Int erface_with_RXB_Floor.pdf	CNV Interface with RXB Floor	0
12	EC-0000-2250- R0_Feedwater_Piping_Failure_Analysi s.pdf	Feedwater Piping Failure Analysis	0
13	EC-0000-2714- R0_Steam_System_Piping_Failure_An alysis.pdf	Steam System Piping Failure Analysis	0
14	EC-0000- 2786_R2_Failure_of_Small_Lines_Car rying_Primary_Coolant_Outside_Conta inment.pdf	Failure of Small Lines Carrying Primary Coolant Outside Containment	2
15	EC-0000- 4718_R0_GOTHIC_HELB_Cases_of_ NS_Top_of _Model_and_RXB_Pool_Room.pdf	GOTHIC HELB Cases of NuScale Top of Module RXB Pool Room	0

No.	File	Document Name	Rev. #
16	EC-0000- 4720_R1_NS_High_Energy_Line_Bre ak_Scenario_Definition_Top_of_Modul e.pdf	NuScale High Energy Line Break Scenario Definition - Top of Module	1
17	EC-0000-4721 1_GOTHIC_HELB_Causes_of_NS_To p_of_Module_and_RXB_Pool_Room	GOTHIC HELB Cases of NuScale Top of Module RXB Pool Room	1
18	EC-0000- 4745_R0_GOTHIC_HELIB_Cases_of_ NS_Top_of_Module_and RXB_Pool_Room_BioShield_Blowout_ Panels.pdf	GOTHIC HELB Cases of NuScale Top of Module and RXB Pool Room with Bioshield Blowout Panels Design	0
19	EC-0000- 4746_R0_GOTHIC_HELIB_Cases_of_ Revised_M&E_for_NS_Top_of_Modul e_and_RXB_Pool_Room.pdf	GOTHIC HELB Cases of Revised M&E for NuScale Top of Module and RXB Pool Room	0
20	EC-0000-5435-R0_final.pdf	Containment Pressure Initial Condition Sensitivity Calculations	0
21	EC-A010-2322-R3 Reactor Module Seismic Model.pdf	Reactor Module Seismic Model	3
22	EC-A010-3559-R3 Reactor Module Seismic Calculation.pdf	Reactor Module Seismic Calculation	3
23	EC-A010-4270-1.pdf	Long Term Cooling Analysis	1
24	EC-A013-1691_R0 Containment Vessel Flange Bolting Calculation.pdf	Containment Vessel Flange Bolting Calculation	0
25	EC-A013-2341 2 Contain Pressure Temperature Response Design Basis Events Analysis.pdf	Containment Pressure and Temperature Response to Design Basis Events	2
26	EC-A013-2341_R1 Containment Pressure and Temperature Response Design Basis Events Analysis.pdf	Containment Pressure and Temperature Response to Design Basis Events	1
27	EC-A030-4101, R0 Class 1 Piping Stress Analysis For RCS Discharge_Line.pdf	Class 1 Piping Stress Analysis For RCS Discharge Line	0
28	EC-B060-4543 0.pdf	GOTHIC Passive Cooling of NuScale Control Room Building	1
29	EC-B060-4544_ R0_GOTHIC_Passive_Cooling_Analys is_of_NS_RXB_Main_Pool_Room.pdf	GOTHIC Passive Cooling Analysis of NuScale RXB Main Pool Room	1
30	EC-B175-3253_R0 Ultimate Heat Sink Boil Off Calculation.pdf	Ultimate Heat Sink Boil Off Calculation	0
31	EC-F010-3108 Rev. 7.pdf	Seismic Soil-Structure Interaction Analysis of NuScale Reactor Building for ISRS Generation	0

No.	File	Document Name	Rev. #
32	ECN_A010_4189_R0_For EQ-A010- 3642 Correction to Table 3-1.pdf	Corrections to Table 3-1 Normal Operating Pressures and Temperatures for DHRS Lines (for EQ-A010-3642, 0)	0
33	ECN_A010_4575_R0 For EQ-A010- 3642 Overpress Protect Require Steam Gen System Piping.pdf	Revision of Overpressure Protection Requirements for Steam Generator System Piping (for EQ-A010-3642, 0)	0
34	ECN_A010_4614_R0 For EQ-A010- 2224 2nd Systems Contain Isolat Valves Design Spec Term Change.pdf	Secondary Systems Containment Isolation Valves Design Spec. Terminology Change (for EQ-A010- 2224, 0)	0
