Identifying Research Projects and Delivering the Results at EPRI

Andrew Sowder, Ph.D., CHP
Technical Executive

NRC Standards Forum 2018
September 11, 2018
EPRI Mission

Advancing safe, reliable, affordable and environmentally responsible electricity for society through global collaboration, thought leadership, and science & technology innovation.

Independent
Non-profit
Collaborative

Nuclear Environment Generation Power Delivery and Utilization
To develop and provide the nuclear industry with safe, reliable, economic, and environmentally responsible technologies that:

1. Maximize the utilization of existing nuclear plants
2. Enable the deployment of advanced nuclear plants
3. Support long-term sustainability of nuclear energy
EPRI Nuclear R&D: Global Collaboration and Reach

GLOBAL PARTICIPANTS

>320 reactors worldwide

Participants Encompass Most Nuclear Reactor Designs

GLOBAL BREADTH & DEPTH

>75% of the world’s commercial nuclear units
Key EPRI Nuclear Interfaces
EPRI Is All About Input

- Board of Directors
- Advisory Council
- Research Advisory Committee
- Technology Management Committee
- Sector Councils (Nuclear, Generation, Energy and Environment, Transmission and Distribution)
- Program Committees (next slide)
Advanced Nuclear Technology (ANT) Program Advisory Structure
ANT Research Focus Areas for Balanced R&D Portfolio

<table>
<thead>
<tr>
<th>TAC</th>
<th>Research Focus Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering, Procurement & Construction (EPC)</td>
<td>Increase Efficiency and Reduce Cost of New Nuclear Construction</td>
</tr>
<tr>
<td></td>
<td>Development of Collaborative Engineering, Design Tools, and Processes</td>
</tr>
<tr>
<td></td>
<td>Improve Quality of Supply Chain for Nuclear</td>
</tr>
<tr>
<td>Modern Technology Application (MTA)</td>
<td>Advanced Monitoring Technology and Data Management</td>
</tr>
<tr>
<td></td>
<td>Technologies to Improve Human Performance, Machine Interaction, and Operational Effectiveness</td>
</tr>
<tr>
<td></td>
<td>Gaps for Use of Digital Systems Technologies in New Plants</td>
</tr>
<tr>
<td>Materials and Components (M&C)</td>
<td>Advanced Fabrication and Manufacturing Techniques</td>
</tr>
<tr>
<td></td>
<td>Material Performance and Inspection</td>
</tr>
<tr>
<td></td>
<td>New Materials Development</td>
</tr>
</tbody>
</table>
Two-Year Project Planning Cycle To Keep Pipeline Filled

<table>
<thead>
<tr>
<th>EPC</th>
<th>M&C</th>
<th>MTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 2019</td>
<td>Target 2020</td>
<td>MTA</td>
</tr>
<tr>
<td>Advanced Welding for Infrastructure and Construction</td>
<td>A Pathway to Factory Fabrication for Modules and Components</td>
<td>Gaps and Opportunities for Sensor Applications</td>
</tr>
<tr>
<td>Automated Quality Assurance Inspection for Embedded Items in</td>
<td>Additive Manufacturing Development Strategic Focus Area</td>
<td>Applications for Commercial Common Platform Robotic Systems</td>
</tr>
<tr>
<td>Concrete Members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Practices for Self-Consolidating Concrete as Mass Concrete</td>
<td>Value Comparison between Manufacturing Techniques</td>
<td>Assessment of Advanced Security Technologies</td>
</tr>
<tr>
<td>Prefabricated Structural Modules for Nuclear Construction</td>
<td>New Materials Scoping Assessment</td>
<td>Investigation of Virtual Technical Assistant</td>
</tr>
<tr>
<td>Target 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced Concrete Formwork Technologies</td>
<td>Development of Adaptive Feedback Welding for Repair and Fabrication</td>
<td>Guidance for Wired and Wireless Sensor Applications</td>
</tr>
<tr>
<td>Alternative Methods and Materials to Reinforce Concrete</td>
<td>Applicability of EPRI ASME Focused Products with International Codes</td>
<td>Updates to HFE Guidelines</td>
</tr>
<tr>
<td>Performance-Based Design for Civil and Structural Applications</td>
<td>Risk Informed Strategies Small Modular Reactors (SMRs)</td>
<td>Identification of Regulatory Challenges for Advanced Plant Data</td>
</tr>
<tr>
<td>Guide to Evaluating and Developing Supplier and Vendors</td>
<td>Advanced Reactor Material Development Strategic Focus Area</td>
<td>Investigation of Remote Shift Technical Advisor (STA)</td>
</tr>
</tbody>
</table>
Longer Range Multiyear Plan To Maintain Strategic Vision

