| ENERCON<br>ExcellenceEvery project. Every day. |                                                                             | CUEET I                                                   |                       | CALC NO.                   | NEE-32   | 3-CALC | -002        |
|------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|----------------------------|----------|--------|-------------|
|                                                |                                                                             |                                                           |                       | REV.                       | 00       |        |             |
|                                                |                                                                             |                                                           |                       | PAGE NO.                   | 1 of 28  |        |             |
| Title:                                         | Dose Rate Evaluati<br>Water Levels Durin                                    | on of Reactor Vessel<br>g Refueling for EAL               | Client                |                            | e Arnold |        |             |
|                                                | Thresholds                                                                  |                                                           | Proje                 | ct Identifier:             |          | NEE-3  | 23          |
| Item                                           |                                                                             | Cover Sheet Items                                         |                       |                            |          | Yes    | No          |
| 1                                              |                                                                             | contain any open assump<br>confirmation? (If YES, identif |                       |                            | inary    |        | $\boxtimes$ |
| 2                                              | verified calculation.)                                                      | rve as an "Alternate Calculation                          | n"? (lf <b>YE</b>     | ES, identify the de        | esign    |        | $\boxtimes$ |
| 3                                              | Design Verified Calcu<br>Does this calculation su<br>verified calculation.) | lation No<br>upersede an existing Calculatio              | n? (If YE             | <b>S</b> , identify the de | esign    |        |             |
|                                                |                                                                             |                                                           |                       |                            |          |        |             |
| Scope<br>Initial I                             | Superseded Calculati<br>of Revision:<br>ssue                                | on No                                                     |                       |                            |          |        |             |
| Initial I                                      | of Revision:<br>ssue<br>ion Impact on Results<br>ssue                       | :                                                         | nal Calcu             | ulation                    |          |        |             |
| Initial I<br>Revisi                            | of Revision:<br>ssue<br>ion Impact on Results<br>ssue<br>Study C            | ::<br>Calculation                                         | nal Calcu<br>Safety-R |                            |          |        |             |
| Initial I<br>Revisi                            | of Revision:<br>ssue<br>ion Impact on Results<br>ssue<br>Study C            | ::<br>Calculation                                         | Safety-R              |                            |          |        |             |
| Initial I<br>Revisi<br>Initial I               | of Revision:<br>ssue<br>ion Impact on Results<br>ssue<br>Study C            | calculation                                               | Safety-R              |                            | Date:    | 12/1:  | 2/17        |
| Initial I<br>Revisi<br>Initial I<br>Origina    | of Revision:<br>ssue<br>ion Impact on Results<br>ssue<br>Study C<br>Safe    | Calculation<br>Fin<br>ty-Related Non-S<br>(Print Name and | Safety-R              |                            | Date:    | 12/12  |             |

Note 1: For non-safety-related calculation, design verification can be substituted by review.

|                             | CON                                          | CALCULA                 |                            |                  | NEE-3            | 323-CALC-002          |
|-----------------------------|----------------------------------------------|-------------------------|----------------------------|------------------|------------------|-----------------------|
| Excellence—Every            |                                              |                         | STATUS SHEET REV.          |                  |                  |                       |
|                             |                                              | CALCULATION             | REVISION ST                | TATUS            |                  |                       |
| REVISION DA                 |                                              | <u>DATE</u><br>12/12/17 |                            |                  |                  |                       |
|                             |                                              | PAGE REV                | ISION STATU                | IS               |                  |                       |
| <u>PAGE NO.</u><br>Ali      |                                              | REVISION<br>00          | PAGE                       | PAGE NO. REVISIO |                  | EVISION               |
|                             | A                                            | PPENDIX/ATTACH          | MENT REVISI                | ON STATUS        |                  |                       |
| APPENDIX NO.<br>A<br>B<br>C | <u>NO. OI</u><br><u>PAGES</u><br>1<br>2<br>1 |                         | ATTACHM<br><u>NO.</u><br>1 | PA               | . OF<br>GES<br>5 | REVISION<br>NO.<br>00 |

| No. in                               |                       |                          |      |                  |
|--------------------------------------|-----------------------|--------------------------|------|------------------|
| 0                                    | ENERCON               | NERCON TABLE OF CONTENTS |      | NEE-323-CALC-002 |
| Excellence—Every project, Every day. |                       | TABLE OF CONTENTS        | REV. | 00               |
| Sectio                               | n                     |                          |      | Page No.         |
| 1.0                                  | Purpose and Scope     |                          |      | 4                |
| 2.0                                  | Summary of Results a  | and Conclusions          |      | 4                |
| 3.0                                  | References            |                          |      | 5                |
| 4.0                                  | Assumptions           |                          |      | 6                |
| 5.0                                  | Design Inputs         |                          |      | 8                |
| 6.0                                  | Methodology           |                          |      | 13               |
| 7.0                                  | Calculations          |                          |      | 14               |
| 8.0                                  | Computer Software     |                          |      | 27               |
| 9.0                                  | Impact Assessment     |                          |      | 28               |
|                                      |                       |                          |      |                  |
| List o                               | f Appendices          |                          |      | # of<br>Pages    |
|                                      | Appendix A – Electron | ic File Listing          |      | 1                |
|                                      | Appendix B – DAEAL.   | xlsx Sheets              |      | 2                |
|                                      | Appendix C – SCALE    | Input                    |      | 1                |
|                                      |                       |                          |      |                  |

| List of Attachments                              | # of<br>Pages |
|--------------------------------------------------|---------------|
| Attachment 1 – Calculation Preparation Checklist | 5             |

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Refueling for EAL<br>Thresholds                 | REV.     | 00               |

## 1.0 Purpose and Scope

The purpose of this calculation is to evaluate dose rates with water at the top of active fuel in the reactor vessel during cold shutdown or refueling operations in order to set Emergency Action Level (EAL) thresholds (RA2, CS1, CG1) per NEI 99-01 [Reference 3.5]. The dose rates are calculated at the locations of the drywell monitors 9184A/B so that dose rate measurements by these devices can be correlated to the water level in the core, upon failure of other water level detection systems. This calculation is nonsafety-related as the results of the calculation do not affect the design basis or safety-related systems structures or components. These results are best estimates based on as-built conditions and provide information to operators with respect to classifying an emergency, therefore no acceptance criteria is required.

## 2.0 Summary of Results and Conclusions

The dose rates just prior to the core being uncovered (i.e. water at the top of the active fuel) are shown in the table below. Note that the results presented below are calculated dose rates and do not account for background radiation or any installed detector check sources.

| Model Description | Drywell Monitor<br>9184A Reading<br>(R/hr) | Drywell Monitor<br>9184B Reading<br>(R/hr) | Drywell Monitor<br>(9184A/B) Range<br>(R/hr) |
|-------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|
| Head Off          | 1.81                                       | 1.68                                       | 1 to 1E+7                                    |
| Head On           | 1.11                                       | $7.41E-01^{1}$                             | 1 to 1E+7                                    |

Table 1 – Dose Rate at Top of Active Fuel

<sup>&</sup>lt;sup>1</sup> This value is off scale low.



00

#### 3.0 References

- 3.1 "Standard Composition Library," ORNL/NUREG/CSD-2/V1/R6, Volume 3, Section M8, March 2000
- 3.2 CGDG-SCALE-6.1.2, Rev 00, Commercial Grade Dedication SCALE Version 6.1.2
- 3.3 CGDG-MCNP6-V1.0, Rev 00, Commercial Grade Dedication MCNP6 Version 1.0
- 3.4 ANSI/ANS 6.1.1-1977, Neutron and Gamma Flux-To-Dose Conversion Factors
- 3.5 NEI 99-01, Rev. 6, "Development of Emergency Action Levels for Non-Passive Reactors"
- 3.6 I.RIM-V115-01, Rev. 10, "Victoreen Model 876A Containment Radiation Monitor Calibration"
- 3.7 NUREG 1940, "RASCAL 4: Descriptions of Models and Methods"
- 3.8 CAL-R00-PUP-008, Rev. 03, "Non-LOCA Radiological Consequence Dose with Alternate Source Term"
- 3.9 RFP 110, Rev. 45, "Refueling Procedure- Reactor Pressure Vessel Disassembly"
- 3.10 Technical Specifications, Section 1.1
- 3.11 Technical Specifications, Section 4.2.1
- 3.12 NUREG 1754, "A New Comparative Analysis of LWR Fuel Designs"
- 3.13 BECH-M009, Rev. 14, "Equipment Locations Reactor Building Section-GG"
- 3.14 BECH-C405, Rev. 14, "Reactor Building Floor Plan @ El. 757'-6""
- 3.15 NG-17-0156, Proprietary Data Transmittal to ENERCON
- 3.16 BECH-M405, Sh 04, Rev. 24, "Instrument Points and Rack Locations Diagram Plans at Elevs 812'-0" & 833'-6""
- 3.17 NG-88-0966, "G.E. Fuel Damage Documentation/Dose Rate Calculations"
- 3.18 C003-029, Rev. 0, "Drywell Cylindrical Shell & Cone"
- 3.19 VS-01-06, Rev. 4, "Top Head Assembly"
- 3.20 BECH-C511, Rev. 5, "Reactor Building RPV Ped Dev. Elev. & Sect's"
- 3.21 BECH-C514, Rev. 1, "Drywell Interior Biological Shield Wall Reinforcing Sections"
- 3.22 BECH-C-516, Rev. 6, "Drywell Interior Biological Shield Wall Plans El. 816'-3 ¼" to El 779'-1 ½""
- 3.23 BECH-M405, Sh 02, Rev. 71, "Instrument Points & Lines Diagrams Plan at Elev 757'-6""
- 3.24 APED-B-31-2816-001, Rev. 5, "Outline Reactor Recirculating Pump"

3.25 FSAR Section 4.3.2.1, and Section 9.1

3.26 CAL-M98-058, Rev. 1, "ADS Accumulator Size Verification"

#### 4.0 Assumptions

- 4.1 The core is homogenized based on the typical 10x10 fuel assembly dimensions, taking into account the fuel rods and space between. Any small variations in fuel parameters will have a negligible effect on containment dose rates. The cladding is modeled as Zircaloy 4 in lieu of ZIRLO; this is acceptable due to the similarity of the materials.
- 4.2 Any non-fuel hardware, including rod end plugs, is ignored in the active fuel region. This is acceptable since the primary self-shielding occurs in the fuel itself, and there may be some unknown streaming effects through the non-fuel hardware. This homogenization takes into account the presence of water when calculating the isotopic weight fraction and homogenized density. For the case with the reactor vessel head in place, the region between the head and the active fuel region is homogenized based on the actual mass of the upper internals over the entire region. Homogenization of source regions and shields is acceptable due to the insignificant effects on the detector response given the model geometry.
- 4.3 The composition of the containment structure and components are based on the values in the SCALE standard composition library [Reference 3.1]. These material properties are commonly used in shielding applications, and are acceptable for modelling the structures and components used to determine the best estimate response at the detector locations.
- 4.4 The minimum period of decay after reactor shutdown before moving fuel is 60 hours [Reference 3.8, Section 4.3.8]. This calculation assumes a decay time of 50 hours to allow EAL thresholds to be determined for reactor vessel conditions that exist prior to the commencement of fuel movement which is representative of the applicable operating modes (cold shutdown, refueling). This decay time is appropriate to produce best estimate results for both the head on and head off configurations.
- 4.5 The hardware in the upper internals region between the active fuel region, reactor recirculating pumps and reactor vessel head is assumed to be stainless steel type 304. While the actual composition of the hardware may vary slightly, small variations in the material will have a negligible effect on the dose rate response at the detectors.
- 4.6 It is assumed that the water below the active fuel region is liquid at a constant temperature. Using a density of 0.9982 g/cm<sup>3</sup> is common in shielding

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Refueling for EAL<br>Thresholds                 | REV.     | 00               |

applications. Any water above this region would be steam with little shielding value.

