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ABSTRACT: The focus of this paper is on applications (e.g. some leachate collection layers in
landfils) where a drainage syslem consists of a geocomposite overkain by a sand layer. If the
geocomposile does nol have sufficient flow capacity to convey all the collected liquid, a [raction of
the liguid flows in the sand laver. In such drainage systems, the maximum liquid thickness should be
calculated to check that the flow capacity of the sand is not excesded, and the maximun: head showld
be calculated to check that it is less than the maximum head preseribed by regulations, This paper
presents a method for calculating the maximum liguid thickness and the maximum head in drainage
syslems composed of two layers, with the lower Jayer being a geocomposite. Equations give the
maximum liquid thickness and the maximum head as a function of the rale of liguid supply, the
hydraulic conductivities of the two fayers, the length of the drainuge system, and the slope. Design
examples are presented.
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1. INTRODUCTION
1.1. Scope of this paper

There are many landfills where the liner is overlain by a
lcachate collection system thal consists of a drainage
geocomposite overlain by a sand prolective layer
(Figure 1). It should be noled that only the upper
geotextile of the drainage geocomposite is shown in
Figure 1. In many cases, there is a geotextile heal-bonded
to the lower face of the geosynthelic drainage medium
for stability purposes. This geotextile is not shown in
Figure 1 because the focus of this paper is on hydraulic
performance. Stability considerations are briefly dis-
cussed in Section 5.5,

The geocomposite is typically a few millimeters thick,
whereas the sand layer is typically between 0.3 and ¢.6 m
thick. Engineers designing such systems are ofien
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required to <demonstrate that the head of leachatc is
less than a maximum value prescribed by regulations.
This is a challenging problem if leachate flows both in
the geacomposite and in the sand.

More generally, there are applications, other than
leachate collection systems, where a drainage system
consists of two layers. In this paper, the term ‘drainage
system’ will be used generically to designate all types of
drainage syslems, including leachate collection systems.

The design of a drainage system requires the calcula-
tion of the maximum liquid thickness and the maximum
head, as explained below:

o The maximum liquid thickness must be less than the
thickness of the drainage system for the following
reasons: {i) to ensure that the drainage system is not
full and, therefore, is able to collect liquid over its
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Figure 1. Leachate collection system or other drainage layer composed of a drainage geocomposite overlain by a sand layer

entire area: (i) to prevent pore pressure build-up
in cases where pore pressure can be detrimental to the
stability of the drainage sysltem and overlying
materials, and in cases where the resulting head may
be excessive regarding the risk of teakage through the
underlying liner (il any), as explained below; and (i)
in the case of leachate collection layers, to prevent the
leachate that is conveyed by the leachale collection
layer from being in contact with the waste, which
would increase leachale concentration. Also, in the
case of drainage systems on sieep slopes, the liquid
thickness in the drainage system must be as small as
possible because the stability of the drainage system
and overlying materials is impaired by seepage forces
that are proportional to liguid thickness. It should be
noted that the term ‘thickness’ is used instead of the
more familiar term ‘deptl’, because thickness {meas-
ured perpendicular to the drainage layer slope}, and
not depth (measured vertically), is actually used in
design.

e The maximum head must be as small as possible
because the rate of leakage through the liner (if any}
underlying the drainage system is a [unction of the
head of liquid above the liner (commonly called
‘head"). To that end, regulations applicable to landfll
design typically require & demonstration that the head
of leachate above the liner is less than a prescribed
value, typically 0.3 m. For applications where there is
no prescribed value for the maximum head, there may
be a project-specific design criterion for the maximum
head.

In summary, a drainage systemn must meet two design
criteria: the maximum liquid thickness must be smaller
than the thickness of the drainage system, and the
maximum head must be smaller than a prescribed value.

As indicated in Section 2.5, the liquid thickness and
the head are related: the head is slightly smaller than
liquid thickness. In the design of drainage systems that
consist of two layers, with a geocomposile as the lower
layer, two cases should be considered, depending on the
required liquid collection rate and the flow capacity of
the drainage geocomposite:

e If the drainapge geocomposite has sufficient flow
capacity to convey {without being full) all the collected
liquid, the liquid thickness in the geocompesite s less
than the geocomposite thickness, and the head is very
small because the thickness of the geocomposile is
small,

& I{ the drainage geocomposite does not have sufficient
flow capacity lo convey all the collected liquid, some
of the liquid flows in the layer located above the
geocomposite (hercin relerred to as the upper layer),
in this case, the designer should check that: (i) the
liquid thickness in the upper layer is less than the
thickness of the upper layer; and {ii) the total head (i.c.
the hecad in the geocomposite plus the head in the
upper layer) is less than the prescribed value.

Based on the foregoing discussion, il is important to
have a method for calculating the liquid head and
thickness in the case ol a drainage system composed of
two layers. To the best of the authors” knowledge, no
method has been published [or this specific case. The
purpose of this paper is to provide suck a method.

1.2. Definitions and assumptions

1.2.1. The draimage system

The considered drainage system is located on a slope of
angle fA. The drainage system is underlain by a
geomembrane liner, which is assumed to be without
defects. This assumplion is conservative beczuse il
means that there is no liquid loss, and therefore the
drainage system must be designed to convey all the
liquid.

The drainage system is composed of two layers. Each
layer is characterised by its thickness and the hydraulic
conductivily of the drainage material. The hydraulic
conductivity of the lower layer material, &y, is assumed
to be greater than the hydraulic conductivity of the
upper layer material, ka:

.'l\'l > fig (1)

where &, is the hydraulic conductivity of the drainage
material used in the lower layer, and ks is the hydraulic
conductivity of the drainage malerial used in the upper
layer, In this paper, the subscript 1" will be used for the
lower layer and the subscript 2 for the upper layer. If
the drainage materials do not have the same hydraulic
conductivities in all directions, & and k, are assumed to
be measured in the direction of the slope.

The hydraulic transmissivity of each layer is the
product of the thickness of the fayer and the hydraulic
conductivity of the material used in the layer. Thus:

0| xkl"l (2)

)y a= kgfg_ (3)
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where 1, Is the hydraulic transmissivity of the lower
layer, 7; is the thickness of the lower layer, () is the
hydraulic transmissivity of the upper fayer, and 15 is the
thickness of the upper layer.

[t is assumed that the lower layer consists of 4
geocomposite. This assumption allows the use of a
simple equation to calculate the liquid thickness in the
lower layer, which will greatly simplify the analysis. This
assumption is discussed in Section 5.6,

An important parameter of the analysis is the length
of the drainage layer, L. It is important to note that, in
accordance with usual practice, L is measured horizon-
lally.

Finally, it is assumed that the two layers of the
draipage system are separaled and/or protected by
properly designed filters. The design of filters is beyond
the scope of Lhis paper.

1.2.2. Liguid supply and flow

The thickness of liguid in a drainage layer depends on
the rate of liguid supply. The rate of liquid supply, ¢y, is
expressed as a volume of liquid per unit of time and per
unit area (measured horizontally). The resulting units arc
expressed in terms of length per time (e.g. m/s, mm/day,
infday). For the analysis presented in this paper, the rate
of liquid supply is uniform (i.e. it is the same over the
entire area of the drainage layer) and is constant (i.e. it is
the same during a period of time that is long cnough so
that stcady-state flow conditions can be reached).

Two examples of drainage systems with a uniform rate
of liquid supply can be found in fandflls: (i} the drainage
system of the landfill cover, where the liquid thal
impinges onto the drainage system is the precipitation
water that has percolated through the soil layer (‘cover
soily overlying the drainage system; and (i) the leachate
coliection system, where the liguid that impinges onto
the leachate collection system is the leachate that has
percotated through the waste and through the protective
soil layer (if any) overlying the leachate collection
system. The terminology ‘liquid impingement rate’ is
often used in the case of landfills to designate the rate of
liquid supply.

