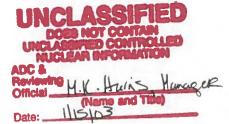
WESTINGHOUSE SAVANNAH RIVER COMPANY INTEROFFICE MEMORANDUM

SRT-EST-2003-00052

January 7, 2003


To: Dave Dunn

From: Greg Flach

Frank Sappington

Copy: Mary Harris

file

Borehole Flowmeter Testing at FHB-004C

Electromagnetic Borehole Flowmeter (EBF) testing at FHB-004C indicates that the wetland soil is highly permeable compared to underlying sediments, even intervals comprised of a fairly clean and well-sorted sand. The wetland thus constitutes a preferential pathway for groundwater flow, and may be important to understanding groundwater flow and contaminant migration through wetlands. The FHB-004C results are consistent with Crisman and others (2001) who observed high conductivity in the active root zone in a wetland area near the headwaters of Fourmile Branch. A more detailed discussion of the test method and data analysis are provided below.

Well location and construction: FHB-004C is located approximately 100 meters south-southeast of the MWMF collection pond in a wetland area bordering Fourmile Branch (Figure 1). The 4" diameter well is screened from ground surface to a depth of 15 ft in three sections (Figure 2). The well was installed through vibracoring and has no filter pack. Rather, the native sediments were allowed to collapse around the screen and casing. The latter is desirable for borehole flowmeter testing because a filter pack would influence flow measurements. The field geologic log is reproduced in Figure 3.

Borehole flowmeter instrument: As used in this report "borehole flowmeter" refers to an instrument that measures the *vertical* flow inside a well casing. Various types of borehole flowmeters have been used in field applications, including heat pulse, tracer release and impeller (spinner) designs. Researchers at the Tennessee Valley Authority (TVA) developed, patented and commercialized a robust, highly-sensitive, borehole flowmeter based on electromagnetic principles. The Electromagnetic Borehole Flowmeter operates according to Faraday's Law of Induction, which states that the voltage induced by a conductor moving at right angles through a magnetic field is directly proportional to the velocity of the moving conductor. Groundwater acts as the moving conductor, an electromagnet generates the magnetic field, and electrodes measure the induced voltage. Calibration data for the Century Geophysical Corporation EBF is provided in Table 1. The precision of the instrument is approximately 0.1 L/min.

Testing procedure: The idea behind borehole flowmeter testing is to relate horizontal conductivity as a function of elevation, K(z), to borehole discharge as a function of elevation Q(z). The field procedure is schematically illustrated in Figure 4 (Molz and Young, 1993). Under quasi-steady pumping conditions, borehole discharge Q(z) from the bottom of the screen up to the current flowmeter position is measured as a function of elevation Z(z). As shown in Figure 5, the difference Z(z) in borehole discharge Z(z) between at any two locations is the flowrate of groundwater entering the well casing over that interval. This differential flowrate, minus any ambient flow effects, is proportional to the horizontal conductivity of the aquifer over that interval. Ambient flow refers to horizontal flow through the well screen and vertical flow in the casing under natural, undisturbed conditions. In order to rigorously account for potential ambient flow effects, the standard borehole flowmeter test procedure actually involves two series of measurements:

- 1) under ambient conditions, measure the vertical flowrate inside the well screen at 1 to 2 ft intervals,
- 2) pump (or inject) at a constant rate above the screen zone and borehole flowmeter,
- 3) pause until the drawdown becomes quasi-steady-state,
- 4) under these quasi-steady-state pumping conditions, again measure the vertical flowrate inside the well screen at 1 to 2 ft intervals.

The quasi-steady conditions referred to in step 3) typically occur within 15 to 30 minutes in confined aquifers, and a couple of hours in unconfined aquifers (Flach and others, 2000a, b). The ambient flow data is also useful by itself for determining the direction(s) of vertical head gradients in the surrounding aquifer, which has contaminant monitoring implications discussed by Flach and others (2000a, b).

