NRC INSPECTION MANUAL

APHB

INSPECTION MANUAL CHAPTER 0609 APPENDIX H

CONTAINMENT INTEGRITY SIGNIFICANCE DETERMINATION PROCESS

TABLE OF CONTENTS

0609H-01	Introduction	1
01.01 Applica	ability 1	
01.02	Entry Conditions	2
01.03	Appendix H Outline	2
01.04	Use of SAPHIRE Software to Calculate LERF	2
0609H-02	Limitations And Precautions	3
0609H-03	Abbreviations and Definitions	4
0609H-04	Overview of the Approach and Procedure for Significance Determination	6
0609H-05	Consequential Steam Generator Tube Rupture (C-SGTR)	
0609H-06	Procedure for Type A Findings	13
06.01	Approach for Assessing Type A Findings at Power	13
06.02	Approach for Assessing Type A Findings During Shutdown	21
0609H-07	Procedure for Type B Findings	
07.01	Approach for Assessing Type B Findings at Power	
07.02	Approach for Assessing Type B Findings at Shutdown	
0609H-08	REFERENCES	
List of Tables		
Table 4.1 Co	ntainment-Related SSCs Considered for LERF Implications	<u></u> 9
Table 6.1 Pha	ase 1 Screening-Type A Findings at Full Power	18
Table 6.2 Pha	se 2 Assessment Factors -Type A Findings at Power	<u></u> 19
Table 6.3: Wo	rksheet for ΔLERF	20
Table 6.4 Pha	ase 2 Assessment Factors -Type A Findings at Shutdown	24
Table 7.2 Pha	ase 2 Risk Significance -Type B Findings at Power	<u></u> 28
Table 7.3 Pha	ase 1 Screening-Type B Findings at Shutdown	32
Table 7.4 Ph	ase 2 Risk Significance -Type B Findings at Shutdown	<u></u> 33
Table 7.5 BW	Rs With Minimal Shutdown Mitigation Capability	<u></u> 35
Table 7.6 BW	Rs With In-depth Shutdown Mitigation Capability	<u></u> 36
Table 7.7 PV	VRs With Minimal Shutdown Mitigation Capability	<u></u> 37
Table 7.8 PW	Rs With In-depth Shutdown Mitigation Capability	<u></u> 38
	ntainment-Related SSCs Considered for LERF Implications	
Table 6.1 Pho	ase 1 Screening-Type A Findings at Full Power	18
	se 2 Assessment Factors -Type A Findings at Full Power	
Table 6.3: Wo	rksheet for ΔLERF	20
Table 6.4 Pha	ase 2 Assessment Factors -Type A Findings at Shutdown	2 4
	se 1 Screening-Type B Findings at Power	
	ase 2 Risk Significance -Type B Findings at Power	
	ase 1 Screening-Type B Findings at Shutdown	
	ase 2 Risk Significance -Type B Findings at Shutdown	
	Rs With Minimal Shutdown Mitigation Capability	
	Rs With In-depth Shutdown Mitigation Capability	
Table 7.7 PV	VRs With Minimal Shutdown Mitigation Capability	38
	Rs With In-depth Shutdown Mitigation Capability	
List of Figures	;	
	4.1 - LERF-based Significance Determination	

Po	ower	.14
	gure <mark>56</mark> .2 - Road Map for LERF-based Significance Evaluation for Type A Findings and the control of the contro	
	gure <mark>67</mark> .1 - Road Map for LERF-based Risk Significance for Evaluation Type B ndings at Power	.25
Fig	gure <mark>67</mark> .2 - Road Map for LERF-based Significance Evaluation for Type B Findings and the following states are supplied to the supplied to the following states are supplied to the following states	
List of Atta	achments	
Att	tachment 1 – Guidance for Assessing the Timing of Protective Actions in Detailed R Evaluations	
Att	tachment 2 – Revision History for IMC 0609, Appendix H	

Issue Date: DRAFT ii 0609 App H

0609H-01 Introduction

Core damage accidents that lead to large, unmitigated releases from containment in a time frame prior to effective evacuation of the close-in population have the potential to cause early health effects, e.g. prompt fatalities. The frequency of all accidents of this type is called the large early release frequency (LERF) as described in Regulatory Guide 1.174 (reference 1). Such accidents include unscrubbed releases associated with early containment failure at or shortly after reactor vessel breach, containment bypass events, and loss of containment isolation.

The relationship of LERF thresholds to core damage frequency (CDF) thresholds found in Regulatory Guide 1.174 provides the basis for the risk significant characterizations found in Table 1.1 below. The LERF based approach is one order of magnitude more stringent than the CDF based approach. Therefore, it may be necessary under some circumstances to characterize the risk significance of an inspection finding using the LERF based approach. The purpose of this appendix to provide guidance for assessing the impact of inspection findings in relation to the containment barrier cornerstone of safety. The basis for the guidance presented in this appendix is discussed in IMC-308, Reactor Oversight Process (ROP) Basis Document.

Table 1.1 Risk Significance Based on ΔLERF vs ΔCDF

Frequency Range/ry	SDP Based on ΔCDF	SDP Based on ΔLERF
≥ 10 ⁻⁴	Red	Red
< 10 ⁻⁴ - 10 ⁻⁵	Yellow	Red
< 10 ⁻⁵ - 10 ⁻⁶	White	Yellow
< 10 ⁻⁶ - 10 ⁻⁷	Green	White
<10 ⁻⁷	Green	Green

The significance determination process (SDP) assigns a risk characterization to inspection findings based on LERF considerations. This process is designed to interface directly with the SDP Phase 2 results for Type A findings, derived from IMC 609, Appendix A (at power) and Appendix G (shutdown), that are important LERF contributors. In addition, the guidance addresses findings related to structures, systems, and components (SSCs) that do not influence CDF determinations but can impact the containment function (i.e., Type B findings). It is recommended that inspectors, working with senior reactor analysts (SRAs) as needed, evaluate both Type A and Type B findings for at power findings. It is further recommended that SRAs evaluate both Type A and Type B findings for shutdown.

Note: Type A and Type B findings are defined in section 03.02 Definitions.

01.01 Applicability

The guidance in this SDP is designed to provide NRC inspectors, SRAs and NRC management with a simple probabilistic risk framework for use in identifying which findings are potentially risk-significant from a LERF perspective. Appendix H also helps facilitate communication of the basis for significance between the NRC and licensees. In addition, it identifies findings that do not warrant further NRC engagement, due to very low risk significance, given the findings are entered into the licensee's corrective action program.

Issue Date: DRAFT 1 0609 App H

01.02 Entry Conditions

The entry conditions for the containment integrity SDP described in this document are related to:

- Degraded plant equipment functions, issues that can affect initiating event frequencies, mitigating systems availability/reliability, and RCS barrier integrity (i.e., items that can potentially increase CDF), that have already been evaluated through SDP Phase 2 described in IMC 0609, Appendix A, Findings evaluated under IMC 0609 Appendix A (at power) or Appendix G (shutdown) that potentially increase LERF. or
- Degraded conditions affecting containment barrier integrity (that can potentially increase LERF without affecting CDF).

Appendix H provides simplified risk-informed guidance for estimating the increase in LERF associated with inspection findings related to deficient licensee performance during full power (see IMC 0609, Appendix A) and shutdown operations (see IMC 0609, Appendix G).

01.03 Appendix H Outline

The guidance presented in this appendix is based on a number of assumptions and modeling approximations. Section 02 presents the limitations and precautions that must be considered when evaluating inspection findings. Abbreviations and definitions used in this appendix are presented in Section 03. Section 04 is an overview of the approach and the procedure. Section 05 describes consequential steam generator tube ruptures (C-SGTR). Section 06 presents the procedure for analyzing those findings that have an impact on CDF (i.e, Type A findings) and Section 07 presents the procedure for analyzing those findings that only impact the containment function (i.e., Type B findings). Findings related to full-power operation and findings related to low-power and shutdown operations are both addressed.

01.04 Use of SAPHIRE Software to Calculate LERF

Although this manual chapter provides the methods to estimate LERF manually, LERF can now be calculated automatically with Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) software. The LERF assessment factors for Type A LERF findings have now been programmed into all standardized plant analysis risk (SPAR) models for all plants using global linkage rules.

The use of SAPHIRE to calculate LERF for Type A findings is the preferred method since it eliminates the need to manually list sequences and sum them using the worksheets and methods in this manual chapter. SAPHIRE can also provide values for LERF in Type A findings using the SDP analysis tool. It is important to note, however, that even the SAPHIRE results will produce a Phase 2 Initial Risk Significance Approximation and further refinement might be appropriate.

Issue Date: DRAFT 2 0609 App H

01.05 Use of Licensee Models for LERF

Another potential source of LERF data is the licensee's full scope model of record. That source can be used as additional information as well. The SRA can contact the licensee and request specific runs be performed and the output can be viewed as another potential source of LERF information. The SRA will need to determine if the PRA model in question is capable of adequately evaluating the risk associated with the finding. Keep in mind licensee models may not model C-SGTR or type B findings. Based on the results from the licensee's LERF evaluation, the SRA can determine if the finding is of very low risk significance. Any evaluation using licensee provided information should be done in the Phase 3 portion of the evaluation.

0609H-02 Limitations And Precautions

Appendix H generates a reasonably conservative, order-of-magnitude assessment of the risk significance of inspection findings. The intent of Appendix H is to provide guidance for NRC inspectors to easily obtain a quick assessment of risk significance. If appropriate, a more detailed assessment may be performed in a SDP Phase 3 evaluation.