The rate of liquid supply is assumed to be smaller than
the hydraulic conductivity ol the upper layer (which i3
smaller than the hydraulic conductivity of the lower
Jayer, as indicated by Equation 1)

gy < ka2 (4

As a result, the liquid supplied 1o the drainage system
percolates vertically through the drainage system
material until it meets the surface of a saturated zone
of the drainage system.

The flow rate in & drainage system at a distance x from
the top of the slepe (Figure 2) is

£ g (5)
where Q/B is the flow rale in the drainage system (in the

direction parallel (o the siope) per unit length in the
horizontal direction perpendicular to the direction of
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Figure 2. Flow rate per unit width in a drainage laycr located on 2
slope

the flow, ¢ is the flow rate in the drainage system {in the
direction parallel io the slope), B is the unit length in the
herizontal direction perpendicular to the direction of the
flow, and x is Lhe distance measured horizontally {rom
the top of the slope.

In particular, the flow rale at the toe of the slope is
equal to the total amount of liquid supplicd per unil of
time:

(5)... ©

It is assumed that there is a perfect drain that
promptly removes the liquid at the toc of the drainage
sysiem, The tcrm ‘perfect drain’ indicates that the
elevation of liquid in the drain located at the toe of
the drainage system slope is below the bottom of the
drainage system. The liquid thickness is then quasi-zero
at the toe of the drainage syslem, as shown by Giroud
el af. (2000). it will be seen that this assumption is not
necessary in the limit case described in Section 2.4; this
comment is important for the validity of the approach
used in this paper.

1.2.3. Liguid

The liquid is assumed to be water, or a liquid that has
physical characteristics similar to those of water. In
particular, the liquid is assumed to be incompressible,

1.2.4. Reduction factors and fuctors of safety

The use of reduction factors (to account for the decrease
of hydraulic conductivity and hydraulic transmissivity
with time due to clogging and other mechanisms) and
factors of safety is not discussed in this paper. Detailed
guidance on the use of reduction factors and factors of
safety is provided by Giroud et af. (2000).

1.3. Organization of this paper

A roview of available equations is presented in Section 2;
a theoretical analysis is presented in Section 3; numerical
applications arc presented in Section 4; and a discussion
is presented in Section 5.
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2. REVIEW OF AVAILABLE EQUATIONS
2.1. Overview

Section 2 presents equations that make it poessible to
calculate the maximum liquid thickness and maximum
head in the usual case ol a drainage fayer subjected to a
uniform rate of liquid supply and composed of only one
drainage material underlain by an impermeable liner,
These equations will be used in the analyses presented in
Section 3 to develop eguations for drainage systems
composed of two layers. These cquations are from a
detailed study of liquid flow in a drainage layer with a
perfect drain at the toe of the slope presented by Giroud
et al. (2000).

2.2, Shape of the liquid surface

The shape of the liquid surface in a drainage layer
subjected to a uniform liquid supply is shown in Figure
3. The shape of the liquid surface depends on Lhe
characieristic parameter, 4, defined as follows (Giroud
et af. 20001:

_ in .
“ = ktan B ™

where k is the hydraulic conductivity of the drainage
material in the direction of the flow, and [ is the slope
angle of the drainage layer.

Figure 3a shows that, when 2 is greater than 0.25, the
liquid thickness is not zero at the Lop of the siope. In this
case, the liguid surface is horizontal at the top of the
slope, which is consistent with a zero hydraulic gradient
at the top of the slope, and hence with zero flow through
the vertical surface VV' at the top of the slope. The zero
flow condilion through VV' implies that there 1s liquid
wilh a zero hydraulic gradient on the other side of VV'
{(1.e. the left side of ¥V’ in Figure 3a).

Figure 3¢ shows that, when /7 is very small, the
thickness of the liquid in the drainape layer varies
linearly from zero at the top to a maxinmum value near
the toe of the drainage layer slepe. The maximum liquid
thickness occurs exactly at the toe of the slope in the
limil case where 4 = 0.

2.3. Maximuom liquid thickness

Regardless of the shape of the liquid surface, the
maximum liquid thickness in the drainage layer, fuux.
is given by thc following cquation, known as the
modified Giroud’s equation (Giroud and Houlihan
1995; Giroud et «f. 2000):

Jtan® f+dge/k — tan [J’L

Imax =,

2cosf
JT+4 —1anf
= L 8
y 2 cos fi ®

where L is the horizontal projection of the length of the
drainage layer in the dircction of the flow {Figure 2), and

Ciivoid . Zhae, Pombinsen and Zoimbers
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Figure 3. Shape of the liquid surface in a drainage layer as a
function of the dimensionless parameter, A: (a) A > 0.25; (b)

A < 0.25; () 2 very small {reproduced from Girend ef af. 2000)
Nete: The characteristic parameter /A is defined by Equation 7. At
the toe of the drainage layer slope, the liquid thickness is very
small. At the scale of the figure, it appears to be zero. A very
small fiquid thickness is possible at the toe of the slope because
the liquid surface is vertical at the toe of the stope and, as a result,
the hydraufic gradient is very high. In the case where J = 0, the
maximum liquid thickness is approximately equal to ty;,, and
occurs near the toe of the drainage layer slope.

j is a dimensionless paramecter called the ‘modilying

factor’ and defined as foliows:
== O.E?_exp{f[log(82/5)5”2]2} (9)

Numerical values of the modifying factor, j, range
hetween 0.88 and 1.00, as shown m Table 1. Thercfore
a conservative approximation of Equation 8 is the
following equation, which is known as the original
Giroud’s equation:

\/td?ﬁ":— 4y ke — tan ﬂ[

Tmax = 7 cos ﬁ
1 A R F
Y + 4/ lldn[ﬁ’L (10)
2 cos f}

2.4. Limit case

When / is very small (e.g. i < 0.01), which occurs in
many practical situations, Equations 8 and 10 are
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Table 1. Numerical values of / ag a function of 4

; J i ; i i
0 1.000 0.04 0.931 5 0.913
4.0001 1000 0.03 0.925 6 0.913
0.001 0.994 0.06 £.920 7 0.922
0.002 0.989 0.07 0.916 & 0.926
0.003 0985 0.0% 0.912 9 0.929
0.004 0.982 0.09 0.909 10 0.932
0.005 0.97% .10 0.906 15 0.943
0.006 0.976 0.15 0.897 20 0.950
0.007 0,973 0.20 0.391 30 0.960
0.008 0.970 n.23 0887 50 0.971
0.009 0.968 0,50 0,880 100 0.982
0.01 0.966 ! 0.852 200 0.990
0.015 0.957 2 0.891 500 0.996
0.02 0.950 3 0.900 1000 0.998
0.03 0.939 4 0.997 SG00 1.000

Note: The dimensionless parameter j was caleulated using Equation 9. The dimensionless parameter 2 is defined by

Equation 7.

equivalent 1o the following equation, called the ‘limit

case equation’ {Giroud ef af. 2000):
n gy tanf o tanfl

fmax = fim — ; [ = = A
mas T e sin ktan® fcosff cosfi

{1n

where f, 15 the maximum liquid thickness in the limit
case where 4 approaches zero.

As indicated in Figure 3¢, when 2 is very small, the
thickness of the liquid in the drainage layer varies
linearly frem zero at the top to a maximum value near
the toe of the drainage layer slope. Therefore the
following relationship exists when 4 is very small:

G Jtanf
= X= 4 X
ksinf cos f

(12}

where 1 is the liquid thickness at the distance x measured
horizontally from the top of the drainage layer in the
limit case where /2 is very small.