<u>Data analysis method</u>: The commonly used data analysis procedure presented by Molz and Young (1993) is summarized by

$$\frac{K_{i}}{\overline{K}} = \frac{(\Delta Q_{i} - \Delta q_{i})/\Delta z_{i}}{\sum_{i} (\Delta Q_{i} - \Delta q_{i})/\sum_{i} \Delta z_{i}}$$
(1)

where

 $K_i \equiv \text{horizontal conductivity of the } i^{th} \text{ interval}$

 \overline{K} = vertically-averaged conductivity

 $\Delta Q_i \equiv$ difference in EBF flow at the top and bottom of the ith interval under *pumping* conditions

 $\Delta q_i \equiv \text{difference in EBF flow at the top and bottom of the } i^{th} \text{ interval under } ambient \text{ conditions}$

 $\Delta z_i \equiv \text{height of the i}^{th} \text{ interval.}$

In equation (1), $(\Delta Q_i - \Delta q_i)$ is the net flowrate induced by pumping and accounts for ambient flow effects. Note that the relative conductivity distribution is equal to the relative distribution of net flow entering the well, which is assumed to occur after the initial transient passes and quasi-steady conditions develop. The basis for this assumption is considered in detail by Flach and others (2000a).

Testing at FHB-004C: For testing at FHB-004C, injection rather than extraction was chosen following the example of Crisman and others (2001) in earlier testing in a wetland near the headwaters of Fourmile Branch. Injection avoids partial de-watering of the screen, permitting characterization of the entire screen length. The injectate was clean groundwater previously extracted from FHB-004C and temporarily stored in two 55 gallon plastic drums. Given the limited supply of injection water, the duration of pre-test injection to achieve quasi-steady flow conditions and the rate of injection were limited. Initial plans called for injection at about 2 L/min and a 15-20 minute delay before measuring flows. Water was pumped from a drum into the well using a Redi-Flo2 variable speed sampling pump connected to a 100 ft 1/2" hose. Previous experience has shown that ambient (no-pumping) flows are usually negligible compared to dynamic (pumping) flows, and ambient testing was initially bypassed for FHB-004C.

Dynamic testing was initiated after injecting for 15 minutes. The starting rate was 2.04 L/min. The water level increased from 3.73 ft below top of casing to 3.31 ft TOC between the start of injection and the first flow measurement. During "Flow Test 1" (Table 2), borehole flow was nearly zero until the EBF reached the upper 1-2 ft of screen. Almost no water was leaving the screen over the bottom 13-14 ft, implying that the hydraulic conductivity of the wetland soil was much higher than underlying sediment. After a series of ascending and descending measurements, generally at 2 ft intervals, the injection rate was measured at 1.23 L/min. While the Redi-Flo2 pump speed was held constant during Flow Test 1, evidently the falling level in the water supply drum caused a corresponding drop in injection flowrate. The non-constant pumping rate precluded analysis of the data using equation (1).

Because of the non-constant injection rate, and the inability to detect injection in the bottom 13+ ft of screen, a second test was performed at about 8.6 L/min. "Flow Test 2" measurements were taken at a faster rate, between 1 and 2 minutes between readings (Table 2). The starting and ending injection rates were measured at 8.57 and 8.61 L/min, implying a constant rate. Despite the higher flows, no measurable amount of flow was leaving the bottom 13+ ft of screen. Regardless, the Flow Test 2 data can be analyzed using equation (1) neglecting ambient flows. Subsequent ambient flow testing confirmed that the ambient flow correction could be ignored. The resulting relative conductivity profile is computed in Table 3 and plotted in Figure 5.

<u>Interpretation of results</u>: In comparing Figure 5 to the field geologic log, the degree of permeability appears to correspond to the extent of rooting and organic matter indicated in Figure 3. This implies the wetland soil in the area is highly permeable, and constitutes a preferential pathway for groundwater flow. Figure 5 indicates the hydraulic conductivity of the wetland soil is more than an order of magnitude larger than that of the underlying sediments. Recognition of this phenomenon may be important to understanding contaminant migration

through wetland areas. Crisman and others (2001) also observed high conductivity in the active root zone of a wetland area along Fourmile Branch.

References:

Crisman, S. A., F. J. Molz, D. L. Dunn and F. C. Sappington, 2001, Application procedures for the Electromagnetic Borehole Flowmeter in shallow unconfined aquifers, Ground Water Monitoring & Remediation, Fall, 96-100.

Flach, G. P., F. C. Sappington, W. Pernell Johnson and R. A. Hiergesell, 2000, Electromagnetic Borehole Flowmeter (EBF) testing in R-area (U), WSRC-TR-2000-00170.