The approach in this appendix has numerous assumptions and limitations which include the following:

- Since this SDP is focused on LERF, i.e., early fatality risk, long-term risk effects such as
 population dose and latent cancer fatalities are not addressed in this guidance. In
 addition, long term accident sequences that involve failure of containment heat removal
 and ultimately progress to containment failure, e.g., loss of containment heat removal
 sequences in BWRs, are assumed not to contribute to LERF. It is assumed that
 effective emergency response actions can be taken within the long time frame of these
 accident sequences.
- For the evaluation of risk significance during shutdown, only the period within eight days of the beginning of the outage is considered. After eight days, it is assumed that the short-lived, volatile isotopes that are principally responsible for early health effects have decayed sufficiently such that the finding would not contribute to LERF. In addition, all core damage sequences are considered as candidate LERF sequences, because it is not known when evacuation would begin.
- LERF determinations depend on the containment design, plant specific attributes and features, which have considerable variability.
- It was conservatively assumed for all interfacing system loss-of-coolant-accidents (ISLOCAs) that the path outside containment is not submerged (i.e. the release is not scrubbed).
- It was conservatively assumed for all steam generator tube ruptures (SGTRs) that the secondary side is open so that a path outside containment exists and the release is not scrubbed.
- For those findings that impact the containment function (i.e., Type B findings), baseline CDFs for full power were assumed in order to simplify the calculation of the change in risk. The baseline CDFs for full power assumed were10-4/ry for PWRs and 10-5/ry for BWRs
- It was assumed, conservatively, that a main steam isolation valve (MSIV) leakage rate in excess of 10,000 scfh in BWRs (reference 2) with Mark I and Mark II containments is significant to LERF.

Issue Date: DRAFT 3 0609 App H

0609H-03 Abbreviations and Definitions

03.01 Abbreviations

ATWS Anticipated Transient Without Scram

CAP Corrective Action Program

CCFP Conditional Containment Failure Probability

CCW Component Cooling Water

CD Core Damage

CDF Core Damage Frequency
CE Combustion Engineering

C-SGTR Consequential Steam Generator Tube Rupture

DF Decontamination Factor
DHR Decay Heat Removal

ECCS Emergency Core Cooling System
IMC Inspection Manual Chapter
LER Licensee Event Report

LERF Large Early Release Frequency LOIA Loss of Instrument Air Initiator

LOOP Loss of Offsite Power

LORHR Loss of RHR Initiating Event Losw Service Water Initiator

LTOP Low Temperature Over Pressure Events

POS Plant Operating State

PRA Probabilistic Risk Assessment
RCS Reactor Coolant System
RHR Residual Heat Removal
ROP Reactor Oversight Process
RPV Reactor Pressure Vessel
SCFH Standard Cubic Feet per Hour
SDP Significance Determination Process

SG Steam Generator

SGTR Steam Generator Tube Rupture

SPAR Standardized Plant Analysis Risk
SSC Structure, System, or Component

TS Technical Specifications

TW Time Window

TW-E Early Time Window, before refueling operation
TW-L Late Time Window, after refueling operation

03.02 Definitions

<u>LERF</u>: The frequency of those accidents leading to significant, unmitigated releases from containment in a time frame prior to effective evacuation of the close-in population such that there is a potential for early health effects.

Close-in population: The population living or transiting within one mile of the reactor site boundary. This also includes nonessential plant personnel being evacuated from the site, any temporary population or local workforce, and any population that may be transiting through the area. Per the Commission's Safety Goal Policy if there are no individuals residing within a mile of the plant boundary, an individual for evaluation purposes, should be assumed to reside 1 mile from the site boundary.

Effective Evacuation: A set of actions by the licensee and local authorities that results in reasonable assumption that the close-in population has been evacuated. This does not require verification or certainty that every individual has left the area, only that all reasonable efforts have been completed and the population has had time to leave the area.

Appendix H Phases of Significance Determination:

- Phase 1 Characterization and Initial Screening of Findings: Precise characterization of the finding and an initial screening of very low-significance findings for disposition by the licensee's corrective action program.
- Phase 2 Initial Risk Significance Approximation and Basis: Initial approximation of the risk significance of the finding and development of the basis for this determination for those findings that are not screened out in Phase 1 screening.
- Phase 3 Risk Significance Finalization and Justification: Review and as-needed refinement of the risk significance estimation results from Phase 2, or development of any risk analysis outside of this guidance, by an NRC risk analyst (any departure from the guidance provided in this <u>document</u> <u>document or IMC 609 Appendix G for Phase 1 or Phase 2</u> constitutes a Phase 3 analysis and must be performed by an NRC risk analyst or SRA).

<u>Condition Findings</u>: Inspection findings that only involve a degradation of the licensee's mitigation capability.

<u>Loss of RHR (LORHR)</u>: Includes losses of RHR resulting from failures of the RHR system (such as RHR pump failure) or failures of RHR support systems other than offsite power.

<u>Loss of Offsite Power (LOOP)</u>: Includes losses of offsite power which cause a loss of RHR shutdown operations.

Plant Operating States (POSs) During Shutdown:

For BWRs

POS 1: Starts when the RHR system is placed in service and RCS pressure is reduced below 135 psig with the MSIVs closed. The reactor pressure vessel (RPV) head is on. This POS covers part of Hot Shutdown (Mode 3) and Cold Shutdown (Mode 4) of the technical specifications (TS) modes.

POS 2: Represents the shutdown condition when the RPV head is removed and reactor vessel water level is less than the minimum level required for movement of irradiated fuel assemblies within the RPV as defined by TS. This POS occurs during Mode 5.

POS 3: Represents the shutdown condition when the RPV water level is greater than or equal to the minimum level required for movement of irradiated fuel assemblies within the RPV as defined by TS. This POS occurs during Mode 5.

For PWRs

POS 1 - Starts when the RHR system is placed in service. The RCS is closed such that a steam generator could be used for decay heat removal, if the secondary side of a steam generator is filled. The RCS may have a bubble in the pressurizer. This POS ends when the RCS is vented such that the steam generators cannot sustain core heat removal. This POS typically includes Mode 4 (hot shutdown) and portions of Mode 5 (cold shutdown).

POS 2 - Starts when the RCS is vented such that: (1) the steam generators cannot sustain core heat removal and (2) a sufficient vent path exists for feed and bleed. This POS includes portions of Mode 5 (cold shutdown) and Mode 6 (refueling). Reduced inventory operations and mid-loop operations with a vented RCS are subsets of this POS. Note: performance deficiencies occurring during a vacuum refill of the RCS require use of the POS 1 event trees.

POS 3 - Represents the shutdown condition when the refueling cavity water level is at or above the minimum level required for movement of irradiated fuel assemblies within containment as defined by TS. This POS occurs during Mode 6.

<u>Early Time Window (TW-E)</u>: Represents the time before POS 3 is entered. The decay heat is relatively high. The reactor is in POS 1 or 2. Generally, TW-E represents the first eight days after shutdown.

<u>Late Time Window (TW-L)</u>: This time window represents the time after POS group 3. The decay heat is relatively low. The reactor is in POS 1, 2, or 3.

<u>Available</u>: An SSC is considered available if it can be placed in service quickly enough to meet its function and all necessary supporting systems are functional (such as AC power, cooling water, and DC control power).

<u>Reduced Inventory Operations (PWR only)</u>: Exists whenever the RPV water level is lower than three feet below the reactor vessel flange.

Shutdown Operations: Shutdown operation Eexists during hot shutdown, cold shutdown, and refueling when at least more than one fuel assembly is in the RPV reactor vessel and the criteria for placing the RHR/DHR system into operation have been satisfied. decay heat removal system is in operation.

0609H-04 Overview of the Approach and Procedure for Significance Determination

The guidance described in this section provides an assignment of a significance level (color) to inspection findings based on LERF considerations. This guidance considers findings resulting from deficient licensee performance during full power operations as well as shutdown

Issue Date: DRAFT 6 0609 App H

operations. In Section 04.01, two distinct types of inspection findings that can potentially affect LERF are defined. Section 04.02 provides details of the overall approach taken to the assessment of their significance.

04.01 Types of Findings

An inspection finding associated with a licensee performance deficiency during full power or shutdown operations is characterized by its potential impact on SSCs, by an estimate of the duration of this degradation, and by other information needed to assess the impact on accident likelihood or barrier cornerstone. Two types of findings are encountered:

Type A Findings:

Type A findings can influence the likelihood of accidents leading to core damage that are also identified as contributors to LERF. Such a finding will already have been processed using SDP Phase 2 results using Appendix A of IMC 609 for findings at full power, or IMC 609 Appendix G for findings related to shutdown operations to determine their contributions to Δ CDF.

Type B Findings:

Type B findings are related to a degraded condition that has potentially important implications for the integrity of the containment, without affecting the likelihood of core damage. Table 4.1 shows a list of SSCs (associated with maintaining containment integrity in different containment types). The LERF significance of these SSCs is also addressed in the table.

04.02 LERF Based Significance Determination Process

Figure 4.1 describes the process flow of typical inspection findings. Findings processed through a CDF based SDP will be processed for potential ΔLERF contribution as Type A findings.- The process is designed to interface with the existing CDF based SDP plant specific SDP Phase 2 inspection notebooks. All findings that have been processed through the CDF based notebooks will be assessed for their potential to contribute to ΔLERF, as Type A findings. Findings that only impact the containment function without affected core damage sequences will be processed as Type B findings.

Type A Findings

For type A findings, the CDF based SDP guidance is used to determine the risk significance based on Δ CDF. If the total Δ CDF for the finding is less than 1E-7 per reactor year, then the finding should be assigned a Green significance level.