It is impertant to note that the liquid thickness at
distance x from the lop of the slope is the same whether
the total length of the drainage layer is x or greater. This
means that il is not necessary to have a perfect drain at
the toe of the slope in the limit case where 2 i3 very small.
The only requirement is that the portion of the drainage
layer downstream of abscissa x be able to convey the
flow rate that exists at abscissa x, This is important for
the validity of the approach used in this paper.

Equation 11 is simpler than Equation 10, which in
turn is simpler than Equation 8. A detailed discussion of
the approximation made when Equation 11 is used is
presenied by Giroud er al. (2000). The conclusion of the
discussion is that; (i) regardless of the value of 4,
Equation 11 provides a conservative value of the
maximum liquid thickness {(i.c. a value of the maximum
liquid thickness greater than Lhe value calculated more
accurately using Equation 8 or Equation 10); and (ii)
Equation 11 provides an acceptable approximalion of
fmax If Lhe liquid thickness is iess than one tenth of the
height of the drainage layer (i.e. the difference in

elevation belween the top and the toe of the drainage
layer slope). As a result, from a practical standpoint,
Equation 11 is always valid in the case of geosynthetic
drainage layers {and is then preferred to Equations § and
10 because it is simpler), and rarety valid in the case of
granular drainage layers located on a slope that is not
steep. Accordingly, in this paper, Equation 11 will be
used systematically for geosynthetic drainage layers,
such as geocomposites, and Equation 8 will be used
systematically for granular drainage layers.

2.5. Maximum head

The equations presented in Sections 2.3 and 2.4 give the
maximum liquid thickness of liquid in a single drainage
layer. Equations that give the maximum head can be
derived from equations that give the maximum liquid
thickness. In the case of liquid flow parallel 1o a slope,
the following relationship exists between liquid thick-

"ness, 7, and head, i

h = feos f§

(13)

As indicated by Giroud et «f. (2000}, Equation 13 is only
approximate in the general case. However, Giroud e /.
{2000) also indicated that Equation 13 provides a good
approximation in the case of the maximum liquid
thickness and the maximum head, which arc the two
important design parameters. Hence:

Fimax 72 Lmax COS ;8 (14}

Equation 13 shows that the head is equal to the liquid
thickness if the slope angle is small {e.g. cos § = 1.00 for
slopes less than 10%) and is slightly smaller than the
liquid thickness if the slope is steep (e.g. cos f = 0.95 for
a 1V:3H siope}.

Combining Equations 8§ and 14 gives the following
general equation for the head:

_\/ta113ﬁ+4qh/lc—tan[ﬁLi s .
/ 2 ' 2/tanf

Fisax =,

(13)
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Combining Equations 11 and 14 gives the following
eguation for the head in the Hmit case defined in Section
2.4

h L
ktan

=/iltanf (16)

hm;!x -~

3. ANALYSIS

3.1. Introductien to the analysis

3.1.1. Flow configurations

From the view point of flow configurations, two dilferent
slope sections should be considered: the upstream section
and the downstream section (Figures 4 and 5). In the
upstream section, all of the liquid supplied percolates
vertically through the upper layer and is collected by the

iower layer, where it flows along the slope. The tength of

the upstream section is such that the lower layer is full at
the toe of the upstream section. In the downstream
section, liquid flows both in the lower layer (which is fuli)
and in the upper layer.

The liquid in the upper layer has different configura-
tions m two cases depending on the value of the
characteristic parameter for the upper layer, 4;. This
parameter is defined by the following equation, derived
from Equation 7 with k& = i

ih
kytan® §

by = (17

In the first case, the liquid thickness is zero at the top
of the downstream scction of the upper layer (Figure 4).
This occurs when 2, is equal to or less than 0.25 (Figures
3b and 3c)

In the second case, the lquid thickness is not zero at
the top of the downstream section of the upper layer
(Figure 5). This occurs when Az is greater than 0.25
{Figure 3a). In this case, the flow can be described as
follows:

e As indicated in Section 2.2, there is no flow through
the vertical surface VV' (Figures 3a and 3).

e As indicated in Section 2.2, a liquid profile must
develop on the upstream side of ¥V’ as there is no flow

Upper |
layer |

Lower
layer

I
1
i
!
b i
i
I

u
Upstraam
section

Downstream 3 . :
section d

Figure 4. Flow configuration in the upstream scction and the
downstream section for the case where 43 < 0.25
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Figure 5. Flow configuration in the upstream section and the
downstream section for the case where 4; > 0.25

through the vertical surface VV'. This leads to the
formation of the saturated zone BVV’ (Figure 5).

¢ When the steady state is reached (which is the case
considered in this paper), the rate ol ligud flow
through BY (liquid surface) is equal to the rate of
liguid flow through BV’ (dripping surface). Therefore
the rate of Hquid supply to the lquid surface AV’ (ie
to the upstream section of the lower layer} remains
uniform, because it is not disturbed by the presence of
the salurated zone BVV",

e The trjiangular zone AA'V' is unsaturated, which is
possible because the hydraulic conductivity ol the
upper layer is smaller than the hydraulic conductivity
of the lower layer.

Based on the foregoing discussion, even though the
flow configurations in the upper layer arc different in the
two cases (4o < 0.25 and Z; = 0.25), the ratc of liquid
supply to the lower layer is the same. Also, as indicated in
Section 2.3, the same equation for calculaling the liguid
maximum thickness is applicable regardless of the value
of 4 (i.e. the same cquation can be used in the two cases).
Therefore the two cases (4> < 0.25 and 2, > 0.23) will be
addressed together in the analysis presented hereafter,

3.1.2. Overview of the analysis

An analysis of flow in the lower layer will be presented
first (Section 3.2). This analysis will give the value of the
iength of the upstream section, and will show that the
lower layer conveys all of the liquid supplied to the
upstrean section and almost none of the liquid supplied
to the downstream section,

An analysis of flow in the upper layer will then be
presented (Section 3.3). The analysis will show that the
upper layer conveys no flow in the upstream section. The
analysis will also show that, in the dewnstream section,
the upper layer conveys no liquid supplied to the
upstrearn section and conveys virtually all of the liguid
supplied to the downstream section,

3.2. Flow in the lower layer

3.2.1. Flow in the upstream section of the lower layer
As indicated in Section 3.1.1, the rate of liquid supply 1o
the upstream section of the lower layer is uniform,

Geosynthetics International, 2004, 11, No, |
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regardless of the flow configuration in the upper layer.
Therefore the rate of Hguid supply is equal to ¢y, defined

As indicated in Section 1.2.1, the lower layer is
assumed 1o be a geccomposite, Therefore the lower
layer satisfies the conditions of validity of the limil case
presented in Section 2.4, Consequently, in the upsircam
section of the lower layer, the liquid thickness varies
lincarly from zero at the top ol the slope to £; at the point
where the lower layer is full. Therefore the fength of the
upstream  section, L, can be calculated using the
following equation, derived Irom Equation 12 with
x=ALy, k=kyand t = 1:

B nkysinfl

Ly = (] 8)
h
Combining Equations 2 and 18 gives
@y sin fi
= (19)
4n .

It should he noted that, according to Section 2.4, the
presence of a toe drain is not required to ensure the
validity of Equations 18 and 19. The only requirement is
that the downstream section be able to convey the flow
rate that exists at the downstream cnd of the upstream
section. This requirement is met, as indicated in Section
3.2.2,

If L, calculated using Equation 18 or 19 is greater
than L, the maximum liquid thickness is smaller than ¢,
and all the liquid flow is conveyed by the geocomposite.
In this case, the maximum liquid thickness is given by the
following equation derived [rom Equation 11 with
ko= kg

—~ 4
Tmax A fim = e Sil]ﬁ .
K1

(20}

and the maximum head is then given by the following

eguation, derived from Equation 16 with & = ky:
‘l'hL

A 2
kytan ff b

hlﬂilS =
If L, is greater than L, the equations presented in the
remainder of Section 3 are not needed and are not valid.
The equations presented in the remainder of Section 3
arc based on the assumption that L, is smaller than L.