- 4.7 The source term is generated shortly after shutdown, therefore, the fuel gamma source term will predominate and the neutron-gamma and hardware activation can be neglected.
- 4.8 The high range detectors read out in roentgen per hour (R/h) which is a measurement of exposure rate, while the MCNP output is provided in mrem/h which is a measurement of the equivalent dose rate that represents the biological effects of ionizing radiation. It is assumed that 1 R is approximately 1000 mrem. This is acceptable as only the gamma source term is considered.
- 4.9 The roof of the Reactor Building is modeled as 0.5 inches of stainless steel. This will account for any scattering interactions that may contribute to the response at the detector. The magnitude of the detector response due to scattering off of the roof will be small due to the geometry and amount of shielding in the model, and is therefore acceptable.
- 4.10 Automatic Depressurization System Accumulators 1R003A/B/C located on the 775'-11 ½" elevation are not included in the model. The size of the accumulators are 200 gallons [Reference 3.26]. This is relatively small compared to the geometry of the model, and the corresponding scatter interactions will not have a significant impact on the detector response.

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Refueling for EAL<br>Thresholds                 | REV.     | 00               |

## 5.0 Design Inputs

### 5.1 Fuel Assembly Parameters

The following fuel assembly parameters are used to homogenize the core in the MCNP model. They are based on typical fuel assembly values for 10x10 fuel.

| Parameters                 | Value | Unit | Reference |
|----------------------------|-------|------|-----------|
| Fuel type                  | 10x10 |      | 3.25      |
| # of Assemblies in Core    | 368   |      | 3.11      |
| # Fuel rods per assembly   | 92    |      | 3.12      |
| Pitch                      | 0.51  | [in] | 3.12      |
| Density (% of theoretical) | 95    |      | 3.12      |
| Fuel pellet OD             | 0.336 | [in] | 3.12      |
| Fuel rod OD                | 0.395 | [in] | 3.12      |
| Clad thickness             | 0.026 | [in] | 3.12      |
| Active length              | 144   | [in] | 3.12      |

| Table 2 – Design | Input Fuel | Assembly | Parameters |
|------------------|------------|----------|------------|
|------------------|------------|----------|------------|

## 5.2 Model Dimensions

The following elevations and dimensions are based on the associated drawings or other reference. Some parameters are estimated using drawing scales when exact dimensions are not provided.

| Dimension                                                             | ft   | in      | cm      | Reference      |
|-----------------------------------------------------------------------|------|---------|---------|----------------|
| Pedestal inner radius                                                 | 8    |         | 243.84  | 3.20           |
| Pedestal outer radius                                                 | 12   |         | 365.76  | 3.20           |
| Reactor vessel inner diameter                                         |      | 185.375 | 470.85  | 3.15           |
| Reactro vessel thickness                                              |      | 5       | 12.70   | 3.15           |
| Drywell spherical portion radius                                      | 31.5 |         | 960.12  | 3.17 Figure 2  |
| Concrete around drywell spherical portion(x and y directions radius)  | 36   | 9       | 1120.14 | 3.14           |
| Drywell cylindrical portion radius                                    | 17   |         | 518.16  | 3.16           |
|                                                                       |      |         |         |                |
| Drywell liner thickness                                               |      | 0.75    | 1.91    | 3.18           |
| Concrete around drywell cylindri-<br>cal portion (x and y directions) | 22   | 9       | 693.42  | 3.16           |
| Reactor Building (x and y direc-<br>tions)                            | 140  |         | 4267.20 | 3.14           |
| <b>Reactor Building Roof Thickness</b>                                |      | 0.5     | 1.27    | Assumption 4.9 |
| Height of active fuel                                                 |      | 144     | 365.76  | 3.12           |
| Vessel Height                                                         |      | 704.5   | 1789.43 | 3.15           |

#### Table 3 – Design Input Dimensions

|                                                    | Dose Ra<br>Reactor Ve                                  | te Evalua<br>essel Wate         |        | CALC NO. NE    | E-323-CALC-002 |
|----------------------------------------------------|--------------------------------------------------------|---------------------------------|--------|----------------|----------------|
| Excellence—Every project. Every day.               |                                                        | Refueling for EAL<br>Thresholds |        | <b>REV.</b> 00 |                |
| Dimension                                          | Me State                                               | ft                              | in     | cm             | Reference      |
| Reactor vessel head thic                           | kness                                                  |                                 | 3.9375 | 10.00          | 3.19           |
| Distance from vessel 0 to active fuel              | bottom of                                              |                                 | 200.94 | 510.39         | 3.15, 3.12     |
| Bio shield inner radius                            |                                                        | 9                               | 6.25   | 290.20         | 3.21           |
| Bio shield outer radius                            |                                                        | 11                              | 8.25   | 356.24         | 3.21           |
| Reactor recirculating pu                           | mp height                                              | 17                              | 2      | 523.24         | 3.24           |
| Reactor recirculating pu                           | mp radius                                              | 2                               | 9      | 83.82          | 3.24           |
| Detector RE-9184A dista<br>origin (x plane)        | ance from                                              | -4                              |        | -121.92        | 3.23 [Scaled]  |
| Detector RE-9184A dista<br>origin (y plane)        | ance from                                              | 13.33                           |        | 406.29         | 3.23 [Scaled]  |
| Detector RE-9184B dista<br>origin (x plane)        | ance from                                              | 6                               |        | 182.88         | 3.23 [Scaled]  |
| Detector RE-9184B dista<br>origin (y plane)        | ance from                                              | -12                             |        | -365.76        | 3.23 [Scaled]  |
| Reactor Recirculating P<br>201A distance from orig | the contract of the second second second second second | 12                              |        | 365.76         | 3.23 [Scaled]  |
| Reactor Recirculating P<br>201A distance from orig |                                                        | 12                              |        | 365.76         | 3.23 [Scaled]  |
| Reactor Recirculating P<br>201B distance from orig |                                                        | -12                             |        | -365.76        | 3.23 [Scaled]  |
| Reactor Recirculating P<br>201B distance from orig |                                                        | -12                             |        | -365.76        | 3.23 [Scaled]  |

| Table 4 – Design | Input Elevations <sup>2</sup> |
|------------------|-------------------------------|
|------------------|-------------------------------|

| Dimension:                                     | ft. | in   | cm      | Reference |
|------------------------------------------------|-----|------|---------|-----------|
| Drywell Equator                                | 766 | 0.5  | 0.00    | 3.13      |
| Vessel 0                                       | 772 | 5.5  | 195.58  | 3.15      |
| Bottom of pedestal elevation                   | 742 | 9    | -709.93 | 3.13      |
| Top of cylindrical portion of drywell concrete | 855 |      | 2711.45 | 3.13      |
| Top of Reactor Building                        | 897 | 6    | 4006.85 | 3.13      |
| Detector elevation                             | 760 |      | -184.15 | 3.17      |
| Top of pedestal/ bottom of bio shield          | 770 | 10.5 | 147.32  | 3.20      |
| Top of bio shield                              | 816 | 3.25 | 1530.99 | 3.22      |
| Reactor recirculating pump bottom              | 748 | 8.5  | -528.32 | 3.13      |

 $<sup>^2</sup>$  All elevations listed in centimeters are relative to the equator of the drywell elevation of 766' 0.5" [Reference 3.13].

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Defueling for EAL                               | REV.     | 00               |

## 5.3 Core Isotopic Inventory

Core isotopic activities in Ci/MWt are taken from Reference 3.7 Table 1-1. A table of the input values is shown in Table 5, below. The activities in Ci are determined by multiplying by the rated thermal power of 1912 MWt taken from Reference 3.10.

| Isotope | Ci/MWt   | Ci       | Isotope       | Ci/MWt   | Ci       |
|---------|----------|----------|---------------|----------|----------|
| Ba-139  | 4.74E+04 | 9.06E+07 | Rh-105        | 2.81E+04 | 5.37E+07 |
| Ba-140  | 4.76E+04 | 9.10E+07 | <b>Ru-103</b> | 4.34E+04 | 8.30E+07 |
| Ce-141  | 4.39E+04 | 8.39E+07 | Ru-105        | 3.06E+04 | 5.85E+07 |
| Ce-143  | 4.00E+04 | 7.65E+07 | <b>Ru-106</b> | 1.55E+04 | 2.96E+07 |
| Ce-144  | 3.54E+04 | 6.77E+07 | Sb-127        | 2.39E+03 | 4.57E+06 |
| Cm-242  | 1.12E+03 | 2.14E+06 | Sb-129        | 8.68E+03 | 1.66E+07 |
| Cs-134  | 4.70E+03 | 8.99E+06 | Sr-89         | 2.41E+04 | 4.61E+07 |
| Cs-136  | 1.49E+03 | 2.85E+06 | Sr-90         | 2.39E+03 | 4.57E+06 |
| Cs-137  | 3.25E+03 | 6.21E+06 | Sr-91         | 3.01E+04 | 5.76E+07 |
| I-131   | 2.67E+04 | 5.11E+07 | Sr-92         | 3.24E+04 | 6.19E+07 |
| I-132   | 3.88E+04 | 7.42E+07 | Tc-99m        | 4.37E+04 | 8.36E+07 |
| I-133   | 5.42E+04 | 1.04E+08 | Te-127        | 2.36E+03 | 4.51E+06 |
| I-134   | 5.98E+04 | 1.14E+08 | Te-127m       | 3.97E+02 | 7.59E+05 |
| I-135   | 5.18E+04 | 9.90E+07 | Te-129        | 8.26E+03 | 1.58E+07 |
| Kr-83m  | 3.05E+03 | 5.83E+06 | Te-129m       | 1.68E+03 | 3.21E+06 |
| Kr-85   | 2.78E+02 | 5.32E+05 | Te-131m       | 5.41E+03 | 1.03E+07 |
| Kr-85m  | 6.17E+03 | 1.18E+07 | Te-132        | 3.81E+04 | 7.28E+07 |
| Kr-87   | 1.23E+04 | 2.35E+07 | Xe-131m       | 3.65E+02 | 6.98E+05 |
| Kr-88   | 1.70E+04 | 3.25E+07 | Xe-133        | 5.43E+04 | 1.04E+08 |
| La-140  | 4.91E+04 | 9.39E+07 | Xe-133m       | 1.72E+03 | 3.29E+06 |
| La-141  | 4.33E+04 | 8.28E+07 | Xe-135        | 1.42E+04 | 2.72E+07 |
| La-142  | 4.21E+04 | 8.05E+07 | Xe-135m       | 1.15E+04 | 2.20E+07 |
| Mo-99   | 5.30E+04 | 1.01E+08 | Xe-138        | 4.56E+04 | 8.72E+07 |
| Nb-95   | 4.50E+04 | 8.60E+07 | <b>Y-90</b>   | 2.45E+03 | 4.68E+06 |
| Nd-147  | 1.75E+04 | 3.35E+07 | Y-91          | 3.17E+04 | 6.06E+07 |
| Np-239  | 5.69E+05 | 1.09E+09 | Y-92          | 3.26E+04 | 6.23E+07 |
| Pr-143  | 3.96E+04 | 7.57E+07 | Y-93          | 2.52E+04 | 4.82E+07 |
| Pu-241  | 4.26E+03 | 8.15E+06 | Zr-95         | 4.44E+04 | 8.49E+07 |
| Rb-86   | 5.29E+01 | 1.01E+05 | Zr-97         | 4.23E+04 | 8.09E+07 |

| Table ! | 5 – Core | Source | Term |
|---------|----------|--------|------|
|         |          |        |      |

|                                                 | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|-------------------------------------------------|--------------------------------------------------------|----------|------------------|
| ENERCON<br>Excellence—Every project. Every day. | During Refueling for EAL<br>Thresholds                 | REV.     | 00               |