If the total $\Delta CDF \ge 1E-7$ per reactor-year, then a screening is conducted using LERF screening criteria to assess whether any of the core damage sequences affected by the finding are potential LERF contributors. If none of the sequences is a LERF contributor there is no increase in risk and the risk significance based on ΔCDF applies. If one or more of the affected sequences is identified as a LERF contributor, an assessment is performed to estimate $\Delta LERF$ and determine the increase in risk significance based on LERF considerations as discussed in detail in Section 05.

Issue Date: DRAFT 7 0609 App H

Type B Findings

Type B findings have no impact on the determination of Δ CDF and therefore will not have been processed through the CDF based SDP. These findings, however, are potentially important to Δ LERF contribution and have to be allocated an appropriate risk category based on LERF considerations. As shown in Figure 4.1, an initial screening is conducted to determine if a finding is related to a containment SSC (see Table 4.1) or containment status that has an impact on LERF. If the answer is NO, the finding is Green. If the answer is YES, an assessment of the risk significance is performed using guidance provided in Section 06.

Issue Date: DRAFT 8 0609 App H

Table 4.1 Containment-Related SSCs Considered for LERF Implications¹

SSC	LERF Significance
Containment penetration seals: - BWR Mark I and II drywell or PWR containment - BWR Mark III wetwell	Failure of penetration seals that form a barrier between the containment and the environment can be important to LERF
Containment isolation valves in lines: - connecting BWR drywell or PWR containment airspace to environment	Large lines connecting containment airspace to environment (e.g., vent/purge) can contribute to LERF.
connecting RCS to environment or open systems outside containment	Small lines (< 1-2 inch dia) and lines connecting to closed systems would not generally contribute to LERF.
connected to closed systems inside/outside containment	Isolation valves connecting to RCS can contribute to ISLOCA
Main Steam Isolation Valves	Excessive MSIV leakage can contribute to LERF in high pressure accident sequences in BWR Mark I and II plants
BWR drywell/containment sprays	Mark I and II drywell sprays and Mark III containment sprays are important to preventing liner melt-through and mitigating suppression pool bypass
Containment flooding system(s)	Important to preventing liner melt-through in Mark I's
PWR containment sprays and fan coolers	Impact late containment failure and source terms, but not LERF
Hydrogen control system -igniters	Important to LERF in Mark III and ice condenser plants
-air return fans and hydrogen mixing systems	Not essential to hydrogen control if igniters are available

Issue Date: DRAFT 9 0609 App H

¹ Some of the listed SSCs could affect the core damage frequency as well as LERF.

Suppression pool (SP) systems -components important to SP integrity/scrubbing (e.g., vacuum breakers) -suppression pool cooling	Important to LERF in all BWR plants Impacts late containment failure but not LERF
Ice condenser system	Significant flow blockage can be important to LERF Not important to LERF (similar to containment sprays) Deviations in weight of ice not important to LERF Not important to LERF (unless CDF is affected)
Filtration systems - Standby Gas Treatment System - control room ventilation	Not important to LERF due to unavailability in dominant sequences (e.g., SBO), plugging from high aerosol loadings in severe accident, and other considerations
Spent fuel assemblies (individual) - fuel handling accidents within pool - fuel handling accidents outside pool	Not important to LERF due to small fission product inventory contained in single fuel bundle. Scrubbing by water in the spent fuel pool further reduces releases.

Issue Date: DRAFT 10 0609 App H

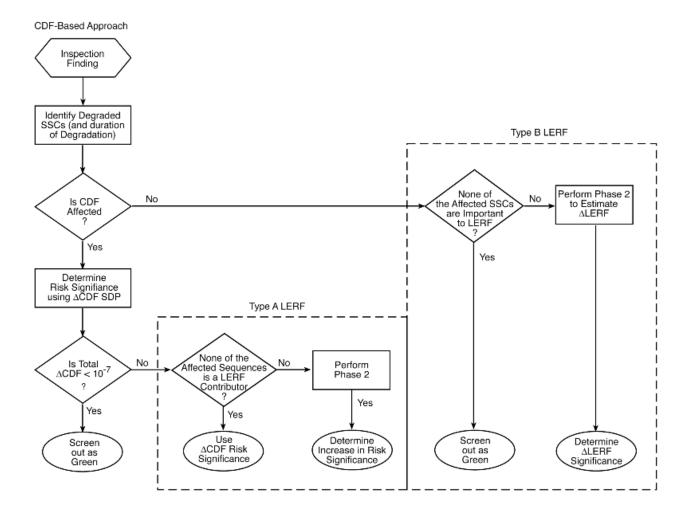


Figure 4.1: LERF-based Significance Determination Process

0609H-05 Consequential Steam Generator Tube Rupture (C-SGTR)

Consequential Steam Generator Tube Rupture (C-SGTR) is an event in which steam generator tubes leak or fail as a consequence of the high differential pressure or elevated temperatures during accident conditions.

The main accident scenarios of interest for C-SGTR are those that lead to core damage with high reactor pressure, dry steam generator, and low steam generator pressure (High-Dry-Low or HDL) conditions. A typical example of such an accident scenario is a station blackout with loss of auxiliary feedwater. Though other situations can lead to the potential for C-SGTR (e.g., over-pressure from ATWS, a large main steam line break, deliberate action to isolate feed to a faulted steam generator), these other sources are generally understood to be lower contributors to LERF. All of these situations are distinct from SGTR as an initiating event, which should continue to be treated as described elsewhere in this appendix.

NUREG-2195 concluded that the overall contribution of C-SGTR scenarios to containment bypass is about a factor of 10 larger for CE plants than Westinghouse plants². Since C-SGTR is expected to contribute no more than 1-2% additional LERF for a typical Westinghouse plant, it is on par with other sources of LERF for these plants. Conversely, C-SGTR has the potential to be a much more significant contributor to LERF for CE plants, depending on the nature of the performance deficiency and its impact on the risk evaluation.

Therefore, performance deficiencies that could significantly influence the likelihood of having high RCS pressure during core damage or that involve the reliability of feedwater for a CE plant should be evaluated for potential LERF findings from C-SGTR. The RASP Handbook provides the technical basis and a simplified worksheet to estimate LERF resulting from a C-SGTR. Westinghouse plants can also experience C-SGTR but since the potential for it becoming a significant LERF contributor is lower, Appendix H does not require Westinghouse plants to be screened for C-SGTR.

Issue Date: DRAFT 12 0609 App H

² Two of the primary factors driving this different are hot leg diameter and steam generator inlet plenum design. CE plants tend to have larger hot legs that connect to the steam generator closer to the tube sheet, along with flat-bottomed steam generator inlet plenums. Westinghouse plants tend to have smaller hot legs that connect lower in the steam generator inlet plenum, along with rounded-bottomed steam generator inlet plenums. These design features tend to dictate the degree of mixing in the inlet plenum under high-dry-low conditions, resulting in a greater challenge to the tubes in the design typical of CE plants.

0609H-06 Procedure for Type A Findings

The CDF-based SDPs (Appendix A and Appendix G to IMC-0609) provide guidance for assessment of the significance of findings that impact CDF. This leads to identification of CDF sequences associated with each finding, evaluation of the increase in frequency of each of the contributing sequences, and determination of the finding significance to Δ CDF based on all contributing sequences collectively.

Evaluation of the impact of the finding on LERF for these sequences is addressed using this appendix. Section 06.01 presents the procedure for Type A findings at full power, and Section 06.02 presents the procedure for Type A findings at shutdown.

06.01 Approach for Assessing Type A Findings at Power

This section provides the step-by-step process (as shown in Figure 6.1) for assessing the risk significance with respect to LERF of Type A findings at full power. <u>As a reminder, SAPHIRE can also be used to calculate LERF of Type A findings, and is the preferred method.</u>

STEP 1 – Finding Characterization

Review the plant-specific SDP Phase 2 notebook worksheets for the finding to dDetermine the total ΔCDF of the finding and to identify the associated CDF sequences which may be LERF contributors.

Step 2 – Accident Sequence Screening

Generally, only a subset of those sequences contributing to CDF significance of a finding has the potential to impact LERF. A more detailed discussion of these sequences for each containment type is provided in IMC-308, and briefly summarized below.

BWRs

- For BWR Mark I and Mark II plants, findings related to ISLOCA, ATWS, and accidents with high RCS pressure (i.e., transients and small break LOCA).
- For BWR Mark I plants, accidents that involve a dry drywell floor at vessel breach regardless of whether the RCS is at low or high pressure also need to be evaluated in Phase 2 as indicated in Note 3 to Table 6.1.
- For BWR Mark III plants, findings related to ISLOCA, transients, small break LOCAs, and station blackout (SBO) categories.

PWRs

- For PWR plants with large dry and sub-atmospheric containments, findings related to the accident categories ISLOCA and SGTR.
- Certain accident sequences that lead to core damage with high reactor pressure, dry steam generator, and low steam generator pressure (High-Dry-Low or HDL) conditions can lead to a consequential steam generator tube rupture (C-SGTR). A typical example of such an accident scenario is a station blackout with a loss of auxiliary feedwater. Though other situations can lead to the potential for C-SGTR (e.g. over-pressure from ATWS, a large main steam line break). A C-SGTR is more of a concern for Combustion Engineering (CE) plants. Consult the Risk Assessment for Operational Events (RASP)

Manual Volume 5 for more information.

• For the PWR plants with ice condenser containments, findings related to ISLOCA, SGTR, and SBO accident categories.