3.2.2. Flow in the downstream section of the lower layer
The boundary conditions related (o liquid flow in the
downstream section of the lower layer are not simple,
because liquid is supplied to the downstream section of
the lower layer from the upstream section of the same
tayer and, possibly, from the downstream section of the
upper layer. However, one [eature of the flow in the
lower laver is known: the downstream section of the
lower layer is full of liquid over ils entirc length (as
indicated in Section 3.1.1), excepl a very short length
near the Ltoe of the slope due to the presence of a perfect
drain at the toe of the stope, as indicated at the end of
Section 1.2.2.

The fiquid present in the downstream section of the
upper layer exerts a non-uniferm pressure on the lquid

flowing in the downstream section of the lower layer, As
a resuli, the hydraulic gradient in the downstream
scetion of the lower layer may be slightly reduced
upsiream of the location of fuy.y and slightly increased
downstream ol the location of f,..2. Consequently, there
may be some small migration of fiquid between the two
layers in the downstream seclion (toward the upper layer
upstream of the location of £, and toward the lower
layer downsiream of the location of f,,y3). These small
migrations are neglected herein, which is equivalent lo
assuming that the boundary between the upper and
lower layers in the downslream section 1s impermeable.
In conclusion, the downstream section of the lower layer
can be characterised as follows: (i) il can be assumed to
be overlain by an impermeabic boundary {as shown
above); (i) it is assumed to be underlain by an
impermeable boundary (as indicated in Section [.2.1)
and (i) it is full of liguid (as indicated in earlier in
Section 3.2.2). Therefere the flow in the downstream
section of the lower layer is confined.

Under confined, steady-state conditions, the hydraulic
gradient in the downstream section of the lower layer,
fidown, 15 constant over most of the length of the slope,
and increases only near the toc of the slope owing to the
presence of a perfect drain (Figure 6). The constant value
of #ydown 18 given by lhe following classical equation:

head loss (L — L) tanff
slope length — (L — L)/ cosf

f'ldm\'n - n l[j (22)

The rate of confined flow in the downstream section of
the lower layer is then given by the following classical
equation:

h <

“‘"B'““ = Uii1down (23)
where ©,/8 is the flow rate in the downstream section of
the lower layer (in the direction parallel Lo the slope) per
unit length in the horizontal direction perpendicular to
the direction of the flow, and @y is the flow rate in the
downstream scction of the lower layer (in the direction
parallel to the slope).

Combining Equations 22 and 23 gives:

O

B

The flow rate in the downstream section of the lower
layer is then equal to the flow rate at the loe of the

=}, sinf} {24)

(L-Ljtan f

Figure 6. Confined flow in the downstream section of the lower
layer
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upstream section of the lower layer, This is logical, under
the assumptiions presented above, because the only liquid
entering the downsircam section of the lower layer is the
tiquid flowing out of the toe of the upstream section of
the lower laycer.

3.2.3. Conclusions for the lower laver
The conclusion of the above discussion is that it can be
assumed that the lower layer conveys all of the liquid
supplied to the upstrecam section and none of the liguid
supplied to the downstream section.

3.3. Flow in the apper layer

33,1 Flow in the upstream seciion of the upper layver
As indicated in Section 3.1, the liguid that is supplied to
the upstream section of the drainage system percolates
through the upper layer and reaches the upstream
scction of the lower layer. This is true regardless of the
considered case: the case for 47 <0.25 (Figure 4) and the
case lor i» > (.25 (Figure 5).

3.3.2. Flow in the downstream section of the upper liyer
{general case}

As indicated in Section 3.2.2, it may be conservatively
assumed that the downstlream section of the lower layer
does not receive any Hquid from the downstream section
of the upper layer. Therefore the downstream section of
the upper layer must convey all the liquid supplied to the
downstream section, and equations presented in Section
2 for a drainage layer underlain by an impermeable liner
can be used. As the upper layer is generally a granular
layer, Equaticn 11 is generally not applicable and
Eguation 8§ must be used. Tt is imporiant to note that
Equation 11 is wvalid regardless of the value of &
therefore it is applicable to both cases {47 <0.25 and
/x> 0.25).

The maximum thickness of liquid in the upper layer,
fmaxz, 15 given by the following equation derived from
Equation 8 for the length of the downstream section {j.e.
L— Ly

Jtan? p+4gn ke — an p
2 =/ = Ly
fnax2 g 2 cos ﬁ (L )
STH+45;—Lang
] - L— L 2
g2 5 o8 ﬁ( ) {25)

where /4, is given by Equation 17 and j; is calculated
using the following equation, derived from Equation 9
with 4 = A

el 0.12cxp[m[log(S/‘.g/S)w]z] (26)

Combining Equations 18 and 25 gives

; m 4f]h/k2 —lan ﬁ' 11k sinﬂ
Tmax2 = /2 f —
2cosfi o
s JT+35, —Lanf [ fikysin o
2 cos fi G

Crivensd, Shao Todinson aid Aoinbers

Combining Equations 2 and 27 or [9 and 25 gives

Jan? i+ dgy ke — tan B #rsinff
fons2 =02 f—
2cosf ¢h
i+ 4 - 1tanp 6y si
- W 5 an f ; _Bisin i (28)
2 cos fi ¢

3.3.3. Flow in the downstreant section of the upper layer
{limif cose)

As indicated in Section 3.2.1, in all cases considered in
this paper, the lower layer meets the conditions lor the
limil case equation described in Section 2.4, I the upper
layer also meets the conditions for the limit case, the
following equation derived [rom Equation 1} can be
used for the upper layer:

(]EI(L - Lu)

Tray 3 7= g 29
max 2 /‘_2 sin ﬁ ( }
Combining Equations 18 and 29 gives

gunl ik
{1 = 5 — 30
TS T kysin o (30)
Combining Equations 2 and 30 pives

gnl 0
fopan 2 = 4L ~L (3[)

kasinfi ko

3.4, Maximum liquid thickness

34,1, Generdl equation

The maximun: iquid thickness occurs in the downstream
section {Figures 4 and 3). It is equal to the thickness of
the lower layer plus the maximum thickness of liquid in

the upper layer:
boax = 11+ fmax2 (32)

3.4.2. Maximum liguid thickness n the general cuse
Combining Equations 27 and 32 gives

Jtan? B+ 4gy ks —tan § (‘, _ nikysin ,6)

Toax = f1 T

) 2cosf 8
iy — 1 tan i iy sl
mrlJrjz«/lﬁméi-z 1 tan L_.f]];qm,b’ (33)
2 cos ff h

Equation 33 is equivalent to the following equation,
obtained by combining Equations 2 and 33 or 28 and 32:

Jtan? B+ 4gy /ky — tan § (1 ~ Oysin ﬁ)

Imax = 1 +]2

Zcosfi ¢
- Jrjzx/l-%&/_gfl tan fi Lm()' sin ff (34)
2 cos fi G

In Equations 33 and 34, the dimensionless parameters
42 and j, are given by Equations 17 and 26 respectively,
It should be remembered that /> varies between 0.88 and
1.00. Therefore using j» = | gives a conservative valuc of
fax {1, & value greater than the value that would be
caleulated rigorously).

3.4.3. Maximum liguid thickness in the limit case
The following equations are valid for the limit case
where J, is very small {e.g. 4, < 0.01). Combining
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Eguations 30 and 32 gives the following approximate
equation:

gnd 11k

o 35
may = {1k ko sin ff ko >
Hence:
th I'ﬁ'l
o L 36
i ,'(_1 Sin fﬂ (/{_2 E)rf ( ))

Equations 35 and 36 are equivalent to the following
equation, obtained by combining Equations 2 and 36 or
31 and 32

_ b (0,
" kasinf k>

3.5. Maximum head

'fH'NlN

_ ;i (}I—H
~kysinf ks :

As indicated in Section 2.5, the maximum head is derived
from the maximum liquid thickness using Equation 14.