35	ECN_A010_4981_R0 For EQ-A010- 3642,RXM Class 1, 2, 3 Piping Design Spec. Terminology Change.pdf	RXM Class 1, 2, 3 Piping Design Spec. Terminology Change (for EQ- A010-3642, 0)	0
36	ECN_A010_5024_R0 For EQ-A010- 2224 Material Specification Update.pdf	Material Specification Update (for EQ- A010-2224, 0)	0
37	ECN_B020_4991_R0 Add Evaluation of Hydrogen Mixing during ECCS operation.pdf	Add Evaluation of Hydrogen Mixing during ECCS Operation (for EC- BZ020-4365, 0)	0
38	ECN_B020_5023_R0 For EQ-B020- 2140 Material Specification Update.pdf	Material Specification Update (for EQ- A010-2140, 2)	0
39	ECN_B030_4700_R0_For EQ-B030- 2258 ASME Design Specs Decay Heat Removal System Actuat Valves.pdf	ASME Design Specification for Decay Heat Removal System Actuation Valves (for EQ-B030-2258, 0)	0
40	ECN_B030_4849_R0_For EQ-B030- 2258 Decay Heat Remov Actuat Valves Load Combin Changes.pdf	Decay Heat Removal Actuation Valves Design Specification Terminology and Load Combination Changes (for EQ-B030-2258, 0)	0
41	ECN_B090_4290_Deisgn Solution for the HELB FR.pdf	Design Solution for the HELB FR (for SD-B090-1680, 0)	0
42	ECN_B090_4436_Add Passive Vent requirement to the FS.pdf	Add Passive Vent Requirements to the FS (for FS-B090-0533, 3)	0
43	ECN-0000_4908_R0 Containment Pressure and Temperature Updates ER-0000-4316.pdf	Containment Pressure and Temperature Updates (for ER-0000- 4908, 1)	0
44	ECN-0000-4968_R0 Update Appendix A Table A-1 Environmental Zones ER- 0000-4316.pdf	Update Appendix A Table A-1, Environmental Zones Required Update (for ER-0000-4316, 1)	0
45	ECN-0000-4998_R0 Various Updates to ER-0000-4316 Body, Figures and Tables.pdf	Various Updates to ER-0000-4316 Body, Figures and Tables (for ER- 0000-436, 1)	0

No.	File	Document Name	Rev. #
46	ECN-0000-5032_R0 For ER-0000- 3921 Reorganization of Chapter 5.0.pdf	Reorganization of Chapter 5.0 (for ER-0000-3921, 0)	
47	ECN-0000-5033_R0 For ER-0000- 3921 Misc Wording Adjustments Licensing Purposes.pdf	Miscellaneous Wording Adjustments for Licensing Purposes (for ER-0000- 3921, 0)	0
48	ECN-0000-5036_R0 For ER-000-3921 Reorganization of Chapter 3.0.pdf	Reorganization of Chapter 3.0 (for ER-0000-3921, 0)	0
49	ECN-A010-4742_R0 For EQ-A010- 2224 ASME Design Specs Second Systems Contain Isolation Valves.pdf	ECN for ASME Design Specification for Secondary Systems Containment Isolation Valves (for EQ-A010-2224, 0)	0
50	ECN-A013-5079_R0 For EC-A013- 2341 Additional M&E Tables for Licensing.pdf	ECN for EC-A013-2341, 2 (Containment Pressure and Temperature Response to Design Basis Events)	
51	ECN-A013-5131_R2 For EC-A013- 2341 O-RELAP v1.3.0 input decks for mass unit conversion.pdf	Adding M&E Tables for Licensing (for EC-A013-2341, 2)	0
52	ECN-B030-4744_R0 For EQ-B030- 2258 ASME Design Specs Decay Heat Remov System Activat Valves.pdf	ECN for ASME Design Specification for Decay Heat Removal System Actuation Valves (for EQ-B030-2258, 0)	0
53	EC-T080-3822-R1.pdf	NRELAP5 Assessment Against NuScale Separate Effects High Pressure Condensation Test Series NIST-1 HP-02	1
54	ED-F012-3661_ R2_BioShield_General_Arrangement_ and Details.pdf	BioShield General Arrangements Details	2
55	EQ_A010_00002235_01_ASME_Desi gn_Specification_for_Primary_System s_Containment_Isolation_Valves.pdf	ASME Design Specification for Primary Systems Containment Isolation Valves	1