Issue Date: DRAFT 14 0609 App H

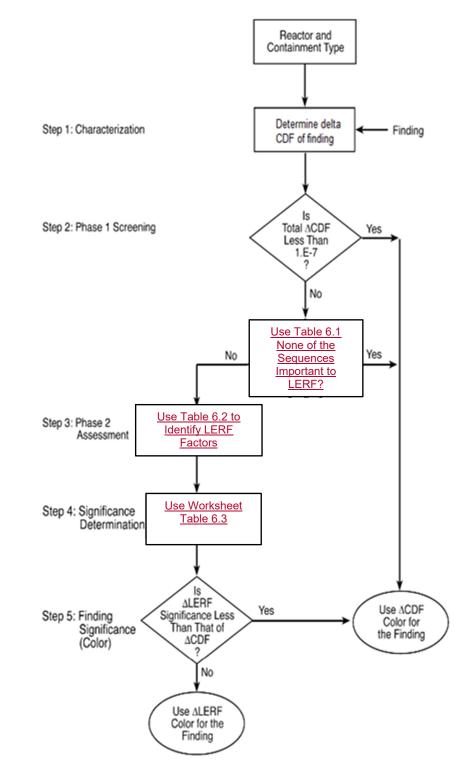


Figure 6.1: Road Map for LERF-based Risk Significance Evaluation for Type A Findings at Power

Accident categories that are screened out in Phase 1 include:

- LOOPs with successful emergency AC power operation (non-SBO events).
- LOOPs with failure of emergency AC power in which power is recovered prior to core damage.

In general, sequences with late core damage (i.e., sequences that proceed to core damage due to loss of containment heat removal) will not contribute to LERF. Other sequences that are screened out are summarized below. When screening out these events for PWR's use caution not to overlook High-Dry-Low sequences which could result in a C-SGTR that would be significant for LERF.

BWRs

ATWS sequences are not important contributors to LERF for BWRs with Mark III
containment. Containment failure from ATWS sequences occurs due to gradual over_
pressurization of containment prior to core damage. However, these sequences leave
the drywell and suppression pool intact, hence the releases are scrubbed and a large
early release does not occur.

PWRs

- ATWS sequences are <u>usually</u> not significant contributors to LERF for PWRs. During a PWR ATWS, containment pressure increases slowly and is therefore a late failure mode. The risk significance determined by the CDF based SDP for ATWS events in PWRs is sufficient. <u>An exception to this would be an ATWS sequence coincident with a loss of feed that could lead to a C-SGTR.</u>
- High and low pressure core damage sequences (in which the containment is not bypassed) are not significant contributors to LERF for PWRs with large dry and subatmospheric containments. An important insight from the IPE program and other PRAs is that the conditional probability of early containment failure is less than 0.1 for core damage accident scenarios that leave the RCS at high pressure. If the RCS is depressurized, the probability of early containment failure is less than 0.01.
- In PWRs with ice condenser containments, severe accident studies indicate that the most significant factor is the availability of hydrogen igniters and the ice condenser to mitigate severe accidents. If the igniters are available (i.e., non-SBO accidents), the conditional early containment failure probability is less than 0.1 even during accidents that leave the RCS at high pressure.

Step 2.1

If the total ΔCDF from the Phase 2 Worksheets (i.e., sum of all sequences) is <1E-7 per year, the LERF significance is Green and further LERF-related evaluation is not needed. Otherwise, proceed to Step 2.2.

Step 2.2

Compare the attributes of all core damage sequences with a Δ CDF of \geq 1E-8 per year with those in Table 6.1 to identify those sequences which have the potential to affect LERF. Individual sequence results that are \leq 1E-8 are not significant and are not evaluated further. However, those LERF sequences that are \geq 1E-8 (sequence result of 8 or less) are evaluated for

Issue Date: DRAFT 16 0609 App H

the overall LERF contribution. If none of the sequences impacts LERF, the risk significance obtained from the Δ CDF assessment is used for the significance of the finding and no further LERF-related evaluation is necessary. If Δ CDF sequences are identified as having the potential to affect LERF³, proceed to Step 3.

Step 3 – Phase 2 Assessment

For sequences needing Phase 2 analysis, risk significance determination is performed using the following two substeps:

Step 3.1 – LERF Factor Determination

Identify the LERF factor associated with each of the sequences remaining after screening using Table 6.2. Document these sequences and their associated LERF factors as discussed in the next substep.

Step 3.2 – ∆LERF Significance Evaluation

Document details of LERF significance assessment using the LERF worksheet (Table 6.3). List each sequence assessed in Phase 2 in column 1 together with its CDF score (in column 2).

Document the sequence attributes that make it a potential LERF contributor (e.g. high RCS pressure, drywell floor status for BWRs, etc.) in column 3.

Document the LERF factor (see Step 3.1) in column 4.

Document the LERF score in column 5. The LERF score is calculated by multiplying the Δ CDF score (column 2) by the LERF factor (column 4). For example, if a sequence has a Δ CDF score of 7 (i.e., 1E-7) and the associated LERF factors is 0.4, the LERF score is $4x10^{-8}$.

Step 4 – LERF Significance

Sum the scores for all of the LERF contributing sequences associated with the finding and enter the total Δ LERF score in the space below Column 5. Determine Δ LERF by multiplying the total score by a factor of 3.3 (see footnote⁴) and uUse the numerical result to determine the Δ LERF significance (color), using Table 1.1.

Step 5 – Finding Significance

Compare the CDF significance (color) with that for the LERF significance for the same finding. The higher (color) is the preliminary risk significance of the finding.

Issue Date: DRAFT 17 0609 App H

³No extra credit should be given for Severe Accident Management operator recovery actions (e.g., actions to depressurize the RCS or to flood Mark I drywell) unless recovery is explicitly modeled in the CDF sequence. Defer such recovery credit to Phase 3 assessment if needed.

⁴The factor of 3.3 is an approximation of the geometric average of one order of magnitude. This factor is used to justify that three sequences of the same color are equivalent to one sequence of a higher significance color. For example, three CDF white sequences are equivalent to one yellow sequence.

	Table 6.1 Phase 1 Screening-Type A Findings at Full Power						
			Attributes of Accident Sequence Related to Finding				
Reactor Type	Containment Type	ISLOCA	SGTR	ATWS	SBO (Note 1)	High RCS Pressure (Note 2)	All Others
BWR	Mark I	Perform Phase 2	Not Applicable	Perform Phase 2	Perform Phase 2	Perform Phase 2	Note 3
BWR	Mark II	Perform Phase 2	Not Applicable	Perform Phase 2	Perform Phase 2	Perform Phase 2	Screen Out (Note 4)
BWR	Mark III	Perform Phase 2	Not Applicable	Screen Out (Note 4)	Perform Phase 2	Perform Phase 2	Screen Out (Note 4)
PWR	Large Dry and Sub- Atmospheric	Perform Phase 2	Perform Phase 2	Screen Out (Note 4)	Screen Out (Note 4)	Screen Out (Note 4)	Screen Out (Note 4)
PWR	Combustion Engineering Plants	Perform Phase 2	Perform Phase 2	(Note 5)	(Note 5)	(Note 5)	(Note 5)
PWR	Ice Condenser	Perform Phase 2	Perform Phase 2	Screen Out (Note 4)	Perform Phase 2	Screen Out (Note 4)	Screen Out (Note 4)

Note 1: SBO is defined as a LOOP sequence with loss of emergency AC and failure to recover AC power.

Note 2: High pressure is defined as greater than 250psi at the time of reactor vessel breach. Transients and small break LOCAs (smaller than about 2-inch equivalent break size in BWRs and 0.75 - 1 inch in PWRs) will usually result in pressures in the RCS greater than 250psi at the time of reactor vessel melt-through in the absence of manual depressurization.

Consider a Sequence to be low pressure in case of:

- Large or intermediate LOCA
- Sequences that include successful depressurization (DEP)
- Availability of low pressure injection (LPI) is questioned on sequence branch

Consider a sequence to be high pressure in case of:

- The sequence includes failure of depressurization (DEP)
- None of the low pressure considerations identified above apply
- Note 3: A phase 2 assessment should be performed for any sequences that are expected to proceed to reactor vessel breach into a dry reactor cavity. Therefore, all other transients with successful RCS depressurization should be assessed. Sequences involving LOCAs in the drywell or drywell spray operation are excluded because they result in a flooded drywell floor. LOCAs involving stuck open relief valve sequences do not result in flooded drywell.
- Note 4: Screen out means that the accident sequence related to the finding is not significant to LERF and is Green.

Note 5: CE plants should be screened for C-SGTR. Refer to the RASP Manual Volume 5 for more information.