3.5.1. Maximum liguid head in the general case
Combining Equations 14 and 33 gives the fellowing
equation for the maximum head in the general case:

Jian? f+dgy/k; —tan

feosfl+ ja 5

y (L ~ nikpsin B)
én

(VT+44L —tanp
2

h [12F 59

=rncosf+p

kst
y (mel lqmﬁ)
[

Equalion 38 is equivalent to the lollowing equation,
oblained by combining Equations 2 and 38 or 14 and 34:

Jian? f+ dgy ey — tc
Boax = 1) COS ,f)) —1,—}3 an 'f + gl /(., il‘lﬁ

y (L N B 5111£)
gh

(VT+2 — 1)tanp (L IR sinﬁ)
2 i4h

(39)

(38)

=y cosfl+

In Equations 38 and 39, the dimensionless parameters
/- and j; are given by Eguations 17 and 26 respectively.
it should be remembered that j; varies between 0.88 and
1,00. Therefore using j» = 1 gives a conservalive value of
henaw (€. 2 value greater than the value that would be
calculated rigorously).

3.5.2. Maximum liguid head in the limit case
Combining Equations 14 and 36 gives the lollowing
approximate equation for the limit case where 44 is very
small (e.g. Ay < 0.01):

th kl
{1t
katan fi ( )II cos

f\”z

(40)

hmax =

Equation 40 is equivalent to the following approx-
imate equation, oblained by combining Equations 2 and
40 or 14 and 37

gud. {0
= -1 a5 f
kotanfi (/(2 i Jcosfi

;L thcos
T katan f§ i

Finay

+fycosp {4n)

4. NUMERICAL APPLICATIONS
4.1. Methed

The method developed in Section 3 can be summarised
as follows:

e Siep [, Caleulate L, using Equation 18 or 19. 1f L, i3
greater than or equal to L, the drainage geocomposite
conveys all the liquid supplied. In this case, the
maximum liquid thickness is smaller than the thick-
ness of the geocomposite (i.e. fu. < ;). The maxi-
mum liquid thickness is then given by Equation 20 and
the maximum head by Equation 21. If L, is smaller
than £, the drainage geocomposite conveys only a
portion of the Hquid supplied, and the maximum
liquid thickness and the maximum head should be
calculated as indicated in Step 2 below.

e Step 2 {only if L, < L). Calculate 4, using Eguation
17. It 4y is smaller than 0.01, the approximate
equations for the limit case can be used {(Eguation
36 or 37 Jor the maximum hguid thickness, and
Equation 40 or 41 for the maximum head). If 47 is
greater than 0.01, the equations for the general case
must be used {Equation 33 or 34 for the maximum
liquid thickness, and Eguation 38 or 39 for the
maximum head). The eguations for the general case
can also be used when the approximate equations for
the limit case are valid.

Onee the maximum liquid thickness and the maximum
head are calculated, it should be checked that: {i) the
maximum liquid thickness {1, is less than the total
thickness of the drainage system (¢; + f3), or that the
maximum liquid thickness in the upper layer (f,,,.2) 18
less than the thickness of the upper layer (¢2); and (i) the
maximum head is less than the prescribed value, if any. If
these conditions are not met, the drainage system should
be redesigned. Possible options include a drainage
geocomposite with a greater hydraulic fransmissivity, a
sand with a greater hydraulic conductivity, a shorter
drainage systeim, and a steeper slope,

4.2. Design examples

Three design examples are presented. The first example
illustrates the general case (Sections 3.3.2 and 3.4.2), the
second example illustrates the limit case (Sections 3.3.3
and 3.4.3), and the third example iliustrates the case
where the method presented in this paper is not needed
{Section 3.2.1).
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Example !
A leachate collection system consists of a drainage
geocomposite overlain by a sand layer. The drainage
geocompasite  has &  hydraclic  fransmissivity of
14 % 107 m%s and a thickness of Smm. The sand
layer has a hydraulic conduetivity of 1 x 107" mfs and a
thickness of 0.6 m. The horizontal length of the leachate
collection system is 15 m and its slope is 2%. The rate of
leachate supply considered in design is 25 mm in a week.
Calculate the maximum head of leachate over the liner
and compare it with the prescribed maximum leachate
head, which 5 0.3 m.

First, the rate of liquid supply can be expressed in S1
units as follows:

25 x 107°

R 4134 % 1078 mys
(73(86, 400) * m/s

ifh —
It should be noted that the rate of liquid supply is
smaller than the hydraulic conduetivity of the sand layer.
Therefore the condition expressed by Equation 4 is
satisfied, and the equations presented in this paper can
be used.

Then, the length ol the upstream section can be
calculated using Equation 19 as follows:

(1.4 x 1073} sin{tan™" 0.02)

L, = AT =6.772m

The calculated length of the upsiream section is
smaller than the length of the drainage layer. Therelore
the drainage geocomposite cannot convey all the
leachate supplied,

Next, A is calculated using Equation 17 as follows:

4,134 x 1078

e = 10,335
(1 % 10-53(0.02)

Ay =

Then, j» is obtained from Table 1 or calculated using
Equation 26 as follows:

=1 {).12cxp{—[mg,{3 X 10.335/5)-*-’*]2} —0.9328

Finally, the maximum hecad is calculated using

Equation 39 as follows:

hnax = (3 x 167%) cos(tan ™' 0.02)

[T+ E(10.335) - 1](0.02)

+(0.9328) 5 -
s (1.4 x 107%) sin(tan™" 0.02)
1 4134 % 10

= 4.999 x 107 + {5137 x 1077)(15 — 6.772)
=4999 x 107" 3+ 4227 x 107! = 0.428m

The magimum head is greater than the prescribed value
of 0.3 m. Therefore the design should be changed.
Possible options include a drainage geocomposite with
a greater hydraulic transmissivily, a sand with a greater
hydraulic conductivity, a shorter leachate collection
system, and a stecper slope,

Crivand, Zhay, Fomlbinsen ond Zovnbers

One could also have calculated the maximum hguid
thickness using Eguation 34 o compare it with the
thickness of the drainage layer. Alternatively, the maxi-
mum lquid thickness can be derived from the above
value of the maximum head using Equation 14 as
follows:

0.428

— = (}.428 m
cos(tan=! 0.02)

Imax =

The maximum liquid thickness thus calculated is smaller
than the thickness of the drainage system, which is:

Of the two design criteria mentioned in Section 1.1,
one is met (the liquid thickness is smaller than the
thickness of the drainage system) and the other is not
met (the maximum head is not smaller than the
prescribed value). Therefore the considered drainage
syslem is not acceptable,

Example 2
A drainage layer in a landfill cover system consists of a
drainage geocompositc overiain by a sand layer. The
drainage geocompoesite has a hydraulic transmissivity of
1.4 x 1075 m?/s and a thickness of 5§ mm. The sand layer
has a hydraulic conductivity of 3 x 107 m/fs and a
thickness of 0.3 m. The horizontal length ol the drainage
layer is 30 m and its slope is 1V:4H. The rate of liquid
supply considered in design is 1.5 % 1077 m/s. Calculate
the maximum head and compare it with the design
criterion for the maximum head, which is 25 mm.

1t should be noted that the rate of liquid supply is
smaller than the hydraulic conductivity ol the sand layer.
Therefore the condition expressed by Equation 4 is
satisfied, and the equations presented in this paper can
be used.

First, the length of the upstream section is calculated
using Equation 19 as follows:

3 (1.4 x 107%) sin(tan™' 0.25)

u = S %107 =22.637m

The length of the upstream section is smaller than the
length of the drainage layer, which indicates that the
drainage geocomposile does not convey all the liquid
supphied.