# 5.4 Material Compositions

The following compositions used in the MCNP model are taken or developed from the SCALE standard composition library [Reference 3.1] and are shown in Table 6.

| Material                      | Isotope | Weight Fraction |
|-------------------------------|---------|-----------------|
| Zry-4                         | Zr      | 0.9823          |
| $(6.56 \text{ g/cm}^3)$       | Sn      | 0.0145          |
|                               | Cr      | 0.0010          |
|                               | Fe      | 0.0021          |
|                               | Hf      | 0.0001          |
| UO <sub>2</sub>               | U-235   | 0.0348          |
| (10.412 g/cm <sup>3</sup> )   | U-238   | 0.8466          |
|                               | 0       | 0.1186          |
| Air                           | С       | 0.0001          |
| (1.21E-03 g/cm <sup>3</sup> ) | N       | 0.7651          |
|                               | 0       | 0.2348          |
| Water                         | Н       | 0.1111          |
| (0.9982 g/cm <sup>3</sup> )   | 0       | 0.8889          |
| SS-304                        | Fe      | 0.6838          |
| $(7.94 \text{ g/cm}^3)$       | Cr      | 0.1900          |
|                               | Ni      | 0.0950          |
|                               | Mn      | 0.0200          |
|                               | Si      | 0.0100          |
|                               | С       | 0.0008          |
|                               | Р       | 0.0004          |
| Concrete                      | 0       | 0.5320          |
| $(2.30 \text{ g/cm}^3)$       | Si      | 0.3370          |
| [KENO Regular                 | Ca      | 0.0440          |
| <b>Concrete Standard</b>      | Al      | 0.0340          |
| Mix]                          | Na      | 0.0290          |
|                               | Fe      | 0.0140          |
|                               | Н       | 0.0100          |
| <b>Carbon Steel</b>           | С       | 0.0100          |
| $(7.82 \text{ g/cm}^3)$       | Fe      | 0.9900          |

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Defueling for EAL                               | REV.     | 00               |

## 5.5 Upper Internals

The following weights are used in the MCNP model for the region between the active fuel and the reactor vessel head [Reference 3.9, Appendix 8.9]:

- The weight of stainless steel for the moisture separator is 83,000 lbs.
- The weight of stainless steel for the steam dryer is 50,000 lbs.
- 5.6 The drywell (9184 A/B) and torus (9185 A/B) radiation monitor ranges (1 to 10<sup>7</sup> R/hr) are taken from Reference 3.6.
- 5.7 ANSI/ANS-1977 Flux to Dose Factors

Flux to dose conversion factors are taken from ANSI/ANS-6.1.1-1977 [Reference 3.4] and are shown in Table 7.

| MeV  | mrem/hr/( $\gamma$ /cm <sup>2</sup> /s) | MeV | mrem/hr/(γ/cm <sup>2</sup> /s) |
|------|-----------------------------------------|-----|--------------------------------|
| 0.01 | 3.96E-03                                | 0.8 | 1.68E-03                       |
| 0.03 | 5.82E-04                                | 1   | 1.98E-03                       |
| 0.05 | 2.90E-04                                | 2.2 | 3.42E-03                       |
| 0.07 | 2.58E-04                                | 2.6 | 3.82E-03                       |

|     | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO.                               | NEE-323-CALC-002 |    |
|-----|--------------------------------------------------------|----------------------------------------|------------------|----|
| 600 | Excellence—Every project. Every day.                   | During Refueling for EAL<br>Thresholds | REV.             | 00 |

## 6.0 Methodology

The reactor source terms are decayed to 50 hours with ORIGEN-S of the SCALE 6.1 code package, Reference 3.2. The results are used to bin design input isotope specific activities into energy dependent photon bins. These energy specific photon emission bins are used as input for the energy distribution described by the MCNP source definitions.

The MCNP6, Reference 3.3, Monte Carlo transport code is used to determine the dose rates via the flux to dose conversion factors in Table 7, while accounting for shielding and particle transport.

The detailed engineering drawings are converted into MCNP surface and cell cards in the dimensions shown in Table 3 and Table 4. The radiation monitors of interest are modeled as point detectors to determine the expected dose rate for those detectors. The dose rates are calculated for two reactor refueling conditions:

- With Head the reactor is modeled with a 3.9375 inch carbon steel plate as indicated in Table 3, which is additional attenuation between the source and detector. The mass of the moisture separator and steam dryer is homogenized between the active fuel region and the vessel head.
- 2. Without head the reactor is modeled with air between the active fuel zone and containment.
- 3. A sensitivity case is run with a mirror surface at the top of the drywell to ensure the modeling of the drywell cap would not significantly affect the response at the detector locations due to scattering.

Variance reduction is accomplished with a geometric importance map that is imposed on the homogenized core. In addition, cell based importance weighting and source biasing (see Section 7.5) are utilized to improve the variance reduction of the simple geometric scheme. A superimposed weight window mesh is utilized where necessary to improve variance. The weight windows are iteratively generated using the MCNP weight windows generator card. All final dose rates presented in this calculation include weight windows variance reduction.

|                                      | Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|-----------------------------|----------|------------------|
| Excellence—Every project. Every day. |                             | REV.     | 00               |

## 7.0 Calculation

## 7.1 Source Terms

The ORIGEN-S input deck, *DAECEAL.inp*, is provided in Appendix C. This input produces a simple case where the isotopic composition from Table 5 is decayed. The isotope is specified in the 73\$\$ card using the special identifier described in Section F7.6.2 of the ORIGEN-S manual, and the activity in curies is specified in the 74\*\* card. The time steps for the decay are given on the 60\*\* card in hours. Although multiple time steps are calculated, the source term with 50 hours decay time is used in this calculation to model the core shortly after shutdown. The output of the decay is given in terms of photons/s/Energy-Group, which is automatically normalized in the MCNP input. The results of this calculation are summarized below in Table 8. These values are used in the MCNP input source definition.

| <b>Energy Group</b> | <b>Energy Boundaries (MeV)</b> | Photons/sec |
|---------------------|--------------------------------|-------------|
| 1                   | 0.01-0.05                      | 2.028E+19   |
| 2                   | 0.05-0.1                       | 6.572E+18   |
| 3                   | 0.1-0.2                        | 1.557E+19   |
| 4                   | 0.2-0.3                        | 9.672E+18   |
| 5                   | 0.3-0.4                        | 3.582E+18   |
| 6                   | 0.4-0.6                        | 7.837E+18   |
| 7                   | 0.6-0.8                        | 1.373E+19   |
| 8                   | 0.8-1                          | 2.132E+18   |
| 9                   | 1-1.33                         | 4.942E+17   |
| 10                  | 1.33-1.66                      | 3.579E+18   |
| 11                  | 1.66-2                         | 6.576E+16   |
| 12                  | 2-2.5                          | 7.518E+16   |
| 13                  | 2.5-3                          | 1.110E+17   |
| 14                  | 3-4                            | 8.689E+14   |
| 15                  | 4-5                            | 1.553E+10   |
| 16                  | 5-6.5                          | 2.568E+08   |
| 17                  | 6.5-8                          | 3.792E+07   |
| 18                  | 8-10                           | 8.041E+06   |
| 19                  | 10-11                          | 4.352E+05   |
| totals              |                                | 8.37E+19    |

| Table 8 – Binned | Total  | Core | Source | Term   |
|------------------|--------|------|--------|--------|
| rabio o Dinnou   | , oran | 0010 | 000100 | 101111 |

|                                      | Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|-----------------------------|----------|------------------|
| Excellence—Every project. Every day. |                             | REV.     | 00               |

#### 7.2 MCNP Model Core Homogenization

The source term is given for the entire core, therefore, the self-shielding from the assemblies is an important part of the dose rate response. For simplicity, the core is modeled as a three dimensional cylinder with a uniformly distributed spatial particle distribution. The calculations for determining the mass of fuel, cladding and water for the core and the resulting density are shown below. The inputs are based on the dimensions in Table 2.

Assembly Width = 
$$(Array Size - 1) \times pitch + Rod OD = (10 - 1)(0.51in) + 0.395in$$
  
= 4.985 in

Active Fuel Region Area =  $(Assembly Width)^2 \times Number of Assemblies in Core$ =  $(4.985in)^2 \times 368 = 9144.883 in^2$ 

Active Fuel Equivalent Radius =  $\sqrt{Active Fuel Region Area}/{\pi} = \sqrt{9144.883 in^2/\pi}$ = 53.953 in

Rod Volume<sub>UO<sub>2</sub></sub> =  $\pi$ (Pellet Radius)<sup>2</sup> × Active Length =  $\pi$ (0.168 in)<sup>2</sup>(144 in) = 12.768 in<sup>3</sup>

Rod 
$$Mass_{UO_2} = \rho \times V = \left(10.412 \frac{g}{cc}\right) (12.7682 \ in^3) \left(2.54 \frac{cm}{in}\right)^3 = 2178.54 \ g$$

Assembly  $Mass_{UO_2} = Rod Mass \times \frac{Number of Fuel Rods}{Assembly} = (2178.54 g)(92)$ = 200.43 kg

Clad Volume = 
$$\pi \left( \frac{OD^2}{4} - \frac{ID^2}{4} \right) \times Active Length$$
  
=  $(\pi) \left[ \frac{(0.395 in)^2}{4} - \frac{(0.343 in)^2}{4} \right] (144 in) = 4.34 in^3$ 

Rod  $Mass_{Zry-4} = \rho \times V = \left(6.56 \frac{g}{cc}\right) (4.34 in^3) \left(2.54 \frac{cm}{in}\right)^3 = 466.5 g$ 

| <b>6</b> 3 | ENERCON                              | Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|------------|--------------------------------------|-----------------------------|----------|------------------|
|            | Excellence—Every project, Every day. |                             | REV.     | 00               |

Assembly  $Mass_{Zry-4} = Rod Mass \times \frac{Number \ of \ Fuel \ Rods}{Assembly} = (466.5g)(92) = 42.92 \ kg$ 

Assembly H<sub>2</sub>O Volume

 $= [(Assembly Width)^{2}$  $- \pi (Rod Radius)^{2} \times Number of Fuel Rods] \times Active Length$  $= [(4.985 in)^{2} - (\pi)(0.1975 in)^{2}(92)](144 in) = 1955 in^{3}$ 

Assembly  $Mass_{H_2O} = \rho \times V = \left(0.9982 \frac{g}{cc}\right) {\binom{1955}{in^3}} \left(2.54 \frac{cm}{in}\right)^3 = 31.98 \ kg$ 

Assembly Volume = Active Length  $\times$  (Assembly Width)<sup>2</sup> = (144 in)(4.985 in)<sup>2</sup> = 3578.4 in<sup>3</sup>

$$Density = \frac{Total Mass}{Volume} = \frac{1000g/kg(200.43 + 42.92 + 31.98) kg}{3578.4 in^3 \left(2.54 \frac{cm}{in}\right)^3} = 4.70 g/cc$$

The corresponding isotopic composition for the homogenized active fuel region is calculated based on the compositions in Table 6. An example calculation for the mass fraction of U-235 is included below.