Issue Date: DRAFT 18 0609 App H

	Table 6.2 Phase 2 Assessment Factors -Type A Findings at Power						
		,	Attributes of Ac	cident Sec	quence Rela	ated to Findi	ng
Reactor Type	Containment Type	ISLOCA	SGTR	ATWS	SBO (Note 1)	High RCS Pressure (Note 2)	Low RCS Pressure (Note 2)
BWR	Mark I	1.0	Not Applicable	0.3	(Note 3)	0.6 If drywell is Flooded 1.0 If drywell is Dry	<0.1 If drywell is Flooded 1.0 If drywell is Dry
BWR	Mark II	1.0	Not Applicable	0.4	(Note 4)	0.3	Screen Out in Phase 1
BWR	Mark III	1.0	Not Applicable	Screen Out in Phase 1	0.2	0.2	Screen Out in Phase 1
PWR	Large Dry and Sub- Atmospheric	1.0	1.0	Screen Out in Phase 1	Screen Out in Phase 1	Screen Out in Phase 1	Screen Out in Phase 1
PWR	Ice Condenser	1.0	1.0	Screen Out in Phase 1	1.0	Screen Out in Phase 1	Screen Out in Phase 1

- Note 1: SBO is defined as a LOOP sequence with loss of emergency AC and failure to recover AC power.
- Note 2: High pressure is defined as greater than 250psi at the time of reactor vessel breach. Transients and small break LOCAs (smaller than about 2-inch equivalent break size in BWRs and 0.75 1 inch in PWRs) will usually result in pressures in the RCS greater than 250psi at the time of reactor vessel melt- through in the absence of manual depressurization.
- Note 3: If the RCS is at high pressure during the SBO then the Factors for the high pressure column apply. If the RCS is at low pressure during the SBO, the factors for the low pressure column apply.
- Note 4: If the RCS is at high pressure during the SBO then the Factor is 0.3. If the RCS is at low pressure during the SBO, the finding can be screened out.

Issue Date: DRAFT 19 0609 App H

Table 6.3: Worksheet for ΔLERF

(1) Sequences	(2) ΔCDF Score (X)	(3) Sequence Attributes	(4) LERF Factor (Table 6.2 for power, Table 6.4 for low power/shutdown) (F)	(5) ΔLERF Score F * (1x10 ^{-X})
Total Δ LERF				

06.02 Approach for Assessing Type A Findings During Shutdown

This section provides a step-by-step process (shown in Figure 6.2) for assessing the risk significance with respect to LERF of Type A findings applicable to shutdown operation.

STEP 1 – Finding Characterization

Step 1.1

Review the assessment performed using IMC 609, Appendix G, to identify the sequences affected by the finding, and the POSs and time windows (TWs) applicable to the finding.

Step 1.2

Determine the status of containment when the finding occurred for each POS and TW:

For PWRs and BWR Mark IIIs, the status of containment is either open or intact.

For BWRs Mark I and IIs, the status of containment is either intact, de-inerted, or open.

STEP 2 – Accident Sequence Screening

Step 2.1

For each shutdown core damage scenario identified in Step 1, determine if the following conditions were met:

- The finding occurred while the plant was in POS 1E or POS 2E.
- The finding occurred within the first eight days of the outage.

Step 2.2

If both conditions in Step 2.1 were met, go to Step 3. Otherwise, the LERF significance is Green and further evaluation for LERF implications is not needed.

STEP 3 – Phase 2 Assessment

For sequences needing Phase 2 analysis, risk significance determination is performed using the following two substeps:

Step 3.1

Determine the LERF factor for each core damage scenario affected by the finding for the appropriate containment status using Table 6.4.

Issue Date: DRAFT 21 0609 App H

Step 3.2

Document details of LERF significance assessment for the finding being evaluated using the LERF worksheet (Table 6.3). List each sequence assessed in Phase 2 in column 1 together with its CDF score (in column 2). Since all core damage sequences are potential LERF contributors, column 3 may be left blank. Document the LERF factor (see Step 3.1) in column 4. Document the LERF score in column 5. The LERF score is calculated by multiplying the Δ CDF score (column 2) by the LERF factor (column 4). For example, if a sequence has a Δ CDF score of 7 and the associated LERF factor is 0.2, the LERF score is $2x10^{-8}$.

STEP 4 – LERF Significance

Sum the scores for all of the LERF contributing sequences associated with the finding being evaluated and enter the total ΔLERF score in the space below column 5 of the completed Table 6.3. Determine ΔLERF by multiplying the total score by a factor of 3.3 and uUse the numerical result to determine the ΔLERF significance (color), using Table 1.1.

Note that the factor of 3.3 is an approximation of the geometric average of one order of magnitude. This factor is used to justify that three sequences of the same color are equivalent to one sequence of a higher significance color. For example, three CDF white sequences are equivalent to a single yellow sequence.

STEP 5 - Finding Significance

Compare the CDF significance (color) with that for the LERF significance for the same finding. The higher (color) is the preliminary risk significance of the finding.

Issue Date: DRAFT 22 0609 App H

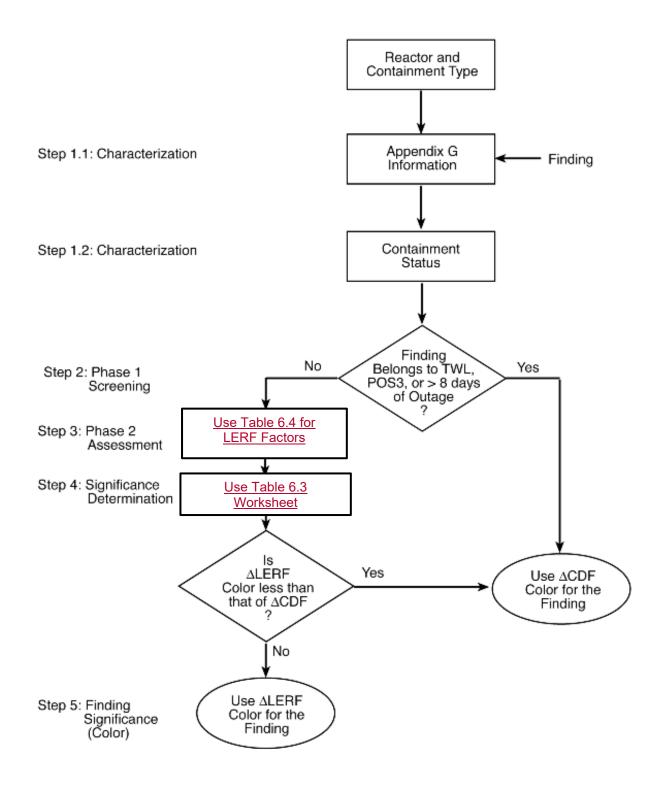


Figure 6.2: Road Map for LERF-based Risk Significance Evaluation for Type A
Findings at Shutdown

Table 6.4 Phase 2 Assessment Factors -Type A Findings at Shutdown					
		Accident Sequence Related to Finding			
Reactor/Containment Type	Containment Status (Note 1)	Finding occurs: (1) in POS 1E or POS 2E within first eight days of outage.	All Others		
BWR Mark I and II	De-inerted	1.0	Screened Out		
		0.2 - if igniters are not available (Note 2)			
BWR Mark III	Intact	Screen Out - if igniters are available (Note 3)	Screened Out		
PWR Large Dry and Sub-Atmospheric	Intact	Screen Out (Note 3)	Screened Out		
		1.0 - if igniters are not available (Note 2)			
Ice Condenser	Intact	Screen Out if igniters are available (Note 2 and Note 3)	Screened Out		
All	Open	1.0	Screened Out		

Note 1: An intact containment is one in which, the licensee intends to: (1) close all containment penetrations with a single barrier or can be closed in time to control the release of radioactive material, and (2) maintain the containment differential pressure capability necessary to stay intact following a severe accident at shutdown. When the RCS is open, an intact containment means that containment can be re-closed prior to boiling the RCS inventory. If the licensee does not intend to maintain an intact containment, then containment is open. If a PWR licensee is not maintaining an intact containment during POS 1E and POS 2E, then this should be reported to NRR/SPSB, so that it can be tracked to meet SRM 97-168.

A de-inerted containment is one in which limits on the primary containment oxygen concentration as defined in TS are not longer met.

- Note 2: There are no TS for igniters to be operable during shutdown. However, it is possible that igniters could be recovered by operator action, in which case the finding could be screened out (i.e. not significant to LERF)
- Note 3: To screen out the finding, the analyst must verify that the licensee's plans for containment closure consider: 1) time to boiling given a loss of RCS inventory which shortens time to boiling compared to a loss of the operating train of RHR. (NOTE: selecting time to boiling based on RCS level at the bottom of the hotleg should always meet the recommendation) and (2) a potential loss of offsite power and a loss of all vital AC power.

Issue Date: DRAFT 24 0609 App H

0609H-07 Procedure for Type B Findings

Type B findings have no direct impact on the likelihood of core damage but have potentially important implications for containment integrity. This section provides the procedure for evaluation of LERF significance of Type B findings. Similar to the Type A findings approach, a step wise process (Figure 7.1) is used, which leads to a conservative estimate of LERF significance. Section 07.01 presents the procedure for findings at full power, and Section 07.02 for findings at shutdown.

07.01 Approach for Assessing Type B Findings at Power

STEP 1 – Finding Characterization

Characterize the finding in terms of its relationship to the containment barrier function. Collect information needed for significance determination: SSCs affected and the nature of the degradation; the duration (i.e., >30days, 30-3 days, and <_3 days) of the degraded condition; information such as the magnitude of the leakage or number and location of inoperable hydrogen igniters. The type of information required can be inferred from Table 7.1 below.

STEP 2 - Screening of Finding

Determine if the finding is associated with an SSC(s) important to LERF, using Table 7.1. If the finding is screened out then no further assessment is needed and the finding is Green. Otherwise, proceed to Step 3 below. Note that a detailed description of finding to be assessed in Step 3 is included in Table 7.2.

STEP 3 - Phase 2 Assessment

Use Table 7.2 to provide a significance assignment to a Type B finding. For inspection findings involving leakage rates (e.g., MSIV leakage, containment leakage), if the as-found leakage rate is less than the values listed in Table 7.2, the finding is Green.