Then the value of 75 is calculated using Equation 17 as
follows:

1.5 % 1077

Jy = e — 800 x 1077

(3 »x 10-40.25)°
As s is smaller than 0.01, the equation for the limit case,
Equation 40, can be used. To use Equation 40, & must
be calculated using Equation 2 as follows:

_14x 107

=5 o

=28 %107 m/s
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Then, Equation 40 can be used as follows:

(1.5 x 1077)(30) /28 x 107" |
(3 % 10-H({D.25) 3w J0

% (5% 107 Hcos{tan™' 0.25)

hn‘l;l,\ =

— 6,000 x 1072 —4.042 x 1077 = 1,958 % 1072
={0.0196m = 19.6 mm

In facl, it is more convenicnt to use Equation 41,
which does not require the calculation of k. Equation 41
is used as follows:

-5 % 10—-‘)

= 6000 x 1077 —4.042 x 1072 = 1.958 % 1972
={0.0196m = 1%.6mm

Fiay =

(15 10730 /14 x 10—
(3 x 10-9(0.25) 3x 104

x cos(tan™' 0.25)

The calculated maximum head is smaller than the
design criterion for the maximum head. Thercfore Lhe
considered drainage layer is acceplable from the view-
point of the maximum head criterion.

Alternatively, the equation for the gencral case,
Equation 39, can be used. To use Equation 39, f, must
be obtained from Table 1 or calculated using Equation
26 as follows:

=1 {).IZCXpI—[iOg(B x 0,008/5)5“‘]2] —0.9704

Then, the maximum head can be calculated using
Equation 39 as follows:

Fmas = (3 % 107) cos(tan™" 0.25)

{\/1 C(HE.00 x 1079 - 1](0.25)

+ (0.9704) 5
y [30 B (1.4 % 107} sin{tan ™! 0.25)}
1.5 x 1077
= 4.851 x 107% + (1,926 x 1077)(30 — 22.637)
= 4851 x 1077 + 1,418 x 1077 = 0.0190 m
= 19.0mm

It appears that using the approximate equation for the
limit case, Equation 40 or 41, gave a very good
approximation (19,6 mm) of the maximum head calcu-
lated more accurately (19,0 mm) using the equation for
the general case, Equation 39.

One could also have calculated the maximum Hquid
thickness using Equation 34 or 37 to compare it with the
thickness of lhe drainage layer. Alternatively, the maxi-
mum liquid thickness can be derived from the above
value of the maximum head using Equation 14 as
[ollows:

19.0

—_— e = 9,6 MM
cos (I.alr’ 0.25)

{max —

The maximum Hguid thickness thus caleulated is
smaller than the thickness of the drainage system, which is

{41 = 5+ 300 = 305mm

The two design criteria mentiened in Section 1.1 are
met: the liquid thickness is smaller than the thickness of
the drainage system, and the maximum head is smaller
than the design criterion for the maximum head, -
Therefore the considered drainage system is acceptable,
However, il is interesting to redo the calculations with a
factor of safety of 2 on the rate of liquid supply te
illustrate the sensitivity of the solution fo a change in the
liguid supply rate. With ¢, = 3 x 1077 m/s, the length of
the upstream section, calculated using Equation 19,
becomes

(1.4 % 10%) sin{tan' 0.25)

L _ — .
w RV i1.318m

The length of the upstream section is smaller than the
length of the drainage layer, which indicates that the
drainage geccomposite does nol convey all the liquid
supplied.

Then, the value of 4, is calculated using Equation 17
as follows:

3% 1077 B
(3 x 1090257

As 25 is greater than 0.01, Equation 39 must be nsed. To
use Equation 39, j; must be obtained [rom Table 1 or
calculated using Equation 26 as lollows:

=1 {).12cxp[_[log(s x 0.016/5)”“‘]2} = 0.9554
Then, the maximum head can be calculated using
Equation 39 as follows:
fgas = (5 x 107y cos{tan ™! 0.25)
[VT=@0016) - .25

2

y |:30 ~ (1.4 x 107°) sin{tan™"' 0.25)}

+ (0.9554)

3% 1077
=4.850 x 1077 + (3.762 x 10‘3}(3() —11.318)
— 4851 x 107 +7.028 x 1077
= 0.07513m = 75mm

Comparing this value of the maximum hecad with the
value (19 mm) calculated in the case of a rate of liquid
supply of 1.5 x 1077 m/s shows thal, in this particular
case, the head is multiplied by 4 when the liquid supply
rate is multiplied by 2. Therefore design engineers must
sefect the value of the liquid supply rate very carefully.

Example 3

This example is the same as Example 1, except thal
the geocomposite has a hydraulic transmissivity of
5 % 1075 m%s.
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The length of the upsircam section can be caleulated
using BEquation 19 ay follows:
(5 % 107} sin(tan™' 0.02)

L, = — 24185
‘ 4134 % 10 ¢ m

The calculated length of the upstream section is grealer
than the length of the drainage layer. Therefore the
drainage geocomposile can convey all the leachate
supplied.

In this case, the maximum head is given by Equation
21. To use Equation 21, it is necessary 1o first calculate
the hydraulic conductivity of the geocomposite using
Equation 2 as follows:

-5

ky = zi—:gj =10x 107 m/s

Then, the maximum head is calculated using Equation
21 as follows:

(4134 1078)(15)
e = T ) 1077)(0.02)

The maximun: liquid thickness can be calculated using
Equation 20. Aliernatively, it can be derived from the
value of the maximum head calculated above using
Equation 14 as [ollows:

31

foy 22 = = 3.1 mm
e cos{tan™'0.02}

It should be noted that, as L, is greater than the length
of the drainage layer, it was obvious thal .. would be
less than the thickness ol the geocomposite (5 mum).

5. DISCUSSION

5.1. Use of basic cases to check the equations

Two basic cases arc used to check the validity of the
equations proposed in Section 3: the case where the two
layers consist of identical geocomposites, and the case
where L, = L.

5.1.1. Case of two identical geocomposites

Tf the upper layer consists of a geocomposite identical to
the lower layer geocomposite, Equation 36 can be used
with &, = &k, = k, which gives

fh

mgx — 7 -5 42
Fros fesin f (42)

Equation 42 is identical to Equation 11, which confirms
the validity of Equation 36.

3.1.2. Case where Ly = L

If L, = L. the lower layer geocomposite is just sufficient
1o convey all of the liquid supplied to the drainage layer.
Therefore In. = f;. Indeed, Equation 25 with L, = L
gives fyue = 0, and Equation 32 with fq0 = 0 gives
Tmax = f1. which confirms Equation 23. The same result
would be obtained by combining Equations I8 and 20
with L, = L, which [urther confirms Equation 23.

Girened. Ahao Pamlinson and Zornborg

£.2. Evaluation of the average hydrauiic conduetivity
approach

I'n the past, an approach different from that used in this
paper has been used to address flow in a drainage system
composed of two layers. This approach consists
calculating an average hydraulic conduclivity for the
two-fayer system.

This type of approach is used, for cxample, in the
HELP model. The HELP model is a computer program
based on a water balance method that accounts for
precipitation, runofl and cvapatranspiration to deter-
mine the rate of infiliration of precipitation waler into a
landfll, the rate of percolation of water through the
cover soil, the rate of leachate generation, and the
impingement rate of leachate onto the leachate collection
tayer. Then the HELP model caleulates the head of
icachate in the leachate collection layer using McEnroe’s
cquations (McEnroe 1993), As shown hy Giroud e/ af.
(2000), Eguation 15 and McEnroe’s cquations give
almost exactly the same values for the maximum head,
but Equation 15 is much simpler and less prone to
mathematical errors. In the case of a drainage system
composed of two layers, the HELP modec! replaces the
two layers by a single layer having an average hydraulic
conductivity caleulated using the average head. For the
sake of simplicity, this approach is described below using
the maximum liquid thickness.