Flach, G. P., F. C. Sappington, F. A. Washburn and R. A. Hiergesell, 2000, Electromagnetic Borehole Flowmeter (EBF) testing at the Southwest Plume Test Pad (U), WSRC-TR-2000-000347, Rev. 0.

Molz, F. J. and S. C. Young, 1993, Development and application of borehole flowmeters for environmental assessment, The Log Analyst, v3, Jan.-Feb., 13-23.

WSRC-NB-2001-00167 (controlled notebook)

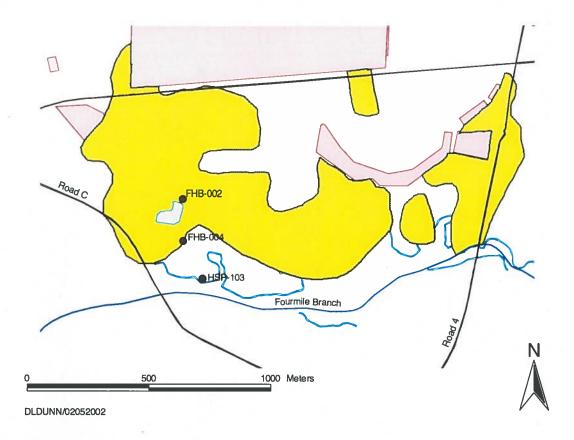


Figure 1 Location of FHB-004C.

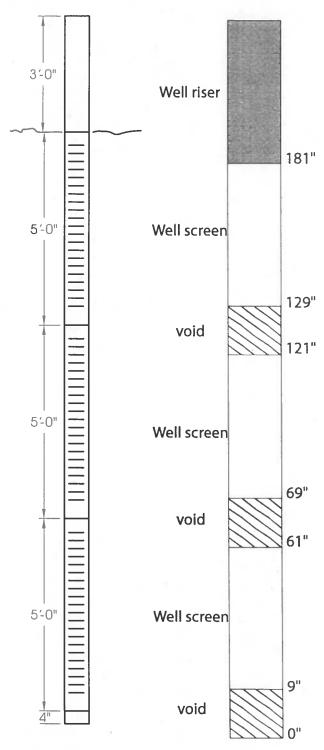


Figure 2 Well construction diagrams for FHB-004C.

00 50		-V/		FIELD GEOLOGIC	LOG					
nosec	"F2H3	epline		REFERENCE DATUM	DATE 7/07/02 SHEET OF	7/07/02 STEET OF 1				
ALL N	0				Athena					
		JA .		SRP COORDINATES	DRILLER	_				
GGE	1B-00	111		1 /3 02 U E	53710 DARLER Jerry Sexton					
W	E. J.	115		SRTC	DRILLING METHOD					
		1	1 >	I ORIC	Vibracore					
NUMBER	DEPTH, FEET	LITHOLOGY	PERCENT	SAMPLE DESC	DRILLING					
	0	*		97.8	COMMENTS					
,		4. 3. 9.		top soil, v. souty & leafy,	10k \ c 10V0 3/1/	_				
,	1	15				_				
/	-	1		Sand for med, silty, vide	t 200 10V0 2/1	_				
	2 -	1 . 4		x. cooty	and the state of t	_				
		1 1.		0		7.				
	3	1	-							
	-	19: -	100	Sand formed (60-80%) 3:44	£ (1/2 (21-404) 200 1042 =11					
	4	1:3:	100	rovts	7 3 30 1012 31					
	-					_				
	5	- de-		Sand In-med, whitetopale	cray					
	6			Sand for w/med white pole	era malanded					
-				sitty, clayey, white, publy	VICE FOR A					
	7	7		3, 19, 3,122	1.0.3, 344.0					
	0									
2	8-	1 -: -:	100		7107	_				
			1	Sand Hasen 7.54R NO ind.	da 1 1 1 . 1 . 1 . 1 . 1 . 1 . 1 .					
	9	-		Vicesto meditine sitty & d.	gdownward to ylorng. 7.5/R 7/R	_				
				Clayly cyto reddish ye llow ? dense, moldable	540 0/21 7 540 7/0	_				
	10-	7		dense moldable	112 112 72 72 1K 1/8	_				
_	-									
3	1			Sand med-crs, rellante orance	INVERY 1					
				Clay tan yellow 7.5/286.	alertic de partificação	-				
	2			Dang met crts counded-	hm. 1.1.1/11					
	-			Clay Higrayinhben 75)	Q Iki aladi da di tan 10 YRBN sli silty	_				
	. 3					No.				
				sandcolor scades downward	ed, black accoming who let - 1/2 in thicker from black to pake pentis 548 8/2) to be no ong to	13.4				
	4	0	100	cobbly ofterand	tomed 15,5 to 14.8f - (80-85%)	5ya				
	-			Sand in tocca to 15,5 ft fu	to mane 1 5. 5 + 11 000 (0, 000)	_				
	5			SiH? (15-20%) clayent	ntdecree 1 10.8++ (80-85%)					
	-		1	Sitt (ly 15-2016) clayeant	early ested by 1500					
	6-		-	med-well anded below 15,5	Ft					
		1 = 1 = 1 = 1								
	7	1 :		reddoth wellows 7.548 5:14	Claver Fo Sand IL 9-17 post					
		1		7Ang MSY0134+(C590) to	1. Delegarente Mid. PVOI	-				
	8			accimica, to dek minerale	well anded	-				
-,				Thin orange lamines (1 to	Zmm) france 18 5 to 19 0					
	9	1		, , , , , , , , , , , , , , , , , , , ,						
		T.D.				-				
	0					_				