Issue Date: DRAFT 25 0609 App H

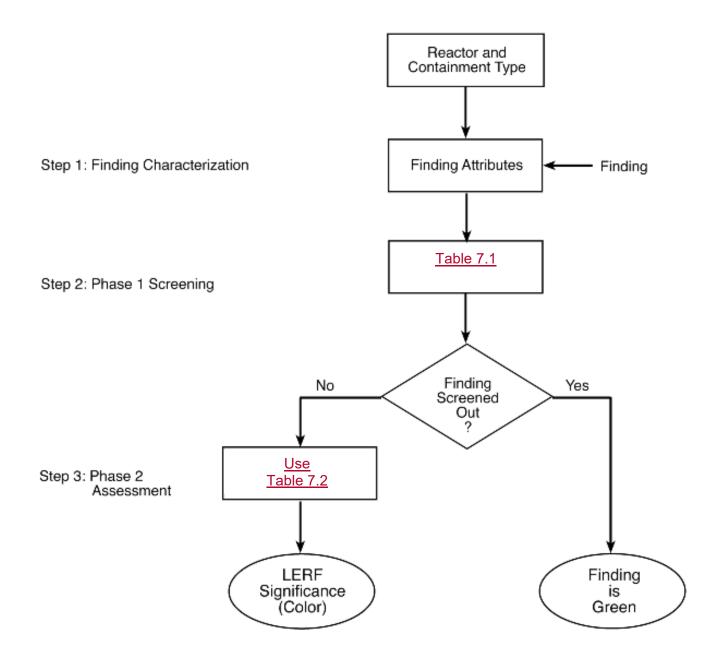


Figure 7.1: Road Map for LERF-based Risk Significance for Evaluation Type B Findings at Power

Table 7.1 Phase 1 Screening-Type B Findings at Power							
				SSC Affected	by Finding		
Reactor Type	Containment Type	Containment Penetration Seals, Isolation Valves, Vent and Purge Systems	Ice Condenser Flow Blockage	Suppression Pool Integrity	MSIV Leakage	Drywell / Containment Sprays	Igniters
BWR	Mark I	Perform Phase 2	Not Applicable	Perform Phase 2	Perform Phase 2	Perform Phase 2	Not Applicable
BWR	Mark II	Perform Phase 2	Not Applicable	Perform Phase 2	Perform Phase 2	Perform Phase 2	Not Applicable
BWR	Mark III	Perform Phase 2	Not Applicable	Perform Phase 2	Not ¹ Applicable	Perform Phase 2	Perform Phase 2
PWR	Large Dry and Sub- Atmospheric	Perform Phase 2	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
PWR	Ice Condenser	Perform Phase 2	Perform Phase 2	Not Applicable	Not Applicable	Not Applicable	Not Applicable

Note 1: Some BWR Mark III containments may have a safety-grade low-leakage Main Steam Shutoff Valve (MSSV) outside of -the out- board MSIV. (This may have been abandoned in some plants) Reference (2)

Issue Date: DRAFT 27 0609 App H

	Table 7.2 Phase 2 Risk Significance -Type B Findings at Power						
Decatar	Container		Ris	k Significan	ice		
Reactor Type	Containment Type	Finding	> 30 days	30 - 3 days	< 3 days		
		Leakage from drywell to environment >100 % containment volume/day through containment penetration seals, isolation valves or vent and purge systems	Yellow	White	Green		
BWR	Mark I and Mark II	Failure of systems/components critical to suppression pool integrity/scrubbing (vacuum breakers or other bypass mechanisms)	Yellow	White	Green		
		Main steam isolation valve leakage >10,000 scfh through the best-sealing valve in any steam line (see Reference 2)	Yellow	White	Green		
	Mark I	Drywell sprays unavailable	Yellow	White	Green		
	Mark II	Drywell sprays unavailable	White	Green	Green		
	Mark III (NOTE 1)	Leakage from wetwell to environment >1,000 % containment volume/day through containment penetration seals, isolation valves or vent and purge systems	White	Green	Green		
BWR		Failure of systems/components critical to suppression pool integrity/scrubbing (vacuum breakers or other bypass mechanisms)	Yellow	White	Green		
		Failure of multiple igniters such that coverage is lost in two adjacent compartments	White	Green	Green		
		Containment sprays unavailable	White	Green	Green		
PWR	Large Dry and Sub- Atmospheric	Leakage from containment to environment >100 % containment volume/day through containment penetration seals, isolation valves or vent and purge systems	Red	Yellow	White		
	Ice	Leakage from containment to environment >100 % containment volume/day through containment penetration seals, isolation valves or vent and purge systems	Red	Yellow	White		
PWR	Condenser (NOTE 1)	Blockage of more than 15% of the flow passage into or through the ice bed	Red	Yellow	White		
	on the following	Failure of multiple igniters such that coverage is lost in two adjacent compartments	Red	Yellow	White		

See notes on the following page

Issue Date: DRAFT 28 0609 App H

Notes associated with Table 7.2

Note 1: For BWR Mark III containments and PWR ice condenser plants, the term compartments is used interchangeably with the term regions, or zones and relates to the likelihood that hydrogen concentrations could rise to levels that could challenge containment. For a particular finding, the intent is to determine if the igniter system would remain effective at controlling concentrations in this regard, and "two adjacent compartments" is used as a rule-of-thumb. If it is not clear whether the igniter system would remain effective, the inspector should refer to the text in section 5.2.3 (Mark III containments) or section 7.2.4 (ice condenser containments) of NUREG-1765, and to consult the design-basis analysis associated with the igniter system. If it is still unclear, the inspector should contact the regional SRA and headquarters staff knowledgeable in this area.

07.02 Approach for Assessing Type B Findings at Shutdown

STEP 1 – Finding Characterization

Figure 7.2 shows the process flow for this approach. Characterize the finding in terms of its relationship to the containment barrier function. Collect information needed for significance determination, specifically the SSCs affected and the nature of the degradation, the duration of the degraded condition if less than the complete outage and if the condition had existed before shutdown (during power operation), or could exist upon change of plant/containment status (e.g. return to power) and information such as the magnitude of the leakage or the number and location of the inoperable hydrogen igniters. The type of information required can be inferred from Table 7.4 below. In addition, identify each POS(s) and time windows with which the finding is associated.

STEP 2 – Accident Sequence Screening

STEP 2.1 – Screen on the Basis of POS and Time Window

If the finding occurs (1) in POS 1 or POS 2 AND (2) in TW-E, AND (3) within eight days of the start of the outage, THEN, go to Step 2.2. Otherwise, screen the finding as Green.

STEP 2.2 – Screen on the Basis of the Impact of the Finding

Determine if the finding is associated with an SSC(s) important to LERF using Table 7.3. Consideration of items A through D (as applicable) facilitates the use of Table 7.3.

A. Did the finding involve the licensee failing to maintain the capability to close containment (maintain an intact containment) when the licensee planned to maintain an intact containment? This question applies to PWR and BWR Mark III licensees only. If yes, Go to Table 7.3, containment status is intact. If no, continue with Step B.

B. Did the finding involve hydrogen igniters in a BWR Mark III or a PWR ice condenser containment and the licensee maintained an intact containment?

If yes, Go to Table 7.3, containment status is intact. If no, continue with Step C.

Issue Date: DRAFT 29 0609 App H

C. Did the finding occur when the containment was de-inerted for a Mark I or Mark II containment?

If yes, go to Table 7.3, containment status is de-inerted. If no, continue with Step D.

D. Did the licensee intend to have an open containment without the capability to reclose containment?

If yes, Go to Table 7.3, containment status is open.

NOTE: If a PWR licensee is not maintaining an intact containment during POS 1E and POS 2E, this may be a significant finding under the Maintenance Rule. Check with an SRA for further guidance.

If no, Screen out the finding.

If the finding is screened out, it is assigned Green significance, and no further assessment is needed. Otherwise, proceed to Step 3 below.

STEP 3 - Phase 2 Assessment

Determine if shutdown mitigation capability is minimal or in-depth or closely resembles an in-depth or minimal capability. Use Tables 7.5 and 7.6 for BWRs, or Tables 7.7 and 7.8 for PWRs, to help make this determination.

<u>NOTE</u>: For PWRs, if mitigation capability does not match with the tables, choose between indepth or minimal capability based on: (1) availability of SGs and (2) availability of ECCS pumps and charging pumps

Use Table 7.4 to determine color of finding.

<u>NOTE</u>: Should the duration of a Type B finding exist for less than eight hours, then the color finding is reduced by one order of magnitude.

<u>NOTE</u>: Findings that may have existed before shutdown (during power operation) or that could impact LERF upon change of plant/containment status (e.g. return to power) should be assessed. In case the finding is judged to impact <u>full</u>-power<u>operation</u>, Section 07.01 guidance should be used in the assessment.