The average hydraulic conductivity ol the two-layer
system can be defined as follows:

kwg _ "‘Yl i+ kZ(Imz:x — 'fl) {43)

zmux

As Fguation 43 includes (., which is unknown,
iterations are necessary to caleulale ko, and fpa
These iterations are tedious. Furthermore, they are
useless because an explicit solution for fy,, can be
obtained by climinating k., between Equation 43 and
the following equation derived [rom Equation 8:

. tan? ﬂ + 4([11/[(11\;_9 -

. tan f§ i
FREN —_'] 2 cos ﬁ

(44)

This elimination of k,,, between Equation 43 and
Equaticn 44 would require lengthy (but simple} calcula-
tions involving a quadratic cquation. The value of fn,,
that would be thus obtained would be different from
Equation 33, which is the sofution developed in this
paper.

In the limit case, the following equation derived from
Equation 11 would be used instcad of Equation 44

i

Kag Sin fi (43)

fmax ==

Eliminating k., between Equations 43 and 45 gives an
equation identical to Equation 33, which is the solution
developed in this paper for the limit case. Clearly, the
average hydraulic conductivity appreach happens to give
a correct result only in the limit case and is not valid for
the general case, which is the relevant case for the typical
situation of a geocomposite overlain by sand (Figure 1).
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From a physical standpoint, it should be noted that,
while the approach proposed in this paper corresponds
1o plausible flow configurations (Figures 4 and 3), the
average hydraulic conductivily approach does not
correspond to any identificd flow configuration.

In conclusion, for all of the above reasons, the hy-
draulic conductivity average approach (i.e. the approach
used in the HELP model) cannot be recommended.

5.3. Evaluation of the Hquid supply fraction approach

While the senior author was developing the equations
presented in Section 3, a different approach was
suggested. This approach is not consistent with the
flow configurations shown in Figures 4 and 5. However,
as his approach was considered at some point, it is
appropriate to discuss it in this paper. This approach
consists of assuming that the geocomposite (ie. the
lower layer) conveys the fraction of the liquid supply
that it can convey, and the upper layer conveys the rest,
This appreach is called herein the “liquid supply fractien
approach’. The principle of the liquid supply fraction
approach is similar to the principle of the approach used
in this paper. However, the implementation is different:

o In this paper, the lower layer conveys all the liquid
supplied to the upstream secclion, whereas the upper
layer conveys ail the liquid supplied to the down-
stream section. The upper layer conveys no flow in the
upstream section, whereas the lower layer conveys in
the downstream section only the liquid collected in the
upsiream section.

e With the liquid supply Iraction approach, both layers
somehow convey lwo complementary fractions of the
liquid from the top to the bottom of the slope.

Numerical examples and an analysis presented in
Appendix A show that the liquid supply fraction
approach overestimates the maximum lguid thickness
and maximum head, in particular when the characteristic
parameter 2 is large.

From & physical standpeint, it should be noted that,
whereas the solution proposed in this paper corresponds
to plausible flow configurations (Figures 4 and 5), the
liquid supply {raction approach does not correspond to
any identified flow configuration. In fact, it is unclear
how the liguid supply could be split between the two
layers from the top of the siope.

In conclusion, for all of the above reasons, the liquid
supply fraction approach cannot be recommended.

5.4, Eguation proposed in the literature
The authers of this paper found in the literature one

publication (Masada 1998) that addresses the case of

drainage systems composed of two layers including a
geosynthetic drainage material. In that publication, it is
indicated that the maximum depth of liquid can be
derived from two equations numbered 25 and 26 in that
publication, but referred to hersin as M-25 and M-26 lo
avoid confusion with equations presented herein. In the
publication by Masada, it is indicated that ‘no attempt is
made to combine Equations M-25 and M-26 1o arrive at

LA

an explicit expression for the maximum depth because
the form of Equation M-26 is complicated’, Therefore, in
the publication by Masada (1998}, ne explicit solution is
proposed for the maximum liquid depth, thickness or
head in the case of drainage systems compaosed of two
layers including a geosynthetic drainage material,
Furthermore, Equation M-25 by Masada (1998} is an
extension of equations developed by the same anthor for
drainage systems thal consist of a single layer. Giroud
er ol (2000, p. 377) have shown that these equations give
results that can be “very inaccurate’. Therefore it may be
concluded that no adequale solution has been propesed
by Masada for drainage systems composed of two layers
including a geosynthetic drainage material.

5.5. Slope stability considerations

Liquid Howing parallel to a slope generates seepage
forces that are detrimental to the stability of the drainage
layer and the associated layers of scils and geosynthetics.
The secpage forces are independent of flow velocity and
independent of the hydraulic conductivity of the medium
in which liquid is flowing; the impact of flowing liguid on
stability is proportional to the thickness of liquid
{Giroud et ol 1995). As illustrated by the examples
presented in Section 4.2, the liquid thickness in sand is
much greater than in the geocomposite. Therefore
altowing liquid to flow parallel to the slope in a sand
layer overlying a geocomposite significantly impairs the
stability of the slope. Even though a method is presented
herein to design drainage systems composed of two
layers, this paper should pot be construed as an
encouragement to allow Hquid to flow in sand layers
overlying geosynthetics. On the contrary, the authors
recommend the use ol geoccomposites with a high
hydraulic transmissivity in order to convey all the
collected liguid within the geocomposite. When all of
the liquid flows in the geocomposite, the impact of flow
on stability is negligible because the Hquid thickness is
then very small. Another benefit is that the rate of
leakage through the liner underlying the geocompositc is
very small because the head is small,

When stability is a concern, precautions must be
taken. One of them consists in using a textured
peemembrane and a geocomposite including two geo-
textiles heat-bonded to the geosynthetic drainage med-
ium. The upper geolextile functions as a filter, whereas
the lower geotextile functions as a [riction iayer that
ensures high interface shear strength between the
geocomposite and the textured geomembrane, (See the
first paragraph of Secticn 1.1.}

5.6. Limitations

The method of analysis presented in this paper bas the
following limitations: (i} the hydraulic conductivity of
the upper layer of the drainage system must be smaller
than that of the lower layer; and (i} the lower layer must
be such that the equations for the limil case (defined in
Section 2.4) must be applicable to the lower layer. To
that end, the characteristic parameter 4, must be small
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(e 2y = 0.01), with 7, given by the following equation
derived from Equation 7 with & = k.

ih

"k an B (46)
This is always the case with currently available
geocomposites, and it is generally the case with gravel.
In contrast, it is not the case with sand, uniess the siope
is steep. This theoretical limitation does not significantly
limit the use of the method because the lower layer is
generally a geocomposite {i.e. a material for which 4 is
always small). However, it is clear that the method
preseated in this paper is not applicable to the case of
lwo sand layers on top of cach other.

6. CONCLUSIONS

This paper provides a rational approach to the design of
drainage layers composed of two layers: a geocomposite
overlain by another material, typically sand. The
equations presented in this paper are simple and can
be used by hand. They provide the maximum liquid
thickness and the maximum head as a function of the
rate of liquid supply, the hydraulic conductivities of the
two layers, the length of the drainage system, and the
slope, Design examples are also provided. The proposed
method was compared with other methods, and il was
shown that the other methods provide incorrect results
except in the limit case.

It is important to note that, even though this paper
provides a method for designing drainage systems
composed of two layers, the authors of this paper do
not encourage the use of drainage systems where a
significant amount of liquid flows in a sand layer
overlying a geocomposite.
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NOTATIONS
Basic SI units are given in parentheses.

