

REACTOR **CHAPTER 4 FIGURES**

LIST OF FIGURES

FIGURE	
NUMBER	TITLE
4-1	FUEL ASSEMBLY (ISOMETRIC)
4-2	TYPICAL GE BWR FUEL ASSEMBLY
4-3	SCHEMATIC CROSS SECTION OF LOWER TIE PLATE SHOWING
	CHANNEL/LOWER TIE PLATE (FINGER SPRING) FLOW PATH
4-4	TYPICAL CORE CELL
4-5	CHANNEL FASTENER ASSEMBLY
4-6	UNIT 2 INITIAL CORE - CORE LOADING MAP
4-7	FUEL ASSEMBLY ROD ENRICHMENTS
4-8	7X7 FUEL ASSEMBLY
4-9	CALCULATED RANGE OF HOT UNCONTROLLED MAXIMUM LOCAL PEAKING VERSUS EXPOSURE
4-10	DOPPLER COEFFICIENT OF REACTIVITY
4-11	DOPPLER COEFFICIENT AS FUNCTION OF FUEL EXPOSURE
4-12	CORE AVERAGE DOPPLER DEFECT VERSUS CORE POWER LEVEL
4-13	DOPPLER DEFECT VERSUS FUEL TEMPERATURE
4-14	DOPPLER COEFFICIENT OF REACTIVITY VERSUS MODERATOR CONDITION OF AVERAGE FUEL TEMPERATURE AT BOL
4-15	DOPPLER REACTIVITY COEFFICIENT AS A FUNCTION OF FUEL EXPOSURE AND AVERAGE FUEL TEMPERATURE AT AN AVERAGE VOID CONTENT OF 40%
4-16	DOPPLER REACTIVITY AS A FUNCTION OF CORE AVERAGE VOID FRACTION AND AVERAGE FUEL TEMPERATURE AT BOL AND EOC
4-17	VOID COEFFICIENTS AT BEGINNING OF CYCLE 1 AND AT A CORE AVERAGE EXPOSURE OF 7000 MWD/T
4-18	MODERATOR VOID REACTIVITY COEFFICIENT AT BOL AND AT A CORE AVERAGE EXPOSURE OF 10 GWD/T
4-19	BRUNSWICK UNIT 1 COLD SHUTDOWN REACTIVITY
4-20	Fractional Control Rod Density Versus Core Average Moderator Density For A Critical Reactor At BOL
4-21	MAXIMUM ROD WORTH VERSUS MODERATOR DENSITY
4-22	MAXIMUM ROD WORTH VERSUS POWER LEVEL
4-23	EFFECTIVE CORE EIGENVALUE AS A FUNCTION OF AVERAGE CORE EXPOSURE (MOST REACTIVE ROD WITHDRAWN)
4-24	SCRAM REACTIVITY BEGINNING AND END OF FIRST CYCLE FOR HOT OPERATING CONDITIONS
4-25	Xenon Reactivity Buildup After Shutdown And Burnout on Return To Full Power From Maximum Shutdown Xenon Buildup at Beginning Of Life
4-26	RELATIVE XENON STABILITY WITH NO FLUX FLATTENING
4-27	EFFECT OF POWER DENSITY ON AXIAL XENON STABILITY INCLUDING VOID TRANSPORT
4-28	AZIMUTHAL XENON STABILITY
4-29	POWER/FLOW OPERATING MAP FOR POWER UPRATE
4-30	Fuel Temperature Versus Heat Flux - BOL 3 W/O GD_2O_3
4-31	FUEL TEMPERATURE VERSUS HEAT FLUX - 5 YEARS 3 W/O GD_2O_3
4-32	CLAD TEMPERATURE VERSUS HEAT FLUX - BOL 3 W/O GD ₂ O ₃

REACTOR **CHAPTER 4 FIGURES**

LIST OF FIGURES

FIGURE	
NUMBER	Тітle
4-33	Clad Temperature Versus Heat Flux - 5 Years 3 W/O $ m Gd_2O_3$
4-34	FUEL TEMPERATURE VERSUS HEAT FLUX - BOL UO ₂
4-35	Fuel Temperature Versus Heat Flux - 5 Years UO_2
4-36	CLAD TEMPERATURE VERSUS HEAT FLUX - BOL UO $_2$
4-37	Clad Temperature Versus Heat Flux - 5 Years UO_2
4-38	FUEL ASSEMBLY INITIAL ENRICHMENT DISTRIBUTION 2.1 AVERAGE ENRICHMENT
4-39	Local Power Factors 0 MWD/T 40% Voids
4-40	Local Power Factors 10,000 MWD/T 40% Voids
4-41	GROSS PEAKING FACTOR AS A FUNCTION OF EXPOSURE BRUNSWICK 1
4-42	DURALIFE - 230 CONTROL ROD
4-43	ABB CR82M-1 CONTROL ROD
4-44	WESTINGHOUSE ABB CR99 CONTROL ROD