Issue Date: DRAFT 30 0609 App H

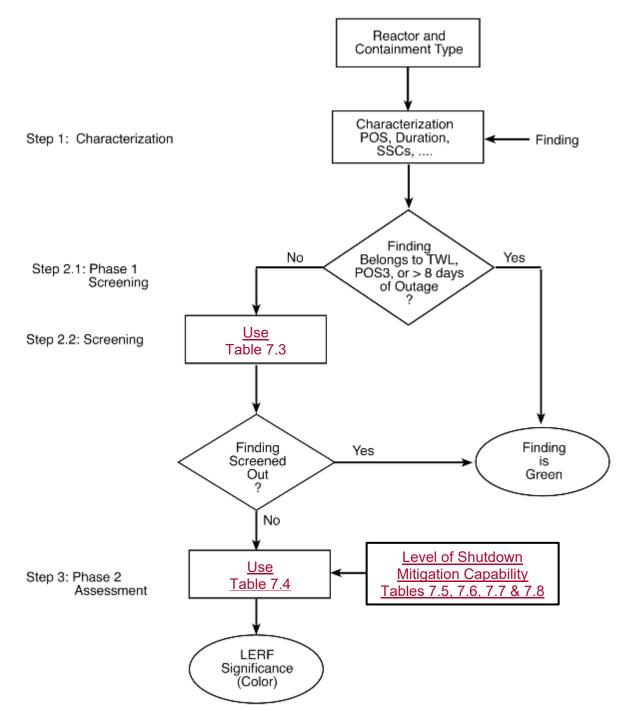


Figure 7.2: Road Map for LERF-based Risk Significance Evaluation for Type B Findings at Shutdown

Issue Date: DRAFT 31 0609, App. H

Table 7.3 Phase 1 Screening-Type B Findings at Shutdown						
			SSC Affec	ted by Finding		
Reactor/ Containment Type	Contain- ment Status (Note 1)	Containment Penetration Seals, Isolation Valves, Vent and Purge Systems	Suppression Pool Integrity	Drywell/Contain- ment Sprays	Igniters	
BWR Mark I and II	De-inerted	No Type B Findings Important to ΔLERF (Note 2)				
BWR Mark III	Intact	Perform Phase 2	Perform Phase 2	Screen Out (Not important to LERF)	Perform Phase 2	
PWR Large Dry and Sub- Atmospheric	Intact	Perform Phase 2	Not Applicable	Screen Out (Not important to LERF)	Not Applicable	
PWR Ice Condenser	Intact	Perform Phase 2	Not Applicable	Screen Out (Not important to LERF)	Perform Phase 2	
All	Open	No Type B Findings Important to Δ LERF (Note 3)				

Note 1: An intact containment is one in which, the licensee intends to: (1) close all containment penetrations with a single barrier or can be closed in time to control the release of radioactive material, and (2) maintain the containment differential pressure capability necessary to stay intact following a severe accident at shutdown. When the RCS is open, an intact containment means that containment can be reclosed prior RCS boiling. A Type B performance deficiency results when a licensee intends to have an intact containment but cannot maintain that capability due to a performance deficiency. For Mark III containments, the definition of intact containment applies to primary containment.

If the licensee does not intend to maintain an intact containment, then containment is open. If a PWR licensee is not maintaining an intact containment during POS 1E and POS 2E, then this observation could be risk significant under the Maintenance Rule and should be reported to an SRA.

A de-inerted containment is one in which limits on the primary containment oxygen concentration as defined in TS are no longer maintained.

Note 2: Type B findings would be unimportant to ΔLERF because containment would be de-inerted and expected to fail due to hydrogen combustion, regardless of Type B finding. However, findings that may have existed before shutdown or that could impact LERF upon change of plant/containment status (e.g. return to power) should be assessed.

Note 3: Type B findings would be unimportant to Δ LERF because containment is already open and cannot be re-closed. However, findings that may have existed before shutdown or that could impact LERF upon change of plant/containment status (e.g. return to power) should be assessed. If a PWR licensee is not maintaining an intact containment during POS 1E and POS 2E, then this observation could be risk significant under the Maintenance Rule and should be reported to an SRA.

Issue Date: DRAFT 32 0609, App. H

Table 7.4 Phase 2 Risk Significance -Type B Findings at Shutdown (For POS 1/TW-E and POS 2/TW-E in which the finding occurs during the first eight days of the outage)

Reactor/	Containment		Risk Significance (NOTE 2)	
Containment Type	Status (NOTE 1)	Finding	Minimal Capability	In-depth Capability
BWR Mark I, II	De-inerted	Screened Out in Phase 1	N/A	N/A
BWR Mark III	Intact	Leakage from containment to environment > 1000 % containment volume/day through containment penetration seals, isolation valves or vent and purge systems with suppression pool integrity (NOTE 3)	POS 1E -Yellow POS 2E - Yellow	POS 1E- White
BWR Mark III	Intact	Loss of suppression pool integrity	POS 1E -Yellow	POS 1E- White
	Intact	(NOTE 4) Failure of multiple igniters such that coverage is lost in two adjacent compartments given that primary containment is intact	POS 2E - Yellow POS 1E - White	POS 2E - Green POS 2E- Green
BWR Mark III (NOTE 5)			POS 2E - White	POS 2E - Green
	Intact I	Leakage from containment to	POS 1E -Yellow	POS 1E - White
PWR Large Dry and Sub- Atmospheric		environment > 100 % containment volume/day through containment penetration seals, isolation valves or vent and purge systems	POS 2E - Red	POS 2E - White
	Intact	Leakage from containment to environment >100 % containment volume/day through containment penetration seals, isolation valves or vent and purge systems	POS 1E - Yellow	POS 1E - White
PWR Ice Condenser (NOTE 5)			POS 2E - Red	POS 2E - White
		Failure of multiple igniters such that coverage is lost in two adjacent compartments	POS 1E - Yellow	POS 1E - White
			POS 2E - Red	POS 2E - White
All	Open	Screened Out in Phase 1	Green	Green

See notes on the following page

Issue Date: DRAFT 33 0609, App. H

Note 1: An intact containment is one in which, the licensee intends to: (1) close all containment penetrations with a single barrier or can be closed in time to control the release of radioactive material, and (2) maintain the containment differential pressure capability necessary to stay intact following a severe accident at shutdown. When the RCS is open, an intact containment means that containment can be re-closed prior to RCS boiling. A type B performance deficiency results when a licensee intends to have an intact containment but cannot maintain that capability due to a performance deficiency. For Mark III containments, the definition of intact applies to primary containment

If the licensee does not intend to maintain an intact containment, then containment is open. If a PWR licensee is not maintaining an intact containment during POS 1E and POS 2E, then this observation could be risk significant under the Maintenance Rule and should be reported to a SRA.

A de-inerted containment is one in which limits on the primary containment oxygen concentration as defined in Technical Specifications are no longer maintained.

Note 2: The results assume that each shutdown scenario results in a LERF if the licensee fails to maintain an intact containment or the containment fails due to loss of hydrogen control in Ice Condenser and Mark III containments. In phase 3 analysis, if a licensee can show that failures involving long term cooling can be eliminated from LERF because the licensee would have evacuated given successful short term cooling, then the color of the finding would be reduced.

When using this table, there are no duration factors associated with findings at shutdown. The generic shutdown CDFs include the frequency and duration that POS 1 and PO2 are entered into per calendar year for both PWRs and BWRs. For BWRs, POS 1 is assumed to last four days; POS 2 is assumed to last two days. For PWRs, POS 1 is assumed to last two days; POS 2 is assumed to last six days. Should the duration of a type B finding exist for less than eight hours, then the color finding is reduced by one order of magnitude.

- Note 3: As discussed in Regulatory Guide 1.174, releases that pass through the pool would be scrubbed and would not contribute to LERF. Rather than crediting the pool with completely eliminating LERF, a decontamination factor (DF) of 10 is assigned to pool scrubbing in the SDP. This DF results in the LERF-significant leak rate increased from 100% containment volume per day to 1000% containment volume per day
- Note 4: With the suppression pool unavailable, fission products will not be scrubbed and steam generated by decay heat is assumed to lead to gradual over-pressurization of containment and the need to vent prior to effective evacuation. Thus, the finding could be LERF significant even if leak rate is less than 100% containment volume per day.
- Note 5: For BWR Mark III containments and PWR ice condenser plants, the term compartments is used interchangeably with the term regions, or zones, and relates to the likelihood that hydrogen concentrations could rise to levels that could challenge containment. For a particular finding, the intent is to determine if the igniter system would remain effective at controlling concentrations in this regard, and "two adjacent compartments" is used as a rule-of-thumb. If it is not clear whether the igniter system would remain effective, the inspector should refer to the text in section 5.2.3 (Mark III containments) or section 7.2.4 (ice condenser containments) of NUREG-1765, and to consult the design-basis analysis associated with the igniter system. If it is still unclear, the inspector should contact the regional SRA and headquarters staff knowledgeable in this area.

Issue Date: DRAFT 34 0609, App. H

Table 7.5 BWRs With Minimal Shutdown Mitigation Capability

Total Annualized CDF Head on: 3E-6 (per calendar year)
Total Annualized CDF Head off: 9E-7 (per calendar year)

Item	Value
RHR pumps	2 (shared with ECCS)
Other heat removal pumps	0
ECCS pumps (in standby)	2 (Shared with RHR)
SRVs for Power Operated Relief Mode	2
CCW pumps/trains	1 train with 2 pumps
SW pumps/trains	1 train with 2 pumps
Containment Spray pumps	0
Fire Water	No
SW Injection into RCS	No
Path to Suppression Pool	Yes
Suppression Pool	Yes
Other Water sources	No
Other means of removing heat	None
Offsite power sources	2
EDGs	1
other onsite power sources	0
Level instruments	Yes
Vessel Temperature Instruments	No
Level 3 RHR Isolation	Sometimes Not Used

Issue Date: DRAFT 35 0609, App. H

Table 7.6 BWRs With In-depth Shutdown Mitigation Capability

Total Annualized CDF RCS Head on: 2E-7 (per calendar year) Total Annualized CDF RCS Head off: 4E-8 (per calendar year)