56	EQ_A011_00001775_01_ASME Design Specification for Reactor Pressure Vessel.pdf	ASME Design Specification for Reactor Pressure Vessel	1
57	EQ_A013_00001826_01_ASME Design Specification for Containment_Vessel.pdf	ASME Design Specification for Containment Vessel	1
58	EQ_B020_00002140_02_ASME_Desi gn_Specification_for_Emergency_Core _Cooling_Valvespdf	ASME Design Specification for Emergency Core Cooling System Valves	2
59	EQ-A010-2224_R0 ASME Design Specification for Secondary System Containment Isolation Valves.pdf	ASME Design Specifications for Secondary Systems Containment Isolation Valves	0

No.	File	Document Name	Rev. #
60	EQ-A010-2235_R0 ASME Design Specification for Primary Systems Containment Isolation Valves.pdf	ASME Design Specifications for Primary Systems Containment Isolation Valves	0
61	EQ-A010-3642_R0 ASME Design Specification for RXM Class 1 2 3 Piping.pdf	ASME Design Specifications for RXM Class 1, 2, and 3 Piping	0
62	EQ-A013-5418 R0 - ASME Design Specification for Containment EPAs.pdf	Design Specification for CNV Electrical Penetration Assemblies	0
63	EQ-B030-2258_R0 ASME Design Specification for Decay Heat Removal System Activation Valves.pdf	ASME Design Specification for Decay Heat Removal System Actuation Valves	0
64	ER_A010_2009_4_NuScaleReactor _Module_Design_Parameters.pdf	NuScale Reactor Module Design Parameters	4
65	ER_A013_3246_R1 Containment Vessel Structural Eval for Combustible Gas.pdf	Containment Vessel Structural Evaluation for Combustible Gas	1
66	ER_B020_4364_R0_GSI_191_Assess ment_of_Debris_Accumulation_on_P WR_Sump_Performance_Evaluation_ of_Ex_Vessel_and_In_Vessel	GSI-191, Assessment of Debris Accumulation on Pressurized Water Reactor [PWR] Sump Performance - Evaluation of Ex-vessel and In-vessel Effects	0
67	ER_P000_7002_R0_PRA_Quantificati on_Notebookpdf	Probabilistic Risk Assessment Quantification Notebook	0
68	ER_P010_7007_R0_Accident_Sequen ce_Analysis_Notebook_wECN.pdf	Accident Sequence Analysis Notebook	0
69	ER_P010_7008_R0_Success_Criteria _Notebook_wECN.pdf	Success Criteria Notebook	0
70	ER_P020_00004896_00_Severe_Acci dent_Selection_Methodology.pdf	Severe Accident Selection Methodology	0
71	ER_P020_00004904_00_Hydrogen_D eflagrationAdiabatic_Isochoric_Co mplete_Combustion.pdf	Hydrogen Deflagration-Adiabatic Isochoric Complete Combustion	0
72	ER_P020_7024_R0_Level_2_Probabili stic_Risk_Assessment_Notebook_wE CN	Level 2 Probabilistic Risk Assessment Notebook	0
73	ER_P060_00007077_A_TRN_16TG eneral_Transient_with_Two_Trains_of _DHRSReactor_Recirculation_Valve _OpenLoss_of_DC_Powerpdf	TRN-16T: General Transient with Two Trains of DHRS and Reactor Recirculation Valves Open (Loss of DC Power)	A
74	ER_P060_4715_R0_TRN_07TGene ral_Transient_with_Stuck_Open_RSV_ and_No_Mitigation.pdf	TRN-07: General Transient with Stuck Open Reactor Safety Valve and No Mitigation, from a PRA Level 2 Perspective	0
75	ER_P060_4724_R0 NuScale MELCOR Basemodel.pdf	NuScale MELCOR Basemodel	0

No.	File	Document Name	Rev. #
76	ER_P060_4748_R0_LEC_06TRVV_ LOCA_with_No_Mitigation.pdf	LEC-06T: Reactor Vent Valve LOCA with No Mitigation, from a PRA Level 2 Perspective	0
77	ER_P060_4749_R0_LCC_05TChar ging_Line_Break_Inside_Containment _with_No_Mitigation.pdf	LCC-05T: Charging Line Break Inside Containment with No Mitigation, from a PRA Level 2 Perspective	0