U PDATED FSAR	Revision:	24
REACTOR	Figure:	4-1
CHAPTER 4 FIGURES	Page:	1 of 1

FUEL ASSEMBLY (ISOMETRIC)

REACTOR CHAPTER 4 FIGURES Revision:24Figure:4-2Page:1 of 1

TYPICAL GE BWR FUEL ASSEMBLY

UPDATED FSAR	Revision:	24
REACTOR	Figure:	4-3
CHAPTER 4 FIGURES	Page:	1 of 1

SCHEMATIC CROSS SECTION OF LOWER TIE PLATE SHOWING CHANNEL/LOWER TIE PLATE (FINGER SPRING) FLOW PATH

REACTOR CHAPTER 4 FIGURES

TYPICAL CORE CELL

REACTOR CHAPTER 4 FIGURES Revision:24Figure:4-5Page:1 of 1

CHANNEL FASTENER ASSEMBLY

REACTOR **CHAPTER 4 FIGURES** Revision: Figure: 4-6

Page:

UNIT 2 INITIAL CORE - CORE LOADING MAP

24

REACTOR CHAPTER 4 FIGURES Revision:24Figure:4-7Page:1 of 1

FUEL ASSEMBLY ROD ENRICHMENTS

2.1 2 0/0 19		
PLANK = 1.	15 w/o	BLANK + 1.15 0/0
MH = 1.	80 6/0	2
H + 2	AT 10/0	

	UPDATED FSAR	Revision:	24
	REACTOR	Figure:	4-8
	CHAPTER 4 FIGURES	Page:	1 of 1

7x7 FUEL ASSEMBLY

- APPROX. WEIGHT - 615 L85

	U PDATED FSAR	Revision:	24
	REACTOR	Figure:	4-9
	CHAPTER 4 FIGURES	Page:	1 of 1

CALCULATED RANGE OF HOT UNCONTROLLED MAXIMUM LOCAL PEAKING VERSUS EXPOSURE

1.25 MAXIMUM LOCAL PEAKING 1.18 ESION OF CALCULATED Aximum Local Peaking 1.10 1.05 1.00 L 25 30 35 10 15 20 5

EXPOSURE (GW 4/1)

REACTOR CHAPTER 4 FIGURES

DOPPLER COEFFICIENT OF REACTIVITY

DOPPLER COEFFICIENT AS FUNCTION OF FUEL EXPOSURE

CORE AVERAGE DOPPLER DEFECT VERSUS CORE POWER LEVEL

DOPPLER DEFECT VERSUS FUEL TEMPERATURE

DOPPLER COEFFICIENT OF REACTIVITY VERSUS MODERATOR CONDITION OF

AVERAGE FUEL TEMPERATURE AT BOL

DOPPLER REACTIVITY COEFFICIENT AS A FUNCTION OF FUEL EXPOSURE AND AVERAGE FUEL TEMPERATURE AT AN AVERAGE VOID CONTENT OF 40%

	UPDATED FSAR	Revision:	24
ENERGY.	REACTOR	Figure:	4-16
	CHAPTER 4 FIGURES	Page:	1 of 1

DOPPLER REACTIVITY AS A FUNCTION OF CORE AVERAGE VOID FRACTION AND AVERAGE FUEL TEMPERATURE AT BOL AND EOC

UPDATED FSAR	Revision:	24
REACTOR	Figure:	4-17
CHAPTER 4 FIGURES	Page:	1 of 1

Void Coefficients at Beginning of Cycle 1 and at a Core Average Exposure of 7000 MWD/T

MODERATOR VOID REACTIVITY COEFFICIENT AT BOL AND AT A CORE AVERAGE EXPOSURE OF 10 GWD/T

CORE AVERAGE VOIDS, (Percent)

BRUNSWICK UNIT 1 COLD SHUTDOWN REACTIVITY

FRACTIONAL CONTROL ROD DENSITY VERSUS CORE AVERAGE MODERATOR

DENSITY FOR A CRITICAL REACTOR AT BOL

REACTOR **CHAPTER 4 FIGURES**

Page:

24

MAXIMUM ROD WORTH VERSUS MODERATOR DENSITY

REACTOR CHAPTER 4 FIGURES

MAXIMUM ROD WORTH VERSUS POWER LEVEL

	UPDATED FSAR	Revision:	24
	REACTOR	Figure:	4-23
	CHAPTER 4 FIGURES	Page:	1 of 1

EFFECTIVE CORE EIGENVALUE AS A FUNCTION OF AVERAGE CORE EXPOSURE (MOST **REACTIVE ROD WITHDRAWN)**

Average Core Exposure, (GWD/T)

REACTOR CHAPTER 4 FIGURES

SCRAM REACTIVITY BEGINNING AND END OF FIRST CYCLE

FOR HOT OPERATING CONDITIONS

*Measured from time of de-energization of scram solenoid

XENON REACTIVITY BUILDUP AFTER SHUTDOWN AND BURNOUT ON RETURN TO FULL POWER FROM MAXIMUM SHUTDOWN XENON BUILDUP AT BEGINNING OF