Figure 3 Field geologic log for FHB-004.

Table 1 Pre-test calibration data for Century Geophysical Corporation Electromagnetic Borehole Flowmeter instrument.

Point	Reservoir (I)	Time (sec)	Measured Flow (I/min)	EBF CPS or Indicated Flow (I/min)	Difference (Meas EBF Reading)	Conversion (ft/min)/ (l/min)	Speed	Comments
1	16.8	49.2	20.49	19.19	1.3	6.4759	-	Initial calibration check
2	-	-	0	-1.41	1.41	6.4759	•	Similar offset as Point 1 recalibrate
3	-	-	0	54996		6.4759	0	First calibration point
4	16.8	49.65	20.3	87364		6.4759	131.47	Second calibration point
5	16.8	49.09	20.53	20.65	-0.12		-	Recheck first calibration point
6	-	=	0	-0.03	0.03		-	Recheck second calibration point

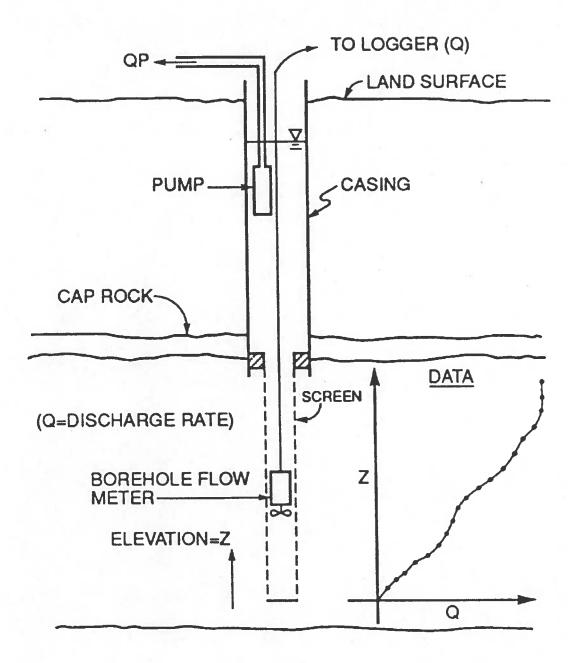


Figure 4 Schematic illustration of borehole flowmeter testing; reproduced from Molz and Young (1993).

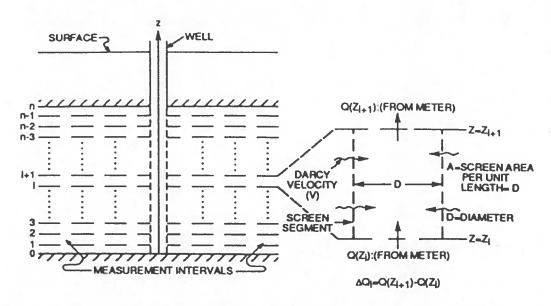


Figure 5 Basic geometry and analysis of borehole flowmeter data; reproduced from Molz and Young (1993). Table 2 Field data from Electromagnetic Borehole Testing at FHB-004C.