B unit fength in horizontal direction perpendicular
Lo direction of flow (m}
h head above liner (m)

Mpaw  maximum head above liner, simply calied “head’
{m)
iidown hydraulic gradient in downstream section of

lower layer (dimensionless)
J  parameter, called ‘modifying factor’, defined by
Equation 9 {dimensionless}
f1 value of j for 4 = /; (dimensionless)
k  hydraulic conductivity of drainage material in
direction of flow (m/s)
average hydraulic conductivity of two layers
used in HELP model approach (m/s)

k avg

Givoud, Zheao, Tomndingon aud Zortbers

ki hydranlic conduciivity of drainage material
used in lower layer {m/s)

ks hydraulic conductivity of drainage material
used in upper layer (mys)

L horizontal projection of length of drainage layer
in direction of flow (m)

L, length of upstream section of drainage layer (m})

¢ flowrateina draina'g,e system {in direction

parallel to slope) (m”/s)

flow rate in a drainage system (in direction

parallel to slope) per unit length in horizontal

direction perpendicular to direction of flow

(m:2/s)

@ flow rate in downstream section of lower layer
(in direction parallel to slope) (m/s)

¢,/B flow rate in downstream section of fower layer

(in direction parallel to slope) per unit length in

horizontal direction perpendicular to direction

of fiow (m%/s)

g, liquid impingement rate (e, rate of liquid
supply per unit horizontal area) {m/s)

i liquid thickness (m}

iy thickness of tower layer (m)

i thickness of upper fayer (m)

fim maximum liquid thickness in limit case where ¢,
is small and § and & are large (i.c. casc where 2 is
very small, e.g. 4 < 0.01) (m)

0B

fpax maximum Hquid thickness (m})
fmaxz  Maximum liguid thickness in upper layer (m)

x  distance measured horizontally from tep of
slope (m)

5 slope angle of drainage system (%}

0, hydraulic transmissivity of lower layer (m?/s)

>  hydraulic transmissivity of upper layer (m”/s)

4 parameter defined by Equation 7 (dimension-
less)

Ay wvalue of £ for & = &, (dimensionless)
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APPENDIX A. EVALUATION OF THE
LIQUID SUPPLY FRACTION
APPROACH

The liguid supply fraction approach evaluated in
Appendix A consists of assuming that the geocomposite
{i.c. the lower layer) conveys the fraction of the liquid
supply that il can convey, and the upper layer conveys
the rest. This approach is illustrated by two examples:
Example 4 is identical to Exampic 1, and Example 5 is
identical to Example 2. (Examples | and 2 are presented
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in the main text of this paper.) Whereas Examples T and
2 are solved with the recommended method, Examples 4
and 5 are addressed with the liquid supply fraction
approach.

Example 4

Considering the conditions given for Example 1, the
maximum flow rate per unit width that the lower layer
(i.c. the geocomposite) can convey is given as follows by
Equation 24:

0/B=0rsinf = (1.4 x 1077 sin(tan ' 0.02)
=2.7994 x 107" m?/s

This flow rale per unit width corresponds to a liguid
supply rate of

2.7994 x 1077 27994 x 107
L B 15
= 1.8663 x 107" m/s

i =

This is less than the rate of liquid supply, which is
4.134 » 107 m/fs according to Example 1. Therefore it is
assumed that the remainder of the liquid supply is
conveyed by the upper layer (ie. the sand) The
remainder of the liquid supply is

goa = 4.134 % 107 = 1.866 x 1075 = 2.268 x 10" m/s
Then, 4, is calculated using Equation 17 as follows:

2.268 x 107¢

s = 5,669
(1 % 10-9)(0.02)°

4y =

Then, /> is obtained from Table 1 or calculated using
Equation 26 as follows:

B — . oy
p=1- O.Ithpi—[log{S x 5.669/5)%] ] —0.916]
Then, fmaxz 8 calculated using Equation 8 as [oliows:

ST+ (4)45.669) — 1
2

0.02
X | —ee—————— [(15) = 0.531m
cos{tan™! 0.02)

This calculated value of th..: is to be added to the
thickness of the geocomposite, Hence:

Imae = 0.003 +0.531 = 0.536m

Imax2 = (09]61)

et}

The maximum head is derived from the maximum
Haguid thickness using Equation 14 as follows:

Miax = 0.536 % cos{lun_' 0.()2) = ().536m
This value is significantly greater than the valuc obtained
in Example 1 (0,428 m). The error resuiting from the
liquid supply fraction approach is 25%.

Example 5

Considering the conditions given for Example 2, the
maximum flow rate per unit width that the lower layer
{t.c. the geocomposite) can convey is given as follows by
Equation 24:

0/B=0;sinff = (1.4 x 107%) sin{tan ™’ 0.25)
=3.3955 x 107*m?/s
This flow rate per unit width corresponds to a liguid
supply rate of

3.3955 % 107% 33955 % 1070
= L . 30

= 1.1318 % 10" m/s

This is less than the rate of liquid supply, which is
1.5 % 1077 m/s. Therefore it is assumed that the remain-
der of the liguid supply is conveyed by the upper layer
{i.e. the sand). The remainder of the liquid supply is

gha = 1.5 x 1077 — 11318 x 1077 = 3,682 x 107 m/s
Then, 4, is calculated using Equation 17 as follows:

3.682 x 107F

= 1.964 % 1077
(3 x 10-9)(0.25)°

A=
This value of 7. is very small: therefore the equation for
the imit case, Equation 11, can be used. Hence:

ogmd (3.682 = 10’3)(3())
T kesinff (3 x 10-%)sin{tan~! 0.25}
=0.0152m

Truax 2

This calculated valie of f5..2 is to be added to the
thickness of the geocomposite, Hence:

Ty = G005 4+ 00152 = 0.0202m

The maximum head is then derived from the maxi-
mum liquid thickness using Equation 14 as foliows:

s = 0.0202 x cos(tan™' £.25) = 0.0196m

= 19.6 mm

Table 2. Yalues of the ratio between 1, /& and g, /L (with values of / in parentheses)

ik tan f§
0.02 i3 1o
L 1078 S000 = 2.5 x 107%) 3A6(E=9x 167 L4 (=[x 107"
D 107 500 (= 2.5 x 107 3160 =9 x 1079 L4L( =1 x 1074
] % 1077 4990 =25x 1079 11600 =9 x 1077) 141 =1x10T)
U 1078 46107 =25x 102 3060 =9 % 1075 TAL( = 1 x 1079
10 20.8 (i = 2.5) 30360 =9 % 1073 14007 = 1 % 1079
| x 107! 3.0 (2 = 250) 177(2=9 % 107) 1170 =1x 107
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This value is the same as the approximale value obtained

in Example 2 using the Ihmit case equation.

From the above examples, it appears that the Hguid
supply fraction approach overestimates the maximum
head in the general case, but gives a good approximation
of the maximum head in the limit case. This is confirmed
by the following analysis.

With the liquid supply fraction appreach discussed
above, fmao 18 calculated with an underestimated value
of the Hguid supply (ie. gnz instead of gu) and an
overestimated value of the flow path (i.e. L instead of
L — Ly). To evaluale the liquid supply [raction ap-

Giroud, Zhae, Tomdbinsen and Zormbery

proack, the sensitivity of fyac o gy/l should be
evaluated, To that end, Table 2, derived from table 2
of the paper by Giroud er ol (2000, p. 305} was
developed. Table 2 shows that, for small values of 4 (ie
when the limit case equations are valid), the ratio
(foma /LY i constant (l.e. fy,. IS not sensilive
to /L), whereas, for large values of 4 (i.e. when the
limit case egquations are not valid), decreasing ¢
{i.e. using underestimated values of g,) leads to an
increase of fuax/(gn/L). This is consistent with the results
ol the above examples and shows that the con-
clusions drawn [rom the above cxamples can be
gencralized.
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