LIFE

	UPDATED FSAR	Revision:	24
	REACTOR	Figure:	4-26
	CHAPTER 4 FIGURES	Page:	1 of 1

RELATIVE XENON STABILITY WITH NO FLUX FLATTENING

LENGTH/DIAMETER RATIO THE L/D RATIO FOR THIS PLANT IS 0.899 AS SHOWN BY THE DASHED LINE

REACTOR CHAPTER 4 FIGURES

EFFECT OF POWER DENSITY ON

AXIAL XENON STABILITY INCLUDING VOID TRANSPORT

AZIMUTHAL XENON STABILITY

PERCENT OF RADIAL FLUX FLATTENED

	UPDATED FSAR	Revision:	24
	REACTOR	Figure:	4-29
	CHAPTER 4 FIGURES	Page:	1 of 1

POWER/FLOW OPERATING MAP FOR POWER UPRATE

FUEL TEMPERATURE VERSUS HEAT FLUX - BOL 3 W/O GD₂O₃

FUEL TEMPERATURE VERSUS HEAT FLUX - 5 YEARS 3 W/O GD₂O₃

CLAD TEMPERATURE VERSUS HEAT FLUX - BOL 3 W/O GD₂O₃

CLAD TEMPERATURE VERSUS HEAT FLUX - 5 YEARS 3 W/O GD₂O₃

CLAD TEMPERATURE VERSUS HEAT FLUX - BOL UO2

CLAD TEMPERATURE VERSUS HEAT FLUX - 5 YEARS UO2

REACTOR CHAPTER 4 FIGURES Revision:24Figure:4-38Page:1 of 1

GAP

FUEL ASSEMBLY INITIAL ENRICHMENT

DISTRIBUTION 2.1 AVERAGE ENRICHMENT

WIDE-WIDE GAP

	Contraction of the local division of the loc							
4	3	3	2	2	2	3	3	
3	2	2	1	1	1	1	2	
3.1	2	1	1	1	1	1	2	
2	1	1	1	1	1	1	1	
2	1	1	1	Water Rođ	1	1	1	
2	1	1	1	1	1	1	1	
3	1	1	1	1	1	1	2	
3	2	2	1	1	1	2	3	
NARROW-NARROW								
ROD TYPE NO. wt%								

OD TYPE	NO.	<u>wt%</u>
1	38	2.35
2	15	1.90
3	9	1.49
-4	1	1.18
	1	Water Tube

REACTOR **CHAPTER 4 FIGURES**

Revision: Figure: 4-39 Page: 1 of 1

LOCAL POWER FACTORS 0 MWD/T 40% VOIDS

	1	2	3	4	5	6	7	8
1	1,101	1.148	1.037	1.175	1.135	1.150	1.002	1.124
2	1.148	1.153	1.011	1.087	1.029	1.029	1.141	1.136
3	1.037	1.011	1.007	0.886	0.833	0.407	0.9 67	1.010
4	1.175	1.087	0.886	0.393	0.803	0.825	0.933	1.127
5	1.135	1.029	0.833	0.803	0.	0,894	0.953	1.120
6	1.150	1.029	0.407	0.825	0,894	0.926	0.995	1.162
7	1.002	1.141	0.967	0_933	0.953	0.996	1.075	1.056
8	1.124	1.136	1.010	1.127	1.120	1.162	1.056	0.988

PEAK = 1.175 ROD (1,4)

REACTOR **CHAPTER 4 FIGURES**

Revision: Figure: 4-40 Page: 1 of 1

LOCAL POWER FACTORS 10,000 MWD/T 40% VOIDS

	1	2	3	4	5	6	7	8
1	1.091	1.092	0.992	1.088	1.064	1.0 60	1.013	1.088
2	1.092	1.073	0.953	1.027	1.001	1.019	1.085	1.097
3	0.992	0.953	1.017	0.948	0.927	0.933	1.007	0,977
4	1.088	1.027	0.948	0.907	0.905	0.896	0.943	1.050
5	1.064	1.001	0.927	0.905	0.	0.900	0,927	1.028
6	1.080	1.019	0.933	0.896	0.900	0.897	0.944	1.051
7	1.013	1.085	1.007	0.943	0.927	0.944	1.009	0.977
8	1.088	1.097	0.977	1.050	1.028	1.051	0.977	0.990

PEAK = 1.097 ROD (2, 8)

GROSS PEAKING FACTOR AS A FUNCTION OF EXPOSURE BRUNSWICK 1

REACTOR CHAPTER 4 FIGURES Revision:24Figure:4-42Page:1 of 1

DURALIFE - 230 CONTROL ROD

REACTOR CHAPTER 4 FIGURES Revision:24Figure:4-43Page:1 of 1

ABB CR82M-1 CONTROL ROD

REACTOR CHAPTER 4 FIGURES Revision:25Figure:4-44Page:1 of 1

WESTINGHOUSE ABB CR99 CONTROL ROD