Table 2 Flow rate and water level measurements from FHB-004C.

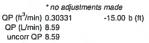

				Flow			
	Instrument/		Volume		Flow	Water Level (ft	
Time	Skirt Depth	Reading	(L)	Time (sec)	(l/min)	from TOC)	Comments
DRETEST	DATA AND	PUMP FLOW	MEASILDE	MENTS		 	
FILLEST	DATAAND	POINT 1 LOW	MILASOITE	IIILITI O		3.73	Pretest water level
13:21	4.22					55	Set tool position to 4.22' with ref point at TOC
13:25				 			At of well with skirt at 17.44'
13:28		0.01					At Of Well Will Skirt at 17.77
13:48		0.01			1.80		Adjust pump flow
13:49		-0.0024					
13:54			2.00	58.75	2.04		Set pump flow
FLOW TES	ST 1						
13:56		144	- 1				Start injection
13:58				\vdash		3.40	
14:06						3.34	
14:14		0.000		$\overline{}$		3.31	Otant Instance and Date Called to
14:15		-0.020					Start Instrument Data Collection
14:20 14:26	13.99 12.03	-0.168 -0.169		 			
14:26	10.02	0.135					
14:35	5.01	-0.027		 			
14:39	4.02	-0.533					
14:44	6.04	0.092					
14:48	8.03	0.022		_ = =			
14:56		-0.032	1, 11			3.33	
15:01	3.22	0.942					
15:05	17.44	-0.078					
15:08		0.070		\longrightarrow			
15:10		0.039					
15:12		0.052					
15:14		0.092					
15:16 15:18		0.259 0.204		 			
15:10		0.250		 			
15:22	5.04	0.207		 			
15:24	4.50	0.124				3.36	
15:26		-2.380			-	0.00	Stop Instrument Data Collection
15:29	3.74		1.0	48.68	1.23		
FLOW TES	ST 2						
			2	14.0	8.57		Set new pumping rate
15:38		0.109					Baseline reading at 0 flow
15:40							Restart Injection
15:41	13.01	0.000					Chart Instrument Date Callection
45.44		0.039				2.00	Start Instrument Data Collection
15:44 15:45	7.98	-0.159				2.90	Start Instrument Data Collection
15:45	7.98 5.94	-0.159 -0.047				2.90	Start Instrument Data Collection
	7.98 5.94 4.02	-0.159 -0.047 -2.455				2.90	Start Instrument Data Collection Skirt 9" below TOS
15:45 15:47	7.98 5.94 4.02	-0.159 -0.047	2	13.9	8.61	2.90	
15:45 15:47	7.98 5.94 4.02	-0.159 -0.047 -2.455	2	13.9	8.61	2.90	Skirt 9" below TOS
15:45 15:47	7.98 5.94 4.02	-0.159 -0.047 -2.455	2	13.9	8.61	2.90	Skirt 9" below TOS Verify final injection rate
15:45 15:47	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455	2	13.9	8.61	2.90	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection
15:45 15:47 15:49 FLOW TES	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455				2.90	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well
15:45 15:47 15:49 FLOW TES	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455	2	24.0	5.00		Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455				4.60	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455	2	24.0	5.00	4.60 4.75	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements Water level and flow measurements Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455	2	24.0	5.00	4.60 4.75 5.00	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06 16:07 16:08	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455	2	24.0	5.00	4.60 4.75 5.00 5.15	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06 16:07 16:08 16:10	7.98 5.94 4.02 3.52	-0.159 -0.047 -2.455 -4.971	2	24.0	5.00	4.60 4.75 5.00 5.15 5.42	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06 16:07 16:08 16:10	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455	2 2	24.0	5.00	4.60 4.75 5.00 5.15	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:07 16:08 16:10	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455 -4.971	2	24.0	5.00	4.60 4.75 5.00 5.15 5.42	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06 16:07 16:08 16:10	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455 -4.971	2 2	24.0	5.00	4.60 4.75 5.00 5.15 5.42	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06 16:07 16:08 16:10 16:14 16:16	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455 -4.971	2 2	24.0	5.00	4.60 4.75 5.00 5.15 5.42	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06 16:07 16:08 16:10 16:14 16:16	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455 -4.971	2 2	24.0	5.00	4.60 4.75 5.00 5.15 5.42	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements Pumping from well test stopped
15:45 15:47 15:49 FLOW TES 15:58 16:04 16:06 16:07 16:10 16:14 16:16	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455 -4.971	2 2	24.0	5.00	4.60 4.75 5.00 5.15 5.42 5.70	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements Pumping from well test stopped May be to soon after transient
15:45 15:47 15:49 15:58 16:04 16:06 16:07 16:08 16:14 16:16 Ambient T 16:34 16:42	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455 -4.971 0.747	2 2	24.0	5.00	4.60 4.75 5.00 5.15 5.42 5.70	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements Pumping from well test stopped May be to soon after transient Water level and flow measurements
15:45 15:47 15:49 15:58 16:04 16:06 16:07 16:08 16:14 16:16 Ambient T 16:34	7.98 5.94 4.02 3.52 ST 3	-0.159 -0.047 -2.455 -4.971 0.747	2 2	24.0	5.00	4.60 4.75 5.00 5.15 5.42 5.70	Skirt 9" below TOS Verify final injection rate Stop Instrument Data Collection Pumping from well Water level and flow measurements Pumping from well test stopped May be to soon after transient Water level and flow measurements