Item	Value
RHR pumps	2 (Shared with ECCS
Other heat removal pumps	0
ECCS pumps	2 (shared with RHR pumps)
SRVs (in Power Operated Relief mode)	2
CCW pumps/trains	1 train with pumps
SW pumps/trains	1 train with pumps
Containment Spray Pumps	0
Fire Water	Yes
SW Injection into the RCS	Yes
Path to the Suppression Pools	Yes
Suppression Pool	Yes
Other water sources	No
Other means of removing heat	None
Offsite power sources	2
EDGs	2
Other onsite power sources	0
Level instruments	Yes
Vessel temperature Instruments	Yes
Level 3 RHR isolation	Always

Issue Date: DRAFT 36 0609, App. H

Table 7.7 PWRs With Minimal Shutdown Mitigation Capability

Total Annualized CDF RCS open: 3E-5 (per calendar year)
Total Annualized CDF RCS closed: 3E-6 (per calendar year)

Item	Value
RHR pumps	2
Other heat removal pumps	0
ECCS pumps (in standby)	1
RCS vents and pressure control	Yes
CCW pumps/trains	2 trains
SW pumps/trains	2 trains
Containment Spray pumps (as back up to the RHR pumps)	0
Gravity Feed	Yes
Accumulators	0
Steam Generators	Yes
Containment sumps	Yes, but not fully reliable
other borated water sources	0
other means of removing heat	0
Offsite power sources	2
EDGs	1
other onsite power sources	0
Level instruments	2 some of time
Vessel temperature Instruments	2 some of time

Issue Date: DRAFT 37 0609, App. H

Table 7.8 PWRs With In-depth Shutdown Mitigation Capability

Total Annualized CDF RCS open: 1E-7 (per calendar year) Total Annualized CDF RCS closed: 8E-7 (per calendar year)

.,	
Item	Value
RHR pumps	2
Other heat removal pumps	0
Charging Pumps	1
ECCS pumps (in standby)	1
RCS vents and pressure control	Yes
CCW pumps/trains	2 trains
SW pumps/trains	2 trains
Containment Spray pumps	2 as piggy back to the RHR pumps
Gravity Feed	Yes
Accumulators	0
Steam Generators	Yes
Containment sumps	Yes, enhanced reliability
other borated water sources	0
other means of removing heat	0
Offsite power sources	2
EDGs	2
other onsite power sources	0
Level instruments	2 at all times
Vessel temperature Instruments	2 at all times

Issue Date: DRAFT 38 0609, App. H

0609H-08 REFERENCES

- 1. Regulatory Guide 1.174, Revision 3 "An Approach for using Probabilistic Risk Assessment in Risk-informed Decisions on Plant-Specific Changes to the Licensing Basis." November, 2002 January, 2018.
- 2. PRAB-02-01 "Assessment of BWR Main Steam Line Release Consequences" October 2002.
- 3. Risk-Informed Inspection Template for a BWR During Shutdown, Draft, NRC, Office of Nuclear Reactor Regulation, August 8, 2002.
- 4. Risk-Informed Inspection Template for a PWR During Shutdown, Draft, NRC, Office of Nuclear Reactor Regulation, August 8, 2002.
- 5.3. NRC, Memo from Barret to Haag, SPSB significance Determination Process, December 7, 2001.
- 6.4. NUREG-1765 "Basis Document for Large Early Release Frequency (LERF)
 Significance Determination Process (SDP)" Inspection Findings That May Affect LERF
 December, 2002.
- 7.5. NUREG-1150 "Severe Accident Risks: an Assessment for Five U. S. Nuclear Power Plants" December, 1990.
- 8.6. NUREG-1560 "Individual Plants Examination Program: Perspectives on Reactor Safety and Plant Performance" December, 1997.
- 9.7. NUREG/CR-6595 "An Approach for Estimating the Frequencies of Various Containment Failure Modes and Bypass Events". January, 1999.
- 10.8. NUREG/CR-5432 "The Probability of Liner Failure in Mark-I Containment" August, 1991.
- 11.9. NUREG/CR-6427 "Assessment of the DCH Issue for Plants with Ice Condenser" April, 2000.
- 42.10. NUREG/CR-4330 "Review of Light Water Reactor Regulatory Requirements" June, 1986.
- 11. NUREG/CR-1493 "Performance- Based Containment Leak-Test Program" September, 1995.
- 12. 51 FR 28044 "Safety Goals for the Operations of Nuclear Power Plants; Policy Statement; Republication" August 1986.
- 13. NUREG-2195 "Consequential SGTR Analysis for Westinghouse and Combustion Engineering Plants with Thermally Treated Alloy 600 and 690 Steam Generator Tubes, Final Report" May 2018.

Issue Date: DRAFT 39 0609, App. H

Attachment 1 Guidance for Assessing the Timing of Protective Actions in Detailed Risk Evaluations

SDP LERF treatment typically relies on a general, functional definition of LERF, rather than a more detailed accounting of accident progressing timing against protective action timing. While this more general treatment is usually sufficient for an SDP, experience has shown that it is infrequently necessary to evaluate the timing of protective actions relative to radiological release on an accident sequence basis as part of a detailed risk evaluation. In these situations, the guidance below may be helpful, and should be considered in tandem with other considerations specific to the SDP in question. This level of detail may not be warranted, particularly if the available information on core damage and containment failure timings is not well-characterized.

- Early declaration, when warranted, may be credited on a probability basis. Example:
 EALs provide for SRO judgement in some circumstances. 50% probability that SRO declares event early given the plant damage state.
- It should be assumed that emergency action level monitoring and protective action recommendations are made in a timely manner (e.g. declaration made within 15 minutes of relevant plant conditions and protective action recommendations made 15 minutes thereafter).
- 3. For external hazards well beyond the design basis (e.g. seismic bins in the upper end of the seismic hazard), some impact on response capabilities is possible but also beyond the state-of-the-practice to model. If these types of events are particularly important to a particular risk evaluation, a sensitivity study could be used to address this aspect.
- 4. Evacuation time estimate (ETE) studies have been performed, and are periodically updated for all sites. These studies are appropriate sources of information for use in SDP assessments. It is understood that these studies are developed for other purposes, but they often represent the "best available information" with respect to evacuation timing, which meets the intent of SDP. They typically provide estimates of the time between the start of evacuation to the time the last of the individuals have cleared the 10-mile boundary for a range of conditions and assumptions.
- 5. In using ETE studies as part of the best available information for LERF determination in a detailed risk evaluation:
 - a. ETE studies typically present timing for evacuations of emergency response planning areas (ERPAs). ERPAs are typically defined by compass sectors and distances of 2, 5, and 10 miles. For LERF, it is the 2 mile population that is most relevant.
 - b. ETE studies typically present timings for the time to evacuate 90% and 100% of the population in particular ERPAs and combinations of ERPAs. The analyst should use the time estimates associated with evacuating 90% of the population, as this represents a reasonable tradeoff between the inclusiveness of the 100% value, versus the fact that the timings represent the time to reach the 10 mile boundary (whereas dose levels will likely drop below those of concern for LERF prior to that distance).

Issue Date: DRAFT 40 0609, App. H

- <u>c.</u> ETE studies present times for different scenarios (e.g., day time, night time, winter storms, roadway impacts). When considering the spectrum of applicable scenarios If the LERF determination is not sensitive to the range of time estimates of relevance, use the most inclusive time.
- d. ETE studies also present timings for different evacuation assumptions (i.e., keyhole evacuation, 5-mile 360 degree evacuations, 10-mile 360 degree evacuations). A judgement should be made as to which of these is most applicable.
- 6. There are a number of aspects of the above assumptions that are uncertain, and there are aspects of the protective action implementation that are outside of the licensee's control. For this reason, it is appropriate to perform a sensitivity study that shows how ΔLERF would differ if a more optimistic or pessimistic set of assumptions are employed.

Issue Date: DRAFT 41 0609, App. H

Attachment 2: Revision History for IMC 0609, Appendix H

Commitment Tracking Number	Accession Number Issue Date Change Notice	Description of Change	Description of Training Required and Completion Date	Comment Resolution and Closed Feedback Form Accession Number (Pre-Decisional, Non- Public Information)
	ML041340009 05/06/04 CN 04-	Initial issuance.		,
	ML18285A030 DRAFT CN 18-XXX	Made publicly available to discuss at the October 18, 2018, ROP Monthly Public Meeting.		
N/A	ML18243A521	Changes included:		ML18247A004
		 Removed all references to Phase 2 obosolete system notebooks Added SRA to the list of people that can perform a Phase 3 analysis. Added a reminder that Saphire can now be used to perform LERF calculations. Removed the step to multiply the LERF score by a factor of 3.3 from table 5.3 (now table 6.3) since it is not correct to do so. Revised figure 5.1 (now table 6.1) so it no longer mentions SDP Phase 2 notebooks Provided new definitions for "close in population" and "effective evacuation" Created a new Attachment 1 which is a Guidance for Assessing the Timing of Protective Actions in Detailed Risk Evaluations Addressed feedback form 0609H-2225 Added a new section (section 0609H-05) for C-SGTR and revised table 6.1 to add a row for Combustion Engineering Plants. As a result of adding section 0609H-05, subsequent sections and table numbers were changed. Table 7.1 has been revised to add a new column for ice condenser flow blockage. Added a note to tables 7.2 and 7.4 to provide more information on failure of multiple igniters for Ice Condenser and BWR Mark III plants. 		0609H-2225

Commitment Tracking Number	Accession Number Issue Date Change Notice	Description of Change	Description of Training Required and Completion Date	Comment Resolution and Closed Feedback Form Accession Number (Pre-Decisional, Non- Public Information)
		Added a new section 01.05 regading the use of licensee provided LERF information. Revised definition for Shutdown Operation to better align with IMC 0609, Appendix G (note consideration is being given to remove shutdown definitions from Appendix H).		