Mass Fraction U235 = 
$$\frac{Assembly Mass_{UO_2}}{Total Mass} \times weight fraction U235$$
$$= \frac{200.43 \ kg}{(200.43 + 42.92 + 31.98) \ kg} \times 0.0348 = 0.0253$$

The remaining calculations for the homogenization are done in the worksheet Compositions of the EXCEL workbook DAEAL.xlsx and are shown in Appendix B. The isotopic compositions are calculated with the water level above the top of the fuel. Note that the EXCEL workbook uses additional significant figures.

| ZAID Number | Atom  | Mass Fraction Active Fuel Region Homogenized |
|-------------|-------|----------------------------------------------|
| 92235       | U-235 | 0.0253                                       |
| 92238       | U-238 | 0.6163                                       |
| 8016        | 0     | 0.1896                                       |
| 40000       | Zr    | 0.1531                                       |
| 50000       | Sn    | 0.0023                                       |
| 24000       | Cr    | 0.0002                                       |
| 26000       | Fe    | 0.0003                                       |
| 72000       | Hf    | 0.0000                                       |
| 1001        | Н     | 0.0129                                       |

Table 9 – Homogenization of Active Fuel Region

#### 7.3 MCNP Model Upper Internals Homogenization

For the case with the reactor vessel head in place, the steam dryer and moisture separator region are modeled as a discrete cylinder with a uniformly distributed homogenized material to account for the mass of stainless steel between the active fuel height and reactor vessel head. The homogenization accounts for the mass of metal from Section 5.5 (assumed stainless steel type 304 per Assumption 4.5) distributed evenly across the volume between the active fuel height (Z=1071.73 cm) and the head (Z=1985.01 cm).

Mass Upper Internals = 
$$(83000 \ lb + 50000 \ lb) (453.59 \frac{g}{lb}) = 6.033 \times 10^7 \ g$$

The mass is divided by the volume of the region between the active fuel height and the reactor vessel head to determine the density.

Density Upper Internals = Mass Upper Internals ÷ V =  $6.033 \times 10^7 g \div (913.28 cm \times (\pi (235.43 cm)^2) = 0.379 \frac{g}{cc}$ 

### 7.4 MCNP Model Geometry

The following MCNP model geometry is based on the containment dimensions summarized in Table 3 and Table 4. The model only focuses on the primary systems and components that provide shielding or reflection from the core to the radiation monitors. These components include the reactor vessel, recirculation pumps, pedestal, biological shield and drywell. VISED plots of the model geometry are provided in Figures 1-3. The MCNP surface cards with the model dimensions (cm) are shown in Figure 4, and the cell cards are shown in Figure 5 for the cases with no reactor vessel head. A VISED plot of the model with the reactor vessel head is shown in Figure 6. Areas that are not of interest

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Defueling for CAL                               | REV.     | 00               |

are given an importance of zero (white areas) so MCNP will not track particles in locations that will not contribute to the detector response.

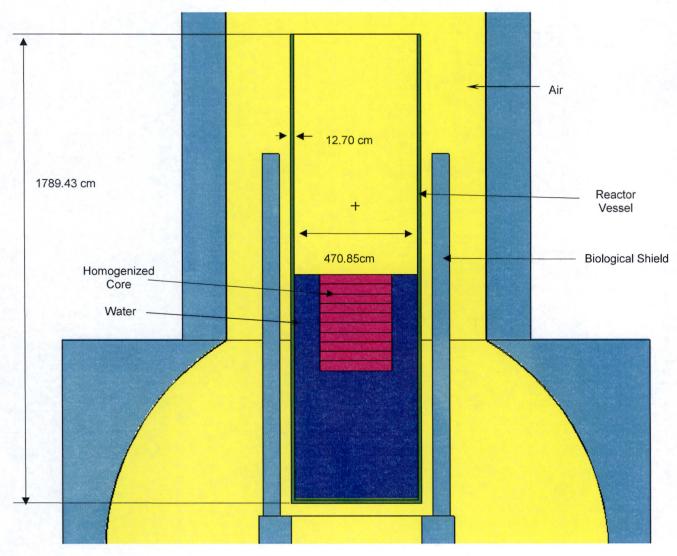
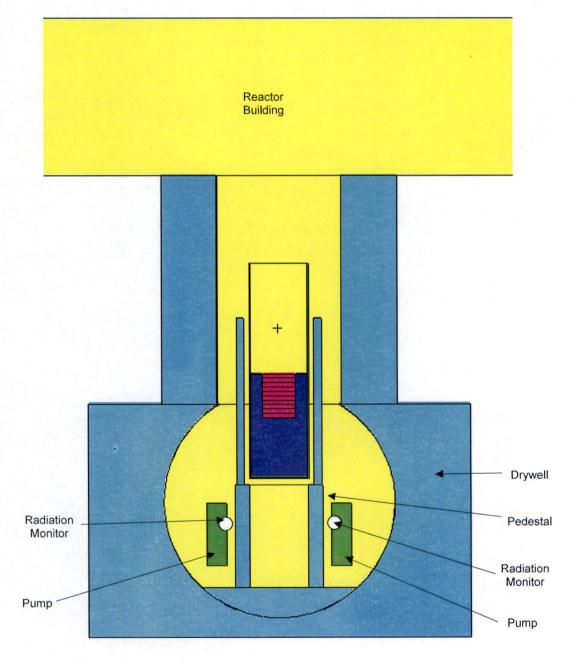




Figure 1 X-Z VISED Plot of Reactor Vessel (No Head)

|                                      | Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|-----------------------------|----------|------------------|
| Excellence—Every project. Every day. |                             | REV.     | 00               |

Figure 2 Vised Plot of Drywell and Reactor Building<sup>3</sup>



<sup>&</sup>lt;sup>3</sup> Radiation monitors are not on the same plane shown above. They are included for visualization purposes only. The VISED Plot was rotated around the Z axis until the Recirculating Pumps were visible.

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Refueling for EAL<br>Thresholds                 | REV.     | 00               |

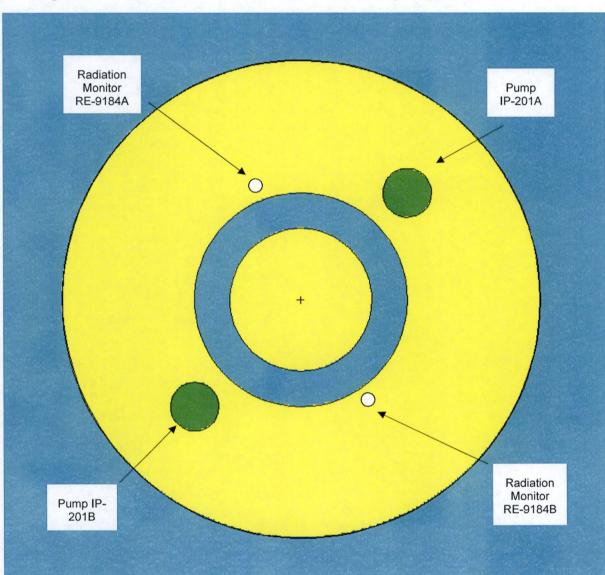



Figure 3 X-Y Vised Plot of Detectors and Reactor Recirculating Pumps at Elevation 760'-0" 4

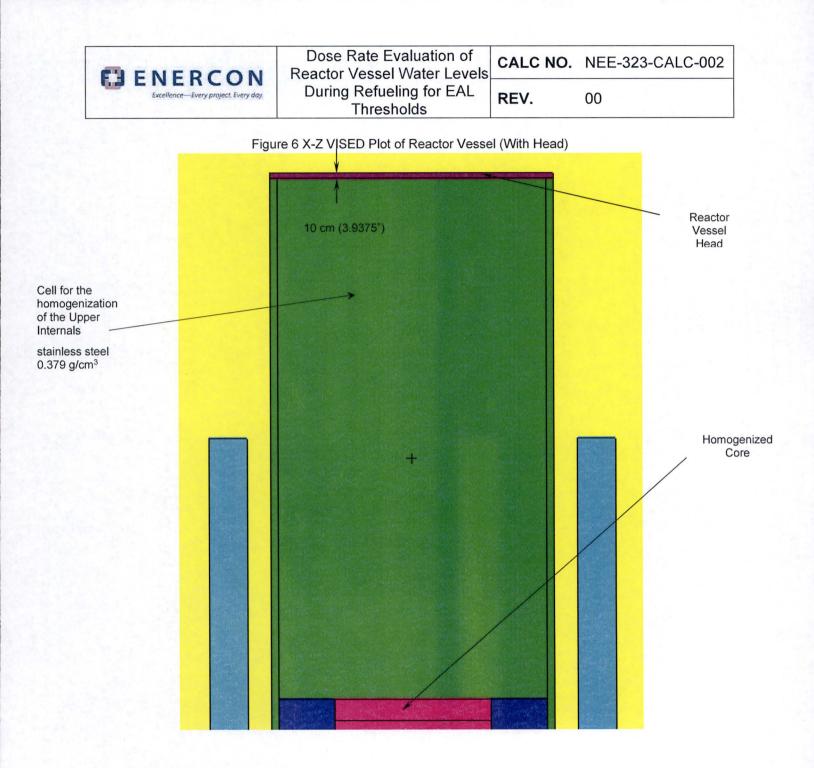
<sup>&</sup>lt;sup>4</sup> Detectors are included for visualization purposes only.

| 2 | ENERCON<br>Excellence—Every project. Every day. | Dose Rate Evaluation of<br>Reactor Vessel Water Levels<br>During Refueling for EAL<br>Thresholds | CALC NO. | NEE-323-CALC-002 |
|---|-------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|------------------|
|   |                                                 |                                                                                                  | REV.     | 00               |