Table 3 Hydraulic conductivity calculations for FHB-004C.

(1) Nominal Depth Below TOC (ft)	(2) Elevation (ft-msl)	(3) Ambient Flow (L/min)	(4) Ambient Flow, q (ft ³ /min)	(5) Differential Ambient Flow, Δq _i (ft ³ /min)	(6) Pump Induced Flow (L/min)	Bypass flow factor	(8) Adjusted* Pump Induced Flow (L/min)	(9) Pump Induced Flow, Q (ft ³ /min)	(10) Net Pumping Flow, Q - q (ft ³ /min)	(11) Differential Net Flow, $\Delta(Q_i - q_i)$ (ft ³ /min)	(12) Adjusted* Differential Net Flow Δ(Q _i - q _i) (ft ³ /min)	(13) Layer Thickness Δz _i (ft)	(14) Mid-point Elevation (ft)	(15) K _i /K _{avga} b(ΔQ _i - Δq _i)/ (Q _p Δz _i)
18.0	-15.00	0	0	0	0.00	1	0.00	0.000	0.000	-0.001	-0.001	-5.0	-12.50	-0.01
13.0	-10.00	0	0	0	0.04	1	0.04	0.001	0.001	0.007	0.007	-5.0	-7.50	0.07
8.0	-5.00	0	0	0	-0.16	1	-0.16	-0.006	-0.006	-0.004	-0.004	-2.0	-4.00	-0.10
6.0	-3.00	0	0	0	-0.05	1	-0.05	-0.002	-0.002	0.085	0.085	-2.0	-2.00	2.10
4.0	-1.00	0	0	0	-2.46	1	-2.46	-0.087	-0.087	0.089	0.089	-0.5	-0.75	8.79
3.5	-0.50	0	0	0	-4.97	1	-4.97	-0.176	-0.176	0.128	0.128	-0.5	-0.25	12.64
3.00	0.00	0	0		-8.59	1	-8.59 " no adjustm	-0.303	-0.303		* no adiustr	nente made		
							no aujusim	onia made		_	no aujusii.	nema made		

3.00 18.00 14.27 3.00 3.73 Top of Screen Depth from TOC (ft) Bottom of Screen Depth from TOC (ft)

Saturated Screen Length (ft)
TOC Elevation (ft)
Water Level Depth from TOC (ft) - ambient
Water Level Depth from TOC (ft) - dynamic

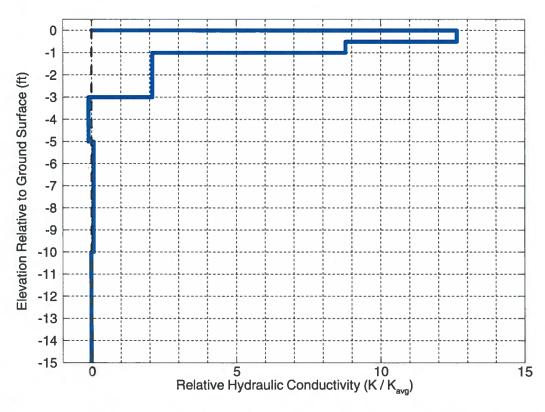


Figure 5 Hydraulic conductivity relative to the average for FHB-004C.