78	ER_P060_4750_00_LCU_03TUniso lated_Charging_Line_LOCA_Outside_ Containment, No_Mitigation.pdf	LCU-03T: Unisolated Charging Line LOCA Outside Containment with No Mitigation, from a PRA Level 2 Perspective	0
79	ER_P060_4857_R0_LCC_05TChar ging_Line_Break_Inside_Cntmt_Compl ete_ECCS_Failure_wECN.pdf	LCC-05T: Charging Line Break Inside Containment with Complete ECCS Failure, from a PRA Level 2 Perspective	0
80	ER_P060_7047_R0_LCU_05TUniso I_Chging_LOCA_Outside_CNV_w_CF DS, ECCS.pdf	LOU-05T: Unisolated Charging Line LOCA Outside Containment with CFDS and ECCS	0
81	ER_P060_7050_R0_LEC_09TECC S_Valve_LOCA_with_Charging_Injecti on.pdf	LEC-09T: ECCS Valve LOCA with Charging Injection	0
82	ER_P060_7075_00_TRN_08TGene ral_Transient_RSVs_Fail_to_Open_No _Mitigation.pdf	TRN-08T: General Transient with Reactor Safety Valves Failed to Open and No Mitigation	0
83	ER_P060_7076_R0_TRN_14AGene ral_Transient_with_Cycling_RSVAT WSpdf	TRN-14A: General Transient with Cycling Reactor Safety Valve (ATWS)	0
84	ER_P060_7082_R0_NRELAP5_PRA_ Base_Model.pdf	NuScale NRELAP5 Probabilistic Risk Assessment Base Model	0
85	ER-0000-2486 4 Safety Analysis Analytical Limits report.pdf	Safety Analysis Analytical Limits Report	4
86	ER-0000-2486 Revision 5.pdf	Safety Analysis Analytical Limits Report	5
87	ER-0000-3921_R0 Long Term Core Cooling Methodology Report.pdf	Long Term Core Cooling Methodology Report	0
88	ER-0000-4316_R1 Environ Service Conditions Electrical and Mechanical Equipment Qualification.pdf	Environmental Service Conditions for Electrical and Mechanical Equipment Qualifications	1
89	ER-0000-4391 0_Mass_and_Energy_Release_and_C ontainment_Vessel_Pressure_and_Te mp_Response_Method	Mass and Energy Release and Containment Vessel Pressure and Temperature Response Methodology	0
90	ER-A013-3246_R0 Containment Vessel Structural Eval for Combustible Gas.pdf	Containment Vessel Structural Evaluation for Combustible Gas	0

No.	File	Document Name	Rev. #
91	ER-A013-3635_R0 Containment System Failure Modes and Effects Analysis.pdf	Containment System Failure Modes and Effects Analysis	0
92	ER-A013-4785 0.pdf	10 CFR 50 Appendix J Containment Leakage Testing Assessment	0
93	ER-P020-5092_Rev_0 Assessment of LRSAP for NuScale level 2 PRA.pdf	Assessment of Low-Risk Severe Accident Phenomena for the NuScale Level 2 PRA	0
94	FS_B080_00000542_02_Control_Roo m_Normal_Ventilation.pdf	Control Room HVAC System (CRVS) Functional Specification	2
95	MSS SDD SD-C010-1722 0 Main Steam System Design Description.pdf	Main Steam System Design Description	0
96	OP-0000-10842_R0 Module Refueling Operations.pdf	NuScale Model Refueling Operations	0
97	RP-1215-19690 - concept of automation.pdf	Concept of Automation	A
98	SD_B090_00001680_R0_Reactor_Buil ding_HVAC_System_Design_Descripti on.pdf	reactor Building HVAC System (RBVS) System Design Description	0
99	SDR-0615-15509_R4.pdf	OSU NIST-1 Facility Description Report	4
100	SwUM-0304-15495 3 - NRELAP5 Version 1.3 Code Manual Appendix A - Input Requirements.pdf	NRELAP5 Version 1.3 Input Data Requirements	3
101	TR-0216-21604.pdf	Superseded Document NuScale Power Containment Vessel Integrated Leak Rate Testing Options	0
102	TR-0916-51502-P.pdf	NuScale Power Module Seismic Analysis	0