#### Figure 4 MCNP Model Surface Cards<sup>5</sup>

c surfaces

109 pz 1035.154 110 pz 1071.73


```
1 rcc 0 0 705.97 0 0 365.76 137.045
                                                          $ Active Fuel Region
2 rcc 0 0 208.28 0 0 1776.73 235.43
                                                          $ Reactor Pressure Vessel Inner Surface
3 rcc 0 0 195.58 0 0 1789.43 248.13
                                                           $ Reactor Pressure Vessel Outer Surface
4 rpp -1120.14 1120.14 -1120.14 1120.14 -1120.14 821.86 $ Concrete Spher port drywell outer
5 so 960.12
                                                          $ Spher portion of drywell outer surface
6 so 958.21
                                                           $ Spher portion of drywell liner surface
7 pz -709.93
                                                          $ Bottom of Pedestal Elevation
8 rcc 0 0 -709.93 0 0 857.25 243.84
                                                          $ Pedestal Inner Surface
9 rcc 0 0 -709.93 0 0 857.25 365.76
                                                          $ Pedestal Outer Surface
81 rcc 0 0 147.32 0 0 1383.67 290.20
                                                          $ Bio Shield Inner Surface
91 rcc 0 0 147.32 0 0 1383.67 356.24
                                                          $ Bio Shield Outer Surface
82 rcc 365.76 365.76 -528.32 0 0 523.24 83.82
                                                          $ Recirc Pump IP-201A
92 rcc -365.76 -365.76 -528.32 0 0 523.24 83.82
                                                          $ Recirc Pump IP-201B
10 pz 195.58
                                                          $ Vessel 0
                                                           $ Transition Spherical to Cylindrical
11 pz 821.86
12 rcc 0 0 821.86 0 0 1889.59 518.16
                                                           $ cylin port drywell concrete surface
13 rcc 0 0 821.86 0 0 1889.59 516.25
                                                          $ cylin port drywell liner surface
14 rpp -693.42 693.42 -693.42 693.42 821.86 2711.45
                                                          $ Concrete cylin port drywell outer
15 pz 1071.73
                                                          $ Water Elevation Surface
16 pz 1985.01
17 rpp -4267.2 4267.2 -4267.2 4267.2 2711.45 4006.85
                                                           $ Top of RPV (head level)
                                                           $ Reactor building above drywell
18 rpp -4267.2 4267.2 -4267.2 4267.2 4006.85 4008.12
                                                          $ Reactor building roof
                                                           $ Top of Ped Elevation/Bottom Bio Shield
19 pz 147.32
20 pz 1530.99
                                                          $ Top of Ped Elevation/Bottom Bio Shield
28 rcc 0 0 1985.01 0 0 10.00 248.13
                                                           $ Reactor Head
101 pz 742.546
102 pz 779.122
103 pz 815.698
104 pz 852.274
105 pz 888.85
106 pz 925.246
107 pz 962.002
108 pz 998.578
```

<sup>&</sup>lt;sup>5</sup> The surface card for the MCNP model without the reactor vessel head does not have surface 28.

| - | ENERCON                              | Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|---|--------------------------------------|-----------------------------|----------|------------------|
|   | Excellence—Every project. Every day. |                             | REV.     | 00               |

# Figure 5 MCNP Model Cell Cards (No Head)

| c cells                               |                    |                                                    |
|---------------------------------------|--------------------|----------------------------------------------------|
| 101 1 -4.49 -1 -101                   | imp:p=256          | \$ Active Fuel Region                              |
| 102 1 -4.49 -1 101 -102               | imp:p=128          | \$ Active Fuel Region                              |
| 103 1 -4.49 -1 102 -103               | imp:p=64           | \$ Active Fuel Region                              |
| 104 1 -4.49 -1 103 -104               | imp:p=32           | \$ Active Fuel Region                              |
| 105 1 -4.49 -1 104 -105               | imp:p=16           | \$ Active Fuel Region                              |
| 106 1 -4.49 -1 105 -106               | imp:p=8            | \$ Active Fuel Region                              |
| 107 1 -4.49 -1 106 -107               | imp:p=4            | \$ Active Fuel Region                              |
| 108 1 -4.49 -1 107 -108               | <pre>imp:p=3</pre> | \$ Active Fuel Region                              |
| 109 1 -4.49 -1 108 -109               | imp:p=2            | \$ Active Fuel Region                              |
| 110 1 -4.49 -1 109 -110               | <pre>imp:p=1</pre> | \$ Active Fuel Region                              |
| 2 2 -0.9982 1 -2 -15                  | imp:p=256          | \$ Water Region                                    |
| 3 3 -1.21E-03 15 -2                   | imp:p=256          | \$ Air Region inside vessel                        |
| 4 4 -7.94 2 -3 -16                    | imp:p=256          | \$ RPV Shell                                       |
| 7 5 -2.3 5 -4                         | imp:p=256          | <pre>\$ Concrete Surrounding RPV spherical</pre>   |
| 8 5 -2.3 -14 12                       | imp:p=256          | <pre>\$ Concrete Surrounding RPV cylindrical</pre> |
| 9 5 -2.3 -9 8 7 -19                   | imp:p=256          | \$ Pedestal                                        |
| 91 5 -2.3 -91 81 19 -20               | imp:p=256          | \$ Bio Shield                                      |
| 10 5 -2.3 -6 -7                       | imp:p=256          | \$ Concrete at bottom of pedestal                  |
| 11 3 -1.21E-03 -8                     | imp:p=256          | \$ Inside Pedestal Air                             |
| 12 3 -1.21E-03 -6 7 -11 9 3           |                    |                                                    |
| #18 #19 #91                           | imp:p=256          | \$ Inside Spherical portion Air                    |
| 13 3 -1.21E-03 -13 3 #91              | imp:p=256          | <pre>\$ Inside Cylindrical portion Air</pre>       |
| 14 3 -1.21E-03 -17                    | imp:p=256          | <pre>\$ Reactor Building above drywell Air</pre>   |
| 15 4 -7.94 2 -18                      | imp:p=256          | \$ Reactor Build Roof Stainless Steel              |
| 16 4 -7.94 6 -5 -11                   | imp:p=256          | \$ Containment Liner Spherical portion             |
| 17 4 -7.94 13 -12                     | imp:p=256          | \$ Containment Liner Cylin portion                 |
| 18 4 -7.94 -82                        | imp:p=256          | \$ Recirc Pump IP-201A                             |
| 19 4 -7.94 -92                        | imp:p=256          | \$ Recirc Pump IP-201B                             |
| 999 0 1 #2 #3 #4 #7 #8 #9 #10 #11 #12 | #13 #14            |                                                    |
| #15 #16 #17 #18 #19 #91               | imp:p=0            | \$ Problem Boundary                                |



### 7.5 MCNP Source Definition

The core source term is modeled as uniformly distributed throughout the homogenized core, and has an energy spectra based on the decayed core inventory (Section 7.1). Only the gamma source term is taken into account for this evaluation. The source term is generated shortly after shutdown, therefore, the fuel gamma source term will predominate, and the neutron-gamma and hardware activation source terms can be neglected (Assumption 4.7). The source is defined on the MCNP sdef card using

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Refueling for EAL<br>Thresholds                 | REV.     | 00               |

distributions to define the particle location and energy. The radius of the core is defined with the rad parameter, which automatically creates a uniform distribution based on a cylindrical geometry. The ext and axs parameters define the direction and distance of the cylinder axis. These parameters combined define the core where the particles can be born. The erg parameter defines the energy spectrum of source particles, and is based on the results of the ORIGEN-S calculation discussed previously. This distribution is a histogram of energies represented by activities. These are automatically normalized by MCNP to create a probability distribution. The total activity is preserved in the tally multiplier. The MCNP source definition cards are shown below in Figure 7. The sb card is a source biasing card, which in this case biases the particle generation to the lower end of the core. This is a variance reduction technique to improve the statistical certainty in the results.

#### Figure 7 MCNP Source Definition Cards

←Source Definition Card sdef rad=d1 ext=d2 axs=0 0 1 erg=d8 -Radius = d1-Extent = d2-Axis = +Z-Energy = d8sil 137.045 ←Core Radius Distribution si2 h 0 742.546 779.122 815.698 852.274 888.85 925.246 962.002 ←Core Axial Distribution 998.578 1035.154 1071.73 sp2 0 1 1 1 1 1 1 1 1 1 1 ←Actual Uniform Distribution sb2 0 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 ← Biased to Bot Distribution c Fuel Gamma Spectra si8 h 1.000e-002 5.000e-002 1.000e-001 2.000e-001 3.000e-001 4.000e-001 ←Source Energy Groups 6.000e-001 8.000e-001 1.000e+000 1.330e+000 1.660e+000 2.000e+000 2.500e+000 3.000e+000 4.000e+000 5.000e+000 6.500e+000 8.000e+000 1.000e+001 1.100e+001 0.00E+00 2.028E+19 6.572E+18 1.557E+19 9.672E+18 3.582E+18 7.837E+18 ← Source Emission on sp8 Energy Basis 1.373E+19 2.132E+18 4.942E+17 3.579E+18 6.576E+16 7.518E+16 1.110E+17 8.689E+14 1.553E+10 2.568E+08 3.792E+07 8.041E+06 4.352E+05

Page 24 of 28

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. |                                                        | REV.     | 00               |

### 7.6 MCNP Tally Specification

The tallies used in this evaluation are point detectors placed at approximate locations of radiation monitors RE-9184A, and RE-9184B. Point detectors are chosen because they use quasi-deterministic dose calculations that will provide better results than surface or cell based tallies that require the particles to enter those regions. The inputs to this card are the coordinates of the dose points followed by an exclusion zone to reduce variance, as well as a multiplier card, which represents the total core activity in photons/sec. The tally cards are shown in Figure 8.

Figure 8 MCNP Tally Cards

f5c RE-9184A, and 9184B f5:p -121.92 406.29 -184.15 20 182.88 -365.76 -184.15 20 fm5 8.370E+19 ←Tally Comment Card ←Tally 5 (point detector) x y z exclusion ← Tally Multiplier (Total Activity)

In addition, the flux is multiplied by ANSI/ANS flux-dose conversion factors [Reference 3.4]. This is specified in MCNP using the de/df cards. These are shown in Figure 9.

Figure 9 ANSI/ANS-6.1.1-1977 Gamma Flux to Dose Conversion Factors

| c Ga     |                                                                                    | 1-1977<br>Dose Conve<br>notons/cm2-s                                 |                                                                      | ors                                                                  |                                                                      |                                                                      |                                             |
|----------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|
| c<br>de0 | .45 .50 .5                                                                         | 05 .07 .10<br>55 .60 .65<br>.25 3.75 4.2                             | .70 .80 1.                                                           | 1.4 1.8 2.2                                                          |                                                                      |                                                                      | ←Energy Bins for Flux<br>to Dose Conversion |
| df0      | 6.75 7.5 9<br>3.96E-03<br>5.01E-04<br>1.17E-03<br>1.98E-03<br>4.41E-03<br>6.37E-03 | 5.82E-04<br>6.31E-04<br>1.27E-03<br>2.51E-03<br>4.83E-03<br>6.74E-03 | 2.90E-04<br>7.59E-04<br>1.36E-03<br>2.99E-03<br>5.23E-03<br>7.11E-03 | 2.58E-04<br>8.78E-04<br>1.44E-03<br>3.42E-03<br>5.60E-03<br>7.66E-03 | 2.83E-04<br>9.85E-04<br>1.52E-03<br>3.82E-03<br>5.80E-03<br>8.77E-03 | 3.79E-04<br>1.08E-03<br>1.68E-03<br>4.01E-03<br>6.01E-03<br>1.03E-02 | ←Energy Dependent<br>Flux Multipliers       |

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO |
|--------------------------------------|--------------------------------------------------------|---------|
| Excellence—Every project. Every day. | During Refueling for EAL<br>Thresholds                 | REV.    |

O. NEE-323-CALC-002

## 00

## 7.7 MCNP Material Cards

The MCNP material cards are provided in Figure 9. These are based on the compositions described in Table 6 or calculated in Section 7.2.

## Figure 10 MCNP Material Cards

| ml | 92235 -0.0253  | ¢  | Homogenized Active Fuel Region |
|----|----------------|----|--------------------------------|
| mı | 92238 -0.6163  | Ŷ  | nomogenized Accive ruei Region |
|    | 8016 -0.1896   |    |                                |
|    | 40000 -0.1531  |    |                                |
|    | 50000 -0.0023  |    |                                |
|    | 24000 -0.0002  |    |                                |
|    | 26000 -0.0003  |    |                                |
|    | 1001 -0.0129   |    |                                |
| m2 | 1001 2 8016 1  | Ś  | Water                          |
| m3 | 6012 -0.000126 | \$ | Air                            |
|    | 7014 -0.76508  |    |                                |
|    | 8016 -0.234793 |    |                                |
| m4 | 6000 -0.0008   | \$ | SS 304                         |
|    | 14000 -0.01    |    |                                |
|    | 15031 -0.00045 |    |                                |
|    | 24000 -0.19    |    |                                |
|    | 25055 -0.02    |    |                                |
|    | 26000 -0.68375 |    |                                |
|    | 28000 -0.095   |    |                                |
| m5 | 26000 -0.014   | \$ | Reg-Concrete                   |
|    | 1001 -0.01     |    |                                |
|    | 13027 -0.034   |    |                                |
|    | 20000 -0.044   |    |                                |
|    | 8016 -0.532    |    |                                |
|    | 14000 -0.337   |    |                                |
|    | 11023 -0.029   |    |                                |
| m6 | 6012 -0.01     |    | \$ Carbon Steel                |
|    | 26056 -0.99    |    |                                |
|    |                |    |                                |

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day. | During Defueling for EAL                               | REV.     | 00               |

## 7.8 Results

The dose rates are provided in Table 10 for the water level at the top of the fuel assemblies. The dose rate is slightly above the detectable response of 1 R/h (1E+03 mrem/h) for the no head configuration, and below the detectable response for the configuration with the reactor vessel head in place for one of the detectors. The sensitivity case shows that there is no significant impact due to reflection from the drywell cap.

| Configuration                     | Dose Rate 1<br>RE-9184A | fsd <sup>6</sup> | Dose Rate 2<br>RE-9184B | fsd    | Tally File |
|-----------------------------------|-------------------------|------------------|-------------------------|--------|------------|
| No Head                           | 1.81E+03                | 10.81%           | 1.68E+03                | 7.31%  | d0ndm      |
| With Head                         | 1.11E+03                | 10.16%           | 7.41E+02                | 8.24%  | d0hgm      |
| With Head (Sen-<br>sitivity Case) | 1.07E+03                | 15.27%           | 7.67E+02                | 15.51% | d0rdm      |

| Table 10 – Dose Rate Resp | oonse (mrem/h) |
|---------------------------|----------------|
|---------------------------|----------------|

### 8.0 Computer Software

This calculation uses ORIGEN-S of the SCALE Version 6.1.2 code package [Reference 3.2] and MCNP Version 6.1.0 [Reference 3.3] in accordance with CSP 3.09.

<sup>&</sup>lt;sup>6</sup> Fraction standard deviation.

|                                      | Dose Rate Evaluation of<br>Reactor Vessel Water Levels | CALC NO. | NEE-323-CALC-002 |
|--------------------------------------|--------------------------------------------------------|----------|------------------|
| Excellence—Every project. Every day, | During Defueling for EAL                               | REV.     | 00               |

## 9.0 Impact Assessment

This calculation is based on "realistic" assumptions for the purpose of declaring EALs, rather than typical conservative "bounding" type design basis analyses. The calculation results are intended to provide order of magnitude dose rates to assist Operations and Emergency Response personnel in determination of core uncovery in accordance with NEI 99-01 Rev. 6.

|                                                   | Appendix A              | CALC<br>NO. | NEE-323-CALC-002 |  |
|---------------------------------------------------|-------------------------|-------------|------------------|--|
| Excellence—Every project. Every day.              | Electronic File Listing | REV.        | 00               |  |
| Origen output:<br>07/26/2017 04:19 PM             | 82,114 DAECEAL.OUT      |             |                  |  |
| MCNP output:                                      | 날에 집안 가슴을 가지            |             |                  |  |
| Directory of \No head\<br>08/16/2017 09:13 AM     | 327,680 d0nao           |             |                  |  |
| Directory of \With Head\<br>08/16/2017 10:01 AM   | 1,269,760 d0hgo         |             |                  |  |
| Directory of \sensitivity\<br>08/16/2017 03:54 AM | 286,720 d0rdo           |             |                  |  |

|                                      | Appendix B        | CALC<br>NO. | NEE-323-CALC-002 |
|--------------------------------------|-------------------|-------------|------------------|
| Excellence—Every project. Every day. | DAEAL.xlsx Sheets | REV.        | 00               |

| 1  | A B                              | С       | D                  | E           | FG       | Н                | IJ          | К     | L                                              |
|----|----------------------------------|---------|--------------------|-------------|----------|------------------|-------------|-------|------------------------------------------------|
| 2  | Material                         | Isotope | Weight<br>Fraction | Reference   | Material | Mas<br>s<br>(KG) | ZAID Number | Atom  | Mass Fraction Active Fue<br>Region Homogenized |
| 3  | Zry- 4                           | Zr      | 0.9823             | [1]         | UO2      | 200.4            | 92235       | U-235 | 0.0253                                         |
| 4  | (6.56 g/cm <sup>3</sup> )        | Sn      | 0.0145             | 100 St 10   | Zry-4    | 42.92            | 92238       | U-238 | 0.6163                                         |
| 5  |                                  | Cr      | 0.001              |             | Water    | 31.98            | 8016        | 0     | 0.1896                                         |
| 6  | 2010/04/2                        | Fe      | 0.0021             |             |          |                  | 40000       | Zr    | 0.1531                                         |
| 7  |                                  | Hf      | 0.0001             |             |          |                  | 50000       | Sn    | 0.0023                                         |
| 8  | UO2                              | U-235   | 0.0348             | [1]         |          |                  | 24000       | Cr    | 0.0002                                         |
| 9  |                                  | U-238   | 0.8466             |             |          |                  | 26000       | Fe    | 0.0003                                         |
| 10 | 1. S. P. S. S.                   | 0       | 0.1186             |             |          |                  | 72000       | Hf    | 0.0000                                         |
| 11 | Air                              | С       | 0.0001             | [1]         |          |                  | 1001        | Н     | 0.0129                                         |
| 12 | (1.21E-03<br>g/cm <sup>3</sup> ) | N       | 0.7651             |             |          |                  |             |       | 1.0000                                         |
| 13 |                                  | 0       | 0.2348             | 10.2 D. M.  |          |                  |             |       |                                                |
| 14 | Water                            | H       | 0.1111             | [1]         |          |                  |             |       |                                                |
| 15 | (0.9982 g/cm <sup>3</sup> )      | 0       | 0.8889             | 1. 1. 1. 1. |          |                  |             |       |                                                |
| 16 | SS-304                           | Fe      | 0.6838             | [1]         |          |                  |             |       |                                                |
| 17 | (7.94 g/cm <sup>3</sup> )        | Cr      | 0.19               |             |          |                  |             |       |                                                |
| 18 |                                  | Ni      | 0.095              |             |          |                  |             |       |                                                |
| 19 | 1                                | Mn      | 0.02               |             |          |                  |             |       |                                                |
| 20 |                                  | Si      | 0.01               |             |          |                  |             |       |                                                |
| 21 |                                  | С       | 0.0008             |             |          |                  |             |       |                                                |
| 22 |                                  | Р       | 0.0004             |             |          |                  |             |       |                                                |
| 23 | Concrete                         | 0       | 0.532              | [1]         |          |                  |             |       |                                                |
| 24 | $(2.30 \text{ g/cm}^3)$          | Si      | 0.337              |             |          |                  |             |       |                                                |
| 25 | 1.1                              | Ca      | 0.044              |             |          |                  |             |       |                                                |
| 26 |                                  | Al      | 0.034              |             |          |                  |             |       |                                                |
| 27 |                                  | Na      | 0.029              |             |          |                  |             |       |                                                |
| 28 |                                  | Fe      | 0.014              |             |          |                  |             |       |                                                |
| 29 |                                  | Н       | 0.01               |             |          |                  |             |       |                                                |
| 30 | Carbon Steel                     | С       | 0.01               | [1]         |          |                  |             |       |                                                |
| 31 | $(7.82 \text{ g/cm}^3)$          | Fe      | 0.99               |             |          |                  |             |       |                                                |

|                                      | Appendix B        | CALC<br>NO. | NEE-323-CALC-002 |
|--------------------------------------|-------------------|-------------|------------------|
| Excellence—Every project, Every day. | DAEAL.xlsx Sheets | REV.        | 00               |

| 1  | A B                           | С       | D                  | E         | FG       | Н         | IJ             | К     | L                                               |
|----|-------------------------------|---------|--------------------|-----------|----------|-----------|----------------|-------|-------------------------------------------------|
| 2  | Material                      | Isotope | Weight<br>Fraction | Reference | Material | Mass (KG) | ZAID<br>Number | Atom  | Mass Fraction Active Fuel Region Homogenized    |
| 3  | Zry-4                         | Zr      | 0.9823             | [1]       | UO2      | 200.42    | 92235          | U-235 | =(H3/SUM(H3:H5))*D8                             |
| 4  | (6.56 g/cm <sup>3</sup> )     | Sn      | 0.0145             |           | Zry-4    | 42.92     | 92238          | U-238 | =(H3/SUM(H3:H5))*D9                             |
| 5  | (                             | Cr      | 0.001              |           | Water    | 31.98     | 8016           | 0     | =((H3/(SUM(H3:H5)))*D10)+((H5/(SUM(H3:H5))))*D1 |
| 6  | 1 Martines St                 | Fe      | 0.0021             |           | 1        |           | 40000          | Zr    | =(\$H\$4/SUM(\$H\$3:\$H\$5))*D3                 |
| 7  |                               | Hf      | 0.0001             |           |          |           | 50000          | Sn    | =(\$H\$4/SUM(\$H\$3:\$H\$5))*D4                 |
| 8  | UO <sub>2</sub>               | U-235   | 0.0348             | [1]       |          |           | 24000          | Cr    | =(\$H\$4/SUM(\$H\$3:\$H\$5))*D5                 |
| 9  |                               | U-238   | 0.8466             |           |          |           | 26000          | Fe    | =(\$H\$4/SUM(\$H\$3:\$H\$5))*D6                 |
| LO |                               | 0       | 0.1186             |           |          |           | 72000          | Hf    | =(\$H\$4/SUM(\$H\$3:\$H\$5))*D7                 |
| 11 | Air                           | С       | 0.0001             | [1]       |          |           | 1001           | н     | =(H5/SUM(H3:H5))*D14                            |
| 12 | (1.21E-03 g/cm <sup>3</sup> ) | N       | 0.7651             |           |          |           |                |       | =SUM(L3:L11)                                    |
| 13 |                               | 0       | 0.2348             |           |          |           |                |       |                                                 |
| 4  | Water                         | Н       | 0.1111             | [1]       |          |           |                |       |                                                 |
| 15 | (0.9982 g/cm <sup>3</sup> )   | 0       | 0.8889             |           |          |           |                |       |                                                 |
| 16 | SS-304                        | Fe      | 0.6838             | [1]       |          |           |                |       |                                                 |
| 17 | $(7.94 \text{ g/cm}^3)$       | Cr      | 0.19               |           |          |           |                |       |                                                 |
| 18 |                               | Ni      | 0.095              |           |          |           |                |       |                                                 |
| 19 |                               | Mn      | 0.02               |           |          |           |                |       |                                                 |
| 20 |                               | Si      | 0.01               |           |          |           |                |       |                                                 |
| 21 |                               | С       | 0.0008             |           |          |           |                |       |                                                 |
| 22 |                               | Р       | 0.0004             |           |          |           |                |       |                                                 |
| 23 | Concrete                      | 0       | 0.532              | [1]       |          |           |                |       |                                                 |
| 24 | $(2.30 \text{ g/cm}^3)$       | Si      | 0.337              |           |          |           |                |       |                                                 |
| 25 |                               | Ca      | 0.044              |           |          |           |                |       |                                                 |
| 26 |                               | Al      | 0.034              |           |          |           |                |       |                                                 |
| 7  |                               | Na      | 0.029              |           |          |           |                |       |                                                 |
| 28 |                               | Fe      | 0.014              |           |          |           |                |       |                                                 |
| 29 |                               | Н       | 0.01               | 1         |          |           |                |       |                                                 |
| 30 | Carbon Steel                  | С       | 0.01               | [1]       |          |           |                |       |                                                 |
| 1  | $(7.82 \text{ g/cm}^3)$       | Fe      | 0.99               |           |          |           |                |       |                                                 |

|                                                                   | CON Appendix C                                           |               | NEE-32 | 3-CALC-002 |
|-------------------------------------------------------------------|----------------------------------------------------------|---------------|--------|------------|
| Excellence—Every project. Every day.                              | SCALE Input                                              | REV.          | 00     |            |
| =origens                                                          |                                                          |               |        |            |
|                                                                   |                                                          |               |        |            |
| 0\$\$ all 71 e t                                                  |                                                          |               |        |            |
| BWR Source Term DAEC EAL Analy<br>3\$\$ 21 1 1 a4 27 a16 4 a33 19 |                                                          |               |        |            |
| 35\$\$ 0 t                                                        | el                                                       |               |        |            |
| 54\$\$ a8 0 a11 2 e                                               |                                                          |               |        |            |
| 56\$\$ 0 6 a6 1 a10 0 a13 63 3 3                                  | 0200                                                     |               |        |            |
| 57** 0 a3 1-16 e                                                  |                                                          |               |        |            |
| 95\$\$ 0 t                                                        |                                                          |               |        |            |
| DAECEAL                                                           |                                                          |               |        |            |
| Ci Source Terms                                                   |                                                          |               |        |            |
| 60** 0 24 40 50 60 70                                             |                                                          |               |        |            |
| 61** 5r1-8 1+6 1+4                                                |                                                          |               |        |            |
| 65\$\$                                                            |                                                          |               |        |            |
| 'GRAM-ATOMS GRAMS CURIES                                          | WATTS-ALL WATTS-GAMMA                                    |               |        |            |
| 3Z 0 1 0 1 0 0                                                    | 1 0 0 3Z                                                 | 6Z            |        |            |
| 3Z 1 1 1 1 0 1                                                    | 1 1 1 3Z                                                 | 6Z            |        |            |
| 3Z 1 1 1 1 1 1                                                    | 1 1 1 3Z                                                 | 6Z            |        |            |
| 81\$\$ 2 0 26 1 e                                                 |                                                          |               |        |            |
| 82\$\$ f2                                                         |                                                          |               |        |            |
| 83** 1.10E+07 1.00E+07 8.00E+0                                    |                                                          |               |        |            |
|                                                                   | 6 1.33E+06 1.00E+06 8.00E+<br>5 1.00E+05 5.00E+04 1.00E+ |               |        |            |
| 84** 2.00E+07 6.43E+06 3.00E+0                                    |                                                          |               |        |            |
|                                                                   | 3 5.50E+02 1.00E+02 3.00E+                               |               |        |            |
|                                                                   | 0 1.13E+00 1.00E+00 8.00E-                               |               |        |            |
|                                                                   | 1 5.00E-02 3.00E-02 1.00E-                               |               |        |            |
| 73\$\$ 561390 561400 581410 5814                                  | 30 581440 962420 551340 55                               | 1360          |        |            |
| 551370 531310 531320 53133                                        | 0 531340 531350 360831 360                               | 850           |        |            |
| 360851 360870 360880 57140                                        | 0 571410 571420 420990 410                               | 950           |        |            |
| 601470 932390 591430 94241                                        | 0 370860 451050 441030 441                               | .050          |        |            |
| 441060 511270 511290 38089                                        |                                                          |               |        |            |
| 521270 521271 521290 52129                                        |                                                          |               |        |            |
| 541331 541350 541351 54138                                        | 0 390900 390910 390920 390                               | 930           |        |            |
| 400950 400970                                                     |                                                          | 0.6 0.000.000 |        |            |
| 74** 9.06E+07 9.10E+07 8.39E+0<br>2.85E+06 6.21E+06 5.11E+07      |                                                          |               |        |            |
| 5.83E+06 5.32E+05 1.18E+07                                        |                                                          |               |        |            |
| 8.05E+07 1.01E+08 8.60E+07                                        |                                                          |               |        |            |
| 1.01E+05 5.37E+07 8.30E+07                                        |                                                          |               |        |            |
| 4.61E+07 4.57E+06 5.76E+07                                        |                                                          |               |        |            |
| 1.58E+07 3.21E+06 1.03E+07                                        | 7.28E+07 6.98E+05 1.04E+0                                | 08 3.29E+06   |        |            |
| 2.72E+07 2.20E+07 8.72E+07                                        | 4.68E+07 6.06E+07 6.23E+0                                | 07 4.82E+07   |        |            |
| 8.49E+07 8.09E+07                                                 |                                                          |               |        |            |
| 75\$\$ 3 3 3 3 3 2 3 3 3 3 3 3 3                                  |                                                          | 2 3 2 3 3 3 3 |        |            |
| 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                   | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                          |               |        |            |
| t                                                                 |                                                          |               |        |            |
| 56\$\$ f0 t                                                       |                                                          |               |        |            |

end

|             | ENERCON<br>Excellence—Every project. Every day.                                                                                                                                                                            | Attachment 1<br>CALCULATION PREPARATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CALC<br>NO.    | NEE-3       | 23-CAL | C-002       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------|-------------|
| 0           |                                                                                                                                                                                                                            | CHECKLIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REV.           |             | 0      |             |
|             | Vielan Carlos                                                                                                                                                                                                              | CHECKLIST ITEMS <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | YES         | NO     | N/A         |
| GENE        | RAL REQUIREMENTS                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| 1.          | If the calculation is being p<br>used the latest revision?                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| The Ca      | alculation is performed in acc                                                                                                                                                                                             | ordance with ENERCON procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |        |             |
| 2.          | Are the proper forms being                                                                                                                                                                                                 | used and are they the latest revision?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | $\boxtimes$ |        |             |
| The Ca      | alculation is performed in acc                                                                                                                                                                                             | ordance with ENERCON procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |        |             |
| 3.          | Have the appropriate clien                                                                                                                                                                                                 | t review forms/checklists been completed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |             |        | $\boxtimes$ |
| OAR         | vill be performed after calcula                                                                                                                                                                                            | ation submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| 4.          |                                                                                                                                                                                                                            | tified with a calculation number, calculation r<br>ith the requirements of the client's procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |             |        |             |
| 5.          | Is all information legible an                                                                                                                                                                                              | nd reproducible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |        |             |
| 1. 1. 1. 1. |                                                                                                                                                                                                                            | a state of the second s |                |             |        |             |
| 6.          | Is the calculation presented in a logical and orderly manner?                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| 7.          | Is there an existing calculation that should be revised or voided?                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| There       | is no existing calculation that                                                                                                                                                                                            | should be revised or voided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |             |        |             |
| 8.          | Is it possible to alter an existing calculation instead of preparing a new calculation for this situation?                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| No exi      | sting calculation would be ap                                                                                                                                                                                              | plicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |             |        |             |
| 9.          | If an existing calculation is being used for design inputs, are the key design inputs, assumptions and engineering judgments used in that calculation valid and do they apply to the calculation revision being performed. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| No exi      | sting calculation is used for c                                                                                                                                                                                            | lesign inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |             |        |             |
| 10.         | Is the format of the calcula expectations?                                                                                                                                                                                 | tion consistent with applicable procedures ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd             |             |        |             |
| 11.         | Mara dasign input/output                                                                                                                                                                                                   | desuments properly undeted to reference this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a algulation 2 |             |        |             |
|             | are no design output docume                                                                                                                                                                                                | documents properly updated to reference this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | calculation?   |             |        | $\square$   |
| 12.         | Can the calculation logic, r                                                                                                                                                                                               | nethodology and presentation be properly un<br>e originator for clarification?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | derstood       |             |        |             |
| OBJE        | CTIVE AND SCOPE                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| 13.         | Does the calculation provid<br>of the calculation?                                                                                                                                                                         | de a clear concise statement of the problem a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and objective  |             |        |             |
| 14.         | Does the calculation provid                                                                                                                                                                                                | de a clear statement of quality classification?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |        |             |
| 15.         | Is the reason for performin                                                                                                                                                                                                | g and the end use of the calculation understo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ood?           |             |        |             |
| 16.         | Does the calculation provide basis?                                                                                                                                                                                        | de the basis for information found in the plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 's license     |             |        |             |
| This d      | oes not provide basis for lice                                                                                                                                                                                             | nse basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |             |        |             |
| 17.         | If so, is this documented ir                                                                                                                                                                                               | the calculation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |        |             |

| -       | ENERCON                                                                                               | Attachment 1<br>CALCULATION PREPARATION                                                           | CALC<br>NO.           | NEE-323-CALC-002 |           |             |
|---------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------|-------------|
| 63      | ENERCON<br>Excellence—Every project. Every day.                                                       | CHECKLIST                                                                                         | REV.                  |                  | 0         |             |
|         |                                                                                                       | CHECKLIST ITEMS <sup>1</sup>                                                                      |                       | YES              | NO        | N/A         |
| See at  | oove                                                                                                  |                                                                                                   |                       |                  |           |             |
| 18.     | Does the calculation provi<br>basis documentation?                                                    | de the basis for information found in the plant                                                   | 's design             |                  |           |             |
| This de | oes not provide basis for des                                                                         | ign basis                                                                                         |                       |                  |           |             |
| 19.     | If so, is this documented in                                                                          | the calculation?                                                                                  | 1997                  |                  |           | $\boxtimes$ |
| See at  | oove                                                                                                  |                                                                                                   |                       |                  |           |             |
| 20.     | Does the calculation other documentation?                                                             | wise support information found in the plant's o                                                   | design basis          |                  |           |             |
| This d  | oes not provide support for ir                                                                        | nformation found in design basis documentation                                                    | on                    |                  |           |             |
| 21.     | If so, is this documented in                                                                          | the calculation?                                                                                  |                       |                  |           |             |
| See at  | ove                                                                                                   |                                                                                                   |                       |                  |           |             |
| 22.     | Has the appropriate desig<br>change notice or change r                                                | n or license basis documentation been revise equest documents being prepared for submit           | d, or has the<br>tal? |                  |           |             |
| See at  | oove                                                                                                  |                                                                                                   | Start Start           |                  |           |             |
| DESIG   | IN INPUTS                                                                                             |                                                                                                   |                       |                  |           |             |
| 23.     | Are design inputs clearly in                                                                          | dentified?                                                                                        |                       |                  |           |             |
| 24.     | Are design inputs retrievable or have they been added as attachments?                                 |                                                                                                   |                       |                  |           |             |
| 25.     | If Attachments are used as design inputs or assumptions are the Attachments traceable and verifiable? |                                                                                                   |                       |                  |           |             |
| 26.     | Are design inputs clearly o                                                                           | listinguished from assumptions?                                                                   |                       |                  |           |             |
| 27.     |                                                                                                       | on Attachments for design inputs or assumption<br>orly referenced in the calculation?             | ons? If yes,          |                  |           |             |
| The D   |                                                                                                       | I is included as an Attachment is properly refe                                                   | erenced in the c      | alculation       |           |             |
| 28.     | Are input sources (includin                                                                           | ng industry codes and standards) appropriate<br>th the quality classification and objective of th | ly selected           |                  |           |             |
| 29.     | Are input sources (includir design and license basis?                                                 | ng industry codes and standards) consistent v                                                     | vith the plant's      |                  |           |             |
| 30.     | If applicable, do design in                                                                           | outs adequately address actual plant condition                                                    | ns?                   |                  |           |             |
| 31.     | Are input values reasonab                                                                             | le and correctly applied?                                                                         |                       |                  |           |             |
| 32.     | Are design input sources a                                                                            | approved?                                                                                         |                       |                  |           |             |
|         |                                                                                                       | I contains information from a superseded cal                                                      | culation.             |                  |           |             |
| 33.     | Does the calculation refer                                                                            | ence the latest revision of the design input so                                                   | urce?                 |                  |           |             |
|         | alculation uses information fr                                                                        | om a superseded calculation. This information                                                     |                       |                  | formation |             |
| 34.     |                                                                                                       | operating modes considered?                                                                       |                       | $\boxtimes$      |           |             |
| ASSU    | MPTIONS                                                                                               |                                                                                                   |                       |                  |           |             |

| -      |                                                                                                                                                        | Attachment 1<br>CALCULATION PREPARATION                                                                                                         | CALC<br>NO.    | NEE-32      | 23-CAL | C-002       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------|-------------|
| G      | ENERCON<br>Excellence—Every project. Every day.                                                                                                        | CHECKLIST                                                                                                                                       | REV.           |             | 0      |             |
|        |                                                                                                                                                        | CHECKLIST ITEMS <sup>1</sup>                                                                                                                    |                | YES         | NO     | N/A         |
| 35.    | Are assumptions reasonab                                                                                                                               | 12.2                                                                                                                                            | $\boxtimes$    |             |        |             |
| 36.    | Is adequate justification/ba                                                                                                                           |                                                                                                                                                 |                |             |        |             |
| 37.    | Are any engineering judgm                                                                                                                              | pents used?                                                                                                                                     |                |             |        |             |
|        | eering judgement not used as                                                                                                                           |                                                                                                                                                 |                |             |        |             |
| 38.    | 0, 0                                                                                                                                                   | s clearly identified as such?                                                                                                                   |                |             |        |             |
| Engine | eering Judgement is not used                                                                                                                           |                                                                                                                                                 |                |             |        |             |
| 39.    | If engineering judgments a they be quantified or subst                                                                                                 | re utilized as design inputs, are they reasona<br>antiated by reference to site or industry stand<br>vsical laws or other appropriate criteria? |                |             |        |             |
| Engine | eering Judgement is not used                                                                                                                           | l as a design input.                                                                                                                            |                |             |        |             |
| METH   | ODOLOGY                                                                                                                                                |                                                                                                                                                 |                |             |        |             |
| 40.    | Is the methodology used in the calculation described or implied in the plant's licensing basis?                                                        |                                                                                                                                                 |                |             |        |             |
| The so | cope of calculation is outside                                                                                                                         | of plant licensing basis                                                                                                                        |                |             |        |             |
| 41.    | If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? |                                                                                                                                                 |                |             |        | $\boxtimes$ |
| see ab |                                                                                                                                                        |                                                                                                                                                 |                |             |        |             |
| 42.    | Is the methodology used consistent with the stated objective?                                                                                          |                                                                                                                                                 |                |             |        |             |
| 43.    | Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results?                    |                                                                                                                                                 |                |             |        |             |
| BODY   | OF CALCULATION                                                                                                                                         |                                                                                                                                                 |                |             |        |             |
| 44.    | Are equations used in the and the plant's design and                                                                                                   | calculation consistent with recognized engine license basis?                                                                                    | ering practice | $\boxtimes$ |        |             |
| 45.    | Is there reasonable justific use?                                                                                                                      | ation provided for the use of equations not in                                                                                                  | common         |             |        |             |
| There  | are no uncommon equations                                                                                                                              | used in the calculation.                                                                                                                        |                |             |        |             |
| 46.    | Are the mathematical oper fashion?                                                                                                                     | ations performed properly and documented i                                                                                                      | n a logical    |             |        |             |
| 47.    | Is the math performed corr                                                                                                                             | rectly?                                                                                                                                         |                |             |        |             |
| 48.    | Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied?                                         |                                                                                                                                                 |                |             |        |             |
| 49.    | Has proper consideration small changes in input?                                                                                                       | been given to results that may be overly sens                                                                                                   | itive to very  |             |        |             |
| SOFT   | WARE/COMPUTER CODES                                                                                                                                    |                                                                                                                                                 |                |             |        |             |
| 50.    |                                                                                                                                                        | ftware languages used in the preparation of t                                                                                                   | he             |             |        |             |
| MCNF   | P and Scale are used                                                                                                                                   |                                                                                                                                                 |                | I           |        |             |

| _      | ENERCON<br>Excellence—Every project. Every day.                                                                                      | Attachment 1<br>CALCULATION PREPARATION<br>CHECKLIST                                                                                              | CALC<br>NO.     | NEE-3 | 23-CAL | C-002       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|--------|-------------|
| 0      |                                                                                                                                      |                                                                                                                                                   | REV.            |       | 0      |             |
| 19     | Contract of the                                                                                                                      | CHECKLIST ITEMS <sup>1</sup>                                                                                                                      |                 | YES   | NO     | N/A         |
| 51.    |                                                                                                                                      | Have the requirements of CSP 3.09 for use of computer codes or software languages, including verification of accuracy and applicability been met? |                 |       |        |             |
| 52.    | Are the codes properly ide level?                                                                                                    | n, and revision                                                                                                                                   |                 |       |        |             |
| 53.    | Is the computer code appli                                                                                                           | cable for the analysis being performed?                                                                                                           |                 |       |        |             |
| 54.    | If applicable, does the com                                                                                                          | puter model adequately consider actual plan                                                                                                       | t conditions?   |       |        |             |
| 55.    | Are the inputs to the computer code clearly identified and consistent with the inputs and assumptions documented in the calculation? |                                                                                                                                                   |                 |       |        |             |
| 56.    | Is the computer output clearly identified?                                                                                           |                                                                                                                                                   |                 |       |        |             |
| 57.    | Does the computer output clearly identify the appropriate units?                                                                     |                                                                                                                                                   |                 |       |        |             |
| 58.    | Are the computer outputs reasonable when compared to the inputs and what was expected?                                               |                                                                                                                                                   |                 |       |        |             |
| 59.    | Was the computer output reviewed for ERROR or WARNING messages that could invalidate the results?                                    |                                                                                                                                                   |                 |       |        |             |
| RESU   | LTS AND CONCLUSIONS                                                                                                                  |                                                                                                                                                   |                 |       |        | 1           |
| 60.    | Is adequate acceptance c                                                                                                             | iteria specified?                                                                                                                                 |                 |       |        |             |
| There  | is no acceptance criteria as                                                                                                         | discussed in calc.                                                                                                                                |                 |       |        |             |
| 61.    | intended use?                                                                                                                        | criteria consistent with the purpose of the ca                                                                                                    | Iculation, and  |       |        |             |
| See at | Dove                                                                                                                                 |                                                                                                                                                   |                 |       | 1      |             |
| 62.    |                                                                                                                                      | criteria consistent with the plant's design bas<br>d industry codes, and standards?                                                               | sis, applicable |       |        |             |
| See at | oove                                                                                                                                 |                                                                                                                                                   |                 |       |        |             |
| 63.    | Do the calculation results                                                                                                           | and conclusions meet the stated acceptance                                                                                                        | criteria?       |       |        | $\boxtimes$ |
| See at | oove.                                                                                                                                |                                                                                                                                                   |                 |       |        |             |
| 64.    | Are the results represente applicable?                                                                                               | d in the proper units with an appropriate toler                                                                                                   | ance, if        |       |        |             |
| 65.    | Are the calculation results stated inputs and objective                                                                              | and conclusions reasonable when considerees?                                                                                                      | ed against the  |       |        |             |
| 66.    | Is sufficient conservatism                                                                                                           | applied to the outputs and conclusions?                                                                                                           |                 |       |        |             |

| 0                                                           | <b>ENERCON</b><br>Excellence—Every project. Every day.                                                     | Attachment 1<br>CALCULATION PREPARATION<br>CHECKLIST | CALC<br>NO. | NEE-323-CALC-002 |   |             |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|------------------|---|-------------|--|
| Challen .                                                   |                                                                                                            |                                                      | REV.        |                  | 0 |             |  |
|                                                             | Same Shares                                                                                                | YES                                                  | NO          | N/A              |   |             |  |
| 67. Do                                                      | 67. Do the calculation results and conclusions affect any other calculations?                              |                                                      |             |                  |   |             |  |
| No other ca                                                 | lculations are affected b                                                                                  | by this calculation.                                 |             |                  |   |             |  |
| 68. If s                                                    | 68. If so, have the affected calculations been revised?                                                    |                                                      |             |                  |   | $\boxtimes$ |  |
| No other ca                                                 | Iculations are affected b                                                                                  | by this calculation.                                 |             |                  |   |             |  |
|                                                             | Does the calculation contain any conceptual, unconfirmed or open assumptions requiring later confirmation? |                                                      |             |                  |   |             |  |
| There are n                                                 | o open assumptions re                                                                                      | quiring confirmation later.                          |             |                  |   |             |  |
| 70. If s                                                    | o, are they properly ide                                                                                   | ntified?                                             |             |                  |   | $\boxtimes$ |  |
| There are no open assumptions requiring confirmation later. |                                                                                                            |                                                      |             |                  |   |             |  |
| DESIGN R                                                    | EVIEW                                                                                                      |                                                      |             | 10/1             |   |             |  |
| 71. Ha                                                      | Have alternate calculation methods been used to verify calculation results?                                |                                                      |             |                  |   |             |  |
| No a Design Review was performed.                           |                                                                                                            |                                                      |             |                  |   |             |  |

Note:

 Where required, provide clarification/justification for answers to the questions in the space provided below each question. An explanation is required for any questions answered as "No' or "N/A".

Originator: Jay Bhatt

Print Name and Sign

Date