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scouting</td>
<td></td>
<td>Scouting for EPRI Technology Innovation Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Technology Assessment and Tool Development</td>
<td>Technology Assessment</td>
<td>Revise EPRI siting guide for application to adv reactor deployment</td>
<td>Evaluation of advanced power conversion technologies for ARs</td>
<td>Evaluation of dry/hybrid cooling systems for ARs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Technology Assessment and Tool Development</td>
<td>Fuel Cycle Analysis</td>
<td>Fuel cycle mod/sim capabilities</td>
<td>Evaluation of AR back-end waste streams</td>
<td>Fuel cycle analysis of front-end and back-end impacts of new technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Strategic Analysis and Thought Leadership</td>
<td>Safety Assessment and Risk Informed Methods</td>
<td>PHA to PRA: Best practices and methodology</td>
<td>Risk informed Strategies for ARs (50, 60)</td>
<td>Pilot ANS 30.1 implementation</td>
<td>Alternative end state PRA for ARs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Strategic Analysis and Thought Leadership</td>
<td>Techno-Economic Analysis</td>
<td>Economic analysis for AR competitiveness</td>
<td>Quantifying value of advanced nuclear energy systems</td>
<td>Expansion of techno-economic modeling tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Strategic Analysis and Thought Leadership</td>
<td>Thought Leadership</td>
<td>Historical Review of Gov’t/Industry Roles</td>
<td>Reasonable build rates for new nuclear</td>
<td>AR attributes supporting energy network resiliency</td>
<td>Rethinking AR design-life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Strategic Analysis and Thought Leadership</td>
<td>AR Flexibility</td>
<td>Feasibility of MW-scale reactors for utility applications</td>
<td>Demo plan for MW-scale reactor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Targeted Technology Development</td>
<td>Advanced Materials and Mfg</td>
<td>GEN IV Materials: Gap analysis, fabricability assessment and material optimization</td>
<td>Advanced material and manufacturing development program</td>
<td>Program on Materials and Manufacturing for Advanced Reactor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td>Advanced Technology R&D</td>
<td>I&C for high temp., non-LWR systems</td>
<td>NDE for advanced reactors</td>
<td>Primary system chemistry control and rad protection R&D for non-LWRs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>Qualification and Licensing Support</td>
<td>Limited scope TRISO/particle fuel topical report (AGR)</td>
<td>Topical reports on key R&D issues for advanced reactor designs and classes, e.g., nuclear grade graphite (AGC), qualification of liquid fuels...</td>
<td>Code case support for new materials for AR designs and applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Considerations in Proposal and Prioritization of R&D

- Current or emerging issue
- Importance or severity of issue
- Value across stakeholders, nuclear plant designs, geographical boundaries
- Available resources
- Timing (available soon enough?)
- Tactical-strategic balance in R&D portfolio
- Opportunities for collaborations and leveraging of resources and impact (e.g., standards)
EPRI Product Availability

“As a non-profit scientific research 501(c)(3) organization, EPRI has an obligation to make the results of its scientific research available to the public on a non-discriminatory basis.”

- Most EPRI research is available to the public, but not necessarily for free
- Pricing intended to fairly reflect cost to funders who supported research (among other considerations)
- EPRI annually evaluates products older than five years for reduced or zero pricing

Other circumstances may also compel public release at reduced or zero pricing

- The value of the report depends on public access or use in a public forum
- Examples include standards and code development or to inform regulatory process

Presence of proprietary or third-party intellectual property (IP) generally precludes public release unless...

- A non-proprietary public version can be prepared
- Permission for release is granted by IP holders
Selected Examples of Current ANT Program Projects
Integration of Safety Assessment into AR Design Process

Scope
- Assemble a “body of knowledge” on application of PHA and PRA methods
- Develop, describe methodology to support design-license-build-operate lifecycle
- Demonstrate application of approach with use cases
- Demonstrate utility of approach via pilot application

Value
- Leverages investment in design over entire lifecycle
- Supports more incremental step-wise approach to licensing
- Supports risk informed and performance based licensing framework
- Leverages and informs development of ANSI/ANS Standard 30.1 on risk informed advanced reactor design

Deliverables
- Preliminary methodology and best practices (September 2018)
- Case studies illustrating application for analysis of unique molten salt reactor systems (March 2019)
Advanced Manufacturing Strategic Program

- **Objectives**
 - Develop/demonstrate new methods for manufacture/fabrication of a reactor pressure vessel (RPV) in <12 months
 - Eliminate a minimum of 40% from the cost of an SMR RPV, while reducing the schedule significantly

- **Scope**
 - Manufacture major critical components to assemble a 2/3-scale SMR reactor pressure vessel
 - Jointly funded collaboration
 - EPRI, Nuclear-AMRC (UK), USDOE, NuScale Power
 - Advanced processes employed
 - PM-HIP
 - Electron Beam Welding
 - Diode Laser Cladding
 - ASME code development included

What once took weeks can now be done in hours.
Highlights and Accomplishments to Date

- 44% diameter (50-inch) A508 top head has been completed

- One-half section A508 lower head has been completed and dimensioned

- Forgings for flanges, PZR shell, lower RPV section, and HT have been completed

- EB welding parameters and geometry for SA508 Grade 3 Class 1 girth welds were established and demonstrated

- Diode laser cladding key performance variables (KPVs) were established for SA508 substrates and it was determined that it is possible to produce both 1-layer and 2-layer clads that meet ASME IX requirements

- Heat treatment work package developed for localized HT
New Vertical Response Motion Computation in SSI Analysis of Embedded Structures

- Objective: Develop a more accurate vertical motion model for soil-structure interaction (SSI) analysis for embedded structures to reduce unintended conservatism of existing methods.

- New Method: Horizontal motions are amplified through the soil and vertical motions are calculated as a ratio of the horizontal motions (V/H ratio), consistent with calculation of design basis motions.

- Findings: Traditional vertical amplification for embedded structures overestimates vertical ground motion; proposed new method estimates smaller vertical motions and resulting structural responses.

- ASCE 4 and ASCE 43 committees aware of work and further standards development planned.

Together…Shaping the Future